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Notation and conventions

• We will denote by |S| of #S the cardinality of a finite set S.

• We denote by N the set of natural numbers, N = {1, 2, . . . } and we set N0 :=
N ∪ {0}.

• For any set X we denote by 2
X the collection of all the subsets of X

• For any set S, contained in some ambient space X, we denote by IS the indicator
function of S

IS : X → {0, 1}, IS(x) =

{
1, x ∈ S,
0, x 6∈ S.

• We will denote by E
[
X
]

the expectation of a random variable X any by P
[
S
]

the probability of an event S.

• f(t) = O
(
g(t)

)
as t→ t0 if ∃C > 0 such that

∣∣ f(t)
∣∣ ≤ C∣∣ g(t)

∣∣ for t close to t0.

• f(t) = o
(
g(t)

)
as t→ t0 if

lim
t→t0

f(t)

g(t)
= 0.

• f(t) ∼ g(t) as t→ t0 if

lim
t→t0

f(t)

g(t)
= 1.



ASYMPTOTIC FLUCTUATIONS OF THE STANDARD RANDOM WALK 3

Introduction

The standard random walk is easy to describe. Flip a fair coin with faces labelled ±1.
If the face 1 shows up take a step of size 1 in the positive direction (along the x-axis)
while if the face −1 shows up take a step of size 1 in the negative direction. We denote
by Sn your location after n steps. The random walk is formally the sequence of random
variables S0, S1, S2, . . . ,. Throughout we assume that the walk starts at the origin of the
x-axis, i.e., S0 = 0. If we think that we flip the coin once per unit of time, we can also
interpret n as measuring time.

This simple description makes the standard random walk amenable to combinatorial meth-
ods of investigation. The goal of this thesis is to describe a few less advertised asymp-
totic results concerning the fluctuations of the standard random walk. In the process we
will reveal a few counterintuitive results that, surprisingly, occur in more general situa-
tions.

The random walk obviously displays the Markov property: its future behavior is indepen-
dent of the past, given the present. For example, if the walk returns to 0 after a number
of coin flips, then the future behavior is as if we start the walk anew, and the history
of how the walk wandered back to 0 is irrelevant. Note that since the step sizes are the
odd integers ±1, the location Sn has the same parity as the number n of flips. Hence the
returns to the origin can only occur at even moments of time.

A key character in our story is the epoch T0 of the the first return to the origin

T0 = min
{
n ∈ N; Sn = 0

}
.

This is a random variables that takes only even positive integral values. It could also
be infinite. We determine its distribution in Lemma 1.5. This computation shows that
the probability that T0 = ∞ is 0. This proves that the random walk is recurrent: if we
continue flipping coins indefinitely the random walk will keep returning to 0, over, and
over. again.

We base our computation of the distribution of T0 on a remarkable combinatorial result,
Lemma 1.4: the probability that during the first 2n flips the random walk never returns
to the origin is equal to the probability after 2n flips is back at the origin, maybe not
for the first time. We denote by u2n the probability that the random walk returns to the
origin after 2n flips.

The proof of Lemma 1.4 is based on a very ingenious technique usually referred to as the
reflection principle.

Our first asymptotic result concerns the last return to 0,

R2n = max
{
k; 0 ≤ 2k ≤ 2n; S2k = 0

}
.

Its distribution can be easily computed using Lemma 1.4 and, using Stirling approximation
we are able to prove our first asymptotic result.

lim
n→∞

P
[ R2n

2n
≤ x

]
=

2

π
arcsin

√
x.
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Traditionally, this result is stated as saying the the random variable R2n
2n converges in

distribution to the arcsine distribution.

The graph of the probability density of the arcsine distribution is depicted in Figure 2. It
shows that the last return to 0 is more likely to occur either very early or very wait in the
sequence of 2n flips.

It is convenient to think of the random walk in terms of a fair game of chance between
two players A and B.

Suppose we have a fair coin with faces labelled ±1. We flip the coin and, if the face 1
shows up, player A gets $1 from B. If −1 shows up, A gives $1 to B. The quantity Sn
is then the amount A won/lost after n coin flips. If Sn > 0, then A is in the lead, i.e.,
his fortune increased Sn dollars, while if Sn < 0, then B is in the lead by |Sn| dollars, or,
equivalently A lost |Sn| dollars to B. We set

An := #
{
k; 1 ≤ k ≤ n, max(Sk−1, Sk) > 0

}
.

The quantity An
n indicates the amount of time player A is in the lead during a game of

duration n.

We present a result of Chung and Feller (Theorem 2.3) stating that that the random
variable A2n has the same distribution as R2n. In particular, this shows that the fraction
of time A2n

2n player A is in the lead also converges in distribution to the arcsine distribution.
Given the shape (Figure 2) of the arcsine distribution this is a bit counterintuitive. This
result states that in the long run it is very improbably that A will be in the lead half of
the time as one would expect from a fair gain. Instead, it is more likely that he will be
in the lead very little or very long. This is so much more surprising given another result
that we prove, Theorem 2.13. This states that if we know that after 2n games (n � 1)
no player won or lost anything (S2n), then the fraction of times player A was in the lead
is no longer arcsine distributed, but uniformly distributed!

It turns out that the arcsine distribution lurks behind another random quantity. Denote
by Mn the first moment in a string of n coin flips when payer A reaches the highest fortune
during this game of duration n, i.e.,

Mn := min
{

0 ≤ m ≤ n; Sm = max
(
S0, S1, . . . , Sm

) }
.

In Theorem 2.12 we show that the fraction of time it takes player A to reach its maximum
fortune during a long game also approaches the arcsine distribution.

We conclude with a section dedicated to the Central Limit Theorem (or de Moivre’s
formulæ) satisfied by Sn. Again, our approach is elementary, based on Stirling’s for-
mula.

1. The standard random walk

1.1. The basics. The standard random walk is a sequence of random sums

Sn = X1 + · · ·+Xn, n ∈ N,
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where Xn are independent Rademacher variables, i.e., random variables that take only
the values ±1 with equal probabilities. A random walk of length/duration n is a finite
sequence of random sums

S1 = X1, . . . , Sk = X1 + · · ·+ Sk, . . . , Sn = X1 + · · ·+Xn.

Intuitively, think that at each epoch n ∈ N we flip a fair coin with faces ±1. The random
variable Xn describes the result of the n-th flip. At time 0 we are located at the origin of
the real axis. After each flip with take a step of size 1 in the positive/negative direction
according to the sign of the flip. Sn is the location after n flips. A random walk of length
n can be identified with a random element of Wn = {−1, 1}n.

Equivalently, we can think of the standard walk in terms of a sequence of fair games
between two players A and B. After the n-th flip of the coin player P get $1 from B if
Xn = 1, or B gets $1 from A, if Xn = −1. Then Sn denotes the amount of money A has
won from B if Sn ≥ 0 or lost to B is Sn < 0.

Proposition 1.1. For each n, the location Sn has the same parity as n, and

P
[
Sn = s

]
=

1

2n

(
n
n+s
2

)
. (1.1)

Proof. We follow the approach in [2, Sec. 3.2]. Since Xk ≡ 1 mod 2 we deduce Sn =
X1 + · · · + Xn ≡ n mod 2. There are 2n walks of duration n. The final location Sn is
determined by the number p of positive steps, or the number of times we flipped 1 during
the first n steps. We flipped −1’s q = n− p times. Then the location y at epoch n is

s = p− (n− p) = 2p− n.
We deduce that p = n+s

2 . Thus, of the 2n paths of duration n, exactly
(
n

n+s
2

)
have final

location y. ut

Note that if the random walk returns to the origin at an epoch n, then n must be even,
n = 2k. We set

u2k := P
[
S2k = 0

]
.

The equality (1.1) implies

u2k =
1

22k

(
2k

k

)
. (1.2)

1.2. André’s reflection principle and the ballot theorem. As it is customary, we
will refer to the points in R2 with integral coordinates as lattice points. Let us define a
zig-zag of length n to be a sequence of lattice points

z = (P0, P1, . . . , Pn), Pk = (xk, yk),

such that
xk − xk−1 = 1, yk − yk−1 = ±1, ∀k.

We connect successive points Pk−1, Pk by a line segment so we can visualize a zig-zag as
a piecewise linear curve with edges of slopes ±1; see Figure 1.
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Figure 1. A zig-zag describing a random walk started at S0 = 0

We will refer to the points Pk as the vertices of the zig-zag. The point P0 is called the
initial point and the point Pn the final point of the zig-zag. We denote by Z the collection
of zig-zags.

For each P = (x, y) ∈ R2 we denote by P̄ its reflection in the x-axis, P̄ = (x,−y). To a
zig-zag

z = (P0, P1, . . . , Pn)

we can associate its reflection in the x-axis

z̄ =
(
P̄0, P̄1, . . . , P̄n

)
.

Clearly z̄ is also a zig-zag.

To a random walk of duration n we associate the zig-zag from (0, 0) to (n, Sn) with vertex
points (k, Sk), 0 ≤ k ≤ n.

