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The Atiyah-Singer Index Theorem

This is arguably one of the deepest and most beautiful results in modern geometry, and in my
view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera-
tors on a compact manifold, namely those operators P with the property that dim ker P, dim coker P
oo. In general these integers are very difficult to compute without some very precise information
about P. Remarkably, their difference, called the index of P, is a “soft” quantity in the sense that
its determination can be carried out relying only on topological tools. You should compare this with
the following elementary situation.

Suppose we are given a linear operator A : C'"™ — C". From this information alone we cannot
compute the dimension of its kernel or of its cokernel. We can however compute their difference
which, according to the rank-nullity theorem for n x m matrices must be dim ker A—dim coker A =
m —n.

Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator
is determined by certain cohomology classes on the background manifold. These cohomology
classes are in turn fopological invariants of the vector bundles on which the differential operator
acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that
in order to understand the index problem for an arbitrary elliptic operator it suffices to understand
the index problem for a very special class of first order elliptic operators, namely the Dirac type
elliptic operators. Amazingly, most elliptic operators which are relevant in geometry are of Dirac
type. The index theorem for these operators contains as special cases a few celebrated results: the
Gauss-Bonnet theorem, the Hirzebruch signature theorem, the Riemann-Roch-Hirzebruch theorem.

In this course we will be concerned only with the index problem for the Dirac type elliptic
operators. We will adopt an analytic approach to the index problem based on the heat equation on a
manifold and Ezra Getzler’s rescaling trick.

1= Prerequisites: Working knowledge of smooth manifolds, and algebraic topology (especially
cohomology). Some familiarity with basic notions of functional analysis: Hilbert spaces, bounded
linear operators, L2-spaces.

1= Syllabus: Part I. Foundations: connections on vector bundles and the Chern-Weil construction,
calculus on Riemann manifolds, partial differential operators on manifolds, Dirac operators, [21].

Part II. The statement and some basic applications of the index theorem, [27].

Part II1. The proof of the index theorem, [27].

1= About the class There will be a few homeworks containing routine exercises which involve
the basic notions introduced during the course. We will introduce a fairly large number of new
objects and ideas and solving these exercises is the only way to gain something form this class and
appreciate the rich flavor hidden inside this theorem.
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Notations and conventions

e K=R,C.

e For every finite dimensional K-vector space V' we denote by Autk (V') the Lie group of K-linear
automorphisms of V.

o We will orient the manifolds with boundary using the outer normal first convention.

e We will denote by gl (K) o(n), so(n), u(n) the Lie algebras of the Lie groups GL,(K) and
respectively U(n), O(n), SO(n).
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Chapter 1

Geometric Preliminaries

1.1. Vector bundles and connections

1.1.1. Smooth vector bundles. The notion of smooth K-vector bundle of rank r formalizes the
intuitive idea of a smooth family of r-dimensional K-vector spaces.

Definition 1.1.1. A smooth K-vector bundle of rank r over a smooth manifold B is a quadruple
(E, B, m, V) with the following properties.

(a) E/, B are smooth manifolds and V' is a r-dimensional K-vector space.

(b) 7 : E — B is a surjective submersion. We set E}, := 7~ 1(b) and we will call it the fiber (of the
bundle) over b.

(c) There exists a trivializing cover, i.e., an open cover U = (Uy)qeca of B and diffeomorphisms
U, : Bly,= 1 (Uy) =V x U,
with the following properties.

(c1) For every o € A the diagram below is commutative.

'
Ely, -

V x U,

NU Aoj

(c2) For every o, B € A there exists a smooth map
98a : Ua :=Ua NUg = Aut(V), u > gga(u)
such that for every v € U,g we have the commutative diagram
V x {u}

‘IfalEu/v

Eu 960 (u)

‘I’ﬂIEu\‘

V x {u}

ﬁ—I
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B is called the base, E is called total space, V is called the model (standard) fiber and 7 is called
the canonical (or natural) projection. A K-line bundle is a rank 1 K-vector bundle.

Remark 1.1.2. The condition (c) in the above definition implies that each fiber F} has a natural
structure of K-vector space. Moreover, each map V¥, induces an isomorphism of vector spaces

Vo lg,— V x {b}.
O

Here is some terminology we will use frequently. Often instead of (F,m, B, V') we will write
E S Bor simply E. The inverses of 111;1 are called local trivializations of the bundle (over U,).
The map g3, is called the gluing map from the a-trivialization to the -trivialization. The collection

{gga Upp — Aut(V); Upp # @}

is called a (Aut(V"))-gluing cocycle (subordinated to U) since it satisfies the cocycle condition

Gya(u) = gyg(u) - gga(u), Yu € Uygy :=Us, NUgNU,, (1.1.1)
where ”-”” denotes the multiplication in the Lie group Aut(V"). Note that (1.1.1) implies that
Joo(t) = 1y, gaa(u) = gas(u) ™, Yu € Uyp. (1.1.2)

Example 1.1.3. (a) A vector space can be regarded as a vector bundle over a point.

(b) For every smooth manifold M and every finite dimensional K-vector space we denote by V ;.
the trivial vector bundle
VXxM—M, (v,m)+— m.

(c) The tangent bundle 7'M of a smooth manifold is a smooth vector bundle.

(d) If E 5 B is a smooth vector bundle and U < B is an open set then \U1> U is the vector
bundle
-1 ™
m (U) = U.
(e) Recall that CP! is the space of all one-dimensional subspaces of C2. Equivalently, CP' is the
quotient of C2 \ {0} modulo the equivalence relation

p~p = 3INeC: p =N
For every p = (20,21) € C%\ {0} we denote by [p] = [20, 21] its ~-equivalence class which we

view as the line containing the origin and the point (zo, z1). We have a nice open cover {Up, U; } of
CP! defined by

Ui :=={lz0, 21]; 2 # 0}.
The set Uy consists of the lines transversal to the vertical axis, while U7 consists of the lines transver-
sal to the horizontal axis. The slope mg = z1/z¢ of the line through (2, z1) is a local coordinated
over Uy and the slope m; = 2 /2 is a local coordinate over U;. On the overlap we have

mi = l/mo.
Let .
E = {(z,y; 20, 21]) € C? x CP*; C Loie yzo—az =0}
x 20

The natural projection C? x CP! — CP! induces a surjection 7 : £ — CP!. Observe that for every
[p] € CP! the fiber 7~!(p) can be naturally identified with the line through p. We can thus regard
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F as a family of 1-dimensional vector spaces. We want to show that 7 actually defines a structure
of a smooth complex line bundle over CP!. Set

Eii= 7 (U) = {(@ 5[0, 5]) € B 2 # 0},
We construct a map
Wo: Eg = C x Uy, Eo> (z,y;[20,21]) = (2, [20, 21])

and
Uy By — Cx U, Er3(z,y; 20 21y) = (y,[20, 21])

Observe that W, is bijective with inverse ¥, 1. C x Uy — Eyis given by
z
C x Uo > (t; [20, 21]) = (¢, ;;t; [20, 21]) = (¢, mot; [20, 21]).

The composition
\Iiloqialtchol—)(CXUm

is given by
C xUo1 3 (s; [p]) = (g10([p])s; [p)),
where
Uo1 > [p] = [20, 21] = g10([p]) = 21/20 = mo([p]) € C* = GLy(C).
The complex line bundle constructed above is called the fautological line bundle. O

Given a smooth manifold B, a vector space V, an open cover U = (U, )aca of B, and a gluing
cocycle subordinated to U

98a : Uap — Aut(V)
we can construct a smooth vector bundle as follows. Consider the disjoint union
a€cA

Denote by E the quotient space of X modulo the equivalence relation
Vi, 3 (va,ta) ~ (v8,ug) € Vi, <= ua =ug =u € Uag, vg = gga(t)va-

Since we glue open sets of smooth manifolds via diffeomorphisms we deduce that F is naturally a
smooth manifold. Moreover, the natural projections 7, : V;  — U, are compatible with the above
equivalence relation and define a smooth map

m: F — B.

The natural maps ®,, : V; — E |y, are diffeomorphisms and their inverses ¥, = o1 satisfy
all the conditions in Definition 1.1.1. We will denote the vector bundle obtained in this fashion by
(U, gos, V') or by (B, U, Ges, V).

Definition 1.1.4. Suppose (E,7g, B,V) and (F, 7p, B, W) are smooth K-vector bundles over B
of ranks p and respectively g. Assume {Uq, U} is a trivializing cover for 7 and {V3, @3} is a

trivializing cover for mr. A vector bundle morphism from E TE Bto F =5 Bis a smooth map
T : E — F satisfying the following conditions.
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(a) The diagram bellow is commutative.
T

E F

ABAF

(b) The map T is linear along the fibers, i.e. for every b € B and every o € A, b € B such that
b € Uy N Vg the composition P71 |p, Yo |g,: V — W is linear,

Eb—ﬂ/x{b}

Vol g,
!
|

T\ Ep i linear .
|
Fb — W x {b}
Q4 F,
The morphism 7' is called an isomorphism if it is a diffeomorphism.

We denote by Hom(F, F') the space of bundle morphisms £ — F. When E = F we set
End(FE) := Hom(E, E). A gauge transformation of E is a bundle automorphism £ — E. We
will denote the space of gauge transformations of E by Aut(FE) or §p.

We will denote by VB (M) the set of isomorphism classes of smooth K-vector bundles over
M. O

Definition 1.1.5. A subbundle of E = B is a smooth submanifold F' — F with the property that
F 5 Bis a vector bundle and the inclusion F' < F is a bundle morphism. O

Definition 1.1.6. Suppose ' — M is a rank r K-vector bundle over M. A trivialization of E is a
bundle isomorphism

Ky — E.
The bundle E is called trivializable if it admits trivializations. A trivialized vector bundle is a pair

(vector bundle, trivialization). O

Example 1.1.7. (a) A bundle morphism between two trivial vector bundles
T . K B — E B

is a smooth map
T : B — Hom(V,W).

(b) If we are given two vector bundles over B described by gluing cocycles subordinated to the
same open cover

(U, goo, V), (U, "o, W)

then a bundle morphism can be described as a collection of smooth maps

Ty : Uy — Hom(V, W)
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such that for any «, 8 and any u € U,g the diagram below is commutative.
)
9pa(u) {
T (u)

Ta(u
V—mW
[hﬁa(u)
(u
O

There are a few basic methods of producing new vector bundles from given ones. The first
methods reproduce some fundamental operations for vector spaces, i.e. vector bundles over a point.
We list below a few of them.

V ~s V* := Homg (V,K) — the dual of V,
V.W ~V ®&W — thedirect sumof V and W,
VW~V ®W — the tensor product of V and W,
V ~» Sym™V — the m-th symmetric product of V,
V ~» A*V  — the k-th exterior power of V/,
Vs det V= AY™VY _ the determinat line of V.

These constructions are natural in the following sense. Given linear maps V; ki Wi, i =0,1we
have induced maps
"o : Wi —V,
TvoTh: VooV »Woe Wi, To®Ti:Vo@Vi—Woe Wi,
Symk Ty : Symk Vo— Symk Wo, AFTy : AFVy—s AR W,
If dim Vg = dim W = n then the map A™Ty will be denoted by det Tj.

These operations for vector spaces can also be performed for smooth families of vector spaces,
i.e. bundles over arbitrary smooth manifolds.

Given two bundles E, I over the same manifold M described by the gluing cocycles
E = (U goo, V), F = (U, hee, W)
we can form
E* = (U, ("ges) V")
EGF = (U, goe @ hea, VOW), EQF = (U, gee @ hee, VO W),
Sym™ E = (U, Sym™ gee, Sym™ V), AFE = (U, A¥ges, A*V),
detg EF = (u, det gee,det V' )
The line bundle detk F is called the determinant line bundle of £
Definition 1.1.8. (a) Suppose E' — M is a K-vector bundle. A K-orientation of E is an equivalence

class of trivializations of 7 : K, — detk F, where two trivializations 7; : K;; — detx F/, 7 = 0, 1
are considered equivalent if there exists a smooth function p : M — R such that

T1(8) = 10(€et's), Vs € C™(K,,).

A bundle is called K-orientable if it admits K-orientations. An oriented K-vector bundle is a pair
(vector bundle, K-orientation). O
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Example 1.1.9. (a) A smooth manifold M is orientable if its tangent bundle 7'M is R-orientable.
O

When K = R and when no confusion is possible we will use the simpler terminology of orien-
tation rather than R-orientation.

Another important method of producing new vector bundles is the pullback construction. More
precisely given a vector bundle £ = M described by the gluing cocycle
(M 9 u7 9007 V)

and a smooth map f : N — M then we can construct a bundle f*E — N described by the gluing
cocycle

(N,f_l(U),g.. of, V)

There is a natural smooth map f, : f*E — FE such that the diagram below is commutative

/'E " E
k f
M —— N

and for every m € M the induced map (f*E),, — Ej(y,) is linear.

Remark 1.1.10. The above construction is a special case of the fibered product construction,

FHE) = N aw Exyy N % N,

E xp N := {(e,n) € ExN; 7(e) = f(n)}, (m xar f)(e,n) =n.
Equivalently £ x 5y N is the preimage of the diagonal A C M x M via the map
nx f:EXN—=Mx M.

This is a smooth manifold since 7 is a submersion. O

Example 1.1.11. If V is a vector space, M is a smooth manifold and ¢ : M — {pt} is the collapse
to a point, then the trivial bundle V, is the pullback via c of the vector bundle over pt which is the
vector space V itself

KM = C*V

O

Definition 1.1.12. A (smooth) section of a vector bundle E — B is a (smooth) maps: B — FE
such that

s(b) € Ey, VB
If U C B is an open subset then a smooth section of E over U is a (smooth) section of E |7. We

denote by C°(U, E) the set of smooth sections of U over E. When U = B we will write simply
C>®(E). O
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Observe that C*°(E) is a vector space where the sum of two sections s,s’ : B — F is the
section s + s’ defines by

(s +s")(b) := s(b) + §'(b) € Ep. Vb € B.

If the vector bundle £ — B is given by the local gluing data (U, ges, V') then a section of F can be
described as a collection s, of smooth functions

Se:Usg =V
with the property that Vo, 3 and Vu € U, we have

SB (u) = JBa (u)sa (u)

This shows that there exists at least one section 0 defined by the collection s, = 0. It is called the
zero section of E.

Given two sections s = (s,), s’ = (s, ) their sum is the section described locally by the collec-

tion (se + 55).

Example 1.1.13. (a) If M is a smooth manifold then a smooth section of the trivial line bundle C,,
is a smooth function M — C.

(b) A smooth section of the tangent bundle of M is a vector field over M. We will denote by
Vect(M) the set of smooth vector fields on M.

( ¢) A smooth section of the cotangent bundle 7% M is called a differential 1-form. A smooth
section of the k-th exterior power of T*M is called a differential form of degree k. We will denote
by Q¥ (M) the space of such differential forms.

(d) Suppose E — M is a smooth vector bundle. Then an F-valued differential form of degree k is
a section of A¥T* M ® E. The space of such sections will be denoted by Q¥ (E). Observe that

Q8 (M) = QX (Ry).
(e) Suppose that E/, I' — M are smooth K-vector bundles over M. Then
C*(E*®F)= Hom(E,F).

For this reason we set

Hom(E, F) := E* ® F.
When E = F' we set

End(E) := Hom(E, E).
If E is a line bundle then

End(F) 2 K,,.

We want to emphasize that Hom(F, F') is an infinite dimensional vector space while Hom(E, F')
is a finite dimensional vector bundle and

C>(Hom(E, F)) = Hom(E, F).

Let us also point out that a K-linear map T : C*°(E) — C°°(F) is induced by a bundle morphism
E — Fiff and only if T is a morphism of C°°( M )-modules, i.e. for any smooth function f : M —
K we have

T(fu) = fTu, uwe C(E).
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(e) Suppose that E — M is a real vector bundle. A metric on E is then a section h of Sym? E* with
the property that for every m € M the symmetric bilinear form h,,, € Sym? E* is an Euclidean
metric on the fiber E,,. A Riemann metric on a manifold M is a metric on the tangent bundle 7M.
A metric on E induces metrics on all the bundles E*, E®*, Sym* E, A*E.

Observe that if / is a metric on E and F' is a sub-bundle of E then h induces a metric on F'. In
particular, the tautological line bundle L — CP! is by definition a subbundle of the trivial vector
bundle Q(%Pl and as such it is equipped with a natural metric.

(f) Suppose that E — M is a complex vector of rank r described by the gluing cocycle (U, ges, C").
Then the conjugate of E is the complex vector bundle £ described by the gluing cocycle (U, Ges, C")
where for any matrix g € GL,(C) we have denoted by g its complex conjugate. Note that there
exists a canonical isomorphism of real vector bundles

C:E—E
called the conjugation.

A section u of E* defines for every m € M a R-linear map u,, : E,, — C which is complex
conjugate linear i.e.
Um(Ae) = Aup(e), Ve € B, X eC.
A hermitian metric on H is a section h of E* ®c E* satisfying for every m € M the following
properties.

h, defines a R-bilinear map £ x ¥ — C which is complex linear in the first variable and conjugate
linear in the second variable.

hm(e1,e2) = h(eg,e1), Vei,es € Ep,.

hm(e,e) >0, Ye € Ey, \ {0}.
If E is a vector bundle equipped with a metric & (riemannian or hermitian), then we denote by
End, (E) the real subbundle of End(E) whose sections are the endomorphisms 7' : £ — E
satisfying
h(Tw,v) = —h(u,Tv), Yu,v € C*(E).

(g2) A K-vector bundle is K-orientable iff detx £ admits a nowhere vanishing section. Indeed since
detg B = (Kj;)* @ detg E = Hom(K,,, E) a section of E can be identified with a bundle
morphism K,, — E. This is an isomorphism since the section is nowhere vanishing.

(h) Every complex vector bundle £ — M is R-orientable. To construct it we need to produce a
nowhere vanishing section of detg E. Suppose E is described by the gluing cocycle (U, ges, C").
Using the inclusion

i: GL,(C) — GLor(R)

we get maps

Jee =10 oo : Use — G Lo, (R)
satisfying

Wee := det Joo = | det g..]z > 0.
Let

foo :=10g Wee <= Wee = €XP(foo)-
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Since wee defines a gluing cocycle for detg E and in particular
Waa(u) = wyp(uw)wpa(w).
We deduce

f’YOl(u) = f’Yﬁ(u) + fﬁa(u)v VOZ, ﬁ)’% VU € Uaﬁ'y‘
Consider now a partition of unity (6, ) subordinated to U, supp 6, C U,. Define

fo:Ua =R, falu) = 05(u)foalu 295 u) foa(u

Ug3u

Observe first that f, is smooth. Using the equalities

Jra = Fo8 = Fra + J5v = f5a

— f5 = 03(fra = 1) = D 0w = (D2 05) Fsa = Foa
v v v

we deduce!

Equivalently
—f3=fa— fa =€ L = Wgee —fa = = (det gga)e —fa,
This shows that the collection s, = e~/ is a nowhere vanishing section of detr

(i) Suppose £ — N is a smooth bundle and f : M — N is a smooth map. Then f induces a linear
map

[T C(E) = C2(fE)
which associates to each section s of £ — N a section f*s of f*E — M called the pullback of s
by f. If s is described by a collection of smooth maps s, : Us — K", then f*s is described by the
collection

seo f: fH(U,) =K.

Moreover we have a commutative diagram

FE-L g

|
M /

4)N

S

O

Definition 1.1.14. Suppose ¥ — B is a smooth K-vector bundle. A local frame over the open set
U — B is an ordered collection of smooth sections ey, - - - , e, of E |y such that for every u € U
the vectors € = (e1(u),- -, e,(u)) form a basis of the fiber F,,. 0

Given a local frame € = (e, - - -
U as a linear combination

,er) of E— B over U we can represent a section s of E over

s=ste; +---+s"e,
where s; : U — K are smooth functions.
LGor the cognoscienti. The collection of smooth functions(f,g) is a Cech 1-cocycle of the fine sheaf of smooth functions. Since

the cohomology of a fine sheaf is trivial in positive dimensions this collection must be a Cech coboundary, i.e., there exists a collection
of smooth functions (fo) such that fo, — fg = fgq; see [11]
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1.1.2. Principal bundles. Fix a Lie group G. For simplicity, we will assume that it is a matrix Lie
group?, i.e. it is a closed subgroup of some GL,,(K). A principal G-bundle over a smooth manifold
Bis atriple (P, 7, B) satisfying the following conditions.
P55 B

is a surjective submersion. We set P, := 7~ 'b
There is a right free action

PxG =P, (p.g)—pg
such that for every p € P the G-orbit containing p coincides with the fiber of 7 containing p.

m is locally trivial, i.e. every point b € B has an open neighborhood U and a diffeomorphism
Uy : mY(U) — G x U such that the diagram below is commutative

W U) —Y— G xU
k\ AJ
U

and
U(pg) = ¥(p)g, Ypex '(U), g€ G
where the right action of G on G x U.

Any principal bundle can be obtained by gluing trivial ones. Suppose we are given an open
cover U = (Uy)aeca of M and for every «, 5 € A smooth maps

Jap * Uaﬁ -G
satisfying the cocycle condition
Gra(u) = gya(u) - gga(u), Vu € Uap,

Then, exactly as in the case of vector bundles we can obtain a principal bundle by gluing the trivial
bundles P, = G x U,. More precisely we consider the disjoint union

X =P, x {a}

and the equivalence relation

G x Uy x{a} 3 (g,u,a) ~ (h,v,8) € GxUg x{B)} <= u=v €Uy, h=gsa(u)g.
Then P = X/ ~ is the total space of a principal G-bundle. We will denote this bundle by
(B’ ua Jeo, G)

Example 1.1.15 (Fundamental example). Suppose £ — M is a K-vector bundle over M of rank
r, described by the gluing data (U, ges, V'), Where V' is a r-dimensional K-vector space. A frame of
V is by definition an ordered basis € = (e, - ,e,) of V. We denote by Fr (V) the set of frames
of V. We have a free and transitive right action

EﬂUXGMK%%H@%(qwgwfgzé:ﬁ%~Wth&

2Any compact Lie group is a matrix Lie group
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Vg = [g5hi<ij<r € GLy(K), (e1,--- ,e;) € Fr(V).
In particular, the set of frames is naturally a smooth manifold diffeomorphic to GL, (K). Note that a

frame € of V' associates to every vector v € V a vector v(€) € K", the coordinates of v with respect
to the frame €. For every g € GL,(K) we have

v(E-g) =g v(@).

If we let GL, (K) act on the right on K",
K™ x GL.(K) 3 (u,g) = u-g =g ‘uc K"
then we see that the coordinate map induced by v € V,
v:Fr(V) =K', &— v(e)
is G-equivariant.
An isomorphism ¥ : V' — K" induces a diffeomorphism
$: GL(K) = Fr (V), g ®(g) =¥ (4) g,

where & denotes the canonical frame of K”. Observe that

®(g-h) = B(g) - h.

To the bundle £ we associate the principal bundle Fr (') given by the gluing cocycle (U, ges, GL; (K)).
The fiber of this bundle over m € U, can be identified with the space Fr(E,,) of frames in the fiber
FE,, via the map ® and the local trivialization

v, :E,— K" O
To any principal bundle P = (B, U, ges, G) and representation p : G — Autg (V) of G on a

finite dimensional K-vector space V' we can associate a vector bundle E = (B, U, p(ges), V). We
will denote it by P x, V. Equivalently, P X, V' is the quotient of P x V' via the left G-action

g(p,v) = (pg™", p(g)v)-
A vector bundle E on a smooth manifold M is said to have (G, p)-structure it E = P x,V for
some principal G-bundle P.

We denote by g = TG the Lie algebra of G. We have an adjoint representation
Ad:G = Endg, Ad(9)X =gXg ' = % li—o gexp(tX)g™t, Vg e G.
The associated vector bundle P X a4 g is denoted by Ad(P).
For any representation p : G — Aut(V') we denote by p, the differential of p at 1
px g — EndV.
Observe that for every X € g we have
p«(Ad(9)X) = pu(9Xg™") = p(g)(p=X)p(g)~". (1.1.3)
If we set End, V' := p,(g) C End V' we have an induced action
Ad,: G — End,(V), Ad,(9)T :=p(9)Tp(g)~", YT € EndV, g € G.

If E =P x,V then we set
End, (V) := P xaq, End,(V).

This bundle can be viewed as the bundle of infinitesimal symmetries of E.



12 Liviu I. Nicolaescu

Example 1.1.16. (a) Suppose G is a Lie subgroup of GL,,(K). It has a tautological representation
7: G — GL;,(K) = Aut(K™).

A rank m K-vector bundle E — M is said to have G-structure if it has a (G, 7)-structure. This
means that E can be described by a gluing cocycle (U, gee, K™) with the property that the matrices
Jee belong to the subgroup G.

For example, SO(m), O(m) C GL,,(R) and we can speak of SO(m) and O(m) structures on a
real vector bundle of rank m. Similarly we can speak of U(m) and SU(m) structures on a complex
vector bundle of rank m.

A hermitian metric on a rank r complex vector bundle defines a U (r)-structure on £ and in this
case
Ad P = End,(F) = End, (E). O

1.1.3. Connections on vector bundles. Roughly speaking, a connection on a smooth vector bundle
is a “coherent procedure” of differentiating the smooth sections.

Definition 1.1.17. Suppose £ — M is a K-vector bundle. A smooth connection on E is a K-linear
operator
V:C®E) = C*(T"M®FE)
satisfying the product rule
V(fs)=s®df + fVs, YfeC®(M), se C®(E).

We say that Vs is the covariant derivative of s with respect to V. We will denote by <75 the space
of smooth connections on F. O

Remark 1.1.18. (a) For every section s of F the covariant derivative Vs is a sectionof 7" M ®@ F =
Hom(TM, E). ie.
Vs € Hom(TM, E).

As such, Vs associates to each vector field X on M a section of &2 which we denote by V xs. We
say that V x s is the derivative of s in along the vector field X with respect to the connection V. The
product rule can be rewritten

Vx(fs)=(Lxf)s+ fVs, VX € Vect(M), feC>®(M), s C>®(M),
where Lx f denotes the Lie derivative of f along the vector field X.

(b) Suppose E, ' — M are vector bundles and ¥ : E — F'is a bundle isomorphism. If V is a
connection of F then VW~ is a connection on F.

(c) Suppose V° and V! are two connections on E. Set
A=V -V C®(E) - C®(T*M x E).
Observe that for every f € C°°(M) and every s € C*°(E) we have
A(fs) = fA(s)
so that
Aec Hom(E,T"M @ E) =2 C®(E*"@T*"M @ E) =2 C*(T"M ® E* ® F)
~ C®(TM,End(E)) = Q'(End(E)).
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In other words, the difference between two connections is a End E-valued 1-form. Conversely, if
Aec QY (EndE) = Hom(TM ® E, E)

then for every connection V on E the sum V + A is a gain a connection on E. This shows that the
space @/, if nonempty, is an affine space modelled by the vector space Q! (End E). a

Example 1.1.19. (a) Consider the trivial bundle R;,. The sections of R,, are smooth functions
M — R. The differential
d:C®(M) — QYM), fwdf
is a connection on R, called the trivial connection.
Observe that End(R,,) = R, so that any other connection on M has the form
V=d+a, ac Q' (R,)=0M).
(b) Consider similarly the trivial bundle K. Its smooth sections are r-uples of smooth functions

Sl

s = M —K".

‘s

K" is equipped with a trivial connection V° defined by

st ds!

Any other connection on K" has the form
V=V'+A4 AcQ'(EndK").

More concretely, A is an 7 x r matrix [Af]i<4 p<r, Where each entry Af is a K-valued 1-form. If
we choose local coordinates (z!,--- ,2™) on M then we can describe Aj locally as

A =) Afyda”.
k

We have L
s > Ays
Vs = : +
ds” : rob
> b Aps
(c) Suppose E — B is a K-vector bundle of rank r and € = (eq, - - - , e,) is a local frame of E over

the open set U. Suppose V is a connection on E. Then for every 1 < b < r we get section Ve of
T*M ® E over U and thus decompositions

Vey =Y Afea, A €Q'(U), Vi<a,b<r (1.1.4)

Given a section s = Eb sPey, of E over U we have

Vs = Z dsPey + Z Sp Z Ajeq = Z (ds“ + Z Al‘fsb) €q.-
b b a a b
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This shows that the action of V on any section over U is completely determined by the action of V
on the local frame, i.e by the matrix (Af). We can regard this as a 1-form whose entries are 7 x r
matrices. This is known as the connection 1-form associated to V by the local frame €. We will
denote it by A(€). We can rewrite (1.1.4) as

V(e) =¢e- A(é).
Suppose f = (f1, -+, fr) is another local frames of E over U related to € by the equalities

fa=)_ewgh, (1.1.5)

b

where U 3 u +— g(u) = (g2(u))1<ap<r € GL,(K) is a smooth map. We can rewrite (1.1.5) as

—

f=¢ég.
Then A(f) is related to A(&) by the equality

—

A(f) =g " A(@)g + g~ 'dg. (1.1.6)
Indeed
FA(f) = V(f) = V(@) = (V()g + édg = (€A@))g + fg~'dg = flg " A@)g + g~ "dg).

Suppose now that E is given by the gluing cocycle (U, ges, , K"). Then the canonical basis of K"
induces via the natural isomorphism K, — E'|y, alocal frame e{a) of E'|y,,. We set

Ay = AE(@)).

Observe that A, is a 1-form with coefficients in g/ (K) = End(K"), the Lie algebra GL,(K). On
the overlap Uy we have the equality é{a) = €(/8)gpa so that on these overlaps the gl (K)-valued
1-forms A,, satisfy the transition formulae

Ay = g/g;Aggga + gﬁjdgga — Ag = glgaAagﬁj — (dgga)gﬁj. (1.1.7)
O

Proposition 1.1.20. Suppose E is a rank r vector bundle over M described by the gluing cocycle
(U, gee, K"). Then a collection of 1-forms

An € QN(Ua) ® gl (K).

satisfying the gluing conditions (1.1.7) determine a connection on F. O

Proposition 1.1.21. Suppose E — M is a smooth vector bundle. Then there exist connections on
E,ie o # 0.

Proof. Suppose that E is described by the gluing cocycle (U, ges, K"), 7 = rank(E).
Denote by ¥, : K@a — E |y, the local trivialization over U, and by V the trivial connection
on K7, Set

Ve =T, Vou .
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Then (see Remark 1.1.18(b)) V is a connection on F |, - Fix a partition of unity (6, ) subordinated
to (U, ). Observe that for every o, and every s € C°°(E), f,s is a section of E with support in U,,.
In particular V¢ (0,s) is a section of T*M ® E with support in U,,. Set

Vs=> 05V*(0as)
a’/g
If f € C°°(M) then

V(fs) =3 05V (0afs) = > 05 (Z df © () + f@a(eas))
a,B B o

—df©s> 0,08+ fVs = df @ S(Za%) (2595) L fVs=df © 5+ fVs.
N— ——

a?ﬁ
=1 =1

Hence V is a connection on F. O

Definition 1.1.22. Suppose E; — M, ¢ = 0,1 are two smooth vector bundles over M. Suppose
also V' is a connection on E;, i = 0, 1. A morphism (Ep, V) — (F1, V!) is a bundle morphism
T : Ey — Ej such that for every X € Vect(M) the diagram below is commutative.

C®(Eg) —— C™(B)

C®(Ey) —— C%(E)

An isomorphism of vector bundles with connections is defined in the obvious way. We denote by
VB (M) the collection of isomorphism classes of K-vector bundles with connections over M. 0O

Observe that we have a forgetful map
VBY(M) — VB(M), (E,V)+— E.
The tensorial operations @, *, ®, & and A* on VB(M) have lifts to the richer category of vector
bundles with connections. We explain this construction in detail. Suppose (E;, V') € VB(M),
1=0,1.
e We obtain a connection V = V° @ V! on Ey @ E; via the equality
V(so ® s1) = (Vsg @ Visy), Vsg € C®(Ey), s1 € CP(E).
e The connection V? induces a connection V° on Ej defined by the equality
Lx{(u,v) = (V&u,v) + (u, Vxv), VX € Vect(M),u € C®(E), v e C(Eyp),
where (o, 8) € Hom(E; ® Ey,K,,) denotes the natural bilinear pairing between a bundle and its
dual.

Suppose € = (eq, ..., e,) is alocal frame of £ and A(€) is the connection 1-form associated to
V,
vVe=e¢- A(e)
Denote by ‘&= (el, ..., ce") the dual local frame of Ejj defined by

(e, ep) = 0y
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We deduce that (V% ¢,) = —(e®, V) = —AY so that

‘We can rewrite this

that is
Ad) = —A@).
e We get a connection V° ® V! on Ey ® E; via the equality
(VY@ V) (s0 @ s1) = (Vs0) ® 51 + 51 ® (Visy).
e We get a connection on A*E via the equality
V& (s1 A Asgp) = (Vxs1)Asa A Asp+51A(Visa) Ar-Asp+---Fs1Asa A A (Vi)
Vsi, -+, s, € C®(M), X € Vect(M).
e If £/ is a complex vector bundle, then any connection V on £ induces a connection V on the
conjugate bundle £ defined via the conjugation operator C' : £ — E
V=cCcve

Suppose £ — N is a vector bundle over the smooth manifold N, f : M — N is a smooth map,
and V is a connection on . Then V induces a connection f*V on f* defined as follows. If F is
defined by the gluing cocycle (U, ges, K”) and V is defined by the collection Ay € Q! (e) ® gl (K),
then fV is defined by the collection f*A, € Q' (f~1(U,)) ® g!_(K). Itis the unique connection on
f*E which makes commutative the following diagram. a

Cc=(E) — L c=(*E)

| ~

CX(T*N @ E) —L ¢™(T*M  *E)

Definition 1.1.23. Suppose V is a connection on the vector bundle £ — M.

(a) A section s € C*°(E) is called (V)-covariant constant or parallel if

Vs =0.
(b) A section s € C°°(E) is said to be parallel along the smooth path ~ : [0, 1] — M if the pullback
section v*s of v*E — [0, 1] is parallel with respect to the connection f*V. O

Example 1.1.24. Suppose v : [0,1] — M is a smooth path whose image lies entirely in a single
coordinate chart U of M. Denote the local coordinates by (x!, ..., 2™) so we can represent 7 as a
n-uple of functions (x'(t),--- ,2"(t)). Suppose E — M is a rank 7 vector bundle over M which
can be trivialized over U. If V is a connection on E then with respect to some trivialization of E|s
can be described as

V=d+A=d+) di'®A;, A;i:U— gl (K).

)
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The tangent vector 7 along «y can be described in the local coordinates as
§= i,
i

A section s is the parallel along v if Vs = 0. More precisely, if we regard s as a smooth function
s : U — KT, then we can rewrite this condition as

0=+ ;dw () Ais = (;w 9i)s + Zﬂ? Ass,

Thus a section which is parallel over a path v(0) satisfies a first order linear differential equation.
The existence theory for such equations shows that given any initial condition sy € E. ) there
exists a unique parallel section [0, 1] > ¢+ S(t; s0) € E. (). We get a linear map

E’Y(O) 3 S0 —~ S(t; 80) ’t:1€ E’y(l)-

This is called the parallel transport along v (with respect to the connection V). O

Suppose F is a real vector bundle, g is a metric on . A connection V on FE is called compatible
with the metric g (or a metric connection) if g is a section of £* ® E* covariant constant with respect
to the connection on £* ® E* induced by V. More explicitly, this means that for every sections u, v
of E and every vector field X on M we have

LXg(ua U) = g(VXu, U) + g(u, VXU)'

Observe that if V?, V! are two connections compatible with g and A = V! — V9, then the above
equality show that the endomorphism Ax = V! — Vg( of E satisfies

g(Axu,v) + g(u, Axv) =0, Yu,ve C(E).

In other words A € Q! (End (E)), where we recall that End, (F) denotes the real vector vector
bundle whose sections are skew-hermitian endomorphisms of E’; see Example 1.1.13 (f). One can
define in a similar fashion the connections on a complex vector bundle compatible with a hermitian
metric h.

Proposition 1.1.25. Suppose h is a metric (Riemannian or Hermitian) on the vector bundle F. Then
there exists connections compatible with h. Moreover the space /r; j, of connections compatible
with h is an affine space modelled on the vector space Q' (End; (E)). O

The proof follows by imitating the arguments in Remark 1.1.18 and Proposition 1.1.21.

Suppose that V is a connection on a vector bundle £ — M. For any vector fields X, Y over M
we get three linear operators

VXavYaV[X,Y] : COO(E) - COO(E)7
where [X, Y] € Vect(M) is the Lie bracket of X and Y. Form the linear operator
Fy(X,Y): C*(E) — C™(E),
Fg(X,Y)=VxVy = VyVyx —Vixy] = [Vx,Vy] = Vixy]-
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Observe two things. First,
Fo(X,Y) = —Fg(Y, X).
Second, if f € C°°(M) and s € C*°(E) then
FV(Xa Y)(fS) = fFV(Xa Y)S = FV(fXa Y)S = FV(Xv fY)S

so that for every X,Y € Vect(M) the operator Fy(X,Y) is an endomorphism of E and the
correspondence

Vect(M) x Vect(M) — End(E), (X,Y)w— Fy(X,Y)

is C°°(M)-bilinear and skew-symmetric. In other words Fy (e, @) is a 2-form with coefficients in
End E, i.e., a section of Q?(End E).

Definition 1.1.26. The End E-valued 2-form Fy (e, ®) constructed above is called the curvature of
the connection V. O

Example 1.1.27. (a) Consider the trivial vector bundle £ = Kj;, where U is an open subset in R".
Denote by (z!,--- ,2") the Euclidean coordinates on U. Denote by d the trivial connection on E.
Any connection V on E has the form

V=d+A=d+) di'A;, Ai:U— gl (K).

Set 0; := %, Vi = Vp,. Then for every s : U — K" we have
Fy(0;,05)s = [V, Vj]s = Vi(Vjs) — V;(V;s)
= Vi(0js + Ajs) — V;(0is + Ajs) = (0; + Ai)(0js + Ajs) — (05 + A;j)(0is + A;s)
— (014 - ;40 + [A1, A]) s
Hence
> F(0:,0))da’ A da? = (9,A; — 0;A; + [A;, Aj] ) da' A da,
We can write thiszf<ojrmally as

Fy=dA+ANA==) da'd(A) + (D da'Ai) A (D dal Ay).
i 7 J

Observe that if » = 1, so that F is the trivial line bundle K;; then we can identify gl 1(K) =2 Kso
the components A; are scalars. In particular [A;, A;] = 0 so that in this case

Fy = dA.

(b) If E is a vector bundle described by a gluing cocycle (U, ges, K”) and V is a connection de-
scribed by the collection of 1-forms A, € Q' (U,) ® gl (K) satisfying (1.1.7) then the curvature of
V is represented by the collection of 2-forms

Fo=dA, + Ao N Ay
satisfying the compatibility conditions

Fg= gﬁaFaggo{ on Uag. (1.1.9)
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(c) If V is a connection on a complex line bundle .. — M then its curvature Fy, can be identified
with a complex valued 2-form. If moreover, V is compatible with a hermitian metric then ¢ Fy is a
real valued 2-form. O

We define an operation
A: QF(End E) x QY(End E) — Q¥ (End E),
by setting
WeSAMN T) = (W An') e (ST)
for any QF € QF(M), n’ € QY(M), S, T € End(E).
Using a connection V on E we can produce an exterior derivative
dV : QF(End E) — Q1 (End F)

defined by
dV (W ®8) = (dw®) @ S + (-1)F(w® 1) AVEMES,

We have the following result.

Proposition 1.1.28. Suppose V',V are two connections on the vector bundle E — M. Their
difference B = V' — V° is an End E-valued 1-form. Then

Fg =Fy+d B+ BAB.

Proof. The result is local so we can assume F is the trivial bundle over an open subset M — R™.
Let r = rank E. We can write

V=d+A, V =d+ A, AAcQ(M)egl (K).
Then B = A’ — A,
F =Fg =dA +ANA, F=Fg=dA+AANA
and thus
F—F=dA-A)+ANA)—(ANA)=dA —A)+(A+B)AN(A+T)-BAB
=dB+BANA+ANB+ BAB.

In local coordinates dV we have (see Exercise 1.4.6)

de ® B;) Zdw/\ ZdaﬂewB

- _ Zdwi A dej ® (0;B; + [Aj, Bi])

= da’ Nda! ® (0;B; — deAde@@(AB B;A;)

1<J %,J
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=dB + (dej ®Aj) A <Zdazi®B@-) + (Zdﬂ@&) A (deﬂ'@Aj)
J i i J
=dB+AANB+BAMA.
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1.2. Chern-Weil theory
1.2.1. Connections on principal G-bundles. In the sequel we will work exclusively with matrix

Lie groups, i.e. closed subgroups of some GL, (K).

Fix a (matrix) Lie group G and a principal G-bundle P = (M, U, ges) over the smooth manifold
M. Denote by g = TG the Lie algebra of G. A connection on P is a collection

A={A, € Q' (U) ® g}
satisfying the following conditions
Ap(u) = gga(u) Aa(u)g; (u) — d(gga)gga(w) ", Vu € Ung. (1.2.1)

We denote by o7/p the space of connections on P.

Proposition 1.2.1. .</p is an affine space modelled on Q' (Ad P).

Proof. We will show that given two connections (AL ), (A9) their difference C, = AL — Ag defines
a global section of A'T*M ® Ad P, i.e. on the overlaps U, 3o We have the equality

Cﬂ = Ad(gﬂa)Ca = gﬁacagﬁ_(i-

This follows immediately by taking the difference of the transition equalities (1.2.1) for Al and AY.
g

To formulate our next result let us introduce an operation
[—, =] : Q"(Ua) ® g x Q(Us) ® g — QU @ g,
W o X, @ Y] = (" An') @ [X,Y],

where [X, Y]-denotes the Lie bracket in g, or in the case of a matrix Lie group, [X,Y] = XY -Y X
is the commutator of the matrices X, Y. Let us point out that if A, B € Q(U,) ® g, then

[A,B]=AANB+ BAA.
We define

Fo = dAy + %[Aa, Ay = dAy + Ag N Ay € Q2(U,) @ g.
For a proof of the following result we refer to [21, Chap.8].
Proposition 1.2.2. (a) The collection F,, defines a global section F(A) of A*°T*M @ Ad P, i.e. on
the overlaps U, g it satisfies the compatibility conditions,
Fg = gpaFaggs = Ad(gpa)Fo-

(b) (The Bianchi Identity)

dFy + [Aa, Fo]) =0, Va.

The 2-form F(A) € Q?(Ad P) is called the curvature of A.

Consider now a representation p : G — Aut(V') and the vector bundle £ = P x, V. Denote
by p. the differential of pat 1 € G
P« g — EndV.
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We recall that End, (V') = p.g and End, £ = P xaq, End,(V). The identity (1.1.3) shows that
any connection (A, ) on P defines a connection V = (p.A,) on E. We say that this connection is
compatible with the (G, p)-structure. Observe that

Fy |lu,= piFa-
In particular Fy € Q?(End, E).
Example 1.2.3. Suppose ' — M is a complex vector bundle of rank r. A hermitian metric A on
E defines a U(r)-structure. A connection V is compatible with this structure if and only if it is
compatible with the metric. In this case End, E is the subbundle End;, E of End £ and we have
F(V) € Q*(End;, E).
O

1.2.2. The Chern-Weil construction. Suppose P — M is a principal G-bundle over M defined
by the gluing cocycle (U, gee ). To formulate the Chern-Weil construction we need to introduce first
the concept of Ad-invariant polynomials on g. .

The adjoint representation Ad : G — GL(g) induces an adjoint representation
Ad*: G — GL(Sym" g), gc :=g®rC.
We denote by I;(g) the Ad*-invariant elements of Sym* g*. Equivalently, they are k-multilinear
maps
P:gx---xg—C,

——
k

such that
P(Xy1)-- s Xpy) = PlgX1g7", .. 9Xpg™ ") = P(X1, ..., Xp),
for any X1,..., Xk € g, g € G and any permutation ¢ of {1,...,k}.

If in the above equality we take g = exp(tY'), Y € g and then we differentiate with respect to ¢
att = 0 we obtain

P([Yle]vX%'"?Xk’)+'"+P(X17"'7Xk—17[Yan]) =0, V¥, Xy,..., Xy €9. (1.22)
For P € I;(g) and X € g we set

We have the polarization formula
1o
kOt - Oty

More generally, given P € [;(g) and (not necessarily commutative) C-algebra R we define R-
multilinear map

P(X1,...,Xk) P(t1 X1+ -+t Xk).

P:Rgx---xRRg—>R
k

by
P(T1®X1,...,Tk®Xk) :Tl-“T‘kP(Xl,...,Xk).
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Let us emphasize that when R is not commutative the above function is not symmetric in its vari-
ables. For example if 117y = —rar; then

P(riXi1,mXs,...) = —P(roXo,m Xy, ...).

It will be so if R is commutative. For applications to geometry R will be the algebra Q°*(M) of
complex valued differential forms on a smooth manifold M. When restricted to the commutative
subalgebra
QM) = @Q%(M) ® C.
k>0
we do get a symmetric function.

Let us point out a useful identity. If P € I(g), U is an open subset of R",
Fi=woX,cQiU)g A=weX cQU)ag
then
P(F,-- Fi_1,|A,F)],Fiy1 ..., F) = (=)Aattdict) g oo P(X, . (X X Xg).
In particular, if F1, - - - , F_1 have even degree we deduce that for every ¢ = 1,--- , k we have
P(Fy1,-- ,Fi1,[A ), Fig1,. .., F) = wwy - wp P( X1, .. [ X, XG0, Xk)

Summing over ¢ and using the Ad-invariance of P we deduce

k
Y P(F,....,Fi1,[AF), Fip,..., ) =0, (1.2.3)
=1

V..., Fe_1 € Q) @ g, Fp, Ae QU)o g.

Theorem 1.2.4 (Chern-Weil). Suppose A = (A.) is a connection on the principal G-bundle
(M, U, ges), with curvature F(A) = (F,), and P € Ij(g). Then the following hold.
(a) The collection of 2k-forms P(F,) € Q?*(U,,) defines a global 2k-form P(F(A)) on M, i.e.
P(F,) = P(Fg) onUyg.
(b) The form P(F(A)) is closed
dP(F(A)) =0.
(c) For any two connections A°, Al € a/p the closed forms P(F(A®)) and P(F(A') are cohomol-
ogous, i.e their difference is an exact form.
Proof. (a) On the overlap U,3 we have
P(FB) = P(Ad(gﬁa)Fa) = P(Fa)
due to the Ad-invariance of P.
(b) Observe first that the Bianchi indentity implies that dF,, = —[A,, F,,]. From the product for-
mula we deduce
dP(F,)=dP(F,,...,Fy) = P(dFy,Fy,...,Fy)+ -+ P(Fy,..., F,,dF,)
———
k

= —P([Aq. Fol. Fao o Fa) == = P(Fao. Fo [Aa Fa]) "2 0
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(c) Consider two connections A!, AY € o7p. We need to find a (2k — 1) form 7 such tha
P(F(AY)) — P(F(A%) = dn.

Let C := Al — A° € Q'(Ad P). We get a path of connections t — A! = AY + tC which starts at
A and ends at A'. Set F* := F(A") and

P(t) = P(Fa,).

We want to show that P(1) — P(0) is exact. We will prove a more precise result. Define the local
transgression forms

1
T,P(A', A% .= k/ P(FL, ... FL Cy)dt
0
The Ad-invariance of P implies that
ToP(AY, A%) = Ty P(AY, AY), onUyg

so that these forms define a global form T'(A!, A%) € Q2?*~1(M) called the transgression form
from A° to A'. We will prove that

P(1) — P(0) = dT P(A', A°).

We work locally on U,, we have

P(1) — P(0) = /01 1P(F;;, o Fhyat

dt @
(F& = §Fo)
1
— [ (PGBl B+ PAEL, . FLLEL i
0
1
=k | P(F., ... cF. F)dt.
0
We have )
1 t
Fl = dAl + i[Ag, Al] = FO 4 t(dC, + [A2, C,)) + 5 [Ca Cal
so that .
F! =dC, +[A°, C.] +t[Cy, Cu) = dCy, + [AL, C4).
Hence

P(Fg, -+ Foy Fg) = P(Fg, -+ Foy dCo + [A4, Ca)).
To finish the proof of the theorem it suffices to show that
dP(F.,... F.,C,) = P(FL,...,FL dC, + [AL, C4)).
Indeed, we have
dP(FL,...,F.,C,) = P(dF.,...,F.,Cy)+ -+ P(F,... ,dF.,Cy,)
+P(FL,... F! dC,)
(dFy, = —[A4, FoD)
= —P([AL,F!],...,F.,Cy,) —--- = P(F.,... [AL,F!],Cy) + P(F.,... F!, dCy)
= P(F., ..., F! dC, + AL, Cy))
—(P(FL . FL AL, Cal) + P(IAL, Bl FL Ca) 4o P(FL, . [AG, FLLC) )
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=P(F.,... FL,dC, + [AL, Cy))

since the term in parentheses vanishes® due to (1.2.3). O

We set

Clg"]” = P (), Clg*” =[] k(o).

k>0 k>0

Clg*]¢ is the ring of Ad-invariant polynomials and C[[g*]] is the ring of Ad-invariant formal
power series. We have

Clg*]% c C[[g"]]¢

Suppose A is a connection on the principal G-bundle P — M. Then for every f = Zkzo fr €
Cl[g*]]¢ we get an element

FF(A)) =) fr(F(A))
k>0
Observe that f,(F(A)) € Q% (M). In particular for(A) = 0 for 2k > dim M so that in the above
sum only finitely many terms are non-zero. We obtain a well defined correspondence

Cllg"|¥ x op = QU™ (M), (f,A) = f(F(4)).

This is known as the Chern-Weil correspondence. The image of the Chern-Weil correspondence is
a subspace of Z* (M), the vector space of closed forms on M. We have also constructed a canonical
map

T: Cllg*]]° x @p x op — Q*M), (f, Ao, A1) = Tf(Ay, A)
such that
f(F(A1) — f(F(Ao)) = dT f(A1, Ao).

We will refer to it as the Chern-Weil transgression.

The Chern construction is natural in the following sense. Suppose P = (M, U, gee, G) is a
principal G-bundle over M and f : N — M is a smooth map. Then we get a pullback bundle f*P
over N described by the gluing data (N, f~1(U), f*(ges), G. For any connection A = (A,) on P
we get a connection f*A = (f*A,) on f*P such that

F(f*A) = FF(A).

Then for every element i € C[[g*]]“ we have

W F(A)) = [Th(F(A)).

3The order in which we wrote the terms, F*, . .., F'*,C instead of C, F*, ..., F* is very important in view of the asymmetric
definition of

P:Rgx--XxR®g— R
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1.2.3. Chern classes. We consider now the special case G = U(n). The Lie algebra of U(n), de-
noted by u(n) is the space of skew-hermitian matrices. Observe that we have a natural identification

u(l) = R.
The group U (n) acts on u(n) by conjugation
U(n) x u(n) 3 (9,X) — gXg~" € u(n).

It is a basic fact of linear algebra that for every skew-hermitian endomorphism of C" can be diago-
nalized, or in other words, every skew-hermitian matrix is conjugate to a diagonal one. The space
of diagonal skew-hermitian matrices forms a commutative Lie subalgebra of w(n) known as the
Cartan subalgebra of u(n). We will denote it by Cartan(u(n)).

Cartan(u(n)) = {Diag(i)\l, iAo ) € R"}.

The group WU(n)4 of permutations of n objects acts on Cartan(u(n) in the obvious way, and two
diagonal matrices are conjugate if and only if we can obtain one from the other by a permutation
of its entries. Thus an Ad-invariant polynomial on u(n) is determined by its restriction to the
Cartan algebra. Thus we can regard every Ad-invariant polynomial as a polynomial function P =
P(A1,---,Ay). This polynomial is also invariant under the permutation of its variables and thus
can de described as a polynomial in the elementary symmetric quantities

T . pV
Cr = Z Liy *** Tigy Ty 7(1)‘3'): .

: A 27 21
11 < <1g

The factor ﬁ appears due to historical and geometric reasons. The variables x; are also known as
the Chern roots. More elegantly, if we set

-

D = D(\) = Diag(iAg, .. .,i\,) € u(n)
then
it
det(l T ;—D> — et + et 4t ept™
T

Instead of the elementary sums we can consider the momenta
Sp = g x;.
i

The elementary sums can be expressed in terms of the momenta via the Newton relation
T
$1=c1, S9= c% — 2¢9, 83 = c% — 3cico + 3es, Z(fl)jsr,jcj =0. (1.2.4)
j=1
Using again the matrix D we have
Sp it
—t" =trexp(=—D).
Z r! p(27r )
r>0

Motivated by these examples we introduce the Chern polynomial

¢ € Clu(n)P™, ¢(X) = det( Ten + ix) VX € u(n).

4We use the notation W (n) because this group is in this case the symmetric group is isomorphic to the Weyl group of U (n).
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Now define the Chern character
ch e (C[[@(n)ﬂU(n)a ch(X) =tr exp( QLX )
T
Using (1.2.4)

1 1
ch:n—{—cl—{—a(cf—%z) +§(c§—3clcg+303) e (1.2.5)

Example 1.2.5. Suppose
_ [ R 2_ @l

Then 1 1
a(F) = —§(F11 +F3), cF) = _H(FZI NFy — F{ NF3).
d

Our construction of the Chern polynomial is a special case of the following general procedure
of constructing symmetric elements in C[[A1, ..., A,]]. Consider a formal power series

f=ag+ax+ax®+--- €Cl[z]], ap=1.
Then if we set & = (x1,-- - ,x,) the function
Gy () = f(x1) - f(xn) € Cllzn, .., 2n]]

is a symmetric power series in & with leading coefficient 1. Observe that if D = Diag(z'X) then

f(%D) = Diag(f (1), f(wn) ) = [ (&) = det f(%D).

We thus get an element Gy € C[[u(n)]]Y™ defined by

Gf(X):detf(%X)

It is called the f-genus or the genus associated to f. When f(z) = 1 + = we obtain the Chern
polynomial.

Of particular relevance in geometry is the Todd genus, i.e. the genus associated to the function’

td () = 7= —1+2x+ﬁx +oo=14 x+z .

The coefficients B;. are known as the Bernoulli numbers. Here are a few of them

1 1 1
B = — B = —— = —
2 67 4 307 6 427
1 5 691
By=——, Big= —., Bjyg= ———.
8 300 710 66 T2 2730
We set
td::th.

Consider now a rank n complex vector bundle £ — M equipped with a hermitian metric h. We
denote by 7 j, the affine space of connections on E compatible with the metric & and by P, (E)

5 Warning. The literature is not consistent on the definition of the Todd function. We chose to work with lezebruch s definition

in [13]. This agrees with the definition in [2, 17], but it differs from the definitions in [4, 27] where td (z) is defined as l I
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the principal bundle of h-orthonormal frames. Then the space of connections /g j, can be naturally
identified with the space of connections on P}, (E).

For every V € ./ ;, we can regard the curvature F'(V) as a n x n matrix with entries even
degree forms on M. We get a non-homogeneous even degree form

(V) =c(F(V)) =det(1p+ iF(V)) € Qe (M).

According to the Chern-Weil theorem this form is closed and its cohomology class is independent
of the metric® k and the connection A. It is thus a topological invariant of E. We denote it by c(E)
and we will call it the total Chern class of E' . It has a decomposition into homogeneous components

(B)=14c1(E) 4+ co(E), cx(E) e H*(M,R).

We will refer to ¢ (E) as the k-th Chern class. More generally forany f = 1+ajz+--- € C[[z]]
we define G ¢(F) to be the cohomology class carried by the form

G4(V) = det f(F(V)).
In particular, td (£ is the cohomology class carried by the closed form

_ 2= F (V)
td (V) := det <exp(2§F(V) — 1E>

(see [13,1.61])
St re+ m(E o)+ cior
= 261 12 1 Cc2 246102 .
Similarly we define the Chern character of E as the cohomology class ch(F) carried by the form

ch(V) = trexp( iF(V) )

— rank E + oy (E) + %(cl(E)2 —9ey(E)) + %(cl(E)Q ~3e1(E)ea(E) +3e3(E)) + -

Due to the naturality of the Chern-Weil construction we deduce that for every smooth map

f:M—N
and every complex vector bundle £ — N we have
c(f*E) = f*e(E). (1.2.6)
Example 1.2.6. Denote by Lp~ the tautological line bundle over CPP". The natural inclusions
ip: CF s CHY (21, 20) = (21, 28, 0)

induce inclusions ij, : CP*~! — CP* and tautological isomorphisms
Lpr—1 = iy Lps.
We deduce that
c1(Lpn) [cpr= c1(Lp1).

We know that H?(CP", C) = R and by Poincaré duality we can identify H?(CP", C) with the dual
of Hy(CP",C). This is a one-dimensional space with a canonical basis, namely the homology class

6See Exercise 1.4.13.
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carried by the oriented submanifold CP! < CP". Thus, H?(CP",C) carries a canonical basis
usually denoted by H defined by

(H,[CP']) = 1.
We can write

c1(Lpn) = zH
where

o= (e(Len) (€PN = [ er(len)

As shown in Exercise 1.4.8 the last integral in —1 so that(C ’

c1(Lpn) = —H. (1.2.7)

g

For a proof of the following result we refer to [21, Chap.8].

Proposition 1.2.7. Suppose (E;, h;), i = 0,1 are two hermitian vector bundles, V' € g, h; and
f=1+a1x+ az® +--- € C[[z]].. We denote by V° @ V! and V° @ V* the induced hermitian
connections on Fy & E1 and Ey @ F respectively. Then

G (V'@ V1) =GV AGVY), ch(VP@ V) =ch(V°) + ch(V?),
ch(V? @ V1) = ch(V°) A ch(V!).
In particular, we have

C(Eo S, El) = C(E())C(El), Ch(EO © El) = Ch(E()) + Ch(El), (1.2.8)

Ch(Eo X El) = Ch(E[)) Ch(El) (1.2.9)

Remark 1.2.8. The identities (1.2.6), (1.2.7), (1.2.8) uniquely determine the Chern classes, [13,
154]. O

Example 1.2.9. Suppose L — M is a hermitian line bundle. For any hermitian connection V we
have

eo(V)=1+ %F(V), ch(V) = kzm’:!(;fﬂv))k = V),

O

1.2.4. Pontryagin classes. We now consider the case G = O(n). We will have to separate the
cases n = 2k and n = 2k + 1, but we will discuss in detail only the n-even case. The Lie algebra
of O(n) is the space o(n) of skew-symmetric n X n matrices. From now on we assume n := 2k.
We will denote by J the 2 x 2 matrix
0 -1
=13

The Cartan subalgebra of o(n) is the subspace Cartan(o(n)) consisting of skew-symmetric ma-
trices which have the quasi-diagonal form

O, .. A) = AT BB N\, A €R.

Every skew-symmetric matrix is conjugate with some element in the Cartan algebra. This ele-
ment is in general non-unique. Observe that for every permutation ¢ : {1,2,--- , k} O and every
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€1,... € € {£1} the matrix O(A1,...,\) is conjugate to O(€1A,(1), -+ ; €kAy(k)). In more
modern terms, consider the Weyl group
k
Woak) = Sk X {:I:l}

An element (¢, €) € Wp(ay) acts on o(n) as above, and two elements in the Cartan algebra are
conjugate if and only if they belong to the same orbit of this group action. Thus, any Ad-invariant
function on o(n) is determined by its restriction to the Cartan subalgebra, which is a Wo(ar)-
invariant function in the variables \;. In particular, an Ad-invariant polynomial on o(n) can be
viewed as a symmetric polynomial in the variables A2, - - - | )\%, or equivalently, as a polynomial in
the variables

)\.
2 2 . i
E T T 1< <k, z=——.

. , 2m
11 < <15

Observe that for every ©(X) € Cartan(o(n)) we have

k k
1
det(ﬂ—g@>:Hdet(l+ij) H1+x Zp]
i=1 i=1
There is a more convenient way of reformulation this fact. This requires a brlef algebraic digression.

Lemma 1.2.10. Let F denote one of the fields R or C. Consider the ring R = F[[z1 ..., zn]] of

formal power series in N-variables. Denote by My = My(z1,...,zN) the ideal R generated by
z ...,zN. Then for any f € .# there exists a unique g € .4 such that
(1+g)?*=1+f. (1.2.10)

Proof. Anelement h € . decomposes as
h=D [kl
k>1
where [h]j; denotes the degree k homogeneous part of k. Given
f=>_lfl
k>1

the equality (1 + f) = (1+ g)? = 1 + 2g + ¢°, translates to the recurrence relations

n—1
2(gh = [f11, 2[gla + 91 = [fl2s 2+ D _[glklglnr = [fln, Yn > 1.
k=1
These have a unique solution. O

For any f € .4, we define (1 + f)% € F[[z1,..., 2n]] to be the formal power series 1 + g,
where g € .4 is the unique solution of (??).

Thus

Lo gl + (50 - 31AF) +

=

(1+f)
If Z is an n X m matrix, then

det(1+Z) = 1+f7 f G%O(lea"'azln)a

2
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and thus there exists a canonical square root

det2(1+ Z) € 1+ Mo(211, - - - 2nn) € Cllz11, - - -, 2an]]-

Observe that if Z is a n x n matrix, then the direct sum Z @ Z is a (2n) x (2n)-matrix and

det(1+Z & Z) = (det(l + Z)>2.

From the uniqueness of the square root construction we deduce

det2(1+ Z & Z) = det(1 + 2). (1.2.11)
Observe that given f, g € F[[z1,. .., zn]] and a commutative [F-algebra </ we cannot speak of
the value of f or g at (ay,...,a,) € AVN. However, we declare that
flay,...,an) =g(a1,...,an)
for some (a1, ...,ay) € AN if

[f]k(ala cee ,CLN) = [g]k(ah ceey aN)> Vk € ZZOa
where [f] (respectively [g]x) denotes the degree k£ homogeneous part of f (respectively g).
We have the following useful result.

Proposition 1.2.11 (Analytic Continuation Principle). Let F denote one of the fields R or C. Sup-
pose that P, Q) € F[[X1,..., Xn]] are such that

P(tl,...,t]\/) :Q(tl,...,tN), Vii,...,ty e RCF.
Then for any commutative F-algebra A, and any aq, . ..,a, € A, we have

P(a17"'aaN) :Q(ala"'7aN)'

Proof. Clearly it suffices to prove the statement in the special case when P and () are polynomials.
Also note that when ' = R the statement folllows from the obvious fact that two polynomials
P,Q € R[zy,...,xN] are equal (as formal quantities) if and only if

P(tl,... JIN) = Q(tl,... JN), Vii,...,tny €R.
Thus, the only nontrivial case is when F = R.

Set ' = P — . The polynomial D defines a holomorphic function F' : CV — C such that
F|gy = 0. If we set 2z, = xx, + 1y and we notice that F' satisfies the Cauchy-Riemann equations

oF oF
—(f)=—i—, Vk=1,...,N, VZeCV,
Oxy, Oy,
Since F' = 0 on RY we deduce gTFk = 0 on R", for any k. From the Cauchy-Riemann equations
we deduce that OF
- N
@ = 0, Vk, on R*.
Applying the same argument to the derivatives g—i, and iteratively to higher and higher derivatives
%Zf we deduce that %Zf vanishes on RY for any multi-index o € Z]ZVO. This implies that the poly-
nomials P and @) have identical coefficients so that P = () as elements of the ring C[ X7, ..., Xn].

O
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We will use this result in a special case when A is the commutative algebra
A=Pr*vec,
x>0

where V' is a finite dimensional real vector space. We denote by Z,,(A) the space of skew-
symmetric 7 X n matrices with entries in A. Suppose that P, Q : Z,,(A) — A are two polynomial
functions

P(S) = P(SZ']', 1< <j < n), Q(S) = Q(SU, 1< <j < n), Sij € A.
The analytic continuation principle shows that if
P(Sij, 1§i<j§n):P(sij, 1§’L<]§TL), \V/SijGR,

then

P(S) = Q(S), VS € Zi(A).

For any X € o(n) we have
(1+X)"=(1-X),

so that

1-X?2=(1+X)(1+X)T
and we deduce

det<]1+X) :det%<ﬂ—X2> :det%(ﬂ+(iX)2). (1.2.12)

If £);, 7 =1,...,k, are the eigenvalues of X, then we deduce

k
det%(1+(z‘X)2) =143 220 Y A4
j=1 1<i<j<k
We define
p € Clo(n)* 0™, p(X) = det(]l + %X) = det? ( 1+ (%Xf)

Let us point out an important fact. Note that we have a canonical inclusion
o(n) = u(n).

Given X € o(n) we get X¢ € u(n). More concretely, X € is the same matrix as X, but viewed as a
complex matrix. If +z;, j = 1,. .., k, are the eigenvalues of 5~ X, then

p(X)= Y alal

1<in <-<ip<k

2k . k k
_ _ t _ 2y _ ¢
3 er(X€) = e(X°) = det(ﬂ + %XC) =10 - ) =X (-1'pu(x).
=1 j=1 =1
By identifying the homogeneous components we deduce
c2j-1(X¢) =0, pe(X) = (=1)’cae(X°). (1.2.13)

We can generate many more examples of Ad-invariant functions on o(n) as follows. Let

f(z) =1+ a12® +agz* +--- € C[[z?%]], ap =1,
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be an even power series. Then

flar) - flxy) € Cllat, ..., 27]),
is Wo (o) -invariant.
Note that if X € 0(2k) and £);, j = 1,..., k, are the eigenvalues of %X, then

det f(iX) = ﬁ FOGF(=X5) = f[f(kjﬂ
and thus B B
det? f(iX) = f[f(Aj). (1.2.14)
Define "

Gy € Cllo(m) M), G(X) = det'/2f ix)

Of particular interests are the functions’

o
22k B 1 1
L(x) . =1+Z ko =14 2 - —at 4

" tanhw £ (2k)! 37 45
and
X x/2 L 22k g ok 1, 7 4
Alz)= 2= 4 a—— —1——2? 4+ ———a* .
@) = Sh/2) +k§_:1 92k~ (2))1 2k " 2a’ T g st T

Then, we set L := G, A = G ; and we get
- 1 1
L(#) = L)+ L(a}) = 1+ g1+ (T = pD) + -+
and

A( _ 4 A p
A(x):A(x%)w-A(a:%):1—i+m(7p%—4p2)+~u

Suppose . — M is a real vector bundle equipped with a metric. Any connection compatible with
this metric can be viewed as a connection on the principal bundle of orthonormal frames of E.
Observe that the metric on £ induces a hermitian metric on the complexification E¢ := E @ C
and any metric connection V on E induces a hermitian connection V¢ on E°. Denote by F'(V) the
curvature of V.
1 ) 2
P(V) =14 p1(V) +pa(V) + - = det( 1 %F(V)> = det? ( 1+ <%F(V)) )

From the unique continuation principle and the equality (1.2.12) we deduce

1 1
p(V) =det'?(1 — —F(VO)ANF(V)) =1 —tr =5 F(V)ANF(VE) +---.
472 82
Observe that, as matrices with entries 2-forms, we have F(V) = F(V°). The closed forms

p;(V) € Q¥ (M)

z/

"In many places L(z) is defined as ﬁ

We chose to stick to Hirzebruch’s original definition, [13].
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are called the Pontryagin forms associated to V. Note for example that
1
(V) = —@U(F(V) ANF(V)).
The cohomology classes determined by these forms are independent of the metric and the metric
compatible connection V and therefore they are topological invariants of E. They are called the
Pontryagin classes of E and they are denoted by p;(E). The identity (1.2.13) shows that

pi(E) = (=1)c;(E® C).

Similarly, the L-genus and the A-genus of E are the cohomology classes L(E) and A (F) carried
by the closed forms

Y 5:F'(V) _ 14!
L(V)—dt”(tanﬁ(;ﬁF(v)))—1+3p1(v)+ ,

A(V)= deﬁ”(%) =1- ipl(V) + e

1.2.5. The Euler class. Consider now the group SO(2k). It is the index two subgroup of O(2k)
consisting of orthogonal matrices with determinant 1. It is convenient to think of these matrices as
orthogonal transformations of R?* preserving the canonical orientation

Q:=eg Nea A+ N egp,

where e1, - - -, eay, is the canonical orthonormal basis of R?*. We deduce that its Lie algebra so(2k)
coincides with the Lie algebra o(2k). Any matrix X € so(2k) will be SO(2k)-conjugate to a
matrix in the Cartan algebra Cartan(o(2k)). However, two matrices in the Cartan algebra which
are O(2k)-conjugate need not be SO(2k)-conjugate. For example, the matrix J € 0(2) is not
SO(2)-conjugate to —.J. To describe this phenomenon in more detail consider the group

Wsoak) = {(80,5) € Work); €1 €k = 1}

Two matrices in the Cartan algebra Cartan(o(2k)) are SO(2k)-conjugate if and only if they be-
long to the same orbit of the Weyl group Wgp(2x). We deduce that the polynomial functions on
0(2k) which are invariant under the conjugations action of the smaller group SO(2k) can be identi-
fied with the polynomial functions on the Cartan algebra invariant under the action of the subgroup
Wso(ak) of Wo(ar). It is therefore natural to expect that there are more functions invariant under
Wso(ar) than function invariant under Wy oy, -

This is indeed the case. We will describe one WSO(%)-invariant function which is not Wy (2k)-
invaraint. For a complete description of the ring of WSO(Qk)—invariant polynomials we refer to [21,
Chap. 8]. Given

ON) = MJ & &\, i € s0(2k)
we set

e(0) = H:ci, Ty = =g
i=1

Clearly the polynomial function © — e(©) is Wso(2k)-invariant and thus it is the restriction of an
invariant polynomial
e € C[so(2k)*]50CR)
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We would like to give a description of e(X) for any X € so(2k). This will require the concept of
pfaffian.

First of all, let us observe that the volume form 2 depends only on the orientation of R?* and
not on the choice of orthonormal basis ey, ..., eq;, compatible with the fixed orientation. To any
skew-symmetric matrix X € so(2k) we associate

wx € AZ(R%)*, wx (u,v) = g(Xu,v),

where g(—, —) denotes the standard Euclidean metric on R?*. For example,
k
U.)@(X) = Z )\jegj,1 Negj = Arer Aeg + -+ Ageag—_1 A egg.
=1

The 2k-form %w’;’( will be a scalar multiple of €2, and we define the pfaffian to be exactly this scalar

1 W
Pfaff(X)-Q = Tex
From its definition we deduce that the pffafian is invariant under SO(Qk)-conjugation.8 Moreover
Pfaff (O(X)) = A1+ . (1.2.15)

More generally, if we express X as a 2k x 2k-matrix X = (z;;), where

zi; = glei, Xej) = —g(Xeg, e5) = —wx (es, €5)

then
wxy = — ijei A e;
1<j
and we conclude after a simple computation that
Pfaff (X 2k k, Z To(1)o(2) " To(2k—1)o(2k)>
€Sy,

where \S,, denotes the symmetric group on n-elements and €(o) denotes the signature of a permuta-
tion o € S,,. Hence

e(X) = Pfaﬁ-‘( —%X)
Suppose EE — M is an oriented rank 2k real vector bundle. Fix a metric ¢ on E. Then any
connection V on E compatible with g induces a connection on the principal SO(2k)-bundle of
orthonormal frames of E compatible with the orientation of E. The Euler form determined by V is
the closed 2k-form

e(V) = Pfaff( ——F(V) )

The cohomology class it determines is independent of the metric g and the connection A. It is a
topological invariant of F called the Euler class of E and it is denoted by e(E).

8The only time we relied on an orthonormal basis in its description was in the definition of €2 which as pointed out, is independent
of the choice of an oriented orthonormal basis.
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1.3. Calculus on Riemann manifolds

Definition 1.3.1. A Riemann manifold is a pair (M, g) where M is a smooth manifold and g is a
metric on the tangent bundle T'M. g is called a Riemann metric on M.

0

If we choose local coordinates (x!,...,x™) near a point pg € M then the vectors 0; = 37

define a local frame of 7'M and the metric g is described near pg by the symmetric form
9ij(z) = g:(0;,05), 1<4,j<n.
The metric g induces metrics in the cotangent bundle and in all the tensor bundles
TIM =TM®" @ (T*M)®.

In particular it induces metrics in the exterior bundles A*7* M. When no confusion is possible we
will continue to denote these induced metrics by g or (e, e). For every section u of T, M we set

lulg = Vg(u,u) : M — R.

Fix a Riemann metric g on M. An orientation on M, that is a nowhere vanishing section of w €
C°(det T M) canonically defines a volume form on M, i.e a nowhere vanishing form on M of top
degree. This form, denoted by dV/, is uniquely determined by the following conditions.

dVy(w) >0 [dVy|lg =1 on M.
In local coordinates we have
dV, = y/det(gi;)da' A -+ A da"

For every vector field X on M we denote by Ly the Lie derivative of a tensor field on M. In
particular L xdV, is a n-form on M and thus it is a multiple of dV/,

Lx(dVy) = AN(X)dVj.
Definition 1.3.2. The scalar A\(X) is called the divergence of X with respect to the metric g. It is
denoted by div, X. O

Example 1.3.3. Suppose M is the vector space R™ equipped with the natural Euclidean metric go.
The associated volume form is

dVy = dz' A -+ A dz™.
Given a vector field X = >, X°0; on R" we have
Lx(dVy) = (Lxdz" ) Adz® A--- Ada™ + - +da' Ada® A--- A (Lxda™).
Using Cartan formula
Lx =dix +ixd

where iy denotes the contraction by X we deduce Lxdz’ = d(ixdxz’) = dX7. This shows that

Lx(dVp) = (Z aiXi> dVo = divy, X =) 9, X".
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Proposition 1.3.4 (Divergence Formula). Suppose (M, g) is an oriented Riemann manifold. Then
for every compactly supported smooth functions u,v : M — R we have

/M(Lxu)vdVg = /M u(—Lx —divy X)vdV,.

Proof We have
Lx(uvdVy) = (Lxu)vdV g+ u(Lxv)dVy + uvdivy(z)dV,.
Using Cartan formula Lx = ixd + dix again and observing that d(uvqu) = 0 since the form
uvdVy is top dimensional we deduce
d(ix (uwwdVy)) = (Lxu)vdVy + u(Lx + divy(X))vdV.
Integrating over M (which is possible since all the above objects have compact support we deduce

/ d(ix(uvdVg))—/ (LXu)vdVg—i—/ uw(Lx + divy(X))vdVj,.
M M M

Stokes formula now implies that the integral in the left hand side is zero since the integrand is the
exact differential of a compactly supported form.

O

The metric g is a section of 7*M @ T*M = Hom(T'M,T*M) and thus we can regard it as a
bundle morphism
TM — T*M.

This is an isomorphism called the metric duality. Thus, the metric associates to every vector field X
a 1-form X; called the metric dual of X. More concretely, X is the 1-form uniquely determined
by the equality

Xi(Y) =9(X,Y), VY € Vect(M).
In local coordinates, if X = Y, X'9; then

XT = Z Zginj dIL’i.
J

i
Conversely, to any 1-form a we can associate by metric duality a vector field on M which we denote
by af. It is the vector field uniquely determined by the equality

a(X) = g(al, X), VX € Vect(X).

In local coordinates, if « = Y, a;dz® and if g/ denotes the inverse of the matrix g;; then

oﬂL:Z Zgijozj 0;.
J

i
In particular, the gradient of a function f : M — R is the vector field dual to df
grad, f = (df)".

In local coordinates we have

grad, f = (D 970;,1)0;.
i
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Definition 1.3.5. The scalar Laplacian on an oriented Riemann manifold is the operator

Ay : C®¥(M) = C®(M), fr— Apf=—div(gradf).

A Riemann metric together with an orientation define a more sophisticated type of duality.

Definition 1.3.6. Suppose (M, g) is an oriented Riemann manifold of dimension n. The Hodge
x-operator is the linear operator

=%y : Q°(M) = Q" *(M)
uniquely determined by the requirement
wA*n = g(w,n)dVy, Yw,neQ*(M).
O
Example 1.3.7. Consider the Euclidean space R™ equipped with the natural metric and orientation
defined by the n-form dVy = dx' A - - - A da™. Then
wdz! = dz' Ao Ada™, xdzt Ada? =daP A A da,

s(dzt Ao Adat) = dzTUA - A da™,

The Hodge *-operator has a quasi-involutive behavior. More precisely,
% (xa) = (=P R, va e QF(M). (1.3.1)
Using the Hodge *-operator we can define § : Q°(M) — Q*~1(M) by

dw = xd * w.

Proposition 1.3.8. For any compactly supported forms w € Q*~1(M) and n € QF(M) we have
| (@wn)avy = ctn) [ (@omvs,
M

M
where e(n, k) = (—1)"F+n+L, 0

For a proof we refer to [21].

Remark 1.3.9. Observe that if n is even, then ¢(n, k) = —1, Vk. 0

We have the following fundamental result. Its proof can be found in any modern book of
riemannian geometry, e.g. [7, 21].

Theorem 1.3.10. Suppose (M, g) is a Riemann manifold. Then there exists a unique metric con-
nection V on T'M satisfying the symmetry condition

VxY — VyX = [X,Y], VX,Y € Vect(M). 0
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We include here an explicit description of the Levi-Civita connection.

1
9(VxY.2) = o{Lxg(Y, 2) = Lzg(X.Y) + Lyg(Z. X)

(1.3.2)
~g(X, [V, Z]) + 9(Z,[X, Y]) + g(¥, 2, X]) }.
If we choose local coordinates (x!,--- ,2™) and we set V; = V, then the Levi-Civita connection
is completely determined by the Christoffel symbols Ffj defined by
Vid; = Tk
k
The symmetry of the condition translates into the equalities
Using (1.3.2) for X = 0;, Y = 0;, Z = 0, we deduce that
1
> galy; = 5 10igjr — Okgij + Ojgki}-
12
If we denote by (¢g%/) the inverse matrix of g;; so that
> 9795k =6,
J
then we deduce )
k
FZ‘L = 2zkzgm (@-gjk —8kgij +8jgki). (1.3.3)

The Riemann curvature (or tensor) of a Riemann manifold is the curvature of the Levi-Civita
connection. It is a section R € Q%(EndTM). For every X,Y we get an endomorphism of
R(X,Y) of TM. In local coordinates we have

R(0;,0;)0k = > Rp;;0r.
¢

We set
Rykij = Y GmtRii; = 9(Om, R(Di, 0;)0r)
¢

The Riemann tensor enjoys several symmetry properties.

Rijre = —Rjike, Rijre = Rgeij, (1.3.4a)
Rijre + Rirej + Rigjr, = 0, (1.3.4b)
(ViR)? o+ (VeR)! ..+ (ViR)! ,. = 0. (1.3.4¢)

The identity (1.3.4b) is called the first Bianchi identity while the (1.3.4c¢) is called the second Bianchi
identity.

Using the Riemann tensor we can produce new tensors which contain partial information about
the curvature. Given two linearly independent tangent vectors X,Y € T,M we can define the
sectional curvature at p along the 2-plane spanned by X, Y to be the scalar
(R(X,Y)Y, X)

Kp(X,Y) = XAY[



40 Liviu I. Nicolaescu

where | X A Y| is the Gramm determinant

(X,X) (X,Y)
¥, X) (V,Y)

This determinant is the square of the area of the parallelogram spanned by X and Y.

I X ANY] ::‘

The Ricci curvature is a symmetric tensor Ric € C°°(T* M) defined by
Ric(X,Y) = tr{Z - R(Z,X)Y))}

In local coordinates
Ric = » Ric;; da'da?, Ricij =) RE
ij k
The scalar curvature is the trace of the Ricci curvature

s = Zgij RiCZ'j .
i

A vector field on a Riemann manifold is said to be parallel along a smooth path if it is parallel
along that path with respect to the Levi-Civita connection. Suppose 7 : [0,1] — M is a smooth
path. If the tangent vector - is parallel along v then we say that v is a geodesic. Formally this means
that

V54 = 0.
.,2™) in which ~ is described by a smooth function

t (z(t),...,z"(t))
we deduce from (1.1.8) that the functions x(t) satisfy the second order, nonlinear system of differ-
ential equations

Using local coordinates (z?, ..

dtQ +Zrkxf =0, 1<i<n. (1.3.5)

Observe that if v(t) is a geodesic then so is the rescaled path t — ~y(ct), where c is a real constant.
Existence results for ordinary differential equations show that given a point p € M, a vector X €
T, M, there exists a geodesic v : (—e,) — M such that v(0) = p and §(0). Moreover any
two such geodesics must coincide on their common interval of existence. We denote this unique
geodesic by
t = exp,(tX).

expp(tX ) is the point on the manifold M reached after ¢-seconds by the geodesic which starts at
p and has initial velocity X. Observe that for every real constant ¢ and any sufficiently small ¢ we
have

exp,(t - (cX)) = exp,((ct) - X).
We have the following result.

Theorem 1.3.11. For every p € M, there exists v = r(p) > 0 with the following properties.
(a) For any tangent vector X € T, M of length | X|,, < r the geodesics t — exp,,(tX) exists for
all |t| < 1. Denote by B,.(p) C T, M the open ball of radius r.

(b) The map
exp, : B.(p) = M, X > exp,(X)
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is a diffeomorphism onto an open neighborhood of p € M. We denote this open neighborhood of p
by B, (p). O

For a proof we refer to [21]. Exercise 1.4.15 probably explains the importance of this special
choice of local coordinates.

The map X + exp,(X) defined in a neighborhood of 0 € T}, M is called the exponential map
of (M, g) at p. The neighborhood B, (p) is called the geodesic ball of radius r centered at p.
If we fix an orthonormal frame of 7},M we obtain Euclidean coordinates =’ on 7,,M and via the
exponential map coordinates on By, (). The coordinates obtained in this fashion are called normal
coordinates near p. We will continue to denote them by (*). In these coordinates, the Christofell
symbols vanish at p.
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1.4. Exercises for Chapter 1

Exercise 1.4.1. Two vector bundles over the same manifold B described by gluing cocycles g,z :
Uap — Aut(V) and hopg : Uy — Aut(V) subordinated to the same open cover U are isomorphic
if and only if they are cohomologous, i.e. there exist smooth maps

To : Uy — Aut(V)

such that for every o, 3 and every u € U, the diagram below is commutative.

To(u
V*Q \%4

gﬁ“(")J l%(“) =5 Ty(w) - gaal) = haa(w)  Ta(u).
T (u)
V—V

O

Exercise 1.4.2. Recall that a refinement of an open cover U = (U;);c; is an open cover U =
(U!)aea such that there exists a map ¢ : A — I with the property

U, C Ugo(a)a Ya € A.
We write this U’ <., U. Given a gluing cocycle g;; subordinated to U then its restriction to U’ is the
gluing cocycle g |+ defined by.

9 as= 9p(a)e(8) |Uas
Prove that the bundles (ges, U, W) and (g.,, W, W) are isomorphic if and only if there exist an
open cover V < U, W such that the restrictions of g and h to V are cohomologous. O

O

Exercise 1.4.3. Prove that for every vector bundle E — B the space of smooth sections C*°(E) is
infinite dimensional. g

Exercise 1.4.4. (a) Show that a metric on a real vector bundle £ — M of rank m defines a canonical
O(m) structure on E, and conversely, a O(m)-structure on F defines a metric on E.

(b) Suppose that £ — M is a rank r K-vector bundle. Prove that a trivialization of det E defines
a canonical SL, (K)-structure on E, and conversely, every SL, (K)-structure defines a trivialization
of det E. O

Exercise 1.4.5. Prove Proposition 1.1.20. O

Exercise 1.4.6. Suppose V° and V! are connections on the vector bundles Ey, E1 — M. They
induce a connection V on £ ® Ej = Hom(Ey, E). Prove that for every X &€ Vect(M) and every
bundle morphism 1" : Ey — FE; the covariant derivative of T" along X is the bundle morphism
V xT defined by

(VxT)s = Vi (Ts) — T(V%s), Vs e C®(FE).
In particular if Ey = E7 and V° = V! then we have

VxT = [V%,T],
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where [A, B] = AB — BA for any linear operators A and B. 0

Exercise 1.4.7. Let V be a connection on the vector bundle £ — M. Then the operator
dV : Q*(End E) — Q*t(End E)
satisfies
(dV)u = Fy Au, Yue Q¥(EndE),
and the Bianchi identity
dvFy = 0.
g

Exercise 1.4.8. (a) Construct a connection on the tautological line bundle over CP! compatible
with the natural hermitian metric.

(b) The curvature of the hermitian connection A you constructed in part (a) is a purely imaginary
2-form F(A) on CP!. Show that

)
A= — F(A) = —1.
Law=5 [ ra
(c) Prove that the tautological line bundle over CP! cannot be trivialized. O
Exercise 1.4.9. Prove Proposition 1.1.25. O

Exercise 1.4.10. Suppose g is a metric on a vector bundle £ — M and V is a connection compatible
with g. Prove that Fy € Q*(End; E).

O
Exercise 1.4.11. Suppose g : R” — GL,(K) is a smooth map. Prove that
dg™' = —g"-dg-g,
i.e. for every smooth path (—1,1) 3t — () € R™ if we set g; = g(7(t)) we have
d v 4 dge 4
@gt =9 - o 9
g

Exercise 1.4.12. Suppose E — M is a rank two hermitian complex vector bundle and A', A? are
two hermitian connections on E. Assume A° is flat, i.e. F(A%) = 0. Describe the transgression
Tco( AL, AY) in terms of C' = A — AY. The correspondence

Q'(End, E) 3 C + Tey(A% + C, A°)

is known as the Chern-Simons functional’. O

Exercise 1.4.13. Prove that the Chern classes are independent of the hermitian metric used in their
definition. 0

9Yes, the same Simons as in the Simons Foundation.
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Exercise 1.4.14. Suppose (M, g) is a Riemann manifold and V denotes the Levi-Civita connection
on M. Prove that for every Q € Q¥ (M) and every Xo, X1, ..., X}, € Vect(M) we have

k
dw(Xo, ... ,wp) = Y (Vx,w)(Xo,.. ., Xiy ..., Xp)
i=0
where a hat indicates a missing entry. g
Exercise 1.4.15. Suppose (z!,...,x") are normal coordinates near a point p on a Riemann mani-

fold. Denote by g;; the coefficients of the Riemann metric in this coordinate system
g= Zgijdwidwj,
i?j
and by I‘;k the Christoffel symbols in this coordinate system. Set r2 := (z!)? + ... + (2")2,
0
e —

(a) Prove that near p we have the Taylor expansion
1
gij(x) = 6ij + 3 Z Rkijgwkwe +0(r?).
k¢
(b) If near p we write the volume form dV/; as p(x)dz' A---Adx" then we have the Taylor expansion
1 o
pla)=1- > Ric;; 'z’ + O(r?).

1,5

Exercise 1.4.16. Suppose ' — M is a complex vector bundle of rank r. Viewed as a real vector
bundle it has rank 2r and it is equipped with a natural orientation. Show that

o (F) =e(E).



Chapter 2

Elliptic partial differential
operators

2.1. Definition and basic constructions

2.1.1. Partial differential operators. Suppose F/, F' are smooth complex vector bundles over the
same smooth manifold M of dimension n. We denote by OP (E, F') the space of C-linear operators

L:C®(E) — C®(F).
For every f € C°°(M) and any L € OP(E, F) define ad(f)L € OP(E, F) by
ad(f)Ps = [L, f]ls = L(fs) — fL(s).
Observe that if Q € OP(E, F), P € OP(F,G) and f € C*(M) we have
ad(f)(PQ) = (ad(f)P)Q + P(ad(f)Q). 2.1.1)

We define inductively

PDO)(E, F) = {L € OP(E, F); ad(f)L=0, ¥f € C™(M)},
PDO™) (B, F) := {L € OP(E, F); ad(f)L € PDO™ (B, F), vf € C>(M)},

PDO(E, F) = | | PDO™)(E, F).

m>0

When E = F we set PDO(E) = PDO(E, E).

Definition 2.1.1. The elements of PDO(FE, F') are called partial differential operators (p.d.o.’s)
(from E to F). A partial operator L € PDO(E, F) is said to have order m if it belongs to
PDO™ \PDO(m_l). We denote by PDO™ the set of p.d.o.’s of order m. O

We need to justify the above definition. We will do this via some basic examples.
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Example 2.1.2. (a) Observe that L € PDO)(E, F) if and only if
L(fs) = fL(s), Vf € C*(M), s C®(E)

sothat L : E — F'is a bundle morphism. Thus

PDOY(E, F) = Hom(E, F).
(b) Assume E = F = C,;, M = R". Then §; € PDOM(C,,), Vi = 1,...,n. Indeed,

ad(f)0;(u) = 9;(fu) — f(Ou) = (0 f)u,

so that

ad(f)9; = (8;f) e PDOO) .
Observe that OP(C) is an algebra and (2.1.1) implies that for any f € C°°(M) the map

ad(f) : OP(C) — OP(C)
is a derivation, i.e., it satisfies the product rule. This implies inductively that
PDOY) . PDO® c PDOUH)

i.e., the space PDO(C) is a filtered algebra. In particular, for every multi-index & = («, ..., ) €
(Z>o)™ the operator

0% = opt - O
isap.d.o. of order |&d| = aj + - - + ap.

(c) Suppose V is a connection on the vector bundle E. Then V € PDOM (E,T*M ® E). Indeed
given f € C*°(M) and s € C°°(E) we have

ad(f)V(s) = V(fs) = f(Vs) =df @ s
so that
ad(f)V = df® € Hom(E,T*M @ E) = PDOY(E, T*M ® E).
Similarly, we can show that for every vector field X on M we have
Vx € PDO'(E).
(d) Consider the exterior derivative d : Q¥ (M) — QFF1(M) viewed as an operator
d € OP(A*T*M & C, AF"'T* M @ C).

Then d € PDOY(AFT*M ® C, A**'T*M ® C). Indeed, given f € C°°(M) and w € QF (M) we
have
ad(f)dw = d(fw) — fdw =df Nw+ fdw — fdw =df Nw
so that
ad(f)d = df A € Hom(AFT* M, A*1T*M).

Lemma 2.1.3. The p.d.o.s are local, i.e., given L € PDO™(E, F) and u € C*®(E) we have

supp Lu C supp u.
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Proof. We argue inductively. The result is true for m = 0. In general, for any open set U D supp u
we choose a smooth function f such that such that f = 1 on supp v and f = 0 outside U. Then
u = fu.

Then

Lu = L(fu) = [L, flu+ fLu
so that

supp Lu C U, YU D supp u.

g

Remark 2.1.4. One can show that an operator L € OP(E, F) is local if and only if it is a p.d.o.,
[23, 24]. O

Using partitions of unity and the local nature of the p.d.o.’s we deduce that in order to understand
the structure of these objects it suffices to understand the special case when M itself is a coordinate
patch and the bundles £ and F' are trivial.

Suppose L € PDO™(E, F). Then for every f1,..., fm € C°°(M) we have
ad(f1)ad(f2)---ad(fm)L € Hom(E, F).

We denote this operator by ad(f1,- -, fim). Using the Jacobi identity for the commutators we
deduce

ad(f)ad(g)L = [[L,g], f] = [[L, f], 9] + [L, g, f]] = ad(g) ad(f)L.
=0
This shows that ad(f1,. .., fi )L is symmetric and C-multi-linear in the variables f1,. .., fy,. Thus
ad(fi,..., fm)L is uniquely determined by
ad(f)"L=ad(f,...,[f)L.
—

via the polarization identity
1 am

d(fy, - fn)L = ——"
a (fl’ ’f ) m!atl"'atm

Fix a point py € M and denote by I, the ideal of C'°°(M) consisting of functions vanishing at p.
From the identity

ad(tlfl +---+ tmfm)mL'

ad(fg)P = Pfg— fgP =[P, flg+ fPg — fgP
= (ad(f)P)g + f(ad(g)P), VP € OP(E,F)
we deduce that if f; = gh, g, h € I, then

ad(fi,..., fm)L = ad(gh) ad(f2,..., fm)L = (ad(g)P)h + g(ad(h)P).
::P
On the other hand ad(h)P is a zeroth order p.d.o. so that (ad(g)P)h = had(g)P. We conclude

ad(f1,...,fm)L=had(g)P + gad(h)P.

Both ad(g) P and ad(h)P are bundle morphisms and for every section s of F' we have
(ad(f1,. .., fm)L)s(po) = h(po)(ad(g)P )s(po) + g(po)(ad(h)P )s(py) = 0.
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Hence ad(f1,..., fm)L |p,= 0 when one of the f; belongs to Igo. This shows that we have a
symmetric, m-linear map

o(L) = oy (L) : (Ipo/Igo )m — Hom(Ep,, Fp,),

(IPO/I;L210 )m > (517-"7571) = 0-<P)(§17 7§7L) = %ad<fl7"'7fm)L|p0
fi € Ipy, fi=& mod I

This function is uniquely determined by
o(L)(€) == a(L)(§, .-, §)
——
m

To obtain a more explicit description of o(L) we need to use the following classical result whose
proof is left as an exercise.

Lemma 2.1.5 (Hadamard Lemma).
fe I;SO <~ f(p()) =0, df(p()) =0,
so that we have a natural isomorphism of vector spaces

* ~Y 2
TooM&@C=1,/1,

Thus we have a linear map
o(L) = op,(L) : Sym™ Ty M @ C — Hom(Ep,, Fp,).
It is called the symbol of the p.d.o. L at pg.

Observe that if Ly € OP(Ey, E1), L1 € OP(E;, E2) and f € C°°(M), then an iterated
application of (2.1.1) yields the identity

m

ad(f)"(L1to) = Y- (" ) @£ L) (1) (o)

=0
This shows that if Lo € PDQO™0 (Eo, E1 L, e PDO™ (El, EQ) then

ad(f)™ ™ (L Ly) = (’”0*”“) d(f)™ (Ly) ad(f)™ (Lo)

= I ()™ (L) ad ()™ (o)

and in particular, for every p € M and every § € T; M we have
op(L1Lo) = op(L1)(§)op(Lo)(E)- (2.1.2)
The symbols of a p.d.o. L € PDO™(E, F') can be put together to form a global geometric object
o(L) € Hom(Sym™(T*M),Hom(E, F)) = Hom(Sym™(T*M)® E, F )
~ PDO’(Sym™(T*M) ® E, F).

It is time to look at some simple examples.
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Example 2.1.6. (a) Assume M = R", E = F' = C,;,. Suppose for simplicity that po = 0. Let
€= (&, ,&) € TeM and f € C(M such that f(0) = 0 and df (0) = £, ie.,
& =0f(0), Yi=1,...,n.
Then
ad(f)0; = (9if)
so that
00(0;) = (0:f)(0) = &.
Using (2.1.2) we deduce
o0(0%)(§) = €* =& - 4
(b) Suppose V is a connection on the vector bundle E. Then for every p € M and every § € T7M
we have

op(V)(§) 1 By 2 TyM®E, s—{®s.
We write this briefly as

o(V(§) =¢®.
Indeed, as we have seen in Example 2.1.2 (¢) we have
ad(f)V=df®

Now replace df with £. Similarly
op(d) = EN: AFTIM — ALTEM.

Proposition 2.1.7. For any complex vector bundle EE — M, and any positive integer m, there exists
a p.d.o. of order k, L,, € PDO™(E,Sym"™ T*M ® E) so that its symbol, viewed as a bundle
morphism Sym™ T*M @ E — Sym™ T*M ® F, is the identity morphism.

Proof. Fix a connection V¥ on the complex vector bundle E — M and a connection VM on T M.
We obtain connections V(¥) on T* M®* @ F and then a differential operator

P,, e PDO™)(E, T*M®" @ E)
defined as the composition of first order operators

m—1)
c=(E) Y5 oMo B) Y5 . VIS oo e ¢ B,

For any x € M and any £ € Ty M we have
02 (Pm)(€) = 0 (V") (€) 00 (VW )(€) 02 (VF)(6) = (60) - (€8) - (£9).

~~
m

Denote by S, the natural bundle morphism (symmetrization)
St T*M®™ — Sym™ T*M.
It induces a bundle morphism
Sn(E): T*"M®™ @ E — Sym™ T*M ® E.

Now define
Ly, = Si(E) o Pp,.
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The above discussions shows that the symbol of L,,, viewed as a bundle morphism Sym™ T*M ®
E — Sym™ T*M ® F is the identity morphism. O

Corollary 2.1.8. Suppose E, F' are complex vector bundles and S € Hom(Sym™ T*M @ E, F).
Then there exists P € PDO™ (E, F) such that
o(P)=2=5.

Proof. Consider the operator L,, € PDO™(E, Sym™ T*M ® E) and set
P=5SoL,,.
O

Corollary 2.1.9. Suppose E, F are complex vector bundles and L € PDO(E, F). Then for any
connection V on E, there exists a bundle morphism T = T'(V) : E — F such that

L=0(L)oV+T(V),
where o (L) o V is the p.d.o. defined as the composition

c*(E) s c=(T*M ® E) "M o= (E).

Proof. Observe that the operators L, o(L) o V € PDO!(E, F) have the same symbol so that
L—0o(L)oV € PDOYE, F) = Hom(E, F).
Now set T'(V) =L —o(L)o V. O

Arguing in a similar fashion using Corollary 2.1.1 we deduce the following structural result.

Corollary 2.1.10. Any p.d.o. is a sum of basic operators, where a basic operator is an iterated
composition of bundle morphisms with first order p.d.o.-s defined by connections. O

Finally we need to introduce the concept of formal adjoint of a p.d.o. For simplicity, we will
discuss this concept in a more restricted geometric context. More precisely, we will assume that all
our manifolds are oriented, equipped with Riemann metrics, and that all the bundles are equipped
with hermitian metrics.

Let (M, g) be an oriented Riemann manifold. We denote by dV; the induced Riemannian

volume form. Assume E, F' are complex vector bundles over M equipped with hermitian metrics
(—,—)r and (—, —) p. We will denote by C5°(E) the space of compactly supported sections of £.

Definition 2.1.11. A formal adjoint for the p.d.o. L € PDO(E, F)isap.do. L* € PDO(F,E)
such that
/ (Lu,v)pdV, :/ (u, L*v)gdVy, Yu € Cy°(E), ve C°(F).
M M
O

The following result list some immediate consequences of the definition. Its proof is left as an
exercise.
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Proposition 2.1.12. (a) A p.d.o. L € PDO(E, F) has at most one formal adjoint. When it exists
we have the equality

L= (L")".
(b) If Ly, L1 € PDO(E, F) have formal adjoints then their sum has a formal adjoint and
(Lo + L1)* = LS + LT.

(c)If Lo € PDO(Ey, E1) and Ly € PDO(E}, E2) have formal adjoints, then their composition
has a formal adjoint and

(LiLo)* = LyL;.
(d) Every zeroth order p.d.o. has a formal adjoint. O

Here are a few fundamental examples.

Example 2.1.13. (a) Suppose E = F' = C,, are equipped with the canonical hermitian metric. For
every vector field X on M the Lie derivative Ly : C*°(M) — C°°(M) is a first order p.d.o. From
the divergence formula we deduce that for every u,v € C§°(C,,) we have

/ (L) - 5V, — / w- (—Lx — divy (X))o,
M M

so that
L% = —Lx — divy(X).

(b) Proposition 1.3.8 can be interpreted as stating that the formal adjoint of
d: QFY(M) — QF(M)

is (n = dim M)
d* = (=1)" g d s

(c) Suppose & — M is a hermitian vector bundle and V is a hermitian connection on E. Then for
every vector field X on M we obtain a p.d.o. Vx € PDO(E). Given u,v € C5°(E) we have

Lx(u,v)g = (Vxu,v)g + (u, Vxv)

Integrating over M and using the divergence formula again we deduce

/ ((VXu,U>E—|—<u,VXU))dVg:/ 1-(LX<U,U>E)dVg:—/ divy(X)(u, v)dV,
M M M

so that

Vi = —Vx —divy(X).
(d) The above connection V, viewed as a p.d.o. has a formal adjoint V* € PDO(T*M ® E, E).
We describe it in a local coordinate patch U where V has the form

V=) di'® (Vo + Ai), Ai € End(E|y).

Then
V=) (Vo + A)*(dz'®)"

(2
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The adjoint of dz'® : C*(E) — C*°(T*M ® E) is the contraction (dz') : C®(T*M ® E) —
C*(E) by the vector field (dz);, the metric dual of dz’, which is

(dz')y =) g70;.
j

Corollary 2.1.14. Every p.d.o. has a formal adjoint.

Proof. Using Corollary 2.1.10 and the computations in Example 2.1.13 (d) we deduce that that
every p.d.o. is a product of operators that have formal adjoints.

O

Proposition 2.1.15. Suppose L € PDO™(E, F). Then for every p € M and every § € Ty M we
have

op(§) (L") = (=1)"op(§)(L)".
Proof. Observe that for every smooth function f : M — R we have

ad(f)L* = (L"f— fL*) = (fL— Lf)" = —(ad(f)L)"
so that

ad(f1,.... f)L* = (~1)™(ad(f1, ., fn)L)"-

Definition 2.1.16. A p.d.o. L € PDO(FE) is called formally self-adjoint or symmetric if
L=1L"
O

There is a very simple way of constructing symmetric operators. Given L € PDO(FE, F) the
operators

L*L e PDO(E), LL* € PDO(F)
are symmetric.

When V is a hermitian connection on E then we can form a symmetric second order p.d.o.
V*V € PDO?(E). It is usually known as the covariant Laplacian. Observe that

ap(V*V)(€) = —0p(V) () 0p(V)(€) = ~[¢[7 1,
where |£|, denotes the length of £ € Ty M with respect to the Riemann metric g on M.

Definition 2.1.17. (a) A generalized Laplacian on the hermitian bundle E over the oriented Rie-
mann manifold (M, g) is a symmetric second order p.d.o. L € PDO?(E) such that

op(L)(§) = _’€|§1E, Vpe M, £cT;M.

(b) A first order p.d.o. D € PDOY(E, F) is called a Dirac type operator if the operators D* D
and DD* are generalized Laplacians. O
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Example 2.1.18. Suppose (M, g) is an oriented Riemann manifold. Consider the Hodge-DeRham
operator
d+d":Q*(M) — Q*(M)

It is a symmetric operator and

o(d+d*)(&) = o(d)(§) — a(d) ()"
The symbol of d is o(d)(&) = e(&) = €A = A®T*M — A*T*M, and its adjoint is i(£) = —£T the
contraction by the tangent vector ¢ metric dual to the covector &. We have a Cartan formula

e(€)i(€) +i(&)e(§) = [¢]*- 1 (2.1.3)

(€
and using the identities e(£)? = i(£)? = 0 we deduce

(e(©) +i(9))" = e()i(€) +i(E)e(&) = ¢ - 1
so that
o(d+d")(€)* = —[¢f* - 1.
Hence the Hodge-DeRham operator is a Dirac type operator.
g

Definition 2.1.19. An operator L. € PDO(E, F) is called elliptic if for all p € M and all £ €
T M \ 0 the operator

op(L)(§) : Ep — Fp

is a linear isomorphism.

Example 2.1.20. (a) If L is elliptic iff L* is also elliptic. If Lo, L; are elliptic then so is their
composition Lj Ly (when it makes sense). If L, K € PDO(E, F') and the order of K is strictly
smaller than the order of L then

o(L)=0(L+ K)
so that L is elliptic iff L 4+ K is elliptic.
(b) Any generalized Laplacian is an elliptic operator.

(c) Any Dirac type operator is elliptic. In particular, the Hodge-DeRham operator is elliptic. O

The next proposition shows that the generalized Laplacians are zeroth order perturbations of
covariant Laplacians.

Proposition 2.1.21. ([4, Sec. 2.1], [10, Sec. 4.1.2]) Suppose L is a generalized Laplacian on E.
Then there exists a unique hermitian connection V on E and a unique selfadjoint endomorphism R
of E such that

L=V*V+R (2.1.4)

We will refer to this presentation of a generalized Laplacian as the Weitzenbdck presentation of L.

Proof. Choose an arbitrary hermitian connection V on E. Then Ly = V*V is a generalized Lapla-
cian so that L — Ly is a first order operator which can be represented as

L—Ly=AoV+B
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where
A:C®(T*"M ® E) —» C*(E)
is a bundle morphism and B is an endomorphism of E. We will regard A as an End (E)-valued
1-formon M, i.e.,
AcC®(T"M ®E*®E).

N——

=~End(E)
Hence

L=V'V+AoV+B. (2.1.5)
The connection V induces a connection on End(E) which we continue to denote with V
V :C®(End (E)) — QY(End (E)).
We define the divergence of A by
divy(A) := —V*A.

If (e;) is a local synchronous frame at zp and, if A =), A;e’, then, at zp, we have
i

Note that since (L — Lo) = ), A;V; + B is formally selfadjoint we deduce
Af = —4;, divy(A) =B - B". (2.1.6)

We seek a hermitian connection V = V + C', C' € Q'(End (E)) and an endomorphism R of E
such that
V'V+R=V'V+ AoV +B.

We set C; := e; | C' so that we have the local description
@ = Zei ® (Vl + CZ), Cz* = —C};, Vi.
i

We deduce that, at x
VIV == (Vi+C)(Vi+C)

7

(C)? = CiC = ~C?)
=S v -3 v 23 avi+ Y ()

(C)? = 35,(Ci)%)

=V*V —2C 0oV —divy(C) + (C)> =V*V+ AoV + B - R.
We deduce immediately that
(2.1.6) 1 1

* 2
S(B+B7) - 1(4). 2.1.7)

This completes the existence part of the proposition. The uniqueness follows from (2.1.7). O

C = —%A, R=DB- %divg(A) —(C)?

The connection V produced in the above proposition is called the Weitzenbock connection de-
termined by L while R is called the Weitzenbock remainder.
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2.1.2. Analytic properties of elliptic operators. We would like to describe some features of el-
liptic partial differential equations. We begin by introducing an appropriate functional framework.

Suppose &2 — M is a hermitian vector bundle over the connected oriented Riemann manifold
(M, g). The volume form dVj induces a (regular) Borel measure on A which we continue to
denote by dV;. A (possibly discontinuous) section v : M — E is called measurable if for any
Borel set B C E the preimage u~!(B) is a Borel subset of M. We denote by I';,cqs(E) the space
of measurable sections of £ and “=" the almost everywhere (a.e.) equality of measurable sections.

Let 1 < p < oco. A measurable section v : M — E'is called p-integrable if

/ |ulPdV, < oo.
M

We denote by LP(E) the vector space of =-classes of p-integrable spaces. It is a Banach space with

respect to the norm
1/p
||u||p=||u|rp,E=( / |u|PdVg) -
M

We want to emphasize that this norm depends on the metric on M and in the noncompact case it
is possible that different metrics induce non-equivalent norms. When p = 2 this is a Hilbert space
with respect to the inner product

(u,v) = (u,v)2(p) = /M<u,v)EdVg.

A measurable section u — F is called locally p-integrable if for any compactly supported smooth
function ¢ : M — C the section ¢u is p-integrable. We denote by Lf oc( ) the vector space of
=-equivalence classes of locally p-integrable functions.

Suppose E, F' — M are two hermitian vector bundles over the same connected, oriented Rie-
mann manifold (M, g).

Definition 2.1.22. (a) Let L € PDO(E,F), u € L}, (E) and v € L}, .(F). We say that u is a
weak solution of
Lu=wv

or that Lu = v weakly if for any p € C§°(F) we have

M M

(b) Suppose V is a Hermitian connection on E. A locally integrable section v € L!(E) is said to
be weakly differentiable (with respect to V) if there exists v € Lllo (T*"M ® E) such that Vu = v
weakly, i.e.,

/(u,V*@dVg:/ (v, )dV,,, Vg € C*(T*M ® E).
M M
O

Suppose £ — M is a hermitian bundle equipped with a hermitian connection V. The Levi-
Civita connection VM induces connections in each of the bundles 7* M ©7 and using the connection
V on E we obtain connections in each of the bundles 7* M ®J ® E which for simplicity we continue
to denote by V. These are partial differential operators

C®(T*M% @ E) — C®°(T*M®U+) @ E).
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For any positive integer j we denote by V7 the p.d.o.
Vi C®(E) = C®(T*M% @ E)
defined as the composition
C™®(E) L C¥(T*M @ E) —L -+« L5 ¢*(T*M®U) @ B) s 0°(T*M® @ E).

For every non-negative integer k and every p € [1,00) we denote by L*P(E) the subspace of
LP(FE) consisting of sections u which are k-times weakly differentiable with respect to V and their
differentials V/u € Tpeqs(T*M®7 @ E), j = 1,. .., k, are p-integrable. This space is a Banach

space with respect to the norm
k 1/p
fullep = (Z / |v1u|f’dvg> -
j=0"M

For p > 1 they are reflexive. When p = 2 they are Hilbert spaces with respect to the obvious
inner product. These Banach spaces are generically called the Sobolev spaces of section. We want
to emphasize that the norms || — ||, depend on the metric g on M, the metric h on E and the
hermitian connection V on E. To indicate this dependence we will sometime write LP(FE, g, h, V).
The situation is much better in the compact case. For a proof of the following result we refer to [3,
Chap.2].

Proposition 2.1.23. (a) Suppose M is a compact, oriented manifold without boundary, and £ —
M. Fori = 0,1 denote by g; a Riemann metric on M, h; a hermitian metric on E and V' a
connection on E compatible with h;. Then for every k € Z>( and every p € [1,00) we have an
equality

LFP(E, go, ho, V°) = L*P(E, g1, h1, V1)
Moreover the two norms are equivalent, i.e., 3C > 0 such that

Ll

—u

C
(b) The space C*°(E) is dense in any Sobolev space L*P(E). O

k
kpigoho V0 < [ Wllk pigy ny w1 < Cllull pigo no,wo, Vu € LPP(E).

In the remainder of this section we will assume that the manifold M is compact, oriented with-
out boundary. We set n := dim M. In particular, the dependence of the Sobolev norms on the
additional data will not be indicated in the notation.

The conformal weight of the Sobolev space L*?(E) is the real number

n

wy,(k,p) = b k.

Observe that if we regard a section u as a dimensionless quantity, then the volume form dVj is
measured in meters™, VFu is measured in meters—*, and thus

1/p
(] )
M

is measured in meters®n(k:p),
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Denote by C*(E) the vector space of k-times differentiable functions with continuous differ-
entials. It is a Banach space with respect to the norm

k
lullr = sup Y |VVu(z)|
zeMj:0

The conformal weight of C* is w, (k) = —k. We have the following fundamental result whose
proof can be found in [3, Chap.2].

Theorem 2.1.24 (Sobolev Embedding). Suppose E — M is a hermitian vector bundle equipped
with a Hermitian connection, and (M, g) is a compact, oriented Riemann manifold without bound-
ary.

(a) Let k,m € Z>o, p,q € [1,00). If
kE>m and wy(k,p) < wp(m,q) <= k >m and L < e m, (2.1.8)
p q
then L*P(E) C L™9(E) and the natural inclusion is continuous, i.e.

3C >0 |ullmg < Cllullkp, Yu e LFP(E).
(b) Let k,m € Z>o, p € [1,00). If

wn(k,p) < —m <= % k< —m, (2.1.9)

then L*?(E) C C™(E) and the natural inclusion is continuous.

(c) If in (2.1.8) and in (2.1.9) we have strict inequalities, then the corresponding inclusions are
compact operators, i.e., they map bounded sets to pre-compact subsets.

We will frequently use the following special case of the Sobolev theorem.

Corollary 2.1.25. Let E — M be as in Theorem 2.1.24.

(a) I |lul| pm.2(gy < 00 and m > k+ % then there exists a k-times differentiable section i of E such
that v = 4.

(b) If m > k then any sequence of sections of E bounded in the L™?-norm contains a subsequence
convergent in the L*2-norm.

We can now state the central results of the theory of elliptic p.d.e.’s. For a proof we refer to [21,
Chap. 10].

Theorem 2.1.26 (The Fundamental Theorem of Elliptic P.D.O.s). Suppose E, F' — M are hermit-
ian vector bundles over the closed, oriented Riemann manifold M and L € PDO™(E, F) is an
elliptic operator.

(a) (A priori estimate) Let k € Z>(, 1 < p < oo. There exists a constant C > 0 such that for all
u € LF™P(E) we have

lllesmp < € (ILullip + o )-

(b) (Regularity) Let k € Z>q, 1,p < oc. Suppose u € LP(E), v € L*P(F) and Lu = v weakly.
Then u € LF™P(E).
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Corollary 2.1.27 (Weyl Lemma). Let E and L as above and 1 < p < oo. Ifu € LP(E), v €
C>(F) and Lu = v weakly then w € C*°(E). In particular if u € LP(FE) and Lu = 0 weakly then
ue C®(E).

Proof.
veC®(F)=>ve | LM(F) = ue | LM"mP(E).
k>0 k>0
The Sobolev embedding theorem implies that

() L*P(E) = C>(E).
k>0
a

2.1.3. Fredholm index. Suppose E, F' € M are hermitian vector bundles over a closed, oriented
Riemann manifold (M, g) and L € PDO™(E, F) is an elliptic operator of order m. Let

ker L := {u € C®(E); Lu= 0}.

Weyl Lemma shows that a measurable section of E belongs to ker L if and only if it is p-integrable
for some p > 1 and Lu = 0 weakly.

Proposition 2.1.28. ker L is a finite dimensional vector space.

Proof. We first prove that ker L is a closed subspace of L?(E), i.e.,
u; —u € L*(E), u; € ker E, ¥n = u € ker E.
Indeed
(v 0oy = [ s @)V = 0. Vi € G ()

Letting ¢ — oo we deduce
| v, =0 Vo e G ()
M

so that u € ker F.

We will now show that any ball in ker E which is closed with respect to the L2-norm must
be compact in the topology of this norm. The desired conclusion will then follow from a classical
result of F. Riesz, [6, Ch. VI] according to which a Banach space is finite dimensional if and only if
it is locally compact.

Suppose {u;} is a L?-bounded sequence in ker L. From the a priori inequality we deduce

[willm,2 < Cllug

lo,2

we deduce that (u;) is also bounded in the L™2-norm as well. Since the inclusion L™?2 — L2 is
compact we deduce that the sequence (u;) has a subsequence convergent in the L2-norm. O

Observe that L defines a bounded linear operator
L:L™*E) — L*(F)
and we denote by R(L) its range.
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Theorem 2.1.29 (Fredholm alternative). The range of L is a closed subspace of L*>(F). More
precisely
R(L) = (ker L*)*, R(L*) = (ker L)=.

Proof. The proof is based on the following important fact.

Lemma 2.1.30 (Poincaré Inequality). There exists C > 0 such that for all u € L"™?(FE) N (ker L)+
we have
[ullm2 < Ol Luljoz-

Proof. We argue by contradiction. Suppose that for every k£ > 0 there exists

up € L™*(E) N (ker L) ¢ Jluglloz =1, [Jugllmz > ki Lug

0,2
From the elliptic estimate we deduce that there exists C' > 0 such that
[trllm,2 < C(| Lullo2 + [lurllo2) = C(l|[ Lurllo2 +1). (2.1.10)

Hence
k|| Lugllo2 < C(|[Lukllo2 + 1)
so that
HLU}CHQQ — 0, as k — oo.

Using this information in (2.1.10) we deduce that ||ug|n2 = O(1). Since the inclusion L™? — L?
is compact we deduce that a subsequence of u; which we continue to denote by wj converges
strongly inL? to some oo Since |lug|lo.2 = 1 and uy € (ker L)+ we deduce

[tsolloz =1, uo € (ker L)*. 2.1.11)

Set vy, := Luy. We know that Lu = v, weakly so that
/ (ug, L*p)dVy = / (g, ) DVy, Yo € C3°(F).
M M
2 2
We let k — oo in the above equality and use the fact that uy, L, Uoo, Vk L%, 0 to conclude that

/ (Uoo, L*)dVy =0, Yo € Cg°(F).
M

Hence Lus, = 0 weakly so that us, € ker L. This contradicts (2.1.11) and concludes the proof of
the Poincaré inequality. g

Now we can finish the proof of the Fredholm alternative. Suppose we have a sequence u €
Lm’2(E) such that v, = Luy, converges in L? to some v,. We have to show that there exists
Uso € L™?(E) such that Lu, = vs. We decompose

wp = [ug] + up, [ug] € ker L, uit € (ker L)*.
Clearly vy, = LukL and from the Poincaré inequality we deduce that

g llm2 < Cllvlloz-
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Since the sequence (vy) converges in L? it must be bounded in this space so we conclude that
g .2 = O1).

Using again the fact that the inclusion L™? < L? is compact we deduce that a subsequence of ui
converges in L? to some uq.. Since Lui = v, weakly we deduce

/ (i, L* @)V, = / (o5, @)DV, Vi € C°(F).
M M

If we let £ — oo we deduce
Lus = v weakly.
This proves that the range of L is closed. We still have to prove the equality
R(L) = (ker L*)*

Observe that if v € R(L), there exists u € L™2(E) such that Lu = v weakly. In particular, if
w € ker L*, then w € C*°(F) and

Lu:v:>O:/
M

(u, L*w)dVy = / (v,w)dVy = v € (ker L*) L .
M
Hence R(L) C (ker L*)*.
Suppose conversely that v € (ker L*)*, but v &€ R(L). Since R(L) is closed, the Hahn-Banach
theorem implies the existence of w € L?(F') such that
(w,v) #0, we R(L)*.
Hence
(w, (L*)*u) = 0, Yu € L'™*(E).
In particular
(w, (L*)*u) =0, Yu e C(E)
so that L*w = 0 weakly, i.e., w € ker L*. We have reached a contradiction since (v, w’) = 0 for all
w’ € ker L*. This concludes the proof of the Fredholm alternative.

O

Definition 2.1.31. The Fredholm index of an elliptic operator L between K-vector bundles over a
closed oriented manifold is the integer

indg L := dimkerg L — dimg ker L* = dimg ker L — dimy coker L. O
Fix two smooth complex vector bundles E', F' — M over the smooth, compact oriented Rie-

mann manifold (M, g). We denote by Ell™(E, F) the space of elliptic p.d.o.’s of order m L :
C>®(E) — C*(F). Observe that

Le Ell™(E,F) <= L* € EUIl"(F,E).
Thus, any L € Ell™(E, F) defines two bounded linear operators
L:L™*E) — L*(F), L*: L™*(F) — L*(F). (2.1.12)
We define the norm of an operator L € Ell"™(E, F) to be the quantity
L] pu = SUP{HLU||L2(F); ||U||Lm¢2(E) =1 } + SUP{||LU||L2(E); ||UHLm72(F) =1 }

In other words || L|| gy is the sum of the norms of the two bounded operators in (2.1.12).
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Theorem 2.1.32 (Continuos dependence of the index). Suppose that we have a continuous path
[0,1] 5t~ L € EU™(E,F),

where EIl™ (E, F) is equipped with the topology of the norm || — || gu. Then
ind Ly = ind Ly, Vt € [0,1].

Proof. It suffices to show that for any ¢y € [0, 1] there exists 7 > 0, such that
ind L; = ind Ly, V|t —to| <. (2.1.13)
For notational simplify we assume that {5 = 0. Consider the Hilbert spaces
My = LM2(E) @ ker L, 4 = L*(F) @ ker L,
and the bounded linear operators % : &) — %] given by the block decomposition

U :| _ |: Lt lkerLS

u
o7 : , Yue L™%(E), vy € ker L,
' [ vo Prer 1 0 } [ } (E). wo 0

Vo
where Py, 1, : L?(E) — L?(E) denotes the orthogonal projection onto ker L.

Lemma 2.1.33. The operator < is invertible.

Proof. 1. ) is injective. Indeed, if u @ vg € ker o we deduce
Lou+ vg =0, PkerLOu =0.

From the Fredholm alternative theorem we deduce that Lou L ker L and the equality Lou+vg = 0
implies Lou = 0 and vg = 0. We deduce u € ker L so that

U= Pierrou=0.
This proves the injectivity of 7.
2. o is surjective. Let v @ ug € L?(F) @ ker Ly. Decompose v as an orthogonal sum
v=1vg ®v, vy €ker L}, vt € (ker L)t = R(Lo).
We can find utin(ker Ly)* N L™2(E) such that Lu = v*. Now define
w=u"+ ug,

and observe that .27 (u © vg) = v @ uyp. O

Since L; depends continuously on ¢ we deduce that % is a continuous family of bounded

operators 7y — 4. The operator % is invertible so that there exists o > 0 such that <% is
invertible for any [t| < 9.

Lemma 2.1.34. For any |t| < to we have

ind Ly < ind L. (2.1.14)
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Proof. To prove (2.1.14) we will show that for any |t| < r there exists an injective map
ker L} & ker Ly — ker L; & ker Ly,

so that
dimker L} 4+ dimker Ly < dim ker L; + dim ker L.

We can then conclude that
ind Ly = dimker Ly — dim ker L < dimker L; — dimker L} = ind L.
Let |t| < 9. Decompose
L™2(E) = (ker Ly)* @ ker Ly, L*(F) = (ker L})* @ ker L},

so that
H5 = (ker L)t @ ker Ly @ ker LY, 4 = (ker L})* @ ker L} @ ker Ly .
— S—
=:U; =V;
We have to construct an injective linear map
V;g — Ut.

We regard <7 as a bounded operator (ker L;)* @ U; — (ker L}) @ V; and as such it has a block
decomposition

mz[s A]

B C
Above S is a bounded operator
(ker L)t N L™2(E) — (ker L;)* = R(Ly) € L*(F).
More precisely, S is the restriction of L; to (ker L;)*NL™2(E). This shows that that S is invertible.

For any v € V; we can find a unique pair ¢ & u € (ker L;)=— @ U, such that

NG

We can regard ¢ and u as linear functions of v, ¢ = ¢(v), u

= wu(v). These are clearly injective
maps because the invertibility of <% implies that ¢(0) = 0, u(0) =

0. Thus, the linear map
Vi v u(v) €Uy

is injective. O

Using the family of operators
L™2(F) L*(E)
® — S¥
ker Lo ker L

we deduce exactly as above that there exists r; > 0 such that
ind Ly < ind L}, V|t| < rp.
Since ind L; = —ind L; we deduce that
ind Ly > ind L¢, V|t| < 1.

Ly Tyerr,
B, — t er Lo
K Pker Lg 0

Hence
ind Lo = ind L¢, |V|t| < min(ro, 7).
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O

Corollary 2.1.35. Let L € EU™(E, F) and R € PDO"" "V (E, F). Then L + R is elliptic and
ind L = ind(L + R).
Proof. Lower order perturbations do not affect the principal symbol so that L and L+ R are p.d.o.-s
of order m with identical symbols. If we define L; = L + tR we observe that the resulting map
[0,1] 5t~ L € EU™(E,F)

is continuous and thus
ind(L + R) =ind L; = ind L.

2.1.4. Hodge theory.

Proposition 2.1.36 (Finite dimensional Hodge theorem). Suppose
S NG Ve N VA
is a co-chain complex of finite dimensional C-vector spaces and linear maps. Suppose each of the
spaces V; is equipped with a hermitian metric. Then for every 1 = 0,1, --- . n the induced map
m; : HY(V®) := ker D; Nker Df_; — H'(V®, Dy) = ker D;/ R(D;_1)
is an isomorphism. If we set D = ®D; : ®;V' — @;V* and A := (D + D*)? then
H*(V*) := ¢;H!(V*) = ker(D + D*) = ker A.

In particular, the complex is acyclic if and only if D + D* is a linear isomorphism.

Proof. Let us first prove that 7; is an isomorphism. We first prove it is injective.
Let v € kerm;. Hence D;v = Df ;v =0andv = 0 € H(V*®), i.e., there exists u € V1
such that w = D;_jv. Hence
0= D v= D} Diu=0= 0= (D} Dyu,u) = (D;_1u, D;_1u) = |D;_ul* = |v|%.
This shows that 7; is injective.

To prove the surjectivity we have to show that every v € ker D; is cohomologous to an element
in ker D} . Let v € ker D;. The cohomology class it determines can be identified with the affine
subspace

C, = {U 4+ D;_1u; ué€ Vi_l}.

We denote by [v] the point on C,, closest to the origin (see Figure 1). This point exists since V=" is
finite dimensional.

We claim that D} ;[v] = 0. For every u € V*~! we consider the function
fu iR = [0,00), fu(t)=dist ([v] +tD;_1u,0)* = |[v] + tD;_qul?.
Since [v] + tD;_1u € C, we deduce
dist ([v],0) < dist ([v] + tD;_1u,0), Vt = f,(0) < fu(t), Vt.
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Figure 1. Finding the harmonic representative of a cocycle.

Hence f],(0) =0, i.e.

d
0= pn ‘t:O <[U] +tD;_qu, [U] +tD;_1u= 2Re([v], Di_1u>.

Hence
0 = Re([v], D;_ju) = Re(D; {[v],u), Yu € VL

If in the above equality we take v = D} ;[v] we conclude D} ;[v] = 0 which shows that ; is a
surjection.

The equality

H*(V*) = ker(D + D*)

is simply a reformulation of the fact that 7; is an isomorphism.

If we let 2 = D + D*, then A = 22 and thus ker 2 C ker A. Conversely, if u € ker A then

0 = (Au,u) = (Z2%u,u) = |Dul?

so that ker 2 C ker A. O
Definition 2.1.37. Suppose E°, E', ..., EY are hermitian vector bundles over the Riemann mani-
fold (M, g) and D; € PDO!(E?, E“*1) are first order p.d.o. such that
D;D;_1 =0, Vi.

Then the cochain complex

0— C=(E% 2% (B - ... — C®(EN) = 0 (2.1.15)
is called elliptic if for any p € M and any £ € T, M \ 0 the complex of finite dimensional spaces

0 B PO gl BN (2.1.16)
is acyclic.
We set

E=@®LE* D=@.D;: C®(E)— C®(E),
92 =D+ D*, A=2% O
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Applying the finite dimensional Hodge theory to the complex (2.1.16) we deduce that the com-
plex (C*°(E*), D,) is elliptic if and only if the operator Z is elliptic.

Theorem 2.1.38 (Hodge). Suppose
0— C®(E%) 2% (B — ... = C®(EN) - 0
is an elliptic complex. Then the following hold.
(a) The natural map
m; s H'(E®, Dy) := ker D; Nker D} | — H'(E®, D,) =: ker D;/ R(D;_1)
is an isomorphism.

(b) The spaces H'(E®, Dy) are finite dimensional and the Euler characteristic of the complex
(E*®, D, ) equals the Fredholm index of the elliptic operator

g — D+D* . COO(Ee'Ue'I’L) — COO(EOdd).
(c) ker & = ker A.

Proof. (a) We set V* := C°(E"). These spaces are equipped with the L2-inner product but they
are not complete with respect to this norm. We imitate the strategy used in the proof of Proposition
2.1.36. The only part of the proof that requires a modification is the proof of the surjectivity of
m;. In the finite dimensional case it was based on the existence of the element [v], the point in the
affine space C, closest to the origin. A priori this may not exist' since in our case V* is infinite
dimensional and incomplete with respect to the L?-norm. In the infinite dimensional case we will
bypass this difficulty using the Fredholm alternative. Set || — || := || — ||0,2.

Observe first that H'(E®, D,) is finite dimensional since it is a subspace of ker 2 which is
finite dimensional since Z is elliptic. Let v € C°°(E?) such that Dv = 0. We have to prove that
3U € C*®°(E*1) such that, if we set [v] = v + Du, then D*[v] = 0.

Denote by [v] the L?-orthogonal projection of v on H'. This projection exists since H is finite
dimensional hence closed. We claim that [v] is cohomologous to v, i.e., there exists u € C®°(E1)
so that

[v] = v+ Du.
By definition v — [v] L ker & so that by the Fredholm alternative there exists u € LY2(E®) such
that
v—[v] =2u=(D+ D")u.
Since v, [v] are smooth we deduce from Weyl’s Lemma that u is smooth. Since D (v — [v]) = 0 we
deduce DD*u = 0 so that
0 = (DD*u,u) 2 = || D*ul?.

Hence D*u = 0, i.e., v — [v] = Du which shows that v and [v] are cohomologous. 0

Example 2.1.39. Suppose (M, g) is a compact oriented Riemann manifold without boundary. Let

n := dim M. Then the DeRham complex
0— QM) -5 o' () - - L Qr (M) — 0

IThis is in essence the criticism Weierstrass had concerning Riemann’s liberal usage of the Dirichlet principle, i.e. the existence
of a shortest element. A few decades later Hilbert and Weyl rehabilitated Riemann’s insight and placed it on solid foundational ground.
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is an elliptic complex (see Exercise 2.3.5). We denote its cohomology by H7, (M ). We set
H* (M, g) = {w e QF(M); dw = d'w = O}.

The forms in H* (M, g) are called harmonic forms with respect to the metric g. The Hodge theorem
implies that

HH(M, g) & Hfyp(M) = H*(M,R).
This shows that once we fix a Riemann metric on M we have a canonical way of selecting a repre-
sentative in each DeRham cohomology class, namely the unique harmonic form in that cohomology
class. The above arguments shows that it is the form in the cohomology class with the shortest L?-
norm. One can show (see Exercise 2.3.5) that the Hodge *-operator

g1 QF (M) — Q" F (M)
induces an isomorphism
xg : HF(M, g) — H" " (M, g).
In this case we have
(M) = indg (d dr QN (M) Q"dd(M)>.
On the left-hand side we have a topological invariant while on the right-hand side we have an
analytic invariant. This phenomenon is a manifestation of the Atiyah-Singer index theorem. O
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2.2. Dirac operators

2.2.1. Clifford algebras and their representations. Suppose (M, g) is an oriented Riemann man-
ifold, E*, E~ — M are complex hermitian vector bundles and

D:C>®(ET) = C™(E™)
is a Dirac type operator. Recall that this means that the symmetric operators
D*D:C>®(ET) — C®(ET), DD*:C®(E~)— C®(E")

are both generalized Laplacians. It is convenient to super-symmetrize this formulation. Set

E=EtoE,
and define,
0 D* 0o o
@:[D 0}.C(E)%C(E).
Then
. s | DD 0
V=9, 9" = [ 0 DD*

We denote by c the symbol of &. Observe that for every x € M, and every £ € Ty M the linear
map c(§) : B¢ — E, satisfies
c(&)" = —e(§), c(§)? = ~l¢ly1e, c(©E; C B (2.2.1)

Thus, for fixed x € M we can view the symbol as a linear map ¢ : TM — End(FE,) satisfying
(2.2.1) for any £ € T, M. Observe that

—le+ 0 = (e +m)? = {e(€) + en) }* = e(&)* + e(n)* + e(€)e(n) + e(n)e(©)

= &[> = Inl* + e(€)eln) + e(n)e(©).
Hence
€17+ [ = e(€)en) — e(ne(©) = 1€ +nl* = [ + [n* +29(¢,m)
so that
c(§)e(n) + e(ne(§) = —29(&§,m), V& n € Ty M. 222)

Definition 2.2.1. Suppose (V g) is a finite dimensional real Euclidean space. We define the Clifford
algebra of (V, g) to be the associative R-algebra with 1 generated by V' and subject to the relations

u-v+v-u=—-2g9(u,v), Yu,veV.

Equivalently, it is the quotient of the tensor algebra €p,,~., V®™ modulo the bilateral ideal generated
by the set N

{u®v+v®u+2g(u,v); u,v € V}.

We will denote this algebra by C1(V, g). When no confusion is possible, we will drop the metric
g from our notations. When (V] g) is the Euclidean metric space R™ equipped with the canonical
Metric ey WE Write

Cl,, := CL(R", geyel)- O
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We see that the symbol of the Dirac type operator & defines a representation of the Clifford
algebra C1(T} M, g) on the complex Hermitian vector space E,. We are thus forced to investigate
the representations of Clifford algebras. We need to introduce a bit of terminology.

For any elements a, b in an associative algebra A we define their anti-commutator by
{a,b} := ab + ba.
A super-space (or s-space) is a vector space E equipped with a Z/2-grading, i.e., a direct sum
decomposition E = E*+ @ E~. The elements in E* are called even/odd.
If ©E = ET @ E~ is as-space and T' € End(E), then we say that T' is even (resp. odd) if it
preserves (reap. reverses) parity, i.e.,
TE* c E* (vesp. TE* C E¥).

The even endomorphisms have the diagonal form

A 0

0 B
and the odd endomorphisms have the anti-diagonal form

b 5]

We see that every endomorphism 7' decomposes in homogeneous components
T = Teven + Todd-
The supertrace (or s-trace) of an even endomorphism 7" of E is defined by
str(T) = tr(T |g+) — to(T | 5-).
in general we set
str’T := str Teyen-
The grading of E is the operator

lpe O
—1p- |-

Y=7e=1p+ ®-1g- [ 0
Then
str T = tr(«T).
A linear operator T : Ey — F); between two s-spaces is even iff T(ET) C Fi and odd iff
T(EY) C EY.
A super-algebra over the field K is an associative K-algebra .7 equipped with a Z/2-grading,
i.e., a direct sum decomposition
o =dt oA
such that
At AT CcAdt, It A AT, I A C AT
The elements of .7 * are called even/odd, while the elements in .«7 T Uo7~ are called homogeneous.
For a € /% we set
sign(a) := £1.
We see that if F is a K-vector s-space, then Endk (E) is a s-algebra. We will use the notation
mK(E) to indicate the presence of a s-structure.
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The supercommutator on a s-algebra is the bilinear map
[, —)s: o x A — o
uniquely determined by the requirements
e [a®,bT]s = [aT,bT] = a®bt — bTa®,
o [at,bF]s = [aT,bF] = aTb* — bFa™,
e o, b ls={a",b7}=ab +ba",
YaT, bt € o/* . Two elements a, b are said to super-commute if [a, b]s = 0.
If o7, B are two s-algebras, then their s-tensor product o/ @B is defined by
(#&B)" = (ot eBT)e (o 0B7),
(#&B) = (0B )a (o @B7),
and the product is defined by
(a1 ®b1) - (a1 ® ba) = sign(az) sign(by)(araz) @ (bibe),
for every homogeneous elements a1, a2 € <7, by, by € B.

If o = mK(E), then str( [, T]s ) = 0, so that the supertrace is uniquely determined by the
induced linear map
str : Endg(E)/[ Endg(E), Endg(E) ], — K.
A s-module over the s-algebra ./ = &/ @ .o/~ is a K-super-space E = E @ E~ together with a
morphism of s-K-algebras
o/ — Endg(Et @ E7).

Proposition 2.2.2. Suppose that (V,g) is an n-dimensional real Euclidean vector space. Then
CI(V,g) is a s-algebra and
dimg Cl(V, g) = 2".

Proof. Consider the isometry
e: V=V, ev)=—v.

62@V®k %@V@)k,

k>0 k>0

W ® Qo) =ew) ®-- @ e(v) = (1) 01 @ Doy

It induces a morphism of algebras

Clearly
c(u@v+rvRu)=u®Vv+veu.
Since ¢ is an isometry we deduce that € induces a morphism of algebras
e: Cl(V,g) = CI(V,g)
satisfying €2 = 1. Define
CIE(V,g) := ker(+1 — ¢).
The decomposition C1(V, g) = C11(V, g) ®Cl™(V, g) defines a structure of s-algebra on C1(V g).

Now choose an orthonormal basis {ey, ..., e, } of V. Then in C1(V, g) we have the equalities,

2 . .
e; =—1, ee; = —eje;, Vi#F ]
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For every ordered multi-index [ = (i1 < --- < ij) we set
er:==¢ej ...¢,., |I|=k.
We deduce that the collection {e;} spans C1(V, g) so that
dimg CL(V, g) < 2".

To prove the reverse inequality, we define for every v € V' the endomorphism ¢(v) of A®*V by the
equality

c(v)w = (e(v) —i(vy) )w,
where e(v) denotes the exterior multiplication by v and i,, denotes the contraction with the metric
dual vy € V* of v. The Cartan formula implies

c(v)? = —[vf?
so that we have a morphism of algebras
CL(V,g) — End(A*V).
In particular we get a linear map
o:Cl(V,g9) = A*V, CI(V,g) 5z c(x)l € A*V.
Observe that
o(ei, ---ei,) =cley) --cleg)l =ei;, N+ Nej,.
Since the collection {e;, A --- A e;, } forms a basis of A*V we deduce that o is onto so that

dimg Cl(V, g) > dimg A*V = 2".

In particular o is a vector space isomorphism. O

Definition 2.2.3. The vector space isomorphism o : C1(V, g) — A®V is called the symbol map. O

Observe that the symbol map is an isomorphism of super-spaces. An orientation on V' deter-
mines a canonical element €2 on det V, the unique positively oriented element of length 1. In terms
of an oriented orthonormal basis (eq, . .., e,) we have

Q=e1 N Ney,.
Using the symbol map we get an element
.= Uﬁl(Q) =e1-- ey
which satisfies the identities
el = (—1)" D¢y, T? = (—1)"n+1/2, (2.2.3)
We would like to investigate the structure of the Z/2-graded complex C1(V')-modules, or Clifford
modules.

A Clifford s-module is a pair (E, ¢), where E is a s-space and c is an even morphism of Z/2-
graded algebras
p:Cl(V) = End(E).
The operation
Cl(V)x E— E, (x,e) — c(z)e
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is called the Clifford multiplication by x. Observe that for any v € V' we have
c(v)E* = ET.

A morphism of Clifford s-modules, or Clifford morphism, between the Clifford s-modules
FEy, Fq is a linear map T' : Ey — FE; which supercommutes with the Clifford action. In other
words, this means that

[T,c(z)]s =0, Ve e ClV).

We denote by ﬁo?nCl(V)(Eg, E,) the space of Clifford morphisms and by Efn\dCl(V) (E) the s-
algebra of Clifford endomorphisms of the Clifford module F.

Since we will be interested only in complex representations of C1(V, g) we will study only the
structure of the complexified Clifford algebra

Cl(V,g) :=CL(V,g) ®r C.
Set V. := V ®g C. The metric g on V extends by complex linearity to a C- bilinear map
ge: VexVe—C

Proposition 2.2.4. Assume that n = dimr V' = 2m. There exists Z/2-graded Cl(V')-module Sy
such that the induced morphism of s-algebras

CLV) — End(Sy),

is an isomorphism. This module is unique up to a Clifford isomorphism. Moreover, if we write
Sy = SJ‘E ® Sy, then
dimc S§r = dimc Sy, = 2™

Proof. Existence. Fix a complex structure on V/, i.e., a skew-symmetric linear map J : V — V

such that J? = —1. We can find an orthonormal basis ey, f1, ..., €m, fm of V such that
Jel- = fi, sz = —€;, Vi = 1,... ,m.
The operator .J extends to the complexification V. and since J? = —1 we deduce that the eigen-

values of .J on V, are 4-i. Denote by V1V the i-eigenspace of .J and by V%! the —i-eigenspace so
that
‘/c — VLO @ V071.

Note that V is equipped with an involution
W=UVR2—W=0VRZ2

and VIV = V0.1 Set
1

. _ 1 )
€5 = ﬁ(ej — lfj) S VLO, gj = ﬁ(ej + lfj) e Vol

The collection (&) is a C-basis of V1. Note that
9e(€is€5) = 9c(&j,€i) = b5, ge(eisej) = ge(&i,Ej) =0,
1 _ () _
ej = ﬁ(Ej + Ej), fi= ﬁ(&‘j — Ej). 2.2.4)

Define
Sy 1= A*V1O, (2.2.5)
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We want to produce a representation of C1(V') on Sy, that is, a C-linear map
C: VC — End(c(Sv)
such that
c(v)? = —gc(v,v), Yve V..
Since V, = V10 @ V01 it suffices to describe how the elements in V'1? and the elements of V%!
acton S,,.
For every w € V10 we set
c(w) i= V2e(w),
where e(w) denotes the exterior multiplication by w on A®*V10. For every w € V1Y we have
w = V%! and define the contraction

i(w) = wd: A°VH0 - ATy L0

by
W (wy A Awg) = ge(w, wy)wa A -+ Awg — ge(W, wo)wy Awg A -+ A wg
+-- 4+ (—1)k_lgc(w, wk)wl Ao NWg—1.
Now set
c(w) == —v2w J.
For any wg, w; € V10 we have the equalities’
c(w)? = c(w)* =0, c(wy+w1)* = c(wo)e(wr) + c(wr)e(w), (2.2.62)
gC(wO + wla wo + ’U_]l) = 2gc(w0a wl)? (226b)
c(wp)e(wy) + e(wr)e(wy) = —2g.(wo, w1). (2.2.6¢)

Hence the map ¢ : V.. — Endc(A*V1?) extends to a morphism of algebras
c: Cl(V) — Endc(A*VHY).
The space A*V1V is Z/2-graded
onl,O — Aevenvl,O @ Aoddvl,O

and clearly ¢ maps even/odd elements of C1(V') to even/odd elements of Endc(A®V10). Note that
forany 1 <13 < --- < i, < m we have

c(eiciy i)l = 2’“/251-1 Neig N+ NEjy s
c(ei iy €)1 N Nem =0, (8,84, ---8,)1 =0,
C(Ei,Biy Ei )EL A A = (—1)FZimla=995 0 A ng
where
jl < - <jm—k) {177m} = {7’177Z’m}u{]177.]m—k}
This prove that for any u € Clc (V') \ 0 we have
c(u)(I4+e1 A= Nep) #0.
Hence the map ¢ : C1(V) — Endc(A*V10) is injective. Now observe that
dime Endg(A*V10) = (dime A*V10)2 = (2dime VI9)2 — 92m — on — qime CI(V),

2 Only (2.2.6¢) is nontrivial. Because the two sides of (2.2.6¢) are C-bilinear in (wq, w1 ) it suffices to verify it only in the special
case wo = €5, w1 = €}, for some j, k.
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which shows that ¢ is an isomorphism.

The uniqueness of the module Sy, follows from Schur’s Lemma, [16, Chap. XVII, Prop. 1.1].
O

Definition 2.2.5. Assume dim V is even. The complex Clifford s-module Sy, constructed in Propo-
sition 2.2.4 is called the space of complex spinors. The corresponding representation

c: CI(V) = End(Sy)

is called the complex spinorial representation. O

We have shown that, if we forget the grading, the Clifford algebra Cly,,, is isomorphic to an
algebra of matrices, End(Ss,,) and the representations of such an algebra are well understood. Let
us describe a simple procedure of constructing 7 /2-graded complex representations of Cly,;,.

Suppose W = WT @ W~ is a complex s-space. Denote by Sy & W the s-vector space Sa,, @ W
equipped with the Z/2-grading

SyeW)t =S eWraS, W™, (SyeW) =S eW &S, WT.
We define the complex spinorial representation twisted by W to be
e : CI(V)) — Ende(Sy&w),
cw(z) (Y ®@w) = (c(x)Y) @w, Y €Sy, we W.
Observe that each w € W defines a morphism of C1(V')-modules
Tw (w) : Sy — Sy@W, ¢ =1 @w
and thus we get a linear map
Ty : W — Homeyy) (Sv, Sy&W).
Similarly every linear map ® : W — W defines a morphism of C1(V')-modules
Fo : Sy@W — SyW, ¢ @ w9 @ ®(w).
We obtain in this fashion a linear map
- Ende(W) — Endeyy)(Sy&W, Sy @w),
ew ® 7 : CI(V)®Ende(W) — Endc(Sy&W).

The representation theory of algebras (see [16, Chap. XVII] or [33, Chap. 14]) imply that these
maps are isomorphisms. We gather all the above observations in the following result.

Proposition 2.2.6. Suppose E is a Z/2-graded C1(V')-module, dimg V' = 2m. Then E is isomor-
phic as a Z/2-graded C1(V')-modules with the complex spinorial module twisted by the s-space

W = Homg(Sy, E).
Moreover, we have an isomorphism of s-algebras
CI(V)&End¢ (W) — Ende(E). (2.2.7)

Via this isomorphism, we can identify ETIEIC(W) with the subalgebra of ETIl\d(C (E) consisting of
endomorphism T : E — FE commuting with the Clifford action. In other words

Endc(W) = Endeyy)(E), CI(V)&Endeyy)(E) 2 Ende(E). (2.2.8)
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The s-space Homg)(Sy, F) is called the twisting space of the Clifford module E and will be
denoted by E//S. We deduce from the above result that given a Clifford module E we can identify
a Clifford endomorphism L : E — E with a linear map L/S on the twisting space E/S, i.e.

Endey(vy(E) = Ende(E/S), L L/S.

Definition 2.2.7. The relative supertrace of an endomorphism L € E/IILCI(V) (E) of a Z/2-graded
complex Cl,,-module E is the scalar str /5 L defined as the supertrace of the linear operator L /S,

strgs L = str L/S. 0

Suppose that E is a Z /2-graded C1(V')-module so that we can represent it as a twist of Sy with
an s-space W. We would like to relate the relative supertrace
strf/S ﬂl@(W) — C.
to the absolute supertrace
str? : End¢(E) — C.
Suppose F' : E — F is a linear map. By choosing a basis of W we can represent it as a matrix

with coefficients in C1(V'). Equivalently, we can regard F' as an element of CI(V)@EIB(W) =
End(Sy )®End(W) and we can write
F=Y u®F, uecEndSy), FeEndW).
l
We would like to compute str(F' : £ — E). By linearity we have
str(F) = Z str(ug @ Fy).
14

Choose orthonormal bases wii in W¥ and orthonormal bases ’QZin in S‘i/. Define a metric on CI1(V)
by declaring the basis (e;) orthonormal. Then

It follows from this equality that
str(up® Fyp) = str(ue : Sy — SV) sstr(Fp : W — W).

Thus we need to compute the supertrace of the action of an element in the Clifford algebra on the
complex spinorial space. This supertrace is uniquely determined by the induced linear map

CL(V)/[CYV), CYV)]s = End(Sy)/[End(Sy), End(Sy)]s — C.

It turns out that the space C1(V') /[C1(V'), C1(V')]s is quite small.

Choose an orthonormal basis (e;) of V. Fix 1 < r < n = dimV. Observe that for every
multi-index [ = (1 <4y < --- < i1 < n),ij #r, we have
1

[er, erer]s = eze] — (—1)kereler = 26%6[ = 2¢e; &= e; = [eT, —567«61]5
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This shows that any monomial e, |I| < dim V is a s-commutator. Hence the only monomial e;
that could have nontrivial s-trace mustbe I' = e; - - - eap,.

To compute the s-trace of [ as a linear map on Sy we choose a complex structure JJ on V' and
an orthonormal basis e1, f1,..., €mn, fim such that

fi=Jei, e;=—Jf;.

Consider as before

1 . 1 )
gj = %(ej —if;) eV, &= 756 Tifi) € VoL

Then,

Lieita) fim-tie—a)

€ = —F=\& 1) 1 — ——=\&1 1)y
V2 V2
c(ej) = e(ej) — &4, c(f;) = i(e(aj) + €]J),

and

=mH e(e5)&; 1 —(g50)ele;) ).

For a multi-index J = {j; < --- < ]k} we set
ej=¢cj N Nej, € APV
and we have

_ ey if jeJ _ e;g if j¢&J
e ={ 5 157 G ={ G & 18]

Putting these two facts together we deduce

_ _ ey if jeJ
(e~ Eele)es={ 2 3 187
Hence
Tey = im(—l)m_ul €J
N—_———
=(es|Tles)
and thus
strI’ = Z D es(Tles)y = > (~p)Plim(—)m = (=)™ > "1 = (—2i)™
J J

Let us summarize what we have proved so far.

Assume V is oriented. The orientation and the metric g determine a canonical section of det V/,
the volume form €2,. For every w € A*V ®C we denote by [w]j, € AFV ®C its degree k component.
We then define (w) € C by the equality

We have thus established the following result.
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Proposition 2.2.8. Assume that V' is an oriented Euclidean space of dimension dim'V = 2m. If
u € Cl(V), W is a s-space and F' € End(W), then

str(u® F : Sy@W — Sy@W ) = (—2i)™(o(u) ) str F.

In the above equality, both sides depend on a choice of an orientation on V. O

If in the above equality we choose u = I', we observe that (o(I")) = 1, and we deduce the
following useful consequence.

Corollary 2.2.9. Suppose (V,g) is oriented and dimg V' = 2m. Then for any Clifford module E
and any endomorphism of Clifford modules L : E — E we have

strfS L = Z—strE(FL),

2m
where in the right-hand-side of the above equality we regard 'L : E — E as a morphism of
C-vector spaces. O

Remark 2.2.10. Let us say a few words about the odd dimensional case. If V' is an odd dimensional
vector space and U := R @ V, then we have a natural isomorphism of algebras

CI(V) — CI®*(U), CI®*(V)® CI°*(V) 3 g ® x1 — x0 + o1,

where eg denotes the canonical basic vector of the summand R of U. We can then prove that we
have an isomorphism of algebras

CV) = End(Sf;) @ Endc(Sp)).

For more details we refer to [17]. O

2.2.2. Spin and Spin°. Suppose that (V, g) is a finite dimensional Euclidean space. Recall that
we have a vector space isomorphism

o:ClV) = AV
called the symbol map. Its inverse is called the quantization map and it is denote by q. Set

spin(V) = q(A*V) € CI(V).

If e1,..., ey, is an orthonormal basis of V, then {e;ej; 1 < i < j < n} is a basis of spin(V).
Observe that
[eiej, €k] = €j€€ — E€LEE€L = ei(—25jk — ekej) — €r€;eL
= —20jpe; — (—20;1 — exei)ej — epeep, = —20;1€; + 20;1€;.
Hence
w,v] €V, Yw e spin(V), veV.
Using the identity
leiej, ejer] = [eiek, exles + ejleiej, e
we deduce

leiej, exer] € spin(V), Vi<j, k<{,
which shows that spin(V') is a Lie algebra with respect to the commutator in C1(V').
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The Jacobi identity shows that we have a morphism of Lie algebras
72 spin(V) — End(V), 7(n)v = [n,v]. (2.2.9)
Observe that
9(7(eiej)er, er) = —g(ex, T(eiej)ee)
so that 7(n) is skew symmetric V7 € spin(V'), i.e., 7(n) € so(V'). Note that
T(eiej) = 2X;j,
where for ¢ < j we denoted by X;; the operator V' — V' defined by
Xije; = e5, Xije; = —e;, Xijep, =0, Vk#1,7.
This implies that 7 is injective. On the other hand
dimg spin(V) = dimg A%V = dimg s0(V),
so that 7 is an isomorphism.
To every A € so(V') we associate wa € A%V
wa = Zg(Aei, ej)ei N ej.
i<j
Observe that
A= Zg(Aei, ej)Xij.

i<j
Indeed
ZQ(A% ej) Xijer = ZQ(A% ex) Xiker + Zg(Aek7 ej) Xrjek
i<j i<k >k
== g(Aeien)ei+ > g(Aex,e5) = > gles, Aey)e; = Aey.
i<k >k i
Hence
_ _ 1 1
THA) = ;g(Aei,ej)T H(Xiy) =5 ;g(Aei,ej)eiej = 5 a(wa). (22.10)
1<J 1<

Definition 2.2.11. For any euclidean space (V, g) we denote by Spin(V, g) the group
Spin(V, g) = {u e CI"(V); u=v1---vo, v; €V, |vlg = 1},

In particular, we set
Spin(n) := Spin(R"). 0

Observe that for any u € Spin(V, g) we have
wutcVv,
so that we have a natural map
p: Spin(V,g) — Aut(V), p(u)v = uvu™".
For any u,v € V, |ul, = 1 we have

1

—uvu” ' = uvu = u( —2g(u,v) —w ) = v — 2g(u,v)u € V.
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Hence the map V' — V, v — —uvu ™! is described by the orthogonal reflection R,, in the hyper-
plane through the origin orthogonal to u. In particular, it is an orthogonal transformation of V' with
determinant —1. Thus if u = w1 - - - ug the p,, is the product of an even number of reflections

p(u) = Ry, - -+ Ruy,
so that we have a well defined morphism
p: Spin(V,g) = SOV, g).
Lemma 2.2.12. The morphism p is surjective and
ker p = {£1} C Spin(V).
Proof. The surjectivity follows from the classical fact that any orthogonal transformation is a prod-
uct of reflections. If 7 € ker p then
n=uvn, YvevV

from which we conclude that u lies in the center of C1(V').

Choose an orthonormal basis ey, ..., e, of V so we can write
n = § nrer, uy € R,
I

and the sum is carried over all even dimensional ordered multi-indices /. Since n commutes with
er, the multi-indices I such that ; # 0 cannot contain k. Since this happens for all £ the above
sum should contain only the empty multiindex for which ey = 1. Hence 7 must be a scalar, € R.

To show that || = 1 we consider the representation
c: Cl(V) — End(A*V).
The metric on V' induces a metric on A*V" and thus for every u € C1(V') the linear map
c(u) : A°V — AV
has a well defined norm ||c(u)||. Moreover
le(uruz)|] < flefun)]l - fe(us)]-

Observe that if v € V is a vector of length one, then ||c(v)|| = 1. We deduce that ||c(u)|| < 1 for
all u € Spin(V). In particular n, 7~ € Spin(V) N R and we deduce

Il =lle@I <1, I~ = e Il < 1.
Hence || = 1. This completes the proof. O

We have produced a 2 : 1 group morphism
p: Spin(V,g) = SO(V, g).

We want to prove that Spin(V, g) with the topology induced as a subset of C1(V, g) equipped with
the above norm is a topological group and the above map is a topological covering map. We begin
with a few simple observations.

Letv,w € V,v L w, |v| = |w| = 1. Then

(vw)? = 1,
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and thus
exp(tvw) = cost + (sint)vw € Cl(V, g).
Note that exp(tvw) € Spin(V,g), ¥t € R. Indeed, we have
cost + (sint)uw = ((sint/2)u — (cost/2)w ) ((sint/2)u + (cost/2)w), (2.2.11)
and
| (sint/2)u — (cost/2)w | = | (sint/2)u + (cost/2)w | = 1.
We denote by X, the skew-symmetric endomorphism of V' defined by
w, u=wv,
Xowtt = —v, u—w,

0, u 1L v,w

Lemma 2.2.13. For any v,w € V such that v 1 w,

v| = |w| = 1 we have

p(exp(tvw) Ju = exp(tvw)u exp(—tvw) = exp(2tXpw)u

Proof. If u L v, w, then u commutes with exp(tvw) so that
p(exp(tvw) Ju = exp(tvw)uexp(—tvw) = u = exp(2t Xy, )u.
Next,
p(exp(tvw) )v = (cost + (sint)vw )v(cost — (sint)vw )
= ((cost)v — (sint)w ) (cost — (sint)vw ) = (cos 2t)v + (sin 2t)w = exp(2t Xy )v.
Similarly
p(exp(tvw) )w = —(sin 2t)v + (cos 2t)w = exp(2t Xy )w.

Proposition 2.2.14. Let (V, g) be an Euclidean space of dimension n. Set

3

m = .

2

Then for any u € Spin(V, g) we can find an orthonormal system of vectors
V1, Wiy e e ey Uy, Wi €V

and real numbers t1, ..., t,, such that

u = exp(t1viwy) - - - €xXp(tVmWpm) = exp(tiu1vy + . . . + tpVmwW).

Proof. Let T = p(u) € SO(V, g). We can then find A € so(V, g) and ¢t € R such that
T = exp(2tA).

The spectral theory of skew-symmetric matrices shows that we can find an orthonormal system
v1, W1, . - ., Um, Wy, and real numbers A1, ..., A\, such that

A= Z A X, -

J
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Note that the matrices Xy, ;- - - , Xv,,w,, Palrwise commute to that

exp(2tA) = H exp(2tA; Xy w,)-
i=1
We set

m
H exp(tAjvjw;),

and we deduce from Lemma 2.2.13 that
p(u') = exp(2tA) = p(u).

Hence v’ = fwu. If v’ = w the claim is proved with ¢; = t\;. Othervise we observe that

u=—u' = exp( (tA; + m)viwy ) H exp(2t\; Xyu,)-

j=2
O
We have the following corollary of the above proof
Corollary 2.2.15. For any A € so(V, g) we have
p(exp T_l(A)) = exp(A4). 0

Corollary 2.2.16. Spin(V, g) is a compact subset of C1(V, g).

Proof. Using Lemma 2.2.13 and the equality (2.2.11) we deduce that any w can be written non-
uniquely as a product

U = ULU2 "+~ U2m,
where all the factors u; live of the unit sphere of (V, g). If u” is a sequence of elements in Spin(V, g)

u’ = ufuy - ub,,,
then upon extracting a subsequence, we can assume that u; — u;° as v — cc. Clearly

u”’ = u™ = uus® - ug,, € Spin(V, g).
O

Clearly the group Spin(V,g) with the topology induced by the norm topology on CL(V,g)
is a topological group as a subgroup of the topological group C1(V, g)* of invertible elements of
CL(V,g).

Proposition 2.2.17. The morphism p : Spin(V,g) — SO(V, g) is a continuous group morphism
and the resulting map is a topological covering map.

Proof. We have to show that if (u”) is a sequence in Spin(V, g) that converges to u> € Spin(V, g),
then p,v — pyeo.

First let us write ©” as a product

n
/U/V:ulljugn.ugm7 m:Li

QJ , n=dimV, |uf|=1.
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Let T' € SO(V, g) be a limit point of the sequence p(u”). We can find a subsequence (u*) of (u”)
such that

uli_)rgoufzu;?o, Vi=1,...,2m,

and
2m 2m
= 1 By = 11 = co — o
T = lim p(u*) = “ll}nolol_[lRu;t = HR“j p(u™).
]:

H—00
Jj=1

Hence, the only limit point of p(u”) is p(u®).

Let us now prove that the map p : Spin(V,g) — SO(V, g) is a covering map.

Set

0 :={ue Spin(V,g); ||1-clu)]| <1}
Observe that O N —0O = (). Indeed, if u € O N (—0O), then u, —u € O and
2=[1= (=D <1 = el + lle(w) = (=Dl = 1 = e[| + [le(-u) = 1] < 2.
Set
0 :=p(0) = p(OU-0).
By construction
SO(V,9)\ 0 = p( Spin(V,9)\ (0U-0) ),

and we deduce that SO(V,g) \ O is compact as image of a compact set. Hence O is an open
neighborhood of 1 € SO(V, g).

The same argument shows that the restriction of p to O is an open map and thus it induces a
homeomorphism O — O.

More generally, if u € Spin(V, g), @ := p(u), then
p 1 (22(5 ) =uO0 U —u0
and the resulting map p : ©O — a0 is a homeomorphism. O

Corollary 2.2.18. The group Spin(V, g) is a natural Lie group structure such that

p: Spin(v,g) — SO(V,g)

is a smooth group morphism. The tangent space Ty Spin(V, g) is naturally identified with spin(V, g),
and under this identification, the differential p, of p at 1 € Spin(V, g) coincides with the map T of
(2.2.9).

Proof. Since the map p : Spin(V,g) — SO(V, g) is a2 : 1 covering map, we can use it to lift the
smooth structure on SO(V, g) to a smooth structure on Spin(V, g). By construction, p is a smooth
map between these smooth structure. The fact that the group operations on Spin(V, g) are smooth,
follows from the fax that p is a local diffeomorphism. Finally, the equality p, = 7 follows from
Corollary 2.2.15. ad

Proposition 2.2.19. The group Spin(V,g) is connected if dimV > 1 and simply connected if
dimV > 2.
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Proof. Suppose dim V' > 2. We know that every element u € Spin(V,g) can be written as a
product

u = exp(truywi) - - exp(teupwr), |uil = [wil =1, u; Lwi, t; €R,
and thus z lies in the same path component of Spin(V, g) as 1.

Suppose dim V' > 3. Consider first the case dim V' = 3. Fix an orthonormal basis e1, eo, €3
and set

f1 = eze3, f2=e3e1, f3=eren.
Then
f2==1, fifi=—fifi» i #J,
Nife=f3, fafs=f1, [3f1 = fo
We deduce that
CI5'“" = H = the division ring of quaternions.

We want to prove that Spin(3) can be identified with the group of quaternions of norm 1. Suppose
that

g=a+z, z=bfi +cfo+dfs #0, a?+ b+ +d°> =1
Then we can write

1
q=cosf +sinfy, y= W:L’
x

and thus
q = exp(0y), Oy € spin(V).
Hence every quaternion of norm 1 can be written as the exponential of an element in spin (V). We
can now see that every z € spin(V') can be written as a product
z=w, u,v €V, u,v e V\0, ulwv.
More precisely, if z = af; + bfs + cfs, then we choose u, v such that u | v and
u X v=ae| +bey+cez3 €V,

where x denotes the cross product. Hence every unit quaternion can be written as an exponential
exp(uv) where u, v are two nonzero orthogonal vectors in V. As we have seen before any such
element belongs to Spin(3). Hence Spin(3) contains the group of unit quaternions.

Conversely, every element in Spin(3) can be written as a product of exponentials exp(tuv)
as above, i.e., as a product of unit quaternions. Hence Spin(3) is contained in the group of unit
quaternions.

This proves our claim and shows that Spin(3) is simply connected. From the 2 : 1 nontrivial
cover Spin(3) — SO(3) we deduce that SO(3) =2 RP? and 71 (SO(3)) = Z/2.

Using the homotopy long exact sequence of the fibration SO(n) — SO(n+1) - S™, n >3
we obtain the exact sequence

0=me(S") = m(SO(n)) = m(SO(n+1)) = m(S") =0
We deduce inductively that
m1(S0(n)) = m(SO(3)) =Z/2, Vn > 3.

This implies that the covering Spin(n) — SO(n) is the universal covering of SO(n), and in
particular Spin(n) is simply connected. O
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Define
Spin‘(V) := (Spin(V) x S')/(Z/2),
where Z/2 is identified with the subgroup {(1,1), (-1, —1)} C Spin(V) x S’. Observe that we
have natural map
Spin(V') — Spin®(V)
and a short exact sequence

c

1 — Z/2 — Spin(V) 2= SO(V) x §* — 1,
where
(Spin(V) x SY)/(Z/2) 3 [9,2] 2> (p(g), 22) € SO(V) x S*.
Suppose V is even dimensional, and J is a complex structure on V, i.e., a skew-symmetric operator

such that J? = —1y. We denote by U(V, J) the group of isometries of V' which commute with .J.
We have a tautological morphism

i: UV, J) = SOV), p°:Spin°(V) —= SO(V) x S = SO(V).
Proposition 2.2.20. There exists a morphism
O=0;:U(V,J)— Spin(V)
such that the diagram below is commutative.
Spin®(V)

.
o 7 L .
7 p

UV,J) —— SO(V)

Sketch of proof. We have a natural group morphism
det : U(n) — S, grs detg
which induces an isomorphism
det, : 1 (U(1)) — m (Sh) =2 Z.
Consider the group morphism
¢: UV, J) = SO(V) x S', g (i(g),det(g)).
Observe that

7267 i dimV > 2

T (SO(V) x ') = 7 (SO(V)) x i (S") = { Ze&Z if dimV =2

Denote by ¢, the induced morphisms
bu - T (U(V, ) = Z — m (SO(V) x SY).
We have the following fact whose proof is left as an exercise.

Lemma 2.2.21. The image of ¢, coincides with the image of
pS i (Spinc(V)) — w1 (SO(V) x SY). 0
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The above lemma implies that ¢ admits a unique lift & : U(V,J) — Spin®(V) such that
®(1) = [1, 1]. This is the morphism with the required properties.
O

2.2.3. Geometric Dirac operators. Suppose that (M, g) is an oriented, n-dimensional Riemann
manifold. We denote by C1(M ) the bundle over M whose fiber over x € M is the Clifford algebra
CUT;M,qg).

To construct it, we first produce the principal SO(n)-bundle Py of oriented, orthonormal
frames of T* M. Then observe that there is a canonical morphism

p:SO(n) — Aut(Cl,) = the group of automorphism of the Clifford algebra Cl,,.

Then
Cl(M) = Py x, Cl, .
We will refer to C1(M) as the Clifford bundle of (M, g). Note that we have a Clifford multiplication
- Cl(M) @ Cl(M) — CL(M),
and a canonical inclusion
T*M — Cl(M).
The symbol map
Cl(V) = A*V
induces an isomorphism of vector bundles
o: Cl(M) — A*T*M.
Definition 2.2.22. Let (M, g) be an oriented Riemann manifold.
(a) An s-bundle over M is a vector bundle & — M together with a direct sum decomposition
E=EtoE".
The grading of the s-bundle E is the endomorphism v = 1+ @ (—1g-).
(b) A Clifford bundle (or C1(M )-module) is a hermitian s-bundle together with a morphism
c¢: Cl(M) — End(E)
which on each fiber is a morphism of s-algebras and for every x € M, a € TXM C CI(M), the

endomorphism
cla): E;, —» E,
is (odd) and skew-symmetric. We will refer to ¢(—) as the Clifford multiplication.

(¢) A Dirac bundle over M is a pair (E, VF), where E = E+ @ E~ is a Clifford bundle and V¥ is
a hermitian connection on E which preserves the Z /2 grading and it is compatible with the Clifford
multiplication, i.e., VX € Vect(M), Va € QY (M), Yu € C*°(E) we have

VE (e(a)u) = e(Via)u + c(a)VEu,

where VY denotes the Levi-Civita connection on 7% M. O
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Suppose (E,VF) is a Dirac bundle. Then Iy € Q?(End E). Using the isomorphism of
complex vector bundles

Endc(E) 2 CIM)& Endgy(a) (E).
we view the curvature of V¥ as a section of
Fy € Q*(CI(M)® Endeyan (E) ).
On the other hand, the curvature R of the Levi-Civita connection is a section
Re Q?*(so(TM)),

where so(T'M) denotes the space of skew-symmetric endomorphisms of 7M. Thus, for any
X,Y € Vect(M) the endomorphism R(X,Y") of T'M is skew-symmetric. We denote by R(X,Y)T
the dual, skew-symmetric endomorphism of 7M.

We have a map
—1
§: so(TM) — so(T*M) T CI(M),
where + : T'M — T*M denotes the metric duality isomorphism. Via this isomorphism we can
identify the curvature R with a section

c(R) € @*(CI(M)) C Q*( CYM)& Endgyan (E) ).
If we choose a local orthonormal frame (e;) of 7'M and we denote by (e’) the dual coframe, then
R= Z Rei,ej)e' Ne?, Rlej,ej) € T(s0(TM)),
1<j
and the equality (2.2.10) implies that
c(R)(e;, €;) Zg (eire5)ex, e )cle Fe(eh)

k<f

*Zg 6256] ekaef) ( k)c(ef).

(2.2.12)

We set
FES .= F — ¢(R) € Q*( C(M)& Endcyan (E) ).
We will refer to F'E/S as the twisting curvature of the Dirac bundle (E, V).

Proposition 2.2.23.

FE/S € O (Endgya(E) ).
Proof. We have to show that VX, Y € Vect(M), Va € Q' (M) we have

FEPBR(X,Y)e(a) = e(a) FPR(X,Y),
ie.,
[FEA(X,Y),cla)] =0
so that FZ/8(X,Y) is a morphism of C1(M )-modules. We have
Fo(X,Y)=[V%,V§] - v[X Y]

and
[V5.c(a)] =e(Va), VYZ € Vect(M).
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Hence
[V [XY>C(04)] Xy] a),
[[VE, V¥, ()]—[M%c(a)} ¥+ [VE [V e(0)]]
= [e(V%a), VE] + [VE, e(Via)] = ¢ [V, Vila).
We deduce

[Fo(X,Y),c(a)] =c(R(X.Y)la).
On the other hand, we have the following equality in C1(1M).
R(X,Y)a=7([r"'R(X,Y),a])
— (¢(R(X,Y)Ta) = [e¢(R), c(a)] € End(E)
Hence we have
[Fy(X,Y),c(a)] = [e¢(R),c(e)] <= [FF/5 c(a)] = 0.
O

Let us now explain the process of twisting of a Dirac bundle which allows us to produce new
Dirac bundles out of old ones.

Suppose (E, V) is a Dirac bundle and W = W*@W ™ is a hermitian s-bundle equipped with a
hermitian connection V" compatible with the Z /2-grading. The Z/2-graded tensor product EQW
is bundle of Clifford modules in a tautological way. Moreover V¥ and V" induce a connection on
E®W defined by

VESW _ vE g ly +1g VW,
A simple computation shows that VESW g compatible with the Clifford multiplication. Hence

(EQW, VE®W) is a Dirac bundle. We say that it was obtained from the Dirac bundle (E, V) by
twisting with (W, V') we will denote it by (E, VF)&(W, VWV).

Observe that End(E ® W) = End(E) ® End(W) and with respect to this isomorphism we
have
FEW — PP 1y + 1@ FV.
In particular
FESW)/S _ pB/S 4 W (2.2.13)

Definition 2.2.24. Suppose (E,V¥) is a Dirac bundle. The geometric Dirac operator associated
to (E, V) is the first order p.d.o. Zg : C*°(E) — C*°(F) defined by the compostion

o) 5 (1" M @ B) °3 = (B),

where ¢(—) denotes the Clifford multiplication of a section on F with a 1-form. O

From the definition it follows that
o(Zg) = c(—).

Observe that the connection V¥ preserves the grading, while the multiplication by a 1-form is odd,
and thus maps even/odd sections of F to odd/even sections. Hence

PEC>®(E*) c C®(ET)
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In other words, Zg is an odd operator with respect to the Z /2-grading
C®(E)=C>®(ET)® C™(E").
In particular, it has the block decomposition
_ 0 Dg-
e = [ D+ 0 ] '
Traditionally Y+ is denoted by Dg.

Proposition 2.2.25. 9 is symmetric, i.e.,
Dy = DE.

Proof. This is a local statement so we will work in local coordinates. Choose a local orthonormal
frame e; of T'M and denote by e* its dual coframe. Then

Ie =) c(e)VE.

Hence

Ty =3 (c()VE) =S (VEYe(e) =Y (—~VE —divy(e))(—e(e)))

i

— Z div,y(e;)e(e’) + Z Vie(e') = 2 + Z div,y(e)e(e’) + Z c(Vie).

T
T = 97, — Y is a zero order operator so it suffices to understand its action on a fiber of £ over an
arbitrary point zg of M. If we assume the local frame e; is synchronous at x, i.e.,

Vie;j =0 atx,
then .
Vie' =0, divje,=0=T =0.
O

Since the symbol of 2 is given by the Clifford multiplication we deduce that .@]23 is a generalized
Laplacian. We deduce that & is indeed a Dirac type operator since Z5%r = Y595 = 9% is a
generalized Laplacian. It can be described in the block form
_| 0 Dg
SR ER A
Proposition 2.2.26 (Weitzenbock Formula). Suppose (E, V) is a Dirac bundle over the oriented
Riemann manifold M, and FE/S ¢ Endcyan (E) is the twisting curvature. Then

2% = (VE)y'VF 4 5(49) + e(FE/5),

where s(g) is the scalar curvature of the metric g, ¢(FP/S) is the endomorphism of E defined
locally by
c(FFR) =" FF (e, e5)e(e’)e(e),
1<j
where (e;) is a local orthonormal frame of T M and (€*) is the dual coframe.
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Proof. The result is local. Assume the local orthonormal frame is synchronous at a point x € M.
We set V; := V.., we denote by e;_| the contraction by e; so we have

(VE) VP = Ze@VE ZeJ®VE (Z( VE — divy(e))e; )Zehg)vE

(e; 1 el = 5{)

= —Z VE Zdlvg e)Vi = Z(VZE)2 at xo.

i

On the other hand we have

T =Y e()WVFe()V] =" e(e)e()VEVE +> e(VFe)VE.

%, 1,5 (]
= - Z VE?+Y ele)e(e)VEVE+Y e(VEe)VF
i#£] i,j
Z (VO 4+ elee(e)[VE, VI +) e(VEe)VF
i<j 1,]

(at g we have divge; = 0, [e;, e5] = 0)

= (VE)Y'VE + 3 ele)e(e)Fei ej) = (VE)* VP + c(FF) +3 " e(R)(ei, e)c(e’)e(e) .

1<j 1<J

On the other hand we have (see (2.2.12))

T =3 e(R)(es,ej)elel)el Z(Zg i, e5)er, er) eleF)e(e!) ) e(e)e(e))

1<J 1<J

7Rzgkl
(Rijke = —Rjike = Ripij)
. , 1 . .
= —= ) Rusije(e¥)e(e)e(e)e(e!) = 3 > Rirec(e’)e(el)e(e)e(e)
i,5,k,¢ i#g,k#L

Observe that c(e)c(e’) anticommutes with c(e¥)c(e?) if the two sets {7, j} and {j, k} have exactly
one element in common. Such pairs of anticommuting monomials do not contribute anything to the
above sum due to the symmetry R; ¢ = Rjy;; of the Riemann tensor. We can thus split the above
sum into two parts

7= 23 Ryg(el)ele) P ¢ S Ryweleelele)e(e)

1#£] 1,7,k,£ distinct

(Rijke + Rigje + Riej = 0, c(ej)c(ek)c(ee) = c(eg)c(ej)c(ek) = c(ek)c(ez)c(ej))

1 s(g
= 3 2 R =7
i
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Example 2.2.27. Let E = AT*M. E is a Cl(M)-module with Clifford multiplication by o €
QY (M) described by
c()w=aAw—ilaNw, Ywe Q' (M),

where i(a') denotes the contraction by the vector field g-dual to . Clearly c(a) is a skew-
symmetric endomorphism of A*T*M . The Levi-Civita connection induces a connection V¢ on
A*T* M which is compatible with the above Clifford multiplication. This shows that (AT M, VY)
is a Dirac bundle. The Dirac operator determined by this Dirac bundle is none other than the Hodge-
Dolbeault operator. For a proof we refer to [21, Prop. 11.2.1]. O



90 Liviu I. Nicolaescu

2.3. Exercises for Chapter 2

Exercise 2.3.1. Prove Hadamard Lemma. O

Exercise 2.3.2. Suppose M = R”. Prove that any L € PDO)(C,,) has the form
L= Z ag(2)0%, ag € C®(M).
& <m

Exercise 2.3.3. Prove Proposition 2.1.12. O

Exercise 2.3.4. Prove Cartan’s formula (2.1.3).
O

Exercise 2.3.5. Suppose (M, g) is a compact oriented Riemann manifold without boundary. Let
n = dim M.
(a) Prove that the DeRham complex

0— (M) -L o' () L L (M) =0

is an elliptic complex.

(b) Let H* (M, g) := {w c QM (M); dw=d*w = 0}. Hodge theorem implies that

H*(M, g) = Hpr(M).
Prove that the Hodge *-operator * : QF(M) — Q™ *(M) induces an isomorphism
xg : HE(M, g) — H"*(M, g).
(c)(Hodge decomposition) Prove that we have an L?-orthogonal decomposition
QF (M) = HF (M, g) + dQF— 1 (M) + d*QFFL(M).
(d) The Levi-Civita connection on 7'M induces a connection V on A*T*M. Prove that the Lapla-
cian
A= (d+d*)*: Q% (M) = Q* (M)
and the covariant Laplacian
V*V : Q% (M) — Q*(M)

differ by a zero order term, i.e., an endomorphism of A*T™* M. O

Exercise 2.3.6. Let H be a complex Hilbert space. A bounded operator L : H — H is called
Fredholm if both L and L* have closed ranges and dim ker L + dim ker L* < oo. In this case the
Fredholm index of L is

ind L = dimker L — dim ker L*.
(a) Prove that L is Fredholm if and only if L admits a parametrix, i.e., a bounded linear operator S
such that SL — 1 and LS — 1 are compact.
(b) [0,1] > t — Ly is a continuous family of Fredholm operators then ind L is independent of ¢.

(c) Show thatif L : H — H is Fredholm and K : H — H is compact then L + K is Fredholm and
ind(L + K) = ind L.
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(d) Suppose Lg, Ly : H — H are Fredholm. Construct a continuous family of Fredholm operators
A H®H — H ® H suchthat Ag = Lo ® Ly, Ay = —1 & L1 Lg. Conclude that

ind LoL, = ind Lg + ind L.

Hint: For this exercise you need to know Fredholm-Riesz Theorem, [6, Chap. VI|. If K : H - H
is a compact operator then 1 + K is Fredholm and ind(1 + K) = 0.

Exercise 2.3.7. Suppose that (M, g) is a compact oriented Riemann manifold of dimension m,
E,F — M are complex Hermitian vector bundles and L € PDOF(E, F) is an elliptic p.d.o.
of order k. Suppose that we have sequences u, € L"2?(E) and f, € L?(F) with the following
properties.

o Lu, = fn, Vn.
e There exist u € L?(E) and f € L?(F) such that

nli};o(ﬂun —ullp2my + 1 fn — fHLz(F)) = 0.
Prove that u € L*2(E), Lu = f and
nh_}rlgo ||lwn — u||Lk,2(E) =0. O

Exercise 2.3.8. Prove Corollary 2.2.9. O

Exercise 2.3.9. Prove Lemma 2.2.21. O






Chapter 3

The Atiyah-Singer Index
Theorem: Statement and
Examples

3.1. The statement of the index theorem

Suppose (M, g), is a compact, oriented, Riemann manifold without boundary, dim M = 2m, m €
Z~o. We denote by V9 the Levi-Civita connection on T'M, and by R = R, € Q*(End? (T'M)) its

curvature, i.e., the Riemann tensor. We form the A- genus form
A iR
A(M,g) =det'/?| —22—9___ | € Q*(M).
smh( =Ry )

This is a closed form whose cohomology class is independent of g and we denote by A(M ).

Suppose (E,V¥) is a Dirac bundle and D : C>®°(Et) — C>(E™) is the associated Dirac
operator. We denote by FE/S ¢ Endcyarn (E) the twisting curvature of E. Recall that we have a
natural relative s-trace (see Definition 2.2.7)

str®/S : Bndgyar)(B) — Cyy-
This induces a map
str”/S . Q*(Endey oy (E)) — Q°(M) @ C,
uniquely determined by
str/S(w @ T) =wstr®S T, vw e Q°(M), VT € Endgyay)(E).
We set
chE/S(E) = str®/S exp( %FE/S> € Q*(M).

We will see a bit later that this is a closed form whose cohomology class depends only on the
topology of E.
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If we twist E by a s-bundle (W, V"), then according to (2.2.13) we have
where the curvature 'V of W has the direct sum decomposition
FV=F"" g F"".
We deduce )
chEEWS(EGW) = ch®/S(E/S)(ch(FW") — ch(FV 7). (3.1.1)

We can now formulate the main result of these lectures, the celebrated Atiyah-Singer index theorem.

Theorem 3.1.1 (Atiyah-Singer).

ind Dy = dimker D — dim ker D%, = / A(M,g) ch®/5(E/S).
M

We will spend the remainder of this chapter elucidating the significance of the integrand in the
Atiyah-Singer index theorem. Observe that the integrand on the right-hand side is a form of even
degree so that the index of a geometric Dirac operator on an odd dimensional manifold must be
zero. Therefore, in the sequel we will concentrate exclusively on even dimensional manifolds.

The theorem is true in a much more general context of elliptic operators but the formulation
requires a rather long detour in topological K -theory. For the curious reader we refer to the mag-
nificent papers [1, 2].

3.2. Fundamental examples

3.2.1. The Gauss-Bonnet theorem. Suppose (M, g) is a compact, oriented Riemann even dimen-
sional manifold without boundary. Set 2m := dim M, F := A*T*M ® C and we denote by vE
the connection on E induced by the Levi-Civita connection. As explained in Example 2.2.27, the
bundle £ is a Clifford bundle, and (£, VY) is a Dirac bundle with associated Dirac operator

Dp=d+d :Q*(M)— Q*(M).
The bundle E has an obvious Z/2-grading
Ei — Aeven/oddT*M
and Zg is odd with respect to this grading, i.e.,
PEC>®(E*) Cc C®(ET).

As usual, we denote by D the restriction of 2 to C*°(E™). The Hodge theorem shows that the
index of

Dpg:C™®(ET) = C®(E™)
is precisely the Euler characteristic of M. The Atiyah-Singer index formula shows that

X(M) = /M A(M, g) ch®/5(/S).

Let us analyze the integrand in the right-hand-side of the above equality. We first need to understand
the twisting curvature F¥ /8

FES — pE _ c(R) € 92(Endc1(M) (E) )
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Fix € M and choose a local orthonormal frame e; of T'M near z. Set V,, := Ty M. We denote by
e the dual coframe. We assume additionally that (e;) is synchronous at . Set
Rijke == g(€i, Ry(er, er)ej ) = —g( Rgle, er)ei, e5).
This shows that
g(er,en)e; = ZRZ]MQ (3.2.1)

For every i < j the curvature F'¥ of V¥ induces a skew—symmetric endomorphism
FE(ei,e;) € End(E,).
We want to describe this endomorphism in terms of the components R;;x¢. For every ordered multi-
index I = (i1 < -+ < i,) We set
el i= et Ao N ele,
The collection { el; I } defines a local orthonormal frame of E near x and thus we only need to
understand

EY (ep, ep)e’ (x).
Setting V; = V., we have
FE(ek7 e@)el = ( [Vk:E7 VZ ] v[ek eg] ) !
Since (e;) is synchronous at x we deduce that, at x,
V[ek e[]@ =0.
We deduce that at = we have
FE(ep ep)e! = (FE(ep e)e™) Ao Aelo 4o et Ao A (FP (e, e)e™).

Let us observe that .
FE(e,e0)e” = Rigree'. (3.2.2)
i

Indeed, we have '

Fe(ep,ep)e” = (F°(ex, er)e, ej)e’
From the equality

0= [a@k,ae[]@a, €j>7
we deduce that, at x,
0= ([Vi, Vile, e5) + (e, [V, Vilej) = (F®(ex, er)e”, ej) + (e, R(ek, er)e;).

Hence, at x we have

3. 2 1)
<Fe(€k7€e)€a,€j> = —<€a,R(€k7eg)€] ( - < ZRz]kZ€z>

= Z Rijiedi = —Rajie = Rjake-
i

This proves (3.2.2).

We denote by ¢; € End(FE;,) the exterior multiplication by ¢’ and by ¢; € End(E,) the con-
traction by e;. We can then rewrite (3.2.2) as

FE(ek, 64)60‘ = (Z RiijSiLj) e®

]
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Moreover
gitjel = (it €)Y Ne2 A A et Aol A (guget),
and we deduce
FE(ek,eg)eI = (Z Rijkgéiéj>€l. (3.2.3)
Forevery j =1,2,---,2m we set ’
Bji=¢cj+15, ¢ = gt —y; = c(ei).
Observe that
{6i, B} = —{ci, ¢j} = 2045,
{ei, B} = (i — i) (g5 +15) + (g5 +15) (e — 1) = 0.
This shows that 8; € End(E) s-commute with the Clifford action, Vi, so that
B € Endeug vy (Ex), Vi

Now observe that

— e+ Bi)(e; — )

282' =c; + ,Bi, —2Lj =Cj — ﬁj Eilj = 4(

Using this in (3.2.3) we deduce

FE(ep, ep)el = —= ZRW (ci + Bi)(c; — By)e’. (3.2.4)

The sum in the right-hand-side can be further s1mphﬁed. We have
> Rijelei+ Bi)(ej — B5) = > Rijuelcicj — BiBj + Bicj — ¢if; ).

i,j ]
Using the symmetry R; iy = —Rjikg and the s-commutativity {c;, 5;} = 0 we deduce
FE(ep, ep)el = —= ZRZW cicj — BiB;)e’
i\
<Zg g(€ersep)es ej)c ¢l ) el — = (Zg g€k, ep)es, ej)ﬁzﬁj) . (3.2.5)
0.
C(R)(exee)
This implies
FE/S(ek,eg ZR”MBZBJ == Zg (ex,ep) el e )Bzﬁ] (3.2.6)

We now turn to the investigation of the s-trace
StI‘E/S : End(c](vw)(Ex) — C.

For every skew-symmetric endomorphism R of V, = T* M we define S € ETI;iCIC(VI) (E) by

Br = _é ;Q(Rei, e’)BiB;.
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Lemma 3.2.1. Let R : T;M — T} M be a skew-symmetric endomorphism. Then
1
Pfaff(—5-R)
1 A . I
det2 A(5=R)

E/S

str”/® exp Br =

where we recall that A(x) denotes the even function
- x/2
(2) = —2= .
sinh(z/2)

Proof. The morphism S is independent of the orthonormal basis (e?) of V.. Chose an oriented
orthonormal frame {ei, f 1 <1 < m} with respect to which R is quasi-diagonal

Re! =\ fY, Rf'=—\f% (3.2.7)
Setx; := —;‘—i. Using (1.2.14) and (1.2.15) we deduce
Pfaff(—%R) ik xj

—— =[] - (3.2.8)
det2 A(= R) HA(%)

On the other hand, spectral decomposition (3.2.7) implies that

Now observe that

B} = B(e)B(H)B(B(f) = —B(e')*B(f1)? = -1
so that
exp(zB;) = cos z + (sin z) B,

and

s i\ =i
exp(Br) = H(cos 4—; + Bjsin 47TJ).
j=1

Using the identities
cos(iz) = cosh z, sinhz = ésin(—1z)

we deduce

Let



98 Liviu I. Nicolaescu

Using Corollary 2.2.9 we deduce

str

Now observe that

Set
<<f><+>>

%Cosh(i )C +*Slnh()\ )CBJ’
V; == spanc(e/, f7), Ej:=A"Vj;.

Observe that 1,e7, f7,eJ A 7 is an orthonormal basis of E; and we have

Bil=¢ Nfl =01, Bje! Nfi=-1=Cjel A (3.2.92)
Bjel = —f7 = —~Cjel, Bjfl = el = —-C;f’ (3.2.9b)
Cij = —]lEchve” + ]lEJo_dd. (3.2.90)

Hence FEj is an invariant subspace of Cj, B; and

Aj Aj
strP CjBj = —4, strg, C; =0, strg, Tj = =2 sinh( 4—]> = QSinh( —4—]>
s s
)\,
(xj:=—3k)
sinh (%) T
=ux; . = .
Tg A(z;)
Additonally, observe that for j # k we have
BjeP = eI AN fr, Biff=el AN fE (3.2.10)

Using the isomorphism of s-vector spaces

E = ®jEj

we deduce
. . X
g " B sinh (=) x;
str ﬁFeXpBR:Hstr JTj:Hmj %2 :A(ajzj)
J J
The conclusion now follows from (3.2.8). O

From (3.2.6), Lemma 3.2.1 and the analytic continuation principle (Proposition 1.2.11) we de-
duce

. 1
str5 (exp( L p) ) = Plaff(—5; Ry) _ e(M.g)
2m det2 A(LRy)  A(M,g)
where e (M, g) denotes the Euler form determined by the Levi-Civita connection on 7'M . Using
this in the index theorem we obtain the following result.
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Theorem 3.2.2 (Gauss-Bonnet-Chern). For every compact oriented, even dimensional Riemann
manifold (M, g) we have

x(M) = /M e(M,g) = /M Pfaﬁ'(—%Rg)

3.2.2. The signature theorem. The bundle £ := A*T*M ® C is equipped with another Z/2-
grading induced by the Hodge *-operator

%t AST*M — A*™=*T* M.
Recall that for any o € QP (M) we have (see (1.3.1))
*(xar) = (=1)PCM Py = (=1)Pa.
Define
p(m,p) =p(p—1) +m
Yo = PPy APT*M @ C — A PT*M @ C, ~ := ®pYp € End(E).

Observe that

p(m, p) + p(m,2m —p) = p(p — 1) + (2m — p)(2m —p — 1) + 2m

=4dm* +2m+pp—1)—2m2p+1) +p(p+ 1) = 2p* mod 4.

Since i%° = (—1)P we deduce v? = 1 and the +1-eigenspaces of ~y define a Z/2-grading on E.
Moreover a simple computation left as an exercise shows that'

v =1"c(dVy) =i"c(T), (3.2.11)
where for a local, oriented, orthonormal frame e, . .., e?™ of T*M we have
F=el- e e ClM).

We deduce
c(a)y + ve(a) =0, Va € QH(M).
This shows that we can interpret E equipped with this new Z/2-grading as a new bundle Clifford
bundle. We will denote itby & = @&, Since the bundle and the Clifford action has not changed
it is clear that € is a Dirac bundle with associated geometric Dirac operator d + d*. This induces an
elliptic operator
D= (d+d"):C®E") = C>®E&).

We would like to compute its index. Observe that

ker D = {a eQ(M)®C; ya=a, du :d*azo},

ker D* = {a EVPM)®C;, yva=—a, da=d'a= O}.

To compute inde D = dim¢ ker D — dimc ker D* we will use the Poincaré-Hodge duality. Denote
by HP(M, g) the space of complex valued g-harmonic (m + p)-forms,

HP(M, g) = ker(d + d*) N Q™ P(M) @ C = H™P(M, C).

IThis explains the weird choice of p(m, p).
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Then ~y defines an isomorphism v : H™P(M, g) — HP(M,g). We get a decomposition into -
invariant subspaces

ker(d 4 d*) @ Ko = H(M, g) = H™(M,C),

K, =H"P(M,g)®HP(M,g) = H" P(M,C) ® H""?(M,C).
‘We deduce

dimc ker D = Z dimkerc(1g, —7), dimckerD = Z dimc ker(1x, + 7).
p=0 p=0

For p > 0 we have another involution € on K,
€p = ]lg-f—p @ —ﬂg{p-
Note that 7 |, anticommutes with €. This implies that ¢, induces an isomorphism
€p : ker(1g, — ) — ker(lg, +7)
so that
dimc ker D — dimc ker D* = dim¢ ker(1 g, — v) — dimc ker(1 g, + 7).
Observe that K is the complexification of the real vector space of real valued g-harmonic m-forms
and as such it its equipped with a R-linear involution, the conjugation. We will denote this operator
by C. We will compute

dimp ker(1x, —v) — dimpg ker(1 g, +7v) = 2indc D

At this point we have to consider two cases.

1. m is odd. Observe that for every complex valued m-form o we have

vCa=i™ xa = (=1)™i"™ x o = —Crya.
This shows that C' defines an isomorphism of real vector spaces

C:ker(lg, —v) — ker(1g, +7)
which shows that in this case
inde D = 0.
2. m s even. Then v |x,= i™ % = % and in particular v commutes with the conjugation. Denote
by H™ (M, g) the space of real g-harmonic m-forms on M so that
Ko =H"(M,g) ® C.

We deduce

dimg ker(1, &) = dimg(Lgm(ar,g) T 7)-

The vector space H™ (M, g) is equipped with a symmetric bilinear form

H™(M,g) x H*(M, g) > (u,v) = Q(u,v) = /Mu/\v.

Moreover

Q(u,yv) = (u,v) 2 == I(u,v) = (u,7v) 2.
Hence, using the L?-metric on H™, we can represent () by the symmetric operator v = *. The
signature of () is thus the same as the difference between the dimension of the 1-eigenspace of
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and the dimension of the —1-eigenspace of . The Poincaré duality shows that () is precisely the
intersection form (over R) of the manifold M and the signature of () is a topological invariant,
namely the signature sign(M) of M. We conclude

indc D = sign(M)
To express the index as an integral quantity we need to find an explicit description of
stré/S (iF‘S/S ) .
27
Observe that F'€/S = FE/S. The only difference between this situation and the Gauss-Bonnet
situation encountered earlier is in the choice of gradings.

Lemma 3.2.3. Using the same notations as in Lemma 3.2.1 we have

1 .
det2 L(;=R
Strg/SexpBR —9m . A(4;r 9)’
det? A(ERQ)
where we recall that L(z) = t—.
Proof. Using Corollary 2.2.9 we deduce
/s e A
str/® exp fr = 2—mstr Texp fr = 2—mtr ~Iexp BRr.

Using the equality (3.2.11) we deduce that ¢TIy = 1¢ so that

1
stré/S exp Br = om tr” exp Bg.

To compute this trace we choose as in the proof of Lemma 3.2.1 an oriented, orthonormal basis
{el, f1,...,e™, f™} of V, such that
Rel = \;f7, RfI =-\fI.
We deduce again that
m
N an a2
exp fr = 1_[1<cosh( E) —1B; smh( E) )

j:

Set again
Vj :=spanc(e’, f7), Ej:=AVj.

We deduce from (3.2.9a, 3.2.9b, 3.2.9¢, 3.2.10)

- A A
tré exp fr = jl;[ltrEj <cosh( ﬁ ) —1B; sinh( ﬁ ) ) .
Since trfi Bj = 0 we deduce
1

stré/S exp fr = 2% ﬁ cosh(i—i) dim E; = 9™ det cosh(ER).
j=1

At this point we observe the following elementary identity
L(z/2)
A(z)

= 2coshz/2.
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Hence

£/s de

str*/> exp fr = 2™

Observe that we have

1 1 1 )
27 |q t’L(—R ) — |a t’L(—R ) :
where for any power series f = f(X1,..., Xxn) we denote by [f]x its homogeneous part of degree

m. Putting together the facts obtained so far and invoking the unique continuation principle we
obtain the following important result.

Theorem 3.2.4 (Hirzebruch signature theorem). Suppose (M, g) is a compact, oriented Riemann
manifold without boundary such that dim M = 4k. Then

sign(M):22k/ {det§L<zRg>] :/ L(M).
M 47T 2% M
In particular when dim M = 4 we obtain
1 1
signM:/le:— /trR/\R,
() =3 [ mOn) =55 [ w@r ARy

where Ry, € Q*(End TM) denotes the Riemann curvature tensor, and p1(M) denotes the first
Pontryagin class of the tangent bundle of M.

Example 3.2.5. We would like to discuss an amusing consequence of the signature theorem. The
Poincaré duality shows that the Betti numbers of a compact, connected, oriented n-dimensional
manifold M satisfy the symmetry conditions

bk(M) = bn_k(M)
If we form the Poincaré polynomial of M
Prr(t) =14 by (M)t 4+ by_y (M)" ™+t

then we see that the coefficients of this polynomial are symmetrically distributed. It is more conve-
nient to consider the polynomial

Qui(t) = 77 £ by (M) g2,
The Poincaré duality then shows that
Qu(1/t) = Qum(t).
For example
Qg1 =t 2412 Qepr =t 2+ 1412, Qgom =t™ + 1™
Observe that
Qcpz — Qga = 1.

We can ask if for every m > 0 we can find an oriented manifold X of dimension 2m such that

RQx — Qgem = 1. (3.2.12)
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Let us point out that if m = 2k 4 1 so that n = 4k + 2, then the intersection form on the middle
cohomology group H2*+1 (X, R) is skew-symmetric, and non-degenerate according to the Poincaré
duality. In particular the middle Betti number boy 1 (X ) must be even so that

1 bopy1 (X) 4+ bop(X)(E+ 1) + - + b (X) (2 +172%) = Qx — Qounse.

Thus the “equation” (3.2.12) does not have a solution when m is odd. We can refine our question
and ask if it has a solution for every even m. For the smallest possible choice of m the answer is
positive and X = CIP? is such a solution. We want to show that for m = 6 we cannot find a solution
either, but for different other reasons.

Suppose X is a 12-dimensional manifold ”solving” the equation (3.2.12). This means

0 if k#0,6,12

Qx =t "+ 1+t <=>bk(X)_{1 if k=0,6,12.

In particular, H*(X,R) for k # 0, 6, 12. From the signature theorem we deduce
sign(X) = / Li2(X)
X
where Lo denotes the degree 12 part of the L-genus. We have (see [13])

2-31
= 5 (ps(3) = L3pa(X)pi (X) +2p} (X))
The Pontryagin classes p1(X) € H4(X’ R) and pa(X) € H8(X7 R) vanish so that

. 2-31
sign(X) = 33‘L’_)'7/ng(X).

Li2(X)

On the other hand?

/Xps(X) €Z

and we deduce that the signature of X must be divisible by 62. On the other hand, the signature
of X is the signature of the intersection form on the one-dimensional space H°(X,R) so that this
signature can only be £1. We reached a contradiction!

For more examples of this nature we refer to J. P. Serre, “Travaux de Hirzebruch sur la topologie
des variétés”, Séminaire Bourbaki 1953/54, n° 88. O

3.2.3. The Hodge-Dolbeault operators and the Riemann-Roch-Hirzebruch formula. Suppose
M is a connected manifold. An almost complex structure on M is a an endomorphism J : TM —
T M such that

J?=-1.
An almost complex manifold is a manifold equipped with an almost complex structure. The exis-
tence of an almost complex structure imposes restrictions on the manifold.

Proposition 3.2.6. Suppose (M, .J) is an almost complex manifold. Then n = dimR is even
n = 2m and the tangent bundle T'M admits a GL(m, C)-structure. More precisely, if we denote by
p the canonical inclusion

GL,,(C) = GLain(R),

2For a proof of this fact we refer to [20, 22].
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then there exists a principal GL,,,(C)-bundle P — M such that
TM = P x,R*™. O

From Example 1.1.13(h) and the above proposition we deduce that an almost complex manifold
is orientable. There is a canonical way of choosing an orientation of 7'M . To describe it we need to
indicate a basis of det T, M at some point x € M. We do this by choosing a basis e1, fi, ..., em, fm
of T, M adapted to J, i.e.,

Jer = fo, Jfx=—ex, VE=1,...,m. (3.2.13)

Then the canonical orientation is determined by e; A fi A---Aep A fi, € det T, M. One can check
easily thatif €1, fi, - ém, fm is another basis adapted to J then we can find a positive scalar ¢ such
that . .

EINFiIN - ANemNAfm=cler AfiA-Nem A fm),
so that this orientation is independent of the choice of adapted basis. We will refer to this as the
complex orientation.

Example 3.2.7. Any complex manifold, i.e., a manifold which is described by charts with holo-
morphic transition maps, carries a natural almost complex structure. An almost complex structure
produced in this fashion is called integrable. g

If (M,J) is an almost complex manifold, we define a structure on C'°°(M, C)-module on
Vect(M) by setting

(u+1) - X =uX +vJX, Yu,v e C®(M,R), X € Vect(M).
The complexified tangent bundle TM ¢ = T'M & C admits a decomposition
TM¢ =TM"Y o TM%, TM" =ker(i —J), TM®' =ker(—i — J).
In particular we have natural projections
PO .TMe MY, PO M - TMOY,
described explicitly as

1 1

X .= phix = (X —iJ), X0l.— pOlx — 5 (X +iJX), VX € C(TM").

The restriction of P%? to TM C T MF¢ induces an isomorphism of complex vector bundles
PY . (TM,J) — TM"Y.

By duality we get an operator J' : T*M — T*M satisfying (J7)2 = —1. The complexified
cotangent bundle 7*M¢ := T* M ® C admits a decomposition

M =T*M"0 o T*M%, T*MY0 =ker(s — JT), T*M® = ker(—3 — J7).
In particular, for every k we have a decomposition
AT M= @ AT MY o AT MO
p+q=k =APaT* M

We set
QPIY(M) = C(APIT*M).
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The elements of Q2P7( M) are called (p, q)-forms on M. The bundle
detcT MO = A>T M = A™OT*M, 2m = dimg M

is called the canonical line bundle of the almost complex manifold M and it is denoted by K ;. It
is a complex line bundle and its sections are (m, 0)-forms on M.

For any a € QP4(M) C Q*(M) ® C, k = p + ¢, we have

doe P (M)
p'+q'=k+1

In particular dov will have a component in QP+L4( M) which we denote by dar and a component in
QP4+ M) which we denote by 0.

For a proof of the following result we refer to [15, IX,§2].

Proposition 3.2.8 (Nirenberg-Newlander). Suppose (M, J) is an almost complex manifold. Then
the following conditions are equivalent.

(a) The almost complex structure is integrable.

(b) For every p, q and every a € QP? we have
doa = da + Oav. O

An almost Hermitian structure on M is a pair (g, J), where ¢ is a Riemann metric and J is
an almost complex structure such that J* = —J, i.e., J is an orthogonal endomorphisms. To any
almost Hermitian (g, J) structure we can associate a 2-form

we P (M), wX,Y)=g(JX,Y), VX,Y € Vect(M).
The metric ¢ defines a Hermitian metric i : Vect(M) x Vect(M) — C*°(M, C) on T'M by setting
MX,Y):=¢g(X,)Y) —iw(X,Y) € C°(M,C), VX,Y € Vect(M).
One can check that
h(aX,bY) =ab-h(X,Y) Va,b € C°(M,C), X,Y € Vect(M). (3.2.14)
We can run the above arguments in reverse and deduce the following fact.

Proposition 3.2.9. Suppose (M, g) is an almost complex manifold. Suppose w € Q*(M) is a
2-form adapted to J i.e.

w(X,JX) >0, w(X,JY)=w(,JX), VX,Y € Vect(M)\ 0.

Then g(X,Y) := w(X, JY) defines an almost Hermitian structure on (M, J) with associated 2-
form w. O

Using the isomorphism of complex vector bundles P10 : (T'M,.J) — TM"Y we obtain a
Hermitian metric on TM!? such that the above isomorphism is actually an isometry.
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Example 3.2.10 (The standard almost Hermitian structure.). Consider the Euclidean vector space
R?m = R™ @ R™ equipped with the almost complex structure

o[ e

Igm 0
Denote by e, . . ., e, the canonical basis of the first summand R in R”* & R™ and set fi = Jeg.
The basis e1, fi,..., ek, fr is orthonormal and we denote by e!, 1, ..., ¥, f* the dual basis of

(R?™)*. We regard e, f7 as functions of R*™. The Euclidean metric has the description

g=) (e +fef
Kk
The associated 2-form satisfies

w(ei, fj) = 0ij, wleiej) =w(fi, f;) =0

so that
w=e' Afl- pef A fh
We set . )
k k | :¢ky =k kE sk
e = —(e” +1 , € = e —1 .
Tl ifh), & = (e —ifh)

Then the associated hermitian metric h has the form
h=2) fed = (Fac+ffaf)-id sk
k k k

We deduce
g=Reh, w=-Imh=1i) e"ne O
k

Definition 3.2.11. (a) An almost Hermitian structure (g, J) on M is called almost Kiihler if the
associated 2-form is closed .

(b) An almost Kihler structure (g, J) is called Kdhler if the almost complex structure is integrable.
O

We have the following sequence of implications
Kihler = almost Kihler = almost Hermitian = almost complex.

Suppose M is a complex manifold with induced almost complex structure J : TM — TM. The
complexified tangent bundle 7'M ¢ = T'M ® C is equipped with an involution

TM® — TM v+——170

which is R-linear and maps TM ' to TM%!. We have the following result whose proof is left as
an exercise.

Proposition 3.2.12. The complex manifold M admits a Kdihler structure if and only if it admits a
positive, closed, (1, 1)-form, i.e., a closed form w € QY*(M) such that

—iw(v,0) >0, Yