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Introduction

Suppose (M2n+1; �; g; J) is a positively oriented, metric contact manifold. More precisely,
this means that � is a 1-form such that 1

n!� ^ (d�)n = dvg, J is a skew-symmetric endomor-
phism of TM such that

J2X = �X + �(X)�; d�(X;Y ) = g(JX; Y ); 8X;Y 2 Vect(M);

and � is the Reeb vector �eld determined by �(�) = 1, � d� = 0. Set V = ker �.
The operator J induces an almost complex structure on V , and we get decompositions

V 
 C = V 1;0 � V 0;1; ��V � 
 C =
M

0�p+q�2n
�p;qV �:

We set 
p;q(V �) := C1(�p;qV �). The Lie derivative along � has the property L�
0;p(V �) �

0;p(V �) � 
1;p�1(V �), and we de�ne LV� : 
0;p(V �) ! 
0;p(V �) by LV� � = (L��)

0;p. The

operator iLV� is symmetric. There exists a natural operator

�@V : 
0;�(V �)! 
0;�+1(V �):

We can form a contact Hodge-Dolbeault operator

H : 
0;�(V �)! 
0;�(V �)

which with respect to the decomposition 
0;even � 
0;odd(V �) has the block form

H =

24 �iLV�
p
2(�@V + �@�V )

p
2(�@�V + �@�V ) iLV�

35
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This is a symmetric Dirac type operator and it is an example of geometric Dirac operator,
i.e. an operator of Dirac type de�ned entirely in geometric terms with no mention of spinc

structures.
On the other hand, the contact form de�nes a spinc structure with determinant line

K�1
M , where canonical line bundle of M is de�ned by

KM := detV 0;1 �= �n;0V �:

The associated bundle of complex spinors is Sc = �0;�V �. The Cli�ord multiplication by i�
is an involution of Sc and the �1 eigenspaces are

S
�
c
�= �0;even=oddV �:

A metric connection r on TM such that rJ = 0 is called a contact connection. If addi-
tionally M is a CR manifold, i.e. the distribution V 1;0 is integrable, then we de�ne a CR
connection to be a contact connection such that its torsion satis�es

T (X;Y ) = 0 8X;Y 2 C1(V 1;0):

A metric connection on TM together with a hermitian A connection on K�1
M canonically

de�ne a Dirac operator D(r; A) on Sc. The connection r is called nice if D(r; A) is
symmetric for any hermitian connection A on K�1

M . Two metric connections r1 and r2

are called Dirac equivalent if there exists a hermitian connection A on K�1
M such that

D(r1; A) = D(r2; A).
The �rst question we address in this paper is the following.

� Can we �nd a contact connection r and a hermitian connection A on K�1
M D(r; A) = H?

( A connection r with this property is said to be adapted to H.)
Suppose additionally that M is also spin. We denote by D0 the associated spin Dirac

operator. The second question we as is the following.

� Does there exist a contact connection r on TM such that D(r) = D0? In other words,

is there any contact connection Dirac equivalent to the Levi-Civita connection?

To address these questions we rely on the work P. Gauduchon, (see [5] or x2.1,x2.2), con-
cerning hermitian connections on almost-hermitian manifolds. We can naturally associate
two almost hermitian manifolds to M .

� The cylinder M̂ = R�M with metric ĝ = dt2+g and almost complex structure Ĵ de�ned
by Ĵ@t = �, Ĵ jV= J .

� The symplectization ~M = R+ �M with symplectic form ! = d̂(t�), metric ~g = dt2 +
�
2 + tg jV , and almost complex structure ~J = Ĵ .

To answer the �rst question we use the cylinder case and a certain natural perturbation
of the �rst canonical connection on (TM̂; ĝ; Ĵ). This new connection on TM̂ preserves the
splitting TM̂ = R@t � TM and induces a connection on TM with the required properties
(see x3.1). Moreover, whenM is a CR manifold this connection coincides with the Webster
connection, [11, 14].

To answer the second question we use the symplectization ~M and a natural perturbation
of the Chern connection on T ~M . We obtain a new connection on ~M whose restriction to
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f1g �M is a contact connection (see x3.3). When M is CR this contact connection is also
CR, but it never coincides with the Webster connection. We are not aware whether this
contact connection has been studied before.

These two connections are examples of geometric connections. In fact we prove a much
stronger result.

Theorem. (a) On any metric contact manifold there exists a nice contact connection
adapted to H and a nice contact connection Dirac equivalent to the Levi-Civita connection.

If the manifold is CR these connections are also CR.

(b) On a CR manifold each Dirac equivalence class of connections contains at most one

nice CR connection. Moreover, the Webster connection is the unique nice CR connection

adapted to H.

Finally, we present several Weitzenb�ock formul� involving the operator H (see x3.2).
We expect these facts will have applications to three dimensional Seiberg-Witten theory.
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1 General properties geometric Dirac operators

x1.1 Dirac operators compatible with a metric connection Suppose (M; g) is
an oriented, n-dimensional Riemannian manifold. We will denote a generic local, oriented,
synchronous frame of TM by (ei). Its dual coframe is denoted by (ei). We will denote the
natural duality between a vector space and its dual by h�; �i.

A metric connection on TM is a connection r on TM such that

X � g(Y;Z) = g(rXY;Z) + g(Y;rXZ); 8X;Y;Z 2 Vect (M):

The torsion of a metric connection r is the TM -valued 2-form T = T (r) de�ned by

T (X;Y ) = rXY �rYX � [X;Y ]:
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The Levi-Civita connection, denoted by D in the sequel is the metric connection uniquely
determined by the condition T (D) = 0. Any metric connection r can be uniquely written
as D + A, where A 2 
1(End�(TM)), where End� denotes the space of skew-symmetric
endomorphisms. A is called the the potential of r.

There are natural isomorphisms


2(TM)�!
2(T �M); T 7! T y


1(End�(TM)) 7! 
2(T �M); A 7! Ay

de�ned as follows.


2(TM) 3 T 7! T y; hX;T y(Y;Z)i = g(X;T (Y;Z))

and


1(End�(TM)) 3 A 7! Ay; hX;Ay(Y;Z)i = g(AXY;Z) =: A
y(X;Y;Z);

8X;Y;Z 2 Vect (M). In local coordinates, if

T (ej ; ek) =
X
i

T i
jkei; Aeiej =

X
k

Ak
ijek

then

T y(ej ; ek) =
X
i

T i
jke

i; Ay(ej ; ek) =
X
i

Ak
ije

i;

or equivalently, T yijk = T i
jk, A

y
ijk = Ak

ij. To simplify the exposition, when working in local

coordinates, we will write Aijk instead of Ayijk etc. De�ne

tr : 
2(T �M)! 
1(M); 
2(T �M) 3 (Bijk) 7! (trB) =
X
i;k

Biike
k

and the Bianchi map

b : 
2(T �M)! 
3(M);


2(T �M) 3 (Bijk) 7! bB =
X
i<j<k

(Bijk +Bkij +Bjki)e
i ^ ej ^ ek:

Note that if B 2 
3(M) � 
2(T �M) then B = 1
3bB.

For any A 2 End(TM) and � 2 
1(M) we de�ne A ^ � 2 
2(T �M) by the equality

(A ^ �)(X;Y;Z) = (AX)[ ^ �(Y;Z); 8X;Y;Z 2 Vect(M);

where �[ (resp. �[) denotes the g-dual of a vector (resp. covector) �. The following
elementary result lists some basic properties of the above operation.
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Lemma 1.1. Let A 2= End(TM), � 2 
1(M) and set

A+ =
1

2
(A+A�); A� =

1

2
(A�A�):

Then

tr(A ^ �) = (trA)��At�;

and

b(A ^ �) = 2!A� ^ �;

where

!A�(X;Y ) = g(A�X;Y ); 8X;Y 2 Vect(M):

Using the above operations we can orthogonally decompose 
2(T �M) as


2(T �M) = 
1(M)� 
3(M)� 
2
0(T

�M)

where


2
0 :=

n
A 2 
2(T �M); bA = trA = 0

o
;

and 
1(M) embeds in 
2(T �M) via the map


1(M)! 
2(T �M); � 7! ~� :=
1

n� 1

�
1TM ^ ��

Using this orthogonal splitting we can decompose any A 2 
2(T �M) as

A = gtrA+
1

3
bA+ P0A; P0A := A� ~trA� 1

3
bA 2 
2

0(T
�M):

The next result, whose proof can be found in [5], states that a metric connection is deter-
mined by its torsion in a very explicit way.

Proposition 1.2. Suppose that r is a metric connection with potential A and torsion T .

Then

T y = �Ay + bAy; (1.1)

Ay = �T y + 1

2
bT y: (1.2)

In particular

bAy =
1

2
bT y; trAy = �trT y:
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Since all the computations we are about to perform are local we can assume that M is
equipped with a spin structure and we denote by S the associated complex spinor bundle1.
We have a Cli�ord multiplication map

c : 
�(M)! End(S):

A hermitian connection ~r on S is said to be compatible with the Cli�ord multiplication
and the metric connection r on TM if

~rX

�
c(�) 

�
= c(rX�) + c(�) ~rX ; 8X 2 Vect (M); � 2 
1(M);  2 C1(S):

We denote by Ar = Ar(S) the space of hermitian connections on S compatible with the
Cli�ord multiplication and r.
Proposition 1.3. The space Ar(S) is an aÆne space modelled by the space i
1(M) of

imaginary 1-forms on M .

Proof Suppose ~r0; ~r1 2 Ar. Set C := ~r1 � ~r0 2 
1(End (S) ). Since both ~ri, i =
0; 1, are compatible with the Cli�ord multiplication and r we deduce that for every X 2
Vect (M) the endomorphism C(X) := X C commutes with the Cli�ord multiplication.
Since the �bers of S are irreducible Cli�ord modules we deduce from Schur's Lemma that
C(X) is a constant in each �ber, i.e C 2 
1(M)
C . Since both ~ri are hermitian connections
we conclude that C must be purely imaginary 1-form. �

De�nition 1.4. A geometric Dirac operator on S is a �rst order partial di�ereintial oper-

ator D of the form

D = D( ~r) : C1(S) ~r�! C1(T �M 
 S)
c! C1(S)

where ~r 2 Ar(S) for some metric connection r on TM . The geometric Dirac operator is

called nice if it is formally self-adjoint.

Locally, a geometric Dirac operator has the form

D( ~r) =
X
i

c(ei) ~rEi :

Every metric connectionr canonically determines a connection r̂ 2 Ar(S) locally described
as follows. If the so(n)-valued 1-form ! associated by the frame (ei) to the connection r is
de�ned by

rej =
X
i;k

ek 
 !ikjei; !ikj + !
j
ki = 0;

then the induced connection on S is given by the End� (S)-valued 1-form (see [9])

!̂ = �1

4

X
i;j;k

ek 
 !ikjc(e
i)c(ej): (1.3)

1
S is Z2-graded if n = dimM is even and it is ungraded if n is odd.
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We set D(r) := D(r̂) and D0 := D(D̂). D0 is the usual spin Dirac operator. We see that
every geometric operator has the form

D = D(r) + c(ia)

where r is a metric connection on M and a 2 
1(M). The connection r is called nice if
D(r) is nice. We denote by Anice(M) the space of nice connections on M .

Proposition 1.5. The connection r with torsion T is nice if and only if trT y = 0.

Proof Note that

riej = rjei + Tij ; 8i; j (1.4)

and

divg(ei) = 0; 8i: (1.5)

We have (at x0)

D� =
X
k

r̂�
kc(e

k)� =
X
k

~rkc(e
k) =

X
k

c(rke
k) +

X
k

c(ek)r̂k = c

 X
k

rke
k

!
+D:

Thus r is nice if and only if

c

 X
k

rke
k

!
= 0

We compute easily that

(rje
i)(ek) = �ei(rjek) = �g(ei;rjek) = �g(ei;rkej + Tjk)

so that

rje
i = �

X
k

g(ei;rkej + Tjk)e
k: (1.6)

Hence X
k

rke
k = �

X
k

X
i

g(ek;riek + Tki)e
i

(g(ek;riek) = 0 at x0)

= �
X
i

 X
k

g(ek; Tki)

!
ei:

This concludes the proof of the proposition. �
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Proposition 1.6. Suppose that r = D +A is a nice connection on TM . Then

D(r) = D0 +
1

2
c(bAy) = D0 +

1

4
c(bT y):

Proof Observe that

r̂ = D̂ � 1

4

X
i;j;k

ek 
Ai
kjc(e

i)c(ej) = D̂ � 1

4

X
i;j;k

ek 
Akjic(e
i)c(ej)

so that

D(r)�D0 = �1

4

X
i;j;k

Akjic(e
k)c(ei)c(ej) =

1

4

X
i;j;k

Akijc(e
k)c(ei)c(ej):

Since trA = 0 we deduce that the contributions corresponding to triplets (i; j; k) where two
entries are identical add up to zero. Hence

1

4

X
i;j;k

Akijc(e
k)c(ei)c(ej) =

1

4

X
i<j<k

�
(bA)ijk � (bA)jik

�
c(ei)c(ej)c(ek) =

1

2
c(bA): �

Corollary 1.7. Suppose D = D0 + c($), $ 2 
3(M). Then

D = D(r)

where r = D +A; Ay = 2
3$. �

The above result can also be rephrased in the language of superconnections described
e.g. in [1]. Suppose $ 2 
3(M). The operator d + c($) is a superconnection on the
trivial line bundle C . Taking the tensor product it with the connection D̂ on S we obtain
a superconnection on S= C 
 S

A $ := $ 
 1+ 1
 D̂ : C1(S)! 
�(S):

The Dirac operator determined by this superconnection is

c Æ A $ = D0 + c(!):

Two connections r0;r1 2 Anice(M) will be called Dirac equivalent if

D(r̂0) = D(r̂1):

The above results show that two connections r0 and r1 are Dirac equivalent if and only if

c(bT (r0)y) = c(bT (r1)y)() bT (r1)y = bT (r0)y:
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x1.2 Weitzenb�ock formul� Suppose (E; h) is a Hermitian vector bundle over M . A
generalized Laplacian is a formally self-adjoint, second order partial di�erential operator
L : C1(E)! C1(E) whose principal symbol satis�es

�L(�) = �j�j2g1E :
The following classical result is the basis of all the constructions in this section. We include
here a proof because of its relevance in the sequel.

Proposition 1.8. ([1, Sec. 2.1], [6, Sec. 4.1.2]) Suppose L is a generalized Laplacian

on E. Then there exists a unique hermitian connection ~r on E and a unique selfadjoint
endomorphism R of E such that

L = ~r� ~r+R (1.7)

We will refer to this presentation of a generalized Laplacian as the Weitzenb�ock presentation
of L.

Proof Choose an arbitrary hermitian connectionr on E. Then L0 = r�r is a generalized
Laplacian so that L� L0 is a �rst order operator which can be represented as

L� L0 = A Æ r+B

where

A : C1(T �M 
E)! C1(E)

is a bundle morphism and B is an endomorphism of E. We will regard A as an End (E)-
valued 1-form on M . Hence

L = r�r+A Æ r+B: (1.8)

The connection r induces a connection on End(E) which we continue to denote with r
r : C1(End (E))! 
1(End (E)):

We de�ne the divergence of A by

divg(A) := �r�A:

If (ei) is a local synchronous frame at x0 and, if A =
P

iAie
i, then, at x0, we have

divg(A) =
X
i

riAi:

Note that since (L� L0) =
P

iAiri +B is formally selfadjoint we deduce

A�i = �Ai; divg(A) = B �B�: (1.9)

We seek a hermitian connection ~r = r + C , C 2 
1(End (E)) and an endomorphism R
of E such that

~r� ~r+R = r�r+A Æ r+B:
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We set Ci := ei C so that we have the local description

~r =
X
i

ei 
 (ri + Ci); C�i = �Ci; 8i:

Then, as in [9], Example 9.1.26, we deduce that, at x0

~r� ~r = �
X
i

(ri + Ci)(ri + Ci)

(hCii2 := CiC
�
i = �C2

i )

= �
X
i

r2
i �

X
i

riCi � 2
X
i

Ciri +
X
i

hCii2

(hCi2 =PihCii2)

= r�r� 2C Æ r � divg(C) + hCi2 = r�r+A Æ r+B �R:

We deduce immediately that

C = �1

2
A; R = B � 1

2
divg(A)� hCi2 (1:9)

=
1

2
(B +B�)� 1

4
hAi2: (1.10)

The proposition is proved. �

If D is a geometric Dirac operator on S then both D�D and DD� are generalized Lapla-
cians. Suppose now that r is a nice connection on our spin manifold (M; g). It determines
a nice Dirac operator D(r). We denote by rw and respectively Rr the Weitzenb�ock con-
nection and respectively remainder of the generalized Laplacian D(r)2. A classical result
of Lichnerowicz states that if r is the Levi-Civita connection then rw = r̂ and R = s

4 ,
where s is the scalar curvature of the Riemann metric g. When r is not symmetric the
situation is more complicated. We will present some general formul� describing rw and R.

D2 =
X
i;j

c(ei)r̂ic(e
j)r̂j =

X
i;j

c(ei)c(ej)r̂ir̂j +
X
i;j

c(ei)c(rie
j)r̂j

= �
X
i

r̂2
i +

X
i<j

c(ei)c(ej)[r̂i; r̂j ] +
X
i;j

c(ei)c(rie
j)rj

= r̂�r̂+
X
i;j

c(ei)c(rie
j)rj +

X
i<j

R̂ijc(e
i)c(ej)

where

R̂ =
X
i<j

ei ^ ejR̂ij
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denotes the curvature of r̂. We need to better understand the quantity A (the coeÆcient
of the �rst order part of D2) which at x0 is de�ned as

A =
X
i;j

ej 
 c(ei)c
�rie

j
�
:

Using (1.6) we deduce

A =
X
i;j

ej 
 c(ei)c(�
X
k

hej ;rkei + Tikiek)

= �
X
i;j;k

ej 
 hej ;rkeiic(ei)c(ek)�
X
i;j;k

ej 
 hej ; Tikic(ei)c(ek)

=
X
j

ej
X
k

hej ;rkeki �
X
j

ej 

X
i6=k

hej ;rkeiic(ei)c(ek)�
X
j;i;k

ej 
 hej ; Tikic(ei)c(ek)

(hej ;rkeki = �hrkej ; eki at x0, rkei �riek = Tki = �Tik)

= �
X
j

ej
X
k

hrkej ; eki+
X
j

ej 

X
i<k

hej ; Tikic(ei)c(ek)

�2
X
j

ej 

X
i<k

hej ; Tikic(ei)c(ek)

(switch the order of summation in the �rst term)

= �
X
k

�X
j

hrkej ; ekiej
�
�
X
j

ej 

X
i<k

hej ; Tikic(ei)c(ek)

=
X
k

rke
k �

X
j

ej 

X
i<k

hej ; Tikic(ei)c(ek)

(
P

krke
k = 0)

= �1

2

X
i;j;k

ej 
 hej ; Tikic(ei)c(ek) =: ��(T ):

We deduce

D
2 = r̂�r̂ � �(T ) Æ r̂+ c(R̂) (1.11)

where

c(R̂) :=
X
i<j

c(ei)c(ej)R̂ij:

Using the equalities (1.10) we reach the following conclusion.
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Proposition 1.9. We have the Weitzenb�ock formula

D
2 = (rw)�rw +Rr

where

rw = r̂+
1

2
�(T ) = r̂+

1

4

X
i;j;k

ei 
 Tijkc(e
j)c(ek): (1.12)

Rr =
1

2
(c(R̂) + c(R̂)�)� 1

4
h�(T )i2; (1.13)

where T denotes the torsion of r and R̂ the curvature of r̂. �

Remark 1.10. Observe that rw is the connection on S induced by the nice connection
r0 = r+A where Ay = T y. Using (1.1) we deduce

T y(r0) = T (r)y �Ay + bAy = bT (r)y

The Weitzenb�ock remainder can be given a more explicit description. More precisely we
know from Proposition 1.6 that

D(r) = D0 +
1

4
c(bT y):

We set $ := 1
4bT

y. As explained at the end of x1.1, D(r) is the Dirac operator associated to
the superconnection D̂+$. Using [2, Thm. 1.3] we deduce that the Weitzenb�ock remainder
of D2 is

Rr =
s

4
+ c(d$) � 2k$k2 = s

4
+

1

4

�
c(dbT y)� 1

2
kbT yk2

�
:

where k � k denotes the pointwise norm of a di�erential form and s denotes the scalar
curvature of g.

The following result summarizes the main facts we proved so far.

Theorem 1.11. Denote by Dspin the spin-Dirac operator induced by the Levi-Civita D,

Dspin = D(D̂). Any geometric Dirac operator D can be written as

D = Dspin + c($) + c(ia); a 2 
1(M); $ 2 
3(M):

Additionally, if r = D + 2
3$ + U , where U 2 
2(T �M) is such that

trU = 0 = bU = 0

then

D = D(r̂) + c(ia)

and

D(r̂)2 = �rw��rw +Rr + c(ida)

where

Rr =
1

4
s(g) + (c(d$) � 2k$k2)

12



The last theorem has an obvious extension where we replace S by the complex spinor
bundle S� determined by a spinc-structure � on M . This case requires the choice of a
hermitian connection on the line bundle detS�. In the spin case detS�= C and the additional
hermitian connection on the trivial line bundle is encoded by the imaginary 1-from ia
appearing in the statement of Theorem 1.11.

2 Dirac operators on almost-hermitian manifolds

x2.1 Basic di�erential geometric objects on an almost-hermitian manifolds In
this subsection we survey a few di�erential geometric facts concerning almost complex
manifolds. For more details we refer to [5, 7, 8] which served as sources of inspiration.

Consider an almost-hermitian manifold (M2n; g; J). Recall that this means that (M; g)
is a Riemann manifold and J is a skew-symmetric endomorphism of TM such that J2 = �1.
Fix x0 2 M and (e1; f1; � � � ; en; fn) a local, oriented orthonormal frame of TM . We also
assume it is adapted to J that is

fj = Jej ; 8j = 1; � � � ; n:
We denote by (e1; f1; � � � ; en; fn) the dual coframe. Let i :=

p�1 and �x one such adapted
local frame. We split TM 
 C into �i-eigen-subbundles of J , TM1;0 and T 0;1. These are
naturally equipped with hermitian metrics induced by g and have natural local unitary
frames near p0

TM1;0 : "k :=
1p
2
(ek � ifk); k = 1; � � � ; n;

TM0;1 := �"k :=
1p
2
(ek + ifk); k = 1; � � � ; n:

Form by duality T �M1;0 and T �M0;1 with local unitary frames given by

"k :=
1p
2
(ek + ifk); k = 1; � � � ; n

and respectively,

�"k :=
1p
2
(ek � ifk); k = 1; � � � ; n:

We have unitary decompositions

�mT �M 
 C =
M

p+q=m

�p;qT �M; m = 0; � � � ; 2n

where

�p;qT �M := �pT �M1;0 
 �qT �M0;1:

Set KM := �n;0T �M . We denote by P p;q the unitary projection onto �p;q and de�ne

�@ : 
p;q(M)! 
p;q+1(M); �@ := P p;q+1 Æ d

13



and

@ : 
p;q(M)! 
p+1;q(M); @ := P p+1;q Æ d:
De�ne dc : 
p(M)! 
p+1(M) by

dc�(X0;X1; � � � ;Xp) = �(�JX0;�JX1; � � � ;�JXp):

The space 
3(M)
 C splits unitarily as


3 
 C = 
+ � 
�;

where


+ := 
2;1 � 
1;2; 
� := 
3;0 � 
0;3:

Finally, introduce the involution M on 
2(T �M) de�ned by

MB(X;Y;Z) = B(X; JY; JZ):

Observe that

 + = bM +; 8 + 2 
+:

We denote by 
1;1(T �M) the 1-eigenspace ofM and by 
1;1
s (T �M) the intersection of ker b

to 
1;1(T �M). Thus

A 2 
1;1
s (T �M)() A =MA; bA = 0:

The Nijenhuis tensor N 2 
2(TM) is de�ned by

N(X;Y ) :=
1

4
([JX; JY ]� [X;Y ]� J [X;JY ]� J [JX; Y ]); 8X;Y 2 Vect (M):

Notice that N(JX; Y ) = N(X;JY ) = �JN(X;Y ). This implies immediately that trN y =
0.

We denote by D the Levi-Civita connection determined by the metric g and by ! the
fundamental two form de�ned by

!(X;Y ) = g(JX; Y ); 8X;Y 2 Vect (M):

Locally we have

! = i
X
j

"j ^ �"j :

The Lee form � determined by (g; J) is de�ned by

� = �(d!) = �J��(dc!)+�;
where � denotes the contraction by !, � = (!^ )�, and J acts on the 1-form � by

J�(X) = ��(JX); 8X 2 Vect (M):

14



We have the following identity

g((DXJ)Y;Z) = �1

2
d!(X;JY; JZ) +

1

2
d!(X;Y;Z) + 2g(N(Y;Z); JX): (2.1)

The form ! determines the skew-symmetric part of N y via the identity

bN y = (dc!)�:

The almost complex structure de�nes a Cauchy-Riemann operator

�@J : C1(TM1;0)! 
0;1(TM1;0)

de�ned by

X �@JY = [X;Y ]1;0; 8X 2 C1(TM0;1); Y 2 C1(TM1;0):

A Hermitian connection on TM is a metric connectionr such thatrJ = 0. A Hermitian
connection r is completely determined  + := 1

3(bT
y)+ and B := (T y)1;1s via the equality

(see [5, Sec. 2.3])

T (r)y = N y +
1

8
(dc!)+ � 3

8
M(dc!+) +

9

8
 + � 3

8
M + +B:

We will denote the above connection by r( +; B). When B = 0 we write r( +) instead
of r( +; B). Observe that if T is the torsion of r( +; B) then

bT y = bN y + 3 + = (dc!)� + 3 + = bN y + 3 +:

Using the formul� [5, (1.3.5), (1.4.9)] and the equality  + = bM +, 8 + 2 
+ we deduce
that

trM + = �2J� +; 8 + 2 
+(M):

Since trN y = 0 we deduce that the trace of the torsion of r( +; B)

trT
�r( +; B)

�
= trB +

3

4
J�
�
(dc!)+ +  +

�
= trB � 3

4
� +

3

4
J� +:

Example 2.1. The �rst canonical connection (see [5, Sec. 2.5] or [8]) is the Hermitian
connection r0 de�ned by B = 0 and

bT
y
0 = (dc!)� � (dc!+)

so that  + = �1
3(d

c!)+. Its torsion is

T
y
0 = N y � 1

4

�
(dc!)+ +M(dc!)+

�
:

In general, it is not a nice connection since trT y0 = �1
2�.
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Example 2.2. The Chern connection or the second fundamental connection, [5, 8], is the
unique Hermitian connection r on TM such that

r0;1 = �@J :

We will denote it by rc. Alternatively (see [5, Sec. 2.5]), it is the hermitian connection
de�ned by B = 0 and bT y = (dc!)� + (dc!)+, i.e it is determined by  + = 1

3 (d
c!)+. Its

torsion is given by

T yc = N y +
1

2

�
(dc!)+ �M(dc!)+

�
:

In general, it is not a nice connection since trT yc = ��.

x2.2 The Hodge-Dolbeault operator The almost hermitian manifoldM is equipped
with a canonical spinc structure and the associated complex spinor bundle is

Sc := �0;�T �M =
M
p�0

�0;pT �M:

Note that detSc = K�1
M . The Chern connection induces a hermitian connection detrc

on K�1
M and we denote by Dc the geometric Dirac operator induced by the Levi-Civita

connection D and the connection detrc.
If M is spinnable, then a choice of spin structure is equivalent to a choice of a square

root of KM and in this case Sc := S
K
�1=2
M .

The bundle Sc has a natural Dirac type operator, the Hodge-Dolbeault operator

HJ :=
p
2(�@ + �@�) : C1(SJ)! C1(SJ):

We have the following result [2, Thm.2.2] and [5, Sec.3.6].

HJ = Dc � 1

4

n
c
�
(dc!)+

�� c
�
(dc!)�

�o
:

Using Theorem 1.11 we deduce that HJ is a geometric Dirac operator, more precisely HJ
is induced by br
 1+ 1
 detrc, where r is the connection

r = D � 1

6
((dc!)+ � (dc!)�)

with torsion

T y =
1

3
(dc(!)� � (dc!)+):

A stronger result is true. Using the results in the previous subsection we deduce the following
result.

Theorem 2.3. For every B 2 
1;1
s (T �M) such that trB = 1

2� there exists a Hermitian
connection rb = rb(B) uniquely determined by the following conditions.

(i) rb is nice.

(ii) rb is Dirac equivalent to r0.
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Proof Since rb = r( +; B) is strongly Dirac equivalent to r we deduce that its torsion
satis�es

bTb = (dc!)� � (dc!)+:

Thus we need to choose  + = �1
3(d

c!)+. Now observe that

0 = trT yb = trB � 1

2
� = 0; �

De�nition 2.4. We will refer to any of the connections rb constructed in Theorem 2.3 as

a basic connection determined by an almost Hermitian structure.

The torsion of a basic connection rb(B) is

T
y
b = N y � 1

4

�
(dc!)+ +M(dc!)+

�
+B:

Observe also that the �rst and second fundamental connection coincide of an almost K�ahler
structure coincide and they are both basic. They are precisely the connections used by
Taubes, [13], to analyze the Seiberg-Witten monopoles on a symplectic manifold.

For any basic connection rb we have the following identities ([5, Sec. 3.5])

( �@�)(Z0; Z1; � � � ; Zp) =
pX

j=0

(�1)jrb
Zj
�(Z0; � � � ; Ẑj ; � � � ; Zp); (2.2a)

�@��(Z1; � � � ; Zp�1) = �
nX
i=1

�
ei rb

ei�+ fj rb
fi�
�
(Z1; � � � ; Zp�1); (2.2b)

8Z0; � � � ; Zp 2 C1(T 0;1M); � 2 
0;p(M).

3 Dirac operators on contact 3-manifolds

x3.1 Di�erential objects on metric contact manifolds We review a few basic
geometric facts concerning metric contact manifolds. For more details we refer to [3, 12].

A metric contact manifold (m.c. manifold for brevity) is an oriented manifold of odd
dimension 2n+ 1 equipped with a Riemann metric g and a 1-form � such that

� j�(x)jg = 1, 8x 2 M . Denote by � 2 Vect (M) the metric dual of � and set V := ker � �
TM . V is a hyperplane sub-bundle of TM and we denote by PV the orthogonal projection
onto V .

� There exists J : TM ! TM such that

d�(X;Y ) = g(JX; Y ); 8X;Y 2 Vect (M):

and

J2X = �X + �(X)�; 8X 2 Vect (M):
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De�nition 3.1. A contact metric connection on (M2n+1; �; J; g) is a metric conection

such that rJ = 0 = r�.
The manifold M is called positively oriented if the orientation induced by the nowhere

vanishing (2n+ 1)-form � ^ (d�)n coincides with the given orientation of M . In this case

dvg =
1

n!
� ^ (d�)n

Set ! := d�. The metric g is completely determined by � and J via the equality

g(X;Y ) = �(X)�(Y ) + d�(X;JY ) = �(X)�(Y ) + !(X;JY ):

We have decompositions

V 
 C = V 1;0 � V 0;1; V � 
 C = (V �)1;0 � (V �)0;1

and we set

KM := det(V �)1;0:

Set � := L�J . The operator � is a traceless, symmetric endomorphism of V (see [3]). Since
L�(J

2) = 0 we deduce

J�+�J = 0 =) (J�)� = (J�) (3.1)

De�ne the Nijenhuis tensor N 2 
2(TM) by

N(X;Y ) =
1

2

n
J2[X;Y ] + [JX; JY ]� J [X;JY ]� J [JX; Y ]

o
:

Notice that

N(�;X) = �1

2
J�X; 8X 2 Vect(M):

(M; g; �) is a Cauchy-Riemann manifold (CR for brevity) if and only if JN(X;Y ) = 0,
8X;Y 2 C1(V ). Equivalently, this means, and

N(X;Y ) + !(X;Y )� = �J2N(X;Y ) = 0; 8X;Y 2 C1(V ):
In this case, the Nijenhuis tensor can be given the more compact description

N y =
1

2
J� ^ � � � 
 d�:

In particular, M is a CR manifold when dimM = 3. Arguing exactly as in [3, p.53] we
obtain the following result.

Proposition 3.2. If D denotes the Levi-Civita connection of (M; g) then

g
�
(DXJ)Y;Z

�
= g
�
JX;N(Y;Z)

�
+

1

2
(� ^ d�)(JX; Y; Z):

8X;Y;Z 2 Vect (M).
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To each metric contact manifold M we can associate an almost Hermitian manifold
(M̂ ; ĝ; Ĵ) de�ned as follows.

M̂ = R �M; ĝ = dt2 + g; Ĵ@t = �;

We will denote by d̂ the exterior di�erentiation on M̂ . If we set

!̂(X;Y ) = ĝ(ĴX; Y ); 8X;Y 2 Vect (M̂ )

then !̂ = dt ^ � + ! and d̂!̂ = �dt ^ !. We deduce that the Lee form � = �(�dt ^ d�) is
�ndt. We will work with local, oriented orthonormal frames (e0; f0; e1; � � � ; en; fn) adapted
to Ĵ such that

e0 = @t; f0 = �; e0 = dt f0 = �

!̂ = i"0 ^ �"0 + i

nX
k=1

"k ^ �"k; d̂!̂ = � ip
2
("0 + �"0) ^

nX
k=1

"k ^ �"k:

Hence

d̂c!̂ = � 1p
2
("0 � �"0) ^

nX
k=1

"k ^ �"k = �� ^ d�

so that (bN̂ y) = (d̂c!̂)� = 0. We have the following result, [3].

Proposition 3.3.

N̂(X;Y ) =
1

2
N(X;Y ) +

1

2
!(X;Y )�; 8X;Y 2 Vect (M);

N̂(@t;X) =
1

4
�X; 8X 2 Vect (M):

Observe that N̂ y jM= 1
2N

y + 1
2� 
 d� so that

0 = bN̂ y jM=
1

2
bN y +

1

2
b(� 
 d�) =

1

2
bN y +

1

2
� ^ d�:

Hence

bN y = �� ^ d�:

We want to �nd B 2 
1;1
s (T �M̂) such that trB = �n

2dt and the basic connection it induces

on T �M̂ is compatible with the splitting @t � TM . The torsion of such a connection is

T̂
y
b = N̂ y � 1

4

�
(d̂c!̂)+ +M(d̂c!̂)+

�
+B

= N̂ y +
1

4
(� ^ ! +M(� ^ !)

�
+B:

19



Thus bT yb = � ^ d�. Using Proposition 1.2 we deduce that rb = D +A where

A
y
b =

1

2
bT

y
b � T

y
b =

1

4

�
� ^ d� �M(� ^ d�)

�
� N̂ y �B:

Thus, for all X;Y 2 Vect (M) which are t-independent we have

ĝ(rb
tX;Y ) = A

y
b(@t;X;Y )

Since

B(@t; �; �) = 0 and ĝ(N̂(X;Y ); @t) = 0; 8X;Y 2 Vect (M):

we deduce

ĝ(rb
tX;Y ) = �1

4
M(� ^ d�)(@t;X;Y ) = 0:

Similarly, we deduce

ĝ(rb
tX; @t) = A

y
b(@t;X; @t) = 0:

Thus

rb
tZ = 0; 8Z 2 Vect (M):

Since rb is a metric connection we deduce

ĝ(rb
�@t; @t) = 0:

On the other hand, 8X;Y 2 Vect(M) we have

ĝ(rb
X@t; Y ) = A

y
b(X; @t; Y )

= �1

4
M� ^ d�(X; @t; Y )� ĝ(N̂(@t; Y );X) �B(X; @t; Y )

=
1

4
g(XV ; YV )� 1

4
g(�Y;X)�B(X; @t; Y );

where XV = PVX, Y = PV Y . Next, 8X;Y 2 Vect(M), we have

ĝ(rb
XY; @t) = A

y
b(X;Y; @t) = �1

4
M� ^ d�(X;Y; @t)� ĝ(N̂ (Y; @t);X) �B(X;Y; @t)

= �1

4
g(XV ; YV ) +

1

4
g
�
�Y;X

��B(X;Y; @t):
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Lemma 3.4. There exists B0 2 
1;1
s (T �M̂) such that trB = �n

2dt and

B(@t; �; �) = 0: (3.2a)

B(X;Y; @t) =
1

4
g(X;�Y )� 1

4
g(XV ; YV ); 8X;Y 2 Vect (V ): (3.2b)

Proof De�ne

B =
1

4
(� ^ dt+ J� ^ �)� 1

4
(PV ^ dt+ JPV ^ �) + 1

2
� 
 d�

and we set

B0 =
1

4
(� ^ dt+ J� ^ �); B1 = �1

4
(PV ^ dt+ JPV ^ �):

We need to show that this de�nition is correct, i.e. the above B satis�es all the required
conditions (3.2a), (3.2b) and

trB = �n
2
dt; bB = 0

B 2 
1;1(T �M):

Here the elementary properties in Lemma 1.1 will come in handy. Since � and J� are
symmetric and traceless we deduce that

trB0 = 0; bB0 = 0:

The condition B0 2 
1;1 follows from the identity �J = �J�. Now observe that B1 2 
1;1

and

bB1 = �1

2
� ^ d�; trB1 = �n

2
dt:

Finally � 
 d� 2 
1;1, it is traceless and

b(� 
 d�) = � ^ d�:

The condition (3.2b) follows by direct computation. The Lemma follows putting together
the above facts. �

If we choose B as in Lemma 3.4 we deduce

ĝ(rb
�X; @t) =; 8X 2 Vect (M):

The above computations show that the basic connection rb of (M̂; ĝ; Ĵ) determined by
B0 preserves the orthogonal splitting TM̂ = h@ti � TM and thus induces a nice contact
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metric connection rw on TM . We will call rw the generalized Webster connection of M
for reasons which will be explained below. To compute its torsion observe that

N̂ y jM=
1

2

n
N y + � 
 d�

o
;

and M(� ^ d�) jM= � 
 d�. Finally

B jM=
1

4
(J�) ^ � � 1

4
JPV ^ � + 1

2
� 
 d�:

Since on M we have the equality JPV = J , the torsion Tw of rw given by

T yw =
1

2
N y +

5

4
� 
 d� +

1

4
� ^ d� + 1

4
(J�� J) ^ � (3.3)

Moreover, bTw = � ^ d�.
Suppose now that M is a CR-manifold. Then

N y =
1

2
J� ^ � � � 
 d�

and thus

T yw =
3

4
� 
 d� +

1

4
� ^ d� � 1

4
(J ^ �) + 1

2
J� ^ �:

We deduce

Tw(X;Y ) = d�(X;Y )�; 8X;Y 2 Vect (V ):

In particular, because the distribution V 1;0 is integrable we deduce

Tw(X;Y ) = 0; 8X;Y 2 C1(V 1;0):

A contact metric connection with the above property will be called a CR metric connection.
Next observe that for X;Y 2 C1(V ) we have

g(X;Tw(�; Y )) = T y(X; �; Y ) = �1

4
d�(X;Y ) +

1

4
g(JX; Y ) +

1

2
g(J�X;Y ):

Hence

Tw(�; Y ) =
1

2
J�Y:

Since �J = �J� we deduce

JTw(�;X) = �Tw(�; JX)

Using [12, Prop. 3.1], we deduce that when M is a Cauchy-Riemann manifold, the connec-
tion rw on (V; J) is the Tannaka-Webster connection determined by the CR structure (see
[4, 11, 12, 14] for more details). The generalized Webster connection we have constructed
does not agree with the generalized Tannaka connection constructed by S.Tanno in [12]
because that connection is not compatible with J if M is not a CR-manifold.
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Finally let us point out that when M is a CR manifold then

g(rw
� X;Y ) = g(D�X;Y ) +

1

2
bT yw(�;X; Y )� T yw(�;X;Y ) = g(D�X � 1

2
JX; Y )

so that

rw
� = DV

� := PVD� � 1

2
J:

Example 3.5. We consider in great detail the special case of a metric, contact, spin 3-
manifold M . M is automatically a CR-manifold so that the torsion of the (geberalized)
Webster connection satis�es

Tw(X;Y ) =
1

2
d�(X;Y )�; Tw(�;X) =

1

2
J�X; 8X;Y 2 C1(V )

bT yw = � ^ d�:

The spin Dirac operator D0 on M is related to the Dirac operator D(rw) by the equality

D(rw) = D0 +
1

4
c(bT y) = D0 +

1

4
c(� ^ d�) = D0 � 1

4
:

When M is Sasakian, i.e. � = 0, the above equality shows that D(rw) coincides with the
adiabatic Dirac operator introduced in [10] (see in particular [10, Eq.(2.20)] with � = 1

2 ,
Æ = 1).

Later on we will need to compare the connections detrc and detrb induced by the
Chern connection rc and respectively rb on K�1

M̂
.

Proposition 3.6.

detrc = detrb +
ni

2
�:

Proof Denote by r0 the �rst fundamental connection of (M̂ ; Ĵ). We have

rb = r0 �B;

where B is described in Lemma 3.4. Set Æ := "0 ^ "1 ^ � � � ^ "n. Then for every vector �eld
X on M̂ we have

detrb
XÆ = detr0

XÆ �BXÆ

Observe that

BX"
k =

nX
j=0

C
j
k"j
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so that BXÆ = (
Pn

j=0C
k
k )Æ. On the other hand, Ck

k = gc(BX"k; �"k) where gc denotes the
complex bilinear extension of g.

Ck
k =

1

2
gc
�
BX(ek � ifk) ; ek + ifk

�
= ig(BXek; Jek) + ig(BXfk; Jfk)

Thus X
k

Ck
k = �i

nX
k=0

�
g(JBXek; ek) + g(JBXfk; fk)

�
= �i trJBX : (3.4)

The equality

B =
1

4

n
(� + PV ) ^ dt� (J�+ JPV ) ^ �

o
+

1

2
� 
 d�

so that

ĝ(BXY; JY ) =
1

4

n
ĝ(�X;Y )dt(JY )� ĝ(J�X;Y )�(JY )

o

+
1

4

n
ĝ(PVX;Y )dt(JY )� ĝ(JPVX;Y )�(JY )

o
+
1

2
�(X)d�(Y; JY ):

We see that tr JBX 6= 0 only if X = � in which case shows that the sum (3.4) is n. Hence

rbÆ = r0Æ � in�:

On the other hand we have the identity, [5, Eq. (2.7.6)],

detrc = detr0 +
i

2
J� = detr0 � ni

2
Jdt = detrb +

ni

2
�: �

Corollary 3.7.

F (detrc) = F (detrb) +
ni

2
d�: �

x3.2 Geometric Dirac operators on contact manifolds Consider the Hodge-Dolbeault
operator Ĥ on M̂

Ĥ =
p
2(�@ + �@�) : 
0;�(M̂)! 
0;�(M̂):

It is a geometric Dirac operator and it is

Ĥ =
p
2

nX
k=0

(ĉ("k)r̂"k + ĉ(�")r̂�"k)

where ĉ denotes the Cli�ord multiplication on Ŝc
�= �0;�T �M̂ , r̂ = r̂b 
 1 + 1 
 detrc,

and detrc denotes the Hermitian connection on K�1
M̂

induced by the Chern connection on

^TM . More precisely

ĉ(�"k) =
p
2�"k ^ �; ĉ("k) = �

p
2"k � :
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Above, "k � denotes the odd derivation of 
0;�(M̂ ) uniquely determined by the requirements

"k �"j = Ækj ; 8j; k = 0; � � � n:

We want to point out that

(�"k^)� = "k :

We set

J := ĉ(dt) =
1p
2
ĉ("0) + ĉ(�"0)); Sc := Ŝ

+
c j0�M :

Note that

Ŝc jM�= Sc� JSc:

The metric contact structure on M produces a U(n)-reduction of the tangent bundle TM
which in general has only a SO(2n + 1)-structure. This U(n)-reduction induces a spinc

structure on M and Sc is the associated bundle of complex spinors and

detSc �= K�1
M :

The Cli�ord multiplication on Sc is de�ned by the equality

c(�) = J ĉ(�); 8� 2 
1(M):

Along M we can identify Ŝ�c with JS+
c and as such J we can write.

J =

�
0 �G�
G 0

�
; GG� = G�G = 1Sc:

We can view the Hodge-Dolbeault operator as an operator on Sc� Sc

Ĥ = J
 
r̂b
t �

� H 0
0 �GHG�

�!
; H� = H:

H is the geometric Dirac operator induced by r̂w 
 1+ 1
 detrc. We want to provide a
more explicit description of the operator H. Observe that

C1(Ŝ+
c ) = 
0;even(M̂) = 
0;even(V �)� �"0 ^ 
0;odd(V �)

where


0;p(V �) := C1(�p(V �)0;1):

We can represent  2 C1(Ŝ+
c ) as a sum

 =  + � �"0 ^  �;  + 2 
0;even(V �);  � 2 
0;odd(V �):
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The above decomposition can be alternatively described as follows. The operator

c(�) = J ĉ(�) : C1(Ŝ+
c )! C1(Ŝ+

c )

satis�es c(�)2 = �1 and thus c(i�) is an involution of C1(Ŝ+
c ). More explicitly

c(�) =
i

2
(ĉ(�"0) + ĉ("0))(ĉ(�"0)� ĉ("0) = i(�"0 ^ � "0 )(�"0 ^ + "0 ):

Thus, for every � 2 
0;�(V �) we have

c(i�)(�"0 ^ �) = ��"0 ^ �; c(�i�)� = �

This shows that the above decomposition is de�ned by the �1 eigenspaces of the involution
c(�). The restriction of the operator �@ : 
0;�(M̂) ! 
0;p(M̂) to 
0;�(V �) decomposes into
two parts. More precisely, if � 2 
0;�(V �) then

�@� = �"0 ^ �@0�+ �@V � :=
1

2
(1 + c(i�))�@ +

1

2
(1� c(i�))�@:

Note that

�@0� := "0 �@� 2 
0;p(V �); �@V 2 
0;p+1(V �):

We will regard �@0 and �@V as operators

�@0 : 

0;�(V �)! 
0;�(V �); �@V : 
0;�(V �)! 
0;�+1(V �):

Pick a t-independent section  = C1(Ŝ+
c ). It decomposes as

 =  + + �"0 ^  �;  � 2 
0;even=odd(V �):

We have the equality

Ĥ
�
 

0

�
= �

�
0 �G�
G 0

� � H 0
0 �GHG�

� �
 

0

�
=

�
0 HG�
GH 0

� �
 

0

�
Thus

p
2(�@ + �@�) = GH = ĉ(dt)H =)H = �

p
2J (�@ + �@�) :

We compute

(�@ + �@�)( + + �"0 ^  �) = �@ + + (�@�"0) ^  � � �"0 ^ �@ � + �@� + + �@�(�"0 ^  �)

(�@�"0 = 0)

= �"0 ^ �@0 + + �@V  + � �"0 ^ �@V  � + (�"0 ^ �@0 + �@V )
� + + �@�(�"0 ^  �)

= �"0 ^ ( �@0 + � �@V  �) + �@V  + + �@�V  + + �@�0("
0  +) + �@�(�"0 ^  �)
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= �"0 ^ (�@0 + � �@V  �) + �@V  + + �@�V  + + �@�(�"0 ^  �):

To proceed further we need to provide a more explicit description for �@�("0 )� �. We
denote by h�; �iM the L2-inner product onM . For every t-independent compactly supported
� 2 
0;odd(M̂ ) we have � = �� + �"0 ^ �+, �� 2 
0;odd=even(V �), and

h�; �@�(�"0 ^ ��)iM = h�@�; �"0 ^ ��iM = h�"0 ^ �@0��; �"0 ^ ��iM � h�"0 ^ �@V �+; �"
0 ^ ��iM

= h�@0��; ��iM � h�@V �+; ��iM = h��; �@�0��iM � h�+; �@�V ��iM
We conclude

�@�(�"0 ^ ��) = �@�0�� � �"0 ^ �@�V ��;

and

(�@ + �@�)( + + �"0 ^  �) = �"0 ^ (�@0 + � �@V  � � �@�V ��) + �@V  + + �@�V  + + �@�0��:

Now observe that

ĉ(dt)� = 1p
2
(ĉ(�"0) + ĉ("0))� = (�"0 ^ � � "0 �)

so that

H = �
p
2("0 ��"0^)

n
�"0 ^ (�@0 + � �@V  � � �@�V ��) + �@�V  + + �@V  + + �@�0 �

o

= �
p
2
n
(�@0 + � �@V  � � �@�V ��)� �"0 ^ (�@�V  + + �@V  + + �@�0 �)

o
:

In block form

H
�
 +

 �

�
=
p
2

24 ��@0 (�@�V + �@V )

(�@�V + �@V ) �@�0

35 � �  +

 �

�

The above equality can be further simpli�ed as follows. If � 2 
0;p(V �) � 
�(M)
 C then

d� 2 � ^
�

0;p(V �) + 
1;p�1(V �)

�
� 
0;p+1(V �)� 
1;p(V �)�
2;p�1(V �):

and

�
p
2�@0� = �i(� d�)0;p =: �iLV� �:

On the other hand, the identity (2.2a) implies

�@0� = rb
�"0� =

ip
2
rw
� �:
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Since divg� = 0 the operator irw
� is symmetric and so must by iLV� . Hence

�@�0� = iLV� and

H
�
 +

 �

�
=

24 �iLV�
p
2(�@�V + �@V )

p
2(�@V + �@�V ) iLV�

35 � �  +

 �

�

or equivalently,

H = c(i�)LV� +

24 0
p
2(�@V + �@�V )

p
2(�@�V + �@�V ) 0

35 : (3.5)

We will refer to H as the contact Hodge-Dolbeault operator. The next result summarizes
the results we have proved so far.

Theorem 3.8. Suppose (M2n+1; g; �) is a metric contact manifold, V := ker �. Denote by

Sc the bundle of complex spinors associated to the spinc structure determined by the contact

structure. Denote the corresponding Cli�ord multiplication by c.

(i) Sc �= �0;�V �, c(i�)� = (�1)p�, 8� 2 
0;p(V �). We decompose

Sc = S
+
c � S

�
c ; S

�
c = �0;even=odd(V �):

(ii) The operator H : C1(Sc) ! C1(Sc) de�ned by (3.5) is a geometric Dirac operator

induced by the connection rw on TM and detrc on detSc.

(iii) If we denote by Dc the Dirac operator on Sc induced by the Levi-Civita connection on

TM and detrc on detSc then

H = Dc +
1

4
c(� ^ d�):

(iv) Using the identity F (detrc) = F (detrw)+ni
2 d�, we deduce that H satis�es a Weitzenb�ock

formula

H2 = (rw)�(rw) + s(g)

4
+

1

16

�
4c(d� ^ d�) � 2n

�
+
1

2
c(F (detrw)) +

ni

4
c(!):

In particular, if dimM = 3 (so that n = 1 and c(� ^ d�) = �1) we have

Dc = H+
1

4
;

H2 = (rw)�(rw) + s

4
� 1

8
+

1

2
c(F (detrw)) +

i

4
c(d�):

We want to discuss in more detail the case dimM = 3. In this case �0;evenV � �= C and
�0;odd(V �) �= K�1

M . The above geometric Dirac operator has the simpler form

H2 = c(i�)L� +

24 0
p
2�@�V

p
2�@V 0

35 =
p
2

24 ��@0 �@�V

�@V �@�0

35
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=
p
2

24 ��@0 0

0 �@�0

35+p
2

2664
0 �@�V

�@V 0

3775 =: Z + T:

Note that along M we have �@0 = ip
2
@�. We have H2 = Z2 + T 2 + fZ; Tg, where f�; �g

denotes the anti-commutator of two operators. In this case

fZ; Tg = 2

24 0 [�@0; �@V ]
�

[ �@0; �@V ] 0

35 :
The above commutators can be further simpli�ed using the identity (2.2a) of x2.1. In this
case the Lee 1-form on M̂ is dt. The equality (2.2a) implies that for every t-independent
� 2 
0;�(V �) � 
0;�(M̂) we have

�@�(�"k0 ; � � � ; �"kp) =
pX

j=0

(�1)jrb
�"kj
�(�"k0 ; � � � ;b�"kj ; � � � �"kp) = � pX

k=0

�"k ^rb
�"k

�
�:

Thus

�@0� = rb
�"0�;

�@V � =
� pX
k=1

�"k ^rb
�"k

�
�:

When dimM = 3 and � = u 2 
0;0(V �) = C1(M)
 C we have

[ �@0; �@V ]u = rb
�"0(�"

1 ^rb
�"1u)� �"1 ^rb

�"1rb
�"0u

= (rb
�"0 �"

1) ^rb
�"1u+ �"1 ^ [rb

�"0 ;rb
�"1 ]u = (rb

�"0 �"
1) ^rb

�"1u+ �"1 ^rb
[�"0;�"1]

u+ �"1 ^ Fb(�"0; �"1)u;

where Fb denotes the curvature of the rb. Denote by Tb the torsion of rb. Observe that

rb
�"0 �"

1(�"1) = ��"1(rb
�"0 �"1)

so that

(rb
�"0 �"

1) ^rb
�"1u+ �"1 ^rb

[�"0;�"1]
u = ��"1 ^rb

rb
�"0
�"1
u+ �"1 ^rb

[�"0;�"1]
u

(rb�"0 = 0)

= ��"1 ^ (rb
rb

�"0
�"1
�rb

rb
�"1
�"0
�rb

[�"0;�"1]
)u = �"1 ^rb

Tw(�"1;�"0)
u =

ip
2
�"1 ^rw

Tw(�"1;�)
u

= � i

2
p
2
�"1 ^rb

J��"1u =
i

2
p
2
�"1 ^rb

�J �"1u

(J �"� 1 = �i�"1)

=
1

2
p
2
�"1 ^rb

��"1u =
1

2
p
2
�c

�
@V u

�
=: Tu:
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where �c is the complexi�cation2 of �. The di�erential operator by T is trivial when � = 0,
which in the 3-dimensional case is equivalent to M being Sasakian or to Ĵ being integrable.

Putting together all the above facts we obtain

[ �@0; �@V ] = �"1 ^ Fb(�"0; �"1) + T:

We conclude

fZ; Tg = 2

24 0 Fb(�"0; �"1)"
1

�"1 ^ Fb(�"0; �"1) 0

35+ 2~T; ~T :=

24 0 T�

T 0

35 :
The zero order operator above can be further simpli�ed by observing that

c(�"1) =
p
2

�
0 0
�"1^ 0

�
; c("1) =

p
2

�
0 �"1
0 0

�
so that 24 0 Fb(�"0; �"1)"

1

�"1 ^ Fb(�"0; �"1) 0

35 =
1p
2
c
�
Fb(�"0; �"

1)�"1 � Fb(�"0; �"1)"
1
�

=
i

2
c
�
Fw(�; �"1)�"

1 + Fw(�; �"1)"
1
�

Above we denoted by Fw the curvature of rw as a connection on the hermitian line bundle
(V; J) �= K�1

M . To get a more suggestive description we write

� Fw = i(ae1 + bf1);

where a; b are locally de�ned real valued functions. Then

Fw(�; �"1)�"
1 =

i

2
(a+ ib)(e1 � if1); Fw(�; �"1)"

1 = � i

2
(a� ib)(e1 + if1):

Thus

Fw(�; �"1)�"
1 + Fw(�; �"1)"

1 = (�be1 + af1) = �i(�Fw � � ^ (� �Fw)):

The last term can also be described as �iPV (�Fw), where PV denotes the orthogonal pro-
jection TM ! V �, and � denotes the complex linear extension of the Hodge operator. The
above facts now yield the following commutator identities.

fZ; Tg = c
�
PV � Fw

�
+ 2~T; (3.6a)

H2 = Z2 + T 2 + c
�
PV � Fw

�
+ 2~T: (3.6b)

2�c is complex linear but it anticommutes with J .
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Remark 3.9. (a) If we twist the Dirac operator D(rw) by a hermitian connection on the
trivial line bundle C we obtain a new Dirac operator HA satisfying

HA =

24 �irA
�

p
2(�@AV )

�

p
2�@AV irA

�

35 =: ZA + TA:

The operators ZA and TA satisfy the anticommutation rule

fZA; TAg = Z2
A + T 2

A + c
�
PV � Fw)

�
+ c
�
PV � FA

�
+ 2~TA (3.7)

where ~TA is de�ned as ~T using instead the operator TA := 1
2
p
2
�c@

A
V .

(b) The curvature Fw has the local description

Fw = �i�d� + � ^ (� Fw):

Up to a positive multiplicative constant (depending on various normalization conventions)
the scalar � is known as the Webster scalar curvature. We refer to [4] for more details.

x3.3 Connections induced by symplectizations The symplectization of the pos-
itively oriented metric contact manifold (M2n+1; �; g; J) is the manifold ~M = R+ � M

equipped with the symplectic form

~! = dt ^ � + td� = dt ^ � + t!:

If we denote by ~d the exterior derivative on ~M then we can write

~! = ~d(t�):

~M is equipped with a compatible metric

~g = dt2 + �2 + t!(�; J�):

We denote by ~J the associated almost complex structure. We will identifyM with the slice
f1g �M of ~M .

If we �x as before a local, oriented, orthonormal frame �; e1; f1; � � � ; en; fn compatible
with the metric contact structure on M then we get a symplectic frame

~e0 = @t; ~f0 = �; ~ek = t�1=2ek; ~fk = t�1=2fk; k = 1; � � � ; n:

The dual coframe is

~e0 = dt; ~f0 = �; ~ek = t1=2ek; ~fk = t1=2fk; k = 1; � � � ; n:

We denote by ~N the Nijenhuis tensor of ~J and by N̂ the Nijenhuis tensor of the almost
complex manifold (M̂; Ĵ) used in x3.1. The Chern connection ~rc of ( ~M; ~g; ~J) is the metric
connection with torsion ~T = ~N . In this case

� = 0; b ~T = 0:
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Observe that ~J = Ĵ . We deduce that for j; k = 1; � � � ; n we have

~N(~ej ; ~ek) =
1

t
N̂(ej ; ek); ~N(~ej ; ~fk) =

1

t
N̂(ej ; fk); ~N( ~fj ; ~fk) =

1

t
N̂(fj ; fk);

~N(@t; ~ej) =
1p
t
N̂(@t; ej); ~N(@t; ~fk) =

1p
t
N̂(@t; fk);

~N(�; ~ej) =
1p
t
N̂(@t; ej); ~N(�t; ~fk) =

1p
t
N̂(@t; fk):

Denote by ~D the Levi-Civita connection determined by ~g. It determined by (see [9])

2~g( ~DXY;Z) = X~g(Y;Z) + Y ~g(X;Z)� Z~g(X;Y )

+~g([X;Y ]; Z) + ~g([Z;X]; Y ) + ~g(X; [Z; Y ]):

We deduce from the above identity that if X;Y are t-independent vectors tangent along M

2~g( ~DtX;Y ) = g(XV ; YV ) = !(X;JY );

where XV := PVX.

2~g( ~DXY; @t) = �@t~g(X;Y ) = �g(XV ; YV ) = !(JX; Y ):

As in x3.1 we want to alter ~rc by B 2 
1;1
s (T � ~M) such that trB = 0 so that the new basic

hermitian connection ~rb with torsion ~T yb := ~N y +B satis�es

~rb
X� = 0; ~g( ~rb

XY; @t) = 0; (3.8)

for all t-independent tangent vectors X, Y along M .
We have ~r = ~D +A, where Ay = � ~T yb . Thus we need

0 = ~g( ~rXY; @t) = ~g( ~DXY; @t))� ~g(X; ~N (Y; @t)�B(X;Y; @t)

= �1

2
!(JX; Y ) + ~g(X; ~N (@t; Y ))�B(X;Y; @t)

If Y = � we deduce

B(X; �; @t) = 0:

If Y 2 C1(V ) then we deduce

0 = �1

2
!(JX; Y ) +

1p
t
~g(X; N̂ (@t; Y )) +B(X; @t; Y )

=
1

2
g(X;Y ) +

1

4
p
t
~g(X;�Y ) +B(X; @t; Y ) =

1

2
g(X;Y ) +

p
t

4
g(X;�Y ) +B(X; @t; Y )
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We conclude that B must satisfy the additional conditions

B(�; @t; Y ) = 0; Y 2 C1(V )

B(X; @t; Y ) = � 1

2
p
t

� 1p
t
~g(X;Y ) +

1

2
~g(X;�Y )

�
We write B = B0 +B1 where B0 is de�ned as in Lemma 3.4 by the equality

B0 =
1

4
p
t

n
� ^ dt+ J� ^ �

o
B1 must satisfy the equalities trB1 = 0,

B1(X; @t; Y ) = � 1

2t
~g(X;Y ); 8X;Y 2 C1(V ) (3.9a)

B1(X; �; @t) = B1(�; @t; Y ) = 0; 8X 2 Vect(M); Y 2 C1(V ) (3.9b)

We try B1 of the form

B1 = xdt
 dt ^ � + y� 
 d� + U + V

where

U =
1

2t
PV ^ dt; V =

1

2t
JPv ^ �

Clearly B1 2 
1;1(T � ~M). Next observe that

bB1 = y� ^ d� + bV = (y +
1

t
)� ^ d�;

trB1 = (x+
n

t
)dt;

Thus, set x = �n
t , y = 1

t . These choices guarantee that B1 2 
1;1
s (T � ~M) and trB1 = 0.

The conditions (3.9a) and (3.9b) can now be veri�ed by direct computation. We can now
conclude that if

B =
1

4
p
t

�
� ^ dt+ J� ^ �

�
� n

t
dt
 dt ^ � � 1

t
� 
 d� +

1

2t

�
PV ^ dt+ JPV ^ �

�
then the connection ~rb with torsion ~N y+B satis�es the conditions (3.8). These conditions
show that ~rb induces,, by restriction to each slice ftg �M , a connection rt on TM . The
torsion of r1 = rt=1 is given by

(T1)
y = ~N y jt=1 +B jt=1= N̂ y jM +

1

4
(J� ^ �)� � 
 d� +

1

2
(JPV ^ �)

=
1

2
N y � 1

2
� 
 d� +

1

2
(JPV ^ �) + 1

4
(J� ^ �):
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When M is a CR manifold we deduce

T
y
1 = �� 
 d� +

1

2
J ^ � + 1

2
J� ^ �:

In particular

T 1(X;Y ) = ��d�(X;Y ); 8X;Y 2 C1(V ):

This connection never coincides with generalized Webster connection constructed in x3.1,
because in this case we have bT y1 = 0. This shows r1 is Dirac equivalent to the Levi-Civita
connection. We have thus proved the following result.

Theorem 3.10. On every metric contact manifold (M; g; J) there exists a canonical nice

contact metric connection = r1 induced by a basic Hermitian connection on the symplecti-

zation of M . This contact connection is Dirac equivalent to the Levi-Civita connection and
its torsion is given by

T
y
1 =

1

2
N y � 1

2
� 
 d� +

1

2
(JPV ^ �) + 1

4
(J� ^ �): �

Let us observe that if M is CR then for every X;Y 2 C1(V ) we have

g(r1
�X;Y ) = �g(�; T (X;Y )) = +!(X;Y )

so that

r1
� = DV

� � J = PVD� + J = rw
� + J:

Proposition 3.11. Suppose M is a CR manifold. Then

detr1 = detrw + 3ni� = detrc +
5ni

2
�:

Proof

� := T
y
1 � T yw =

1

4
(�7� 
 d� � � ^ d� + 3J ^ �)

so that r1 = rw +A where

Ay =
1

2
b��� = �1

2
� ^ d� + 1

4
(7� 
 d� + � ^ d� � 3J ^ �)

=
1

4
(7� 
 d� � � ^ d� � 3J ^ �):

Set

Æ = "1 ^ � � � ^ "n:
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As in the proof of Proposition 3.6 we have

detr1
XÆ = detrw

X + i
� nX
k=1

Ck
k

�
Æ

where

Ck
k = g(AXek; Jfk) + g(AXfk; Jfk):

The above sum is nontrivial only for X = � in which case it is equal to 3n. We conclude
that

detr1 = detrw + 3ni�: �

Remark 3.12. Let us point out a di�erence between contact and Hermitian connections.
We have shown that there always exist contact connections with torsion T satisfying bT y =
0.

On the other hand, if r is a Hermitian connection on an almost complex Hermitian
manifold (M; g; J) with Nijenhuis tensor N then its torsion satis�es (see [5])

(bT )� = (bN y) = (dc!)�:

If dimM = 4 then always (dc!)� = 0 and in this case it is possible to �nd Hermitian
connections Dirac equivalent to the Levi-Civita connection. However, in higher dimensions
this is possible if and only if (dc!)� = 0.

x3.4 Uniqueness results The constructions we performed in the previous subsection
may seem a bit ad-hoc but as we will show in this section they produce, at least for CR
manifolds, connections uniquely determined by a few natural requirements.

Proposition 3.13. Suppose (M;�; g; J) is CR connection. Then each Dirac equivalence

class of connections contains at most one nice CR connection.

Proof Suppose r is a nice CR connection with torsion T . Set 
 := bT . We get a
hermitian connection r̂ = dt ^ @t +r on (TM̂; Ĵ) with the property

bT (r̂)y = 
; trT (r̂)y = 0:

Denote by rb the basic hermitian connection on (TM̂; Ĵ) we have constructed in x3.1. The
results in x2.1 imply that

T (r̂)y = T
y
b +

9

8
 + � 3

8
M + +B =: T yb + S;

where

 + 2 
3;+(M̂ ); B 2 
1;1
s (T �M̂);


 = bT yb + 3 + = 3 + + � ^ d�;
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B(@t; �; �) = 0 = B(�; �; @t) = 0; trB = 0: (�)

Thus  + is uniquely determined. Moreover, since r is a CR connection we deduce that

g(X;T (Y;Z)) = 0; 8X;Y;Z 2 C1(V ):

Since the restriction of rb to M is also a CR connection we deduce

S(X;Y;Z) = 0; 8X;Y;Z 2 C1(V ):

Thus the restriction of B to V is uniquely determined. The condition B 2 
1;1
s (T �M̂) cou-

pled with (�) show that the restriction of B to R@t �R� � TM̂ is also uniquely determined.
This concludes the proof of Proposition 3.13.�

Remark 3.14. We can use Gauduchon's description of the hermitian connections on TM̂
to completely characterize which Dirac equivalence classes of connections on TM contain
nice CR connections.

Corollary 3.15. The Webster connection on a CR manifold is the unique CR connection

adapted to H. Moreover, the connection r1 of x3.3 is the unique nice CR connection with

torsion satisfying bT y = 0.

36



References

[1] N. Berline, E.Getzler, M. Vergne: Heat Kernels and Dirac Operators, Springer
Verlag, 1992.

[2] J.-M. Bismut: A local index theorem for non-K�ahler manifolds, Math. Ann.,
284(1989), 681-699.

[3] D.E. Blair: Contact Manifolds in Riemann Geometry, Lect. Notes in Math., vol.
509, Springer Verlag 1976.

[4] S.S. Chern, R.S. Hamilton: OnRiemannian metrics adapted to three dimensional
contact manifolds, in the volume \Arbeitstagung Bonn 1984", Lect. Notes in
Math., vol. 1111, 279-305, Springer Verlag 1985.

[5] P. Gauduchon: Hermitian connections and Dirac operators, Boll. U.M.I. 11-
B(1997), Suppl.fasc.2, 257-288.

[6] P.B. Gilkey: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index
Theorem, 2nd Edition, CRC Press, 1995.

[7] S. Kobayashi, K. Nomizu: Foundations of Di�erential Geometry, Interscience
Publishers, New York, 1963.

[8] A. Lichnerowicz: Global Theory of Connections and Holonomy Groups, Nordho�
International Pub., Leyden, 1976.

[9] L.I. Nicolaescu: Lectures on the Geometry of Manifolds, World Scienti�c, 1996

[10] L.I. Nicolaescu: Adiabatic limits of the Seiberg-Witten equations on Seifert man-

ifolds, Comm. Anal. and Geom., 6(1998), 301-362.

[11] C.M. Stanton: Intrinsic connections for Levi metrics, Manuscripta Math.,
75(1992), 349-364.

[12] S.Tanno: Variational problems on contact Riemannian manifolds, Trans. Amer.
Math.Soc., 314(1989), 349-379.

[13] C.H. Taubes: The Seiberg-Witten invariants and symplectic forms, Math. Res.
Letters, 1(1994), 809-822.

[14] S.M. Webster: Pseudo-hermitian structures on a real hypersurface, J. Di�.
Geom., 13(1978), 25-41.

37