Suppose that A = (a1, a2), B = (b1, b2) are lattice points. Denote by Z (A,B) the set of
zig-zags from A to B. We set

n = n(A,B) = a2 − a1 > 0, s = s(A,B) = b2 − b1.

Note that

Z (A,B) 6= ∅ ⇐⇒
∣∣ s ∣∣ ≤ n.

We denote byN(A,B) the number of zig-zags from A to B, i.e., the cardinality of Z (A,B).
When A = (0, 0) and B = (n, s) we will use the simpler notation

Nn,s := N(A,B).

We denote by pn,s the probability that a zigzag of length n started at the origin ends at
the point (n, s). Note that

pn,s =
Nn,s

2n
.

Note that there exists a bijection between zig-zags from (0, 0) to (n, s) and random walks
of duration n such that Sn = s. The argument in the proof of Proposition 1.1 shows
that

N(A,B) = Nn,s =

(
n

(n+ s)/2

)
, n = n(A,B), s = s(A,B). (1.3)
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Note that if A,B,C ∈ Z2 are such that Z (A,B),Z (B,C) 6= ∅, then we have a concate-
nation operation

∗ : Z (A,B)×Z (B,C)→ Z (A,C)

that associates to a zig-zag z from A to B and a zig-zag z′ from B to C the zig-zag z ∗ z′
obtained by gluing the end point of z with the initial point of z′

Theorem 1.2 (André’s Reflection Principle). Let A = (a1, a1), B = (b1, b2) be two lattice
points situated on the same side of the x-axis, but not on the x axis. Denote by Z x(A,B)
the set of zig-zags from A to B that touch the x axis. Then

#Z x(A,B) = #Z
(
Ā, B

)
,

where Ā denotes the reflection of A in the x-axis.

Proof. The proof is inspired by [2, Sec. 3.2]. We will construct a bijection

Φ : Z x(A, )→ Z (Ā, B).

Given a zig-zag z ∈ Z x(A,B) we denote by Pz the first point on the x-axis touched by
z. The point Pz splits the zig-zag z into two zigzags: a zig-zag z1 from A to Pz and the
rest, a zig-zag z2 from Pz to B such that z1 ∗ z2. Define

Φ(z) := z̄1 ∗ z2

We claim that this map is a bijection.

Injectivity. Suppose that z, z′ ∈ Z x(A,B) such that Φ(z) = Φ(z′). Note first that Pz

is the first point where the zig-zag Φ(z) touches the x-axis. This means that Pz′ = Pz

We deduce that

z̄1 = z̄′1, z̄2 = z̄′2 =⇒ z = z′.

Surjectivity. Let ζ ∈ Z (Ā, B). Denote by Pζ the first point on the x-axis touched by ζ.
We split similarly

ζ = ζ1 ∗ ζ2
where ζ1 is the part of ζ from Ā to Pζ . Observe that

ζ = Φ(ζ̄1 ∗ ζ2).
ut

Theorem 1.3 (Ballot theorem). Let (n, s) ∈ N2. Then, the number Bn,s of zig-zags of
length n from (0, 0) to (n, s) that do not touch or cross the x-axis equals

Bn,s = Nn−1,s−1 −Nn−1,s+1 =
s

n

(
n
n+s
2

)
=
s

n
Nn,s. (1.4)

Proof. We follow the strategy in [2, Sec. 3.2]. Observe that S1 = ±1. Denote by Zn,s the
set of zig-zags from O = (0, 0) to B = (n, s). Denote Z ±

n,s the set of zig-zags z ∈ Zn,s

that go through A± := (1,±1).

#Zn,s = #Z +
n,s + #Z −

n,s.
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The number Bn,s of zig-zags O to B that do not touch or cross the x-axis is equal to
the number of zig-zags in #Z +

n,s that do not touch or cross the x-axis. This is exactly
the number of zig-zags from A+ to B that do not touch the x axis. From the Reflection
Principle we deduce that

Bn,s = #Z (A+, B)−#Z x(A+, B) = #Z (A+, B)−#Z (Ā+, B)

= N(A+, B)−N(Ā+, B).

Note that

n(A+, B) = n− 1 = n(Ā+, B), s(A+, B) = s− 1, s(Ā+, B) = s+ 1.

Using (1.3) we deduce

N(A,B) =

(
n− 1
n+s
2 − 1

)
, N(Ā+, B) =

(
n− 1
n+s
2

)
.

Thus

Bn,s = Nn−1,s−1 −Nn−1,s+1 =

(
n− 1
n+s
2 − 1

)
−
(
n− 1
n+s
2

)
=

(n− 1)!

(n+s2 − 1)!(n− n+s
2 )!

− (n− 1)!

(n+s2 )!(n− n+s
2 − 1)!

=
(n− 1)!

(n+s2 )!(n− n+s
2 )!

(
n+ s

2
−
(
n− n+ s

2

))
=
s

n

(
n
n+s
2

)
=
s

n
Nn,s.

ut

1.3. Returns to the origin.

Lemma 1.4. The probability that a zig-zag of length 2n never returns to the origin equals
the probability that a zig-zag of length 2n returns to the origin at epoch 2n. i.e.

P
[
S1 6= 0, S2 6= 0, . . . , S2n 6= 0

]
= P

[
S2n = 0

]
= u2n. (1.5)

Proof. We argue as in [2, Sec. 3.3]. We have

P
[
S1 6= 0, S2 6= 0, . . . , S2n 6= 0

]
= P

[
S1 > 0, . . . , S2n > 0

]
+ P

[
S1 < 0, . . . , S2n < 0

]
.

By symmetry, the lemma is equivalent to

P
[
S1 > 0, · · · , S2n > 0

]
=

1

2
u2n.

Observe that

P
[
S1 > 0, . . . , S2n > 0

]
=

n∑
a=1

P
[
S1 > 0, . . . , S2n−1 > 0, S2n = 2a

]
.

The number of zig-zags that satisfy S1 > 0, . . . , S2n−1 > 0, S2n = 2a is equivalent to
number B2n,2a of zig-zags of length n from (0, 0) to (2n, 2a) that do not touch or cross the
x-axis.
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We have

P
[
S1 > 0, . . . , S2n−1 > 0, S2n = 2a

]
=
B2n,2a

2n

(1.4)
=

N2n−1,2a−1 −N2n−1,2a+1

2n
.

(1.6)

Hence
n∑
a=1

P
[
S1 > 0, . . . , S2n−1 > 0, S2n = 2a

]
=

n∑
a=1

N2n−1,2a−1 −N2n−1,2a+1

2n

=
N2n−1,1 −N2n−1,2n+1

2n
=
N2n−1,1 − 0

2n
=

1

2
P
[
S2n−1 = 1

]
.

Therefore,

P
[
S1 > 0, S2 > 0, · · · , S2n > 0

]
=

1

2
P
[
S2n−1 = 1

]
.

Since S2n−1 = 1 and S2n−1 = −1 are both one flip away from reaching S2n = 0 we deduce

u2n = P
[
S2n = 0

]
=

1

2
P
[
S2n−1 = 1

]
+

1

2
P
[
S2n−1 = −1

]
.

By symmetry,

P
[
S2n−1 = 1

]
= P

[
S2n−1 = −1

]
so that

P
[
S2n−1 = 1

]
= u2n.

We conclude that

P
[
S1 > 0, S2 > 0, · · · , S2n > 0

]
=

1

2
P
[
S2n−1 = 1

]
=

1

2
u2n, (1.7)

and thus

P
[
S1 6= 0, S2 6= 0, · · · , S2n 6= 0

]
= u2n.

ut

Let

T0 := min
{
r ∈ N; Sr = 0

}
.

Thus, T0 is the time of the first return to the origin. Note that T0 is necessarily an even
number, possibly infinite. We denote by f the probability distribution of the random
variable T0. Thus

fr = P
[
T0 = r

]
.

As observed, fr is zero if r is odd.

Lemma 1.5. The probability that the first return at the origin happens at time 2n is

f2n =
1

2n− 1
u2n =

1

(2n− 1)2n

(
2n

n

)
(1.8)
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Proof. We follow the proof in [2, Sec. 3.3]. By (1.5),

f2n = P
[
S1 6= 0, S2 6= 0, · · · , S2n−2 6= 0

]
− P

[
S1 6= 0, S2 6= 0, · · · , S2n 6= 0

]
= u2n−2 − u2n =

1

22n−2

(
2n− 2

n− 1

)
− 1

22n

(
2n

n

)
=

1

22n

(
2n− 2

n− 1

)(
4− 2n(2n− 1)

n2

)
=

1

22n

(
2n− 2

n− 1

)
2n

n2

=
1

22n(2n− 1)

(
2n

n

)
=

1

2n− 1
u2n.

ut

Lemma 1.6. The probability that a zig-zag of infinite length never returns to the origin

lim
n→∞

P
[
S1 6= 0, . . . , S2n 6= 0

]
= 0. (1.9)

Proof.

P
[
S1 6= 0, . . . , S2n 6= 0

] (1.5)
= u2n =

1

22n

(
2n

n

)
=

1

22n
(2n)!

n!n!

=
(2n)!

(2n)!!(2n)!!
] =

1

2
· 3

4
· · · 2n− 1

2n

Since
m

m+ 1
<
m+ 1

m+ 2
, ∀m ∈ N,

we deduce,( 1

2
· 3

4
· · · 2n− 1

2n

)2
<
( 1

2
· 3

4
· · · 2n− 1

2n

)
·
( 2

3
· 4

5
· · · 2n

2n+ 1

)
=

1

2n+ 1
.

Therefore,

lim
n→∞

1

2
· 3

4
· · · 2n− 1

2n
= 0.

ut

2. Arcsine Laws

2.1. Time of last return to the origin. Consider the standard random walk (Sn)n≥0.
For n ∈ N we set

R2n := max
{

0 ≤ k ≤ n; S2k = 0
}
,

and

αk,n−k := P
[
R2n = 2k

]
.

Lemma 2.1. The probability that the last return to the origin of a zig-zag of length 2n
happens at epoch 2k.

αk,n−k = P
[
S2k = 0, S2k+1 6= 0, . . . , S2n 6= 0

]
= u2ku2n−2k (2.1)
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Proof. The proof is from [2, Sec. 3.4].

αk,n−k = P
[
S2k = 0

]
P
[
S2k+1 6= 0, . . . , S2n 6= 0

]
= u2kP

[
S2k+1 6= 0, . . . , S2n 6= 0

]
By (1.5),

P
[
S2k+1 6= 0, . . . , S2n 6= 0

]
= u2n−2k.

Thus,

αk,n−k = u2ku2n−2k.

ut

Theorem 2.2 (Arcsine Law for Last Visits). For any 0 ≤ a < b ≤ 1 we have

lim
n→∞

P
[
a ≤ R2n

2n
≤ b

]
=

2

π
arcsin

√
b− 2

π
arcsin

√
a. (2.2)

i.e.,

lim
n→∞

∑
an≤k≤bn

αk,n−k =
2

π
arcsin

√
b− 2

π
arcsin

√
a. (2.3)

Proof. We follow the approach in [2, Sec. 3.4]. Set Qn := R2n
2n We will carry the proof in

three steps.

Step 1. Assume 0 < a < b < 1. We deduce from Stirling’s Formula (A.2) that as m→∞
we have

u2m =
1

22m

(
2m

m

)
=

1

22m
(2m)!

(m!)2

=
1√
πm

(
1 +O(1/m)

)
=

1√
πm

+O
(

1/m3/2
)
.

(2.4)

Fix 0 < a < b < 1. Let k be even integer in
[
na, nb

]
, 0 ≤ a ≤ b ≤ 1. For n sufficiently

large,
1

k
= O(1/n),

1

n− k
= O(1/n),

αk,n−k = u2ku2n−2k

=

(
1√
πk

+O(1/k3/2)

)
·

(
1√

π(n− k)
+O(1/(n− k)3/2)

)

=
1

π
√
k(n− k)

+O(1/n2).

(2.5)

P
[

2 dnae ≤ R2n ≤ 2 bnbc
]

=

bnbc∑
k=dnae

u2ku2n−2k
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=

bnbc∑
k=dnae

( 1

π
√
k(n− k)

+O(1/n2)
)

(the above sum consists of O(n) terms)

=

bnbc∑
k=dnae

1

π
√
k(n− k)

+ O(1/n) =
∑

a≤ k
n
≤b

1
n

π
√

k
n(1− k

n)
+O(1/n).

The last sum is a Riemann sum approximation of the integral∫ b

a

1

π
√
x(1− x)

dx.

Thus, if 0 < a < b < 1 then, as n→∞,

P
[
a ≤ Qn ≤ b

]
∼
∫ b

a

1

π
√
x(1− x)

dx =
2

π
arcsin

√
b− 2

π
arcsin

√
a.

Step 2. We will prove that (2.2) holds for a = 0 and b = 1/2, i.e.,

lim
n→∞

∑
0≤k≤n/2

αk,n−k =
2

π
arcsin

√
1

2
=

1

2
.

Set
xn :=

∑
0≤k≤n/2

αk,n−k, yn =
∑

0≤k<n/2

αk,n−k.

We have to prove that xn → 1
2 as n→∞. Note that

zn = xn − yn =

{
0, n odd,

αn/2,n/2, n even.
.

If n = 2m, then

αn/2,n/2 = u22m =
1

πm
+O(1/m2) as m→∞.

Hence zn → 0 as n→∞. Now observe that αn,n−k = αn−k,k so that

yn =
∑

0≤k<n/2

αk,n−k =
∑

0≤k<n/2

αn−k,k

(set j = n− k so that k = n− j)

=
∑

n/2<j≤n

αj,n−j .

On the other hand

1 =

n∑
k=0

P
[
R2n = 2k] =

n∑
j=0

αj,n−j

=

n∑
0≤j≤n/2

αj,n−j +
∑

n/2<j≤n

αj,n−j = xn + yn = 2xn − zn
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so that

xn =
1 + zn

2
→ 1

2
as n→∞.

Step 3. We will show that results in Step 1 and Step 2 allow us to conclude (2.2) is
valid in the general case.

First, we show that for a = 1
2 and b = 1, i.e.,

lim
n→∞

∑
n
2
≤k≤n

αk,n−k =
2

π
arcsin

√
1− 2

π
arcsin

√
1

2
=

1

2
.

Set

x′n :=
∑

n
2
≤k≤n

αk,n−k,

=
n∑

0≤k<n
2

αk,n−k +
∑

n
2
≤k≤n

αk,n−k = yn + x′n = xn − zn + x′n = 1

Because xn → 1
2 and zn → 0 as n→∞, 1− xn + zn = x′n → 1

2 as n→∞.

Now we consider the general case 0 ≤ a < b ≤ 1.

When a = 0, b = 1, ∑
an≤k≤bn

αk,n−k = 1.

When a = 0, b > 1
2 , ∑

0≤k≤bn
αk,n−k =

∑
0≤k<n

2

αk,n−k +
∑

n
2
≤k≤bn

αk,n−k

=
∑

0≤k≤n
2

αk,n−k +
∑

n
2
≤k≤bn

αk,n−k

=
1

2
+

2

π
arcsin

√
b− 2

π
arcsin

√
1

2
=

2

π
arcsin

√
b.

When a = 0, b < 1
2 , ∑

0≤k≤bn
αk,n−k =

∑
0≤k≤n

2

αk,n−k −
∑

bn<k≤n
2

αk,n−k.

For x ∈ (0, 1) fixed and k = xn we deduce from (2.5)

lim
n→∞

αk,n−k = 0.

Therefore, ∑
bn<k≤n

2

αk,n−k =
∑

bn≤k≤n
2

αk,n−k.
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Thus, ∑
0≤k≤bn

αk,n−k =
∑

0≤k≤n
2

αk,n−k −
∑

bn≤k≤n
2

αk,n−k

=
1

2
− 2

π
arcsin

√
1

2
+

2

π
arcsin

√
b =

2

π
arcsin

√
b.

When a < 1
2 , b = 1, ∑

an≤k≤n
αk,n−k =

∑
an≤k≤n

2

αk,n−k +
∑

n
2
<k≤n

αk,n−k

=
∑

an≤k≤n
αk,n−k =

∑
an≤k≤n

2

αk,n−k +
∑

n
2
≤k≤n

αk,n−k

2

π
arcsin

√
1

2
− 2

π
arcsin

√
b+

1

2
= 1− 2

π
arcsin

√
b.

When a > 1
2 , b = 1, ∑

an≤k≤n
αk,n−k =

∑
n
2
≤k≤n

αk,n−k −
∑

n
2
≤k<an

αk,n−k

=
∑

n
2
≤k≤n

αk,n−k −
∑

n
2
≤k≤an

αk,n−k

=
1

2
− 2

π
arcsin

√
a+

2

π
arcsin

√
1

2
= 1− 2

π
arcsin

√
a.

Therefore, for 0 ≤ a < b ≤ 1,

lim
n→∞

∑
an≤k≤bn

αk,n−k =
2

π
arcsin

√
b− 2

π
arcsin

√
a.

ut

2.2. Lead time. For each zigzag of length n started at the origin we denote by An the
number of its edges above the x-axis. Equivalently

An := #
{
k; 1 ≤ k ≤ n, max(Sk−1, Sk) > 0

}
. (2.6)

The next result is due to K. L. Chung and W. Feller, [1].

Theorem 2.3. For any 0 ≤ k ≤ n we have

P
[
A2n = 2k

]
= P

[
R2n = 2k] = u2ku2n−2k.

Proof. We follow the proof given in [2, Sec. 3.4]. We set β2k,2n := P
[
A2n = 2k

]
. By

symmetry,
β0,2n = β2n,2n.

On the other hand, all the edges of a zig-zag are above the x-axis iff S1 ≥ 0, . . . , S2n ≥ 0
so

β2n,2n = P
[
S1 ≥ 0, S2 ≥ 0, . . . , S2n ≥ 0

]
.
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Let us observe that

P
[
S1 ≥ 0, S2 ≥ 0, . . . , S2n ≥ 0

]
= u2n. (2.7)

To see this, extend the zig-zag to (−1,−1) and relabel this point as the origin. We obtain
a new, longer, zigzag (0, S′0), (1, S

′
1), . . . , (2n+ 1, S′2n+1),

S′0 = 0, S′1 = S0 + 1 = 1, S′2 = S1 + 1, , S′k+1 = Sk + 1, . . . .

Note that S′2n is even so S′2n > 0 =⇒ S′2n+1 > 0. Hence

P
[
S1 ≥ 0, S2 ≥ 0, . . . , S2n ≥ 0

]
= 2P

[
S′1 = 1, S′2 > 0, . . . , S′2n+1 > 0

]
= 2P

[
S′1 > 0, S′2 > 0, . . . , S′2n > 0

] (1.7)
= u2n.

This proves (2.7).

We condition on the time T0 of the first return to the origin. We have

β2k,2n = P
[
A2n = 2k

]
=

k∑
r=1

P
[
A2n = 2k |S2r−1 > 0, T0 = 2r

]
P
[
S2r−1 > 0, T0 = 2r

]
+
n−k∑
r=1

P
[
A2n = 2k |S2r−1 < 0, T0 = 2r

]
P
[
S2r−1 < 0, T0 = 2r

]
.

Note that

P
[
S2r−1 > 0, T0 = 2r

]
= P

[
S2r−1 < 0, T0 = 2r

]
=

1

2
P
[
T0 = 2r

]
=

1

2
f2r.

Also

P
[
A2n = 2k |S2r−1 > 0, T0 = 2r

]
= β2k−2r,2n−2r,

P
[
A2n = 2k |S2r−1 < 0, T0 = 2r

]
= β2k,2n−2r.

Hence

β2k,2n =
1

2

k∑
r=0

β2k−2r,2n−2rf2r +
1

2

n−k∑
r=0

β2k,2n−2rf2r.

We will prove by induction on n that

P (n) : ∀0 ≤ k ≤ n, β2k,2n = αk,n−k = u2ku2n−2k.

P (1): When n = 1, β2,2 = u2u0 = 1
2 , the proposition holds.

Assume P (n) holds for all n ≤ m− 1. Then, for n = m,

β2k,2m =
1

2

k∑
r=1

β2k−2r,2m−2rf2r +
1

2

m−k∑
r=1

β2k,2m−2rf2r

Clearly, m− r ≤ m− 1.
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Therefore, β2k−2r,2m−2r = u2ku2m−2k and β2k,2m−2r = u2ku2m−2k−2r. Hence,

β2k,2m =
1

2

k∑
r=1

u2k−2ru2m−2kf2r +
1

2

m−k∑
r=1

u2ku2m−2k−2rf2r

=
1

2
u2m−2k

k∑
r=1

u2k−2rf2r +
1

2
u2k

m−k∑
r=1

u2m−2k−2rf2r.

Observe that
k∑
r=1

u2k−2rf2r =

k∑
r=1

P
[
S2k−2r = 0

]
P
[
T0 = 2r

]
= P

[
S2k = 0

]
= u2k

and similarly,

m−k∑
r=1

u2m−2k−2rf2r =
k∑
r=1

P
[
S2m−2k−2r = 0

]
P
[
T0 = 2r

]
= P

[
S2m−2k = 0

]
= u2m−2k.

Thus,

β2k,2m =
1

2
u2m−2ku2k +

1

2
u2ku2m−2k = u2ku2m−2k = αk,m−k.

Therefore, we have proved that β2k,2n = αk,n−k.

ut

The next result was first proved by P. Lévy for Brownian motion.

Corollary 2.4 (Arcsine law for the leading time). In particular, for any x ∈ [0, 1], we
have

lim
n→∞

P
[ A2n

2n
≤ x

]
=

2

π
arcsin

√
x.

Proof. As n→∞

lim
x→∞

P
[ A2n

2n
≤ x

]
= lim

n→∞

∑
k<xn

u2ku2n−2k
(2.3)
=

2

π
arcsin

√
x.

ut

Remark 2.5. The probability density of the arcsine distribution is 1

π
√
x(1−x)

. This density

is depicted in Figure 2. A random variable with this distribution is more likely to have
values close to 0 or 1 then near the midpoint of [0, 1].

To understand the significance of Corollary 2.4 it is convenient to think of the random
walk in terms of a fair game of chance between two players A and B.

Suppose we have a fair coin with faces labelled ±1. We flip a coin and if the face 1 shows
up player A gets $ 1 from B, and if −1 shows up, A gives $ 1 to B. The quantity Sn
is then the amount A won/lost after n coin flips. If Sn > 0, then A is in the lead, i.e.,
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Figure 2. The graph of 1

π
√
x(1−x)

.

his fortune increased Sn dollars, while if Sn < 0, then B is in the lead by |Sn| dollars,
or, equivalently A lost |Sn| dollars to B. The quantity An

n indicates the amount of time
player A is in the lead during a game of duration n

Since the game is fair, intuition might suggest that the fractiion of time A is in the lead
ought to be roughly equal to so that An

n should be close to 1
2 . Figure 2 shows that this is

not the case. For example, for n large

P
[

0.49 ≤ An/n ≤ 0.51
]
≈
∫ 0.51

0.49

1

π
√
x(1− x)

dx

=
2

π

(
arcsin

√
0.51− arcsin

√
0.49

)
≈ 0.012.

On the other hand

P
[
An/n ≤ 0.1

]
≈
∫ 0.1

0

1

π
√
x(1− x)

dx

=
2

π
arcsin

√
0.1 ≈ 0.204

By symmetry, we deduce that the probability that one of the players is in the lead most of
the time is ≈ 0.408! This is about 40-times more likely than them changing lead often. ut

2.3. Maximum and first passage. Let S∗n be the maximum of a random walk, i.e.

S∗n = max
{
S0, S1, . . . , Sn

}
.
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Lemma 2.6. Given r > 0, the probability that a zig-zag of length n from the origin ends
at (n, k), k ≤ r and S∗n ≥ r equals

pn,2r−k = P
[
Sn = 2r − k

]
=


0, n 6≡ k mod 2,

1
2n

( n
r+n−k

2

)
, n ≡ k mod 2.

Proof. We use Feller’s approach from [2, Sec. 3.7]. Think of the horizontal line x = r as
the new x-axis. Because k ≤ r and 0 < r, the beginning and end lattice points are on the
same side of the new x-axis. Then, by André’s reflection principle, the number of paths
from (0, 0) to (n, k) that touches or crosses x = r equals the number of paths from (0, 0)
to the reflection of (n, k) in x = r which is (n, 2r − k).

Thus,

P
[
Sn = k, S∗n ≥ r

]
=

#Z
(

(0, 0), (n, 2r − k)
)

2n
= pn,2r−k.

ut

Therefore, we can derive that the probability that a zig-zag of length n from the origin
ends at (n, k), k ≤ r and S∗n equals

P
[
Sn = k, S∗n ≥ r

]
− P

[
Sn = k, S∗n ≥ r + 1

]
= pn,2r−k − pn,2r+2−k.

Theorem 2.7. Given r ≥ 0, the probability that a zig-zag of length n from the origin
satisfies S∗n = r equals max

{
pn,r, pn,r+1

}
.

Proof. The proof below is from [2, Sec. 3.7].

P
[
S∗n = r

]
=

r∑
k=−n

P
[
Sn = k; k ≤ r, S∗n = r

]
=

r∑
k=−n

(
pn,2r−k − pn,2r+2−k

)
= pn,r+1 + pn,r

=


pn,r, n ≡ r mod 2,

pn,r+1, n ≡ r + 1 mod 2.

ut

Consider the standard random walk (Sn)n≥0. For n ∈ N and r ≥ 0 we denote by Hr the
hitting time of the location r, i.e., random variable

Hr := min
{

0 ≤ k ≤ n; Sk = r
}
.
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We set
γr,n := P

[
Hr = n

]
.

Theorem 2.8. For a zig-zag of length n, the probability that the first passage through r
occurs at n equals γr,n = 1

2

(
pn−1,r−1 − pn−1,r+1

)
.

Proof. The proof is from [2, Sec. 3.7]. Note that Sn = r is the first passage through r ⇒
Sn−1 = r − 1 and S∗n = r − 1.

γr,n =
1

2
P
[
Sn−1 = r − 1;S∗n = r − 1

]
=

1

2

(
P
[
Sn−1 = r − 1; S∗n ≥ r − 1

]
− P

[
Sn−1 = r − 1; S∗n ≥ r

] )
=

1

2

(
pn−1,r−1 − pn−1,r+1

)
.

ut

Theorem 2.9. The probability that the r-th return to the origin happens at n equals
γr,n−r, i.e., the probability that the first passage through r happens at epoch n.

Proof. The following proof is inspired by [2, Sec. 3.7]. Denote by Wn,r the set of walks
x = X1, . . . , Xn of length n

• return to 0 exactly r times,

• and the last return occurs at epoch n, i.e., Sn = 0.

The theorem is equivalent to the equality

#Wn,r = 2nγr,n−r. (2.8)

We denote by W −
n,r the subset of Wn,r consisting of nonpositive walks, i.e.,

Sk = X1 + · · ·+Xk ≤ 0, ∀k = 1, . . . , n.

We first show that
#W −

n,r = 2n−rγr,n−r. (2.9)

We denote by W ∗
n,r the set of walks of length n that end with a first passage through r.

Note that
#W ∗

n−r,r = 2n−rγr,n−r.

We will prove the equality (2.9) by constructing a bijection W −
n,r → W ∗

n−r,r.

Let x =
(
X1, . . . , Xn

)
∈ W −

n,r. Denote by

0 < k1 < k2 < · · · < kr = n

the r epochs of return to the origin of the path x, i.e.,

Sk1 , Sk2 , . . . , Skr = 0.

Set k0 = 0. Because the walk is entirely nonpositive, every step after the walk reaches the
origin must be in the negative direction,

Xk0+1 = Xk2+1 = · · · = Xkr−1+1 = −1.
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Consider a new walk Ψ(x) of length (n− r) obtained from the random walk (X1, . . . , Xn)
by skipping the steps Xki+1, i = 0, . . . , r − 1. For j = 1, . . . , r, the first moment the walk
Ψ(x) reaches the location j is kj − j. This shows that Ψ(x) ∈ W ∗

n−r,r. We will prove that

the resulting map Ψ : W −
n,r → W ∗

n−r,r is a bijection.

The walk x is uniquely determined by the epochs k1, . . . , kr and the (walk) segments

σj(x) = Xkj−1+2, . . . , Xkj , j = 1, . . . r.

The walk Ψ(x) is obtained from the succesive concatenation of the segments σ1(x), . . . , σr(x).

Observe that each of the walks σj(x) is a walk from 0 to 1 that reaches one only at the last
step. Note that the first moment Ψ(x) reaches location j is after the completion of the
segments σ1, . . . , σj , that is at epoch kj − j. Thus the epochs kj are uniquely determined
by Ψ(x). The segment σj(x) corresponds to the segment of the walk Ψ(x) from the first
epoch it reaches location j−1 to the first epoch it reaches location j. Hence x is uniquely
determined by Ψ(x) proving that Ψ is injective.

Suppose now that y = (Y1, . . . , Yn−r) is a walk in W ∗
n−r,r. It determines r epochs tj ,

j = 1, . . . , r, where tj is the first epoch the walk y reaches location j. We set t0 = 0.
These epochs cut out r walk segments

uj(y) = Ytj−1+1, . . . , Ytj .

Then y = Ψ(x), where x ∈ W −
n,r is the walk

x = −1, u1(y),−1, u2(y), . . . , ,−1, ur(y).

Hence Ψ is a bijective.

The equality (2.8) is equivalent to

Wn,r = 2nγr,n−r = 2r#W −n, r (2.10)

We will construct a bijection

Φ : Wn,r → {−1, 1}r ×W −
n,r.

Let x =
(
X1, . . . , Xn

)
∈ W −

n,r. Set k0 = 0 and nenote by

0 < k1 < k2 < · · · < kr = n

the r epochs of return to the origin of the path x. These epochs cut out r walk segments

vj(x) = Xkj−1+1, . . . , Xkj , j = 1, . . . , k

Set εj = εj(x) := Xkj+1 ∈ {−1, 1}. The zigzag associated to vk(x) stays above the x-axis
if εj = 1 and below the x-axis if εj = −1. We denote by x̄ the walk

−ε1v1(x), . . . ,−εrvr(x),

where for any walk y = Y1, . . . , Ym and ε = ±1 we set εy := εY1, . . . , εYm. Clearly
x̄x ∈ W −n, r. We have thus produced a map

Φ : Wn,r → {−1, 1}r ×W −
n,r, Φ(x) =

(
ε1(x), . . . , εr(x), x̄x

)
.

It is a bijection with inverse

{−1, 1}r ×W −
n,r 3

(
ε1, . . . , εr, y

)
7→ −ε1v1(y), . . . ,−εrvr(y) ∈ Wn,r.
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ut

2.4. Duality and the position of maxima. To a given a random walk of finite lengh
n

Sn = X1 + · · ·+Xn,

we can bijectively associate a dual random walk of the same length

S′n = X ′1 + · · ·+X ′n.

The dual zigzag is obtained by rotating the original zigzag around its right endpoint
(n, Sn)by 180 degrees, changing the orientation of the x-axis and then relabeling (n, Sn)
as the new origin. Formally we set

X ′1 = Xn, X
′
2 = Xn−1, . . . , X

′
n = X1,

i.e., ∀k = 0, 1, 2, . . . , n,

X ′k = Xn+1−k; Xk = X ′n+1−k.

Lemma 2.10. For a zig-zag of length n, let r =
⌊
n
2

⌋
, the probability that the final epoch

n is a first passage through a point equals u2r, i.e.,

P
[
Sn > max{S0, . . . , Sn−1}

]
= P

[
Sn < min

{
S0, . . . , Sn−1

} ]
=

1

2
u2r.

Proof. We use approach in [2, Sec. 3.8]. Given a random walk of length n, the right
endpoint (n, Sn) is the first passage through a point if and only if the corresponding
zigzag reaches a maximum or a minimum at that epoch.

From the definition of duality we see that the right endpoint (n, Sn) is the only maximum
in the original path iff the origin is the only minimum in the dual.

When n is even, i.e. n = 2r,

If S2r is the maximum, consider

P
[
S2r > max{S0, . . . , S2r−1}

]
= P

[
S2r − S2r−1 > 0, S2r − S2r−2 > 0, . . . , S2r − S1 > 0, S2r − S0 > 0

]
= P

[
Xr > 0, Xr +Xr−1 > 0, . . . , Xr +Xr−1 + · · ·+X1 > 0

]
= P

[
X ′1 > 0, X ′1 +X ′2 > 0, . . . , X ′1 +X ′2 + · · ·+X ′r > 0

]
= P

[
S′1 > 0, S′2 > 0, . . . , S′2r > 0

] (1.7)
=

1

2
u2r.

If S2r is the minimum,

P
[
S2r < min

{
S0, . . . , S2r−1

} ]
= P

[
S2r − S2r−1 < 0, S2r − S2r−2 < 0, . . . , S2r − S1 > 0, S2r − S0 < 0

]
= P

[
Xr < 0, Xr +Xr−1 < 0, . . . , Xr +Xr−1 + · · ·+X1 < 0

]
= P

[
X ′1 < 0, X ′1 +X ′2 < 0, . . . , X ′1 +X ′2 + · · ·+X ′r < 0

]
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= P
[
S′1 < 0, S′2 < 0, . . . , S′2r < 0

] (1.7)
=

1

2
u2r.

Similarly, when n is even, i.e., n = 2r + 1

If S2r+1 is the maximum,

P
[
S2r+1 > max{S0, . . . , S2r}

]
= P

[
S′1 > 0, S′2 > 0, . . . , S′2r+1 > 0

] (1.7)
=

1

2
u2r.

If S2r+1 is the minimum,

P
[
S2r+1 < min

{
S0, . . . , S2r

} ]
= P

[
S′1 < 0, S′2 < 0, . . . , S′2r+1 < 0

] (1.7)
=

1

2
u2r.

Therefore, given r =
⌊
n
2

⌋
,

P
[
Sn > max{S0, . . . , Sn−1}

]
= P

[
Sn < min

{
S0, . . . , Sn−1

} ]
=

1

2
u2r.

(2.11)

ut

Theorem 2.11 (Distribution of maxima). The probability that the first visit to the right
endpoint of a zig-zag of length 2n happens at 2k

P
[
S2k = S2n > max{S0, . . . , S2k−1}

]
= u2ku2n−2k.

Proof. The following proof is from [2, Sec. 3.8].

P
[
S2k = S2n > max{S0, . . . , S2k−1}

]
= P

[
S1 6= S2k, . . . , S2k−1 6= S2k

]
P
[
S2k = S2n

]
=
{
P
[
S2k > max{S0, . . . , S2k−1}

]
+ P

[
S2k < min

{
S0, . . . , S2k−1

} ]}
· u2n−2k

= (
1

2
u2k +

1

2
u2k)u2n−2k = u2ku2n−2k.

ut

Consider the standard random walk (S2n)n≥0. For n ∈ N and r ≥ 0 we denote byM = M2n

the first moment when the maximum S∗2n is attained. More precisely,

M2n := min
{

0 ≤ m ≤ 2n; Sm = max{S0, . . . , S2n}
}
.

Theorem 2.12 (Location of Maximum). The probability that the maximum of a random
walk of length 2n first occurs at 2r or 2r + 1,

P
[
M2n = 2r

]
= P

[
M2n = 2r + 1

]
=

1

2
u2ru2n−2r. (2.12)

In particular

lim
n→∞

P
[M2n

2n
≤ x

]
=

2

π
arcsin

(√
x
)
. (2.13)
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Proof. We follow the approach in [2, Sec. 3.8]. For simplicity we set M = M2n. When
M = 2r,

P
[
M = 2r

]
= P

[
S2r > max{S0, . . . , S2r−1};S2r ≥ max{S2r, . . . , S2n}

]
= P

[
S2r > max{S0, . . . , S2r−1}

]
P
[
S2r ≥ max{S2r, . . . , S2n}

]
(2.11)

=
1

2
u2rP

[
S2r ≥ S2r, S2r ≥ S2r+1, . . . , S2r ≥ S2n

]
=

1

2
u2rP

[
S2r − S2r+1 ≥ 0, . . . , S2r − S2n ≥ 0

]
=

1

2
u2rP

[
X2r+1 ≤ 0, . . . , X2r+1 + · · ·+X2n ≤ 0

]
=

1

2
u2rP

[
S1 ≤ 0, . . . , S2n−2r ≤ 0

] (2.7)
=

1

2
u2ru2n−2r.

When M = 2r + 1,

P
[
M = 2r + 1

]
= P

[
S2r+1 > max{S0, . . . , S2r};S2r+1 ≥ max{S2r+1, . . . , S2n}

]
= P

[
S2r+1 > max{S0, . . . , S2r}

]
P
[
S2r+1 ≥ max{S2r+1, . . . , S2n}

]
(2.11)

=
1

2
u2rP

[
S2r+1 ≥ S2r+1, S2r+1 ≥ S2r+2, . . . , S2r+1 ≥ S2n

]
=

1

2
u2rP

[
S2r+1 − S2r+2 ≥ 0, . . . , S2r+1 − S2n ≥ 0

]
=

1

2
u2rP

[
X2r+2 ≤ 0, . . . , X2r+2 + · · ·+X2n ≤ 0

]
=

1

2
u2rP

[
S1 ≤ 0, . . . , S2n−2r−1 ≤ 0

]
.

Note that S2n−2r+1 is odd so S2n−2r−1 ≤ 0 =⇒ S2n−2r ≤ 0. Hence

P
[
M = 2r

]
=

1

2
u2rP

[
S1 ≤ 0, . . . , S2n−2r ≤ 0

] (2.7)
=

1

2
u2ru2n−2r.

This proves (2.12).

To prove (2.13) note that (2.12) can be rewritten as

P
[
M2n = m

]
=

1

2
u2ku2n−2k, k = bm/2c.

We introduce a slightly modified variable

M̂2n := 2
⌊
M2n/2

⌋
.

This new variables takes only even values and

P
[
M̂2n = 2k

]
= u2ku2n−2k

Hence M̂2n
2n converges in distribution to the arcsine distribution. The claim (2.13) follows

by observing that for x ∈ (0, 1)∣∣∣P[M2n

2n
≤ x

]
− P

[ M̂2n

2n
≤ x

] ∣∣∣ ≤ r2n(x) :=
1

2
u2k(x)u2n−2k(x), k(x) = bnxc.
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The estimate (2.5) implies that

lim
n→∞

r2n(x) = lim
n→∞

1

2π
√
bnxc

(
n− bnxc

) = 0, ∀x ∈ (0, 1).

ut

2.5. Equidistribution of conditioned leading time. Recall that in (2.6) we defined
An the number of edges above the x-axis of a zig-zag of length n started at the origin.
Theorem 2.3 shows that the ratio A2n

2n is biased towards its extreme values 0 and 1. Our
next result shows that this bias disappears if we know additionally that the random walk
returned to 0 after 2n steps.

Theorem 2.13. The probability that a zig-zag of length 2n satisfy A2n = 2k, 0 ≤ k ≤ n
is independent of k. More precisely

P
[
A2n = 2k |S2n = 0

]
=

1

n+ 1

which is independent of k. Thus, the random variable A2n, conditioned by {S2n = 0} is
uniformly distributed and thsus

lim
n→∞

P
[ A2n

2n
≤ x

∣∣∣S2n = 0
]

= x.

Proof. We follow the method in [2, Sec. 3.9]. When k = 0 or k = n, by symmetry,

P
[
A2n = 0 |S2n = 0

]
= P

[
A2n = 2n |S2n = 0

]
.

All the edges are above the x-axis iff S1 ≥ 0, . . . , S2n−1 ≥ 0 so

P
[
A2n = 2n |S2n = 0

]
= P

[
S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0 |S2n = 0

]
=

P
[
S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0, S2n = 0

]
P
[
S2n = 0

]
=

P
[
S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0, S2n = 0

]
u2n

.

Now we consider the number of zig-zags that satisfy

S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0, S2n = 0.

Clearly S1 = 1, so the number of zig-zags from the origin to (2n, 0) that have all
edges above the x-axis equals to the number of random walks from (1, 1) to (2n, 0) that
S1, . . . , S2n 6= −1. Denote Z −1(A,B) the set of zig-zags from A to B that touch the
horizontal line y = −1. By Ballot Theorem,

#Z −1((1, 1), (2n, 0)) = #Z ((1,−3), (2n, 0)).

Therefore,
#{S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0, S2n = 0}

= #Z ((1, 1), (2n, 0))−#Z −1((1, 1), (2n, 0))

= #Z ((1, 1), (2n, 0))−#Z ((1,−3), (2n, 0))
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=

(
2n− 1

n− 1

)
−
(

2n− 1

n+ 1

)
=

1

n+ 1

(
2n

n

)
=

22nu2n
n+ 1

.

Thus,

P
[
S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0, S2n = 0

]
=

22nu2n
n+1

22n
=

u2n
n+ 1

.

Therefore,

η0,2n = η2n,2n = P
[
A2n = 2n, S2n = 0

]
=

u2n
n+ 1

,

P
[
A2n = 2n |S2n = 0

]
=

u2n
n+1

u2n
=

1

n+ 1
.

(2.14)

When 0 < k < n, let

η2k,2n := P
[
A2n = 2k, S2n = 0

]
.

We condition on the time of the first return to origin T0. Then

η2k,2n = P
[
A2n = 2k, S2n = 0

]
=

k∑
r=1

P
[
A2n = 2k, S2n = 0 |S2r−1 > 0, T0 = 2r

]
P
[
S2r−1 > 0, T0 = 2r

]
+
n−k∑
r=1

P
[
A2n = 2k, S2n = 0 |S2r−1 < 0, T0 = 2r

]
P
[
S2r−1 < 0, T0 = 2r

]
.

Note that

P
[
S2r−1 > 0, T0 = 2r

]
= P

[
S2r−1 < 0, T0 = 2r

]
=

1

2
P
[
T0 = 2r

]
=

1

2
f2r

(1.8)
=

1

2

1

2r − 1
u2r.

Also

P
[
A2n = 2k, S2n = 0 |S2r−1 > 0, T0 = 2r

]
= η2k−2r,2n−2r.

P
[
A2n = 2k, S2n = 0 |S2r−1 < 0, T0 = 2r

]
= η2k,2n−2r,

Hence

η2k,2n =
1

2

k∑
r=0

η2k−2r,2n−2rf2r +
1

2

k∑
r=0

η2k,2n−2rf2r.

We will prove by induction on n that

∀1 ≤ k ≤ n− 1, η2k,2n =
u2n
n+ 1

. (2.15)

When n = 1, η2,2 = u2
1+1 = 1, the proposition holds.

Assume that (2.15) holds for all n ≤ m− 1. Then, for n = m,

η2k,2m =
1

2

k∑
r=1

η2k−2r,2m−2rf2r +
1

2

m−k∑
r=1

η2k,2m−2rf2r.
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From the induction assumption

η2k−2r,2m−2r = η0,2m−2r =
u2m−2r
r + 1

, η2k,2m−2r = η0,2m−2r =
u2m−2r
r + 1

.

Hence

η2k,2m =
k∑
r=1

u2m−2r
r + 1

f2r.

Clearly, m− r ≤ m− 1.

Therefore,

η2k−2r,2m−2r = η2k,2m−2r =
u2m−2r
m− r + 1

.

Hence,

η2k,2m =
1

2

k∑
r=1

u2m−2r
m− r + 1

f2r +
1

2

m−k∑
r=1

u2m−2r
m− r + 1

f2r.

And,
u2m−2r
m− r + 1

f2r =
u2m−2r
m− r + 1

1

2r − 1

1

22r

(
2r

r

)
=

1

22r
u2m−2r
m− r + 1

(
2r − 2

r − 1

)
2r

r2
=

1

22r
2u2m−2ru2r−2
r(m− r + 1)

.

Thus,

η2k,2m =

k∑
r=1

1

22r
u2m−2ru2r−2
r(m− r + 1)

+

m−k∑
r=1

1

22r
u2m−2ru2r−2
r(m− r + 1)

.

Setting i := m− r + 1, we get

η2k,2m =
k∑
r=1

1

22r
u2m−2ru2r−2
r(m− r + 1)

+
m∑

i=k+1

1

22r
u2i−2u2m−2i
(m+ 1− i)i

=
m∑
r=1

1

22r
u2m−2ru2r−2
r(m− r + 1)

.

The above term is obviously independent of k. We denote it by z2m and we deduce

m−1∑
k=1

η2k,2m︸ ︷︷ ︸
(n− 1) terms

+P
[
A2n = 0, S2n = 0

]
+ P

[
A2n = 2n, S2n = 0

]
= u2n

(2.14)
= (n− 1)z2n +

2u2n
m+ 1

= u2n

=⇒ η2k,2m = z2m =
u2m
m+ 1

, ∀k = 0, 1, 2, . . . , n.

Therefore, ∀0 ≤ k ≤ n,

P
[
A2n = 2k |S2n = 0

]
=

1

n+ 1
.

ut
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Remark 2.14. Above we have proved that

P
[
A2n = 2k, S2n = 0

]
=

1

22n(n+ 1)

(
2n

n

)
.

The fraction

Cn :=
1

n+ 1

(
2n

n

)
is in fact a positive integer called the n-th Catalan number; see [7, Sec. 1.4]. ut

Remark 2.15. For p ∈ N we denote by T0,p the moment of the first return to the origin

T0,1 = T0 = min
{
n ∈ N; Sn = 0

}
, T0,p+1 = min

{
n > T0,p; Sn = 0

}
The condition S2n in the above theorem can by rephrased as ∃p ∈ N such that 2n = Rp.
However, we have no information about p.

A surprising result of P. Lévy [4, Cor.2, p. 303-304] shows that equidistribution is lost if
the ambiguity about p is removed. More precisely Lévy proved that as p→∞ fraction of
lead time An

n conditioned by n = Rp converges again to the arcsine distribution,

lim
p→∞

P
[ AT0,p
T0,p

≤ x
]

=
2

π
arcsin

(√
x
)
.

To quote Chung and Feller [1] “these results should serve as a warning to statististicians
who might assume that fluctuation phenomena always follow the bell shaped pattern”. ut

3. Central Limit Theorem

3.1. Central Limit Theorem: the local version. Let Tn be a binomial distribution
corresponding to n independent trials with success probability 1

2 . Define pn(k) as the
probability that Tn equals k, i.e.

pn(k) = P
[
Tn = k

]
=

1

2n

(
n

k

)
Theorem 3.1 (Local Limit Theorem). For any function φ : N→ (0,∞) such that φ(n) =

o
(
n

2
3

)
as n→∞, we have

sup
{k: |k−n

2
|≤φ(n)}

∣∣∣∣∣ pn(k)

2√
2πn

e−
(2k−n)2

2n

− 1

∣∣∣∣∣→ 0. (3.1)

Proof. We follow the approach in [6, Sec. 1.6]. Set

Kn :=
{
k ∈ N :

∣∣ k − n/2 ∣∣ ≤ φ(n)
}
.

In the sequence we will denote by S the set of sequences of functions

ε(n) : Kn → [0,∞), k 7→ ε(n, k),

such that
lim
n→∞

sup
k∈Kn

ε(n, k) = 0.
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Define

d(n) : Kn → [0,∞), d(n, k) =

∣∣∣∣∣ pn(k)

2√
2πn

e−
(2k−n)2

2n

− 1

∣∣∣∣∣.
We have to show that

d(n) ∈ S . (3.2)

The proof is based on Stirling’s formula (A.2)

n! =
√

2πn
(n
e

)n (
1 +O(1/n)

)
as n→∞.

pn(k) =
1

2n

(
n

k

)
=

1

2n
n!

k!(n− k)!
.

=
1

2n

√
2πn

(
n
e

)n (
1 +O(1/n)

)
√

2πk
(
k
e

)k (
1 +O(1/k)

)√
2π(n− k)

(
n−k
e

)n−k (
1 +O

(
1/(n− k)

) )
=

1

2n

√
2πn

(
n
e

)n
√

2πk
(
k
e

)k√
2π(n− k)

(
n−k
e

)n−k 1 +O(1/n)(
1 +O(1/k)

)(
1 +O

(
1/(n− k)

) ) .
Observe that if k ∈ Kn then

n

2
− φ(n) ≤ k, n− k ≤ n

2
+ φ(n).

Hence
1

k
,

1

n− k
= O(1/n) when k ∈ Kn and n→∞.

Hence, when k ∈ Kn and n→∞, we have

1 +O(1/n)(
1 +O(1/k)

)(
1 +O

(
1/(n− k)

) ) = 1 + ε1(n), ε1(n) ∈ S .

We deduce

pn(k) =
1

2n

√
2πnnn√

2πkkk
√

2π(n− k)(n− k)n−k

(
1 + ε1(n)

)
=

1

2n

√
nnn√

2πkkk
√
n− knn−k(1− k

n)n−k

(
1 + ε1(n)

)
=

1

2n

√
n

√
2πk

√
n(1− k

n)( kn)
k
(1− k

n)n−k

(
1 + ε1(n)

)
=

1

2n
1√

2πn kn(1− k
n)

1

( kn)k(1− k
n)n−k

(
1 + ε1(n)

)
Set

p̂ :=
k

n
Then

pn(k) =
1

2n
1√

2πnp̂(1− p̂)

( 1

p̂

)k( 1

1− p̂

)n−k(
1 + ε1(n)

)
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(2−n =
(
elog 1/2

)n
)

=
1√

2πnp̂(1− p̂)
exp
{
k log

( 1

2p̂

)
+ (n− k) log

( 1

2(1− p̂)

)}(
1 + ε1(n)

)
(p̂ = k/n)

=
1√

2πnp̂(1− p̂)
exp
{
−
(
np̂ log 2p̂+ n(1− p̂) log

(
2(1− p̂)

)}(
1 + ε1(n)

)
.

Set

H(x) := x log
(

2x
)

+ (1− x) log
(

2(1− x)
)
.

Then

pn(k) =
1√

2πnp̂(1− p̂)
exp{−nH(p̂)}

(
1 + ε1(n)

)
. (3.3)

We want to replace H(x) with the Taylor expansion of H(x) around x0 = 1
2 . For 0 < x < 1,

H ′(x) = log
( x

1− x

)
, H ′′(x) =

1

x(1− x)
,

H ′′′(x) = − 1

x2
+

1

(1− x)2
.

We have

H
( 1

2

)
=

1

2
log 1 +

1

2
log 1 = 0, H ′

( 1

2

)
= log 1 = 0, H ′′

( 1

2

)
= 4,

H(p̂) = H
( 1

2

)
+H ′

( 1

2

)(
p̂− 1

2

)
+
H ′′(12)

2

(
p̂− 1

2

)2
+O

((
p̂− 1

2

)3 )
= 2
(
p̂− 1

2

)2
+O

((
(p̂− 1

2

)3 )
.

Note that

p̂− 1

2
=

1

n

(
k − n

2

)
,

so that, if k ∈ Kn we have ∣∣∣ p̂− 1

2

∣∣∣ ≤ φ(n)

n
.

Therefore,

n

∣∣∣∣∣p̂− 1

2

∣∣∣∣∣
3

≤ φ(n)3

n2
→ 0,

so that

n

∣∣∣∣∣p̂− 1

2

∣∣∣∣∣
3

= ε2(n), ε2(n) ∈ S . (3.4)

Then (3.3) is equivalent to

pn(k) =
1√

2πnp̂(1− p̂)
exp
{
−2n

(
p̂− 1

2

)2
+ nO

((
p̂− 1

2

)3 )}(
1 + ε1(n)

)
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(p̂ = k/n)

=
2√
2πn

exp
{
−2n

( k
n
− 1

2

)2
+O

(
n
(
p̂− 1

2

)3 )} 1 + ε1(n)

2
√
p̂(1− p̂)

=
2√
2πn

exp
{
−(2k − n)2

2n

} 1 + ε1(n)

2
√
p̂(1− p̂)

exp
{
O
(
n
(
p̂− 1

2

)3 )}
.

Using (3.4) we deduce that

exp
{
O
(
n
(
p̂− 1

2

)3 )}
= 1 + ε3(n), ε3(n) ∈ S .

Note also that ∣∣∣ p̂− 1

2

∣∣∣, ∣∣∣ ( 1− p̂
)
− 1

2

∣∣∣ ≤ φ(n)

n
, ∀k ∈ Kn.

Hence
1 + ε1(n)

2
√
p̂(1− p̂)

= 1 + ε4(n), ε4(n) ∈ S .

We deduce that for any k ∈ Kn

pn(k) =
2√
2πn

e−
(2k−n)2

2n
(

1 + ε3(n)
)(

1 + ε4(n)
)
. (3.5)

This proves (3.2). ut

3.2. The Central Limit Theorem: the global version. The expectation, variance
and standard deviation of Tn can be calculated respectively as

tn := E
[
Tn
]

=
n

2
, vn := Var

[
Tn
]

=
n

4
, σn := σ[Tn] =

√
n

2
.

Theorem 3.2 (De Moivre-Laplace Integral Theorem). Given a, b ∈ [−∞,∞], Let

P
{
a <

Tn − tn
σn

≤ b
}

= pn(a, b].

As n→∞,

pn(a, b]− 1√
2π

∫ b

a
e−

x2

2 dx→ 0. (3.6)

Proof. The proof below is inspired by [3, Sec. 7.4] and [6, Sec. 1.6]. We will carry the
proof in several steps

Step 1. Assume that a, b ∈ R. Let T = max(|a|, |b|) so

(a, b] ⊂ [−T, T ].

Define An as the interval

(aσn, bσn] =
(
a

√
n

2
, b

√
n

2

]
.
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Denote IAn the indicator function of An, i.e.,

IAn : R→ {0, 1}, IS(x) =

{
1, x ∈ An,
0, x 6∈ An.

Then,

pn(a, b] = P
[
Tn −

n

2
∈ An

]
=

n∑
k=0

IAn

(
k − n

2

)
· pn(k)

Note that

IAn

(
k − n

2

)
=⇒ (k − n/2) ∈ An =⇒

∣∣ k − n/2 ∣∣ ≤ T√n =: φ(n).

Note that

φ
(
n
)

= O
(
n1/2

)
as n→∞.

By (3.5), as n→∞ we have

P[Tn −
n

2
∈ An] =

2√
2πn

n∑
k=0

[
IAn

(
k − n

2

)
e−

(2k−n)2

2n
(

1 + ε3(n)
)(

1 + ε4(n)
) ]

=
1√

2πσn

n∑
k=0

[
IAn

(
k − n

2

)
e−

(2k−n)2

2n
(

1 + ε3(n)
)(

1 + ε4(n)
) ]
.

Define

1 + ε5(n) =
(

1 + ε3(n)
)(

1 + ε4(n)
)
.

Then,

P[Tn −
n

2
∈ An] =

1√
2πσn

n∑
k=0

[
IAn

(
k − n

2

)
e−

(2k−n)2

2n
(

1 + ε5(n)
) ]
. (3.7)

= P
[
Tn ∈ (n/2 + a

√
n/2, n/2 + b

√
n/2]

]
.

Define

t(k) :=
k − tn
σn

=
k − n/2
√
n
2

,

where the set of points t(k) also fills the real line. Because we restricted k such that∣∣ k − n/2 ∣∣ ≤ φ(n), φ(n) = o
(
n

2
3

)
, equivalently we also have

t(k) =
k − n/2
√
n
2

≤ ψ(n), ψ(n) = O(1).

Therefore,

P
[
Tn = k

]
= P

[
Tn =

n

2
+ t(k)

√
n

2

]
= pn

( n
2

+ t(k)

√
n

2

)
Notice that

k − n/2 = t(k)σn,
1

σn
= t(k + 1)− t(k), −(2k − n)2

2n
= − t(k)2

2
,
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Then, by (3.7),

P
[
Tn −

n

2
∈ An

]
=

1√
2π

n∑
k=0

[
IAn

(
t(k)σn

) 1

σn
e−

t(k)2

2
(

1 + ε5(n)
) ]

=
1√
2π

n∑
k=0

[
IAn

(
t(k)σn

)(
t(k + 1)− t(k)

)
e−

t(k)2

2
(

1 + ε5(n)
) ]

(
IAn(xσn) = I(a,b](x) = f(x)

)
=

1√
2π

n∑
k=0

I(a,b]
(
t(k)

)(
t(k + 1)− t(k)

)
e−

t(k)2

2︸ ︷︷ ︸
=:T1(n)

+
1√
2π

n∑
k=0

I(a,b]
(
t(k)

)(
t(k + 1)− t(k)

)
e−

t(k)2

2 ε5(n)︸ ︷︷ ︸
=:T2(n)

By the properties of Riemann sums, as n→∞,

T1(n)→ 1√
2π

∫ b

a
e−

x2

2 dx.

Now we evaluate T2(n) as follows

T2(n) = ε5(b)T1(n)→ 0 as n→∞.

Step 2. Assume a = −∞ and 0 ≤ b <∞. Then

pn
(

(−∞, b]
)

= pn
(

(−∞, 0]
)

+ pn
(

(0, b]
)
.

Arguing as in Step 2 in the proof of Theorem 2.2. we deduce that

lim
n→∞

pn
(

(−∞, 0]
)

=
1

2
=

1√
2π

∫ 0

−∞
e−x

2/2dx.

From Step 1 we deduce

pn
(

(0, b]
)
→ 1√

2π

∫ b

0
e−

x2

2 dx.

Hence (3.6) is true when a = −∞ and b ≥ 0.

Step 3. Assume a = −∞ and b < 0. We have

pn
(

(−∞, b]
)

= pn
(

(−∞, 0]
)
− pn

(
(b, 0]

)
.

and we conclude as before..

Step 4. Assume b =∞. We conclude as in Step 2 and 3.

ut
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3.3. Random walks again. Recall that Tn is a binomial distribution corresponding to
n independent trials with success probability 1

2 . Hence

Tn = Y1 + · · ·+ Yn n ∈ N,
where Yn are Bernoulli random variables with probability 1

2 . Also notice that the random
variables Xi = 2Yi − 1 take only the values ±1 with equal probability so that we can
describe the standard random walk Sn as

Sn = X1 + · · ·+Xn = 2Tn − n, n ∈ N,
By (3.6), we have as n→∞,

P
[
a
√
n < Sn ≤ b

√
n
]

= P
[
a

√
n

2
+
n

2
< Tn ≤ b

√
n

2
+
n

2

]
= P

[
a <

Tn − tn
σn

≤ b
]
→ 1√

2π

∫ b

a
e−

x2

2 dx.

Appendix A. Stirling’s Formula

We present a proof of Stirling’s formula from [2, Sec. 2.9]

n! ∼
√

2πnn+
1
2 e−n. (A.1)

Proof. Since log x is an increasing function, by taking the Riemann Sum using right and
left endpoints respectively,∫ k

k−1
log xdx < 1 log k <

∫ k+1

k
log xdx.

Take the sum of k = 1, 2, 3, · · · , n,∫ n

0
log xdx < log n! <

∫ n+1

1
log xdx

n log n− n < log n! < (n+ 1) log(n+ 1)− n
Clearly

n log n− n <
(
n+

1

2

)
log n− n < (n+ 1) log(n+ 1)− n.

We want to estimate the error

dn := log n!−
(
n+

1

2

)
log n+ n.

We have

dn − dn+1 = log n!−
(
n+

1

2

)
log n+ n− log(n+ 1)! +

(
n+ 1 +

1

2

)
log(n+ 1)− n− 1

= log
n!(n+ 1)n+1+ 1

2

nn+
1
2 (n+ 1)!

− 1 =

(
n+

1

2

)
log

(
n+ 1

n

)
− 1

=

(
2n+ 1

2

)
log

(
1 + 1

2n+1

1− 1
2n+1

)
− 1
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Let t = 1
2n+1 ,

dn − dn+1 =
2n+ 1

2
log

1 + t

1− t
− 1

Take the Taylor series of log 1+t
1−t at 1,

dn − dn+1 =
2n+ 1

2
(2t+

2

3
t3 +

2

5
t5 + · · · )− 1

=
1

3(2n+ 1)2
+

1

5(2n+ 1)4
+ · · ·

Thus,

0 < dn − dn+1 <
1

3(2n+ 1)2
+

1

3(2n+ 1)4
+ · · · =

1
3(2n+1)2

1− (2n+ 1)−2

=
1

12

(
1

n
− 1

n+ 1

)
Therefore, the sequence dn is Cauchy thus convergent. We set C := limx→∞ dn and we
deduce

dn = log n!− (n+
1

2
) log n+ n ∼ C, n! =∼ eCnn+

1
2 e−n

We shall prove that C = log
(√

2π
)
.

By the Wallis’ formula [5, Ex. 9.50],

lim
n→∞

2 · 2 · 4 · 4 · 6 · 6 · · · 2n · 2n
1 · 1 · 3 · 3 · 5 · 5 · · · (2n− 1) · (2n− 1) · (2n+ 1)

=
π

2

therefore,

2 · 4 · 6 · · · 2n
1 · 3 · 5 · · · (2n− 1) ·

√
2n
∼
√
π

2
.

2 · 4 · 6 · · · 2n
1 · 3 · 5 · · · (2n− 1) ·

√
2n

=
(2 · 4 · 6 · · · 2n)2

(2n)!
√

2n
=

(2nn!)2

(2n)!
√

2n

Because n! ∼ eCnn+
1
2 e−n,

(2nn!)2

(2n)!
√

2n
∼ (2neCnn+

1
2 e−n)2

eC2n2n+
1
2 e−2n

√
2n
∼
√
π

2
.

Therefore, eC =
√

2π.

ut

The error of the approximation of n! using Stirling’s Formula can be calculated as the
following:

1

12n+ 1
− 1

12(n+ 1) + 1
<

1

3(2n+ 1)2
< dn − dn+1 <

1

12

( 1

n
− 1

n+ 1

)
.
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Thus dn − 1
12n is increasing, and dn − 1

12n+1 is decreasing, therefore

C +
1

12n+ 1
< dn < C +

1

12n
, C = log

(√
2π
)
,

√
2π · nn+

1
2 · e

1
12n+1

en
< n! <

√
2π · nn+

1
2 · e

1
12n

en
.

As n→∞ we have
e

1
12n , e

1
12n+1 =

(
1 +O(1/n)

)
.

Hence

n! =
√

2πn
(n
e

)n (
1 +O(1/n)

)
as n→∞. (A.2)
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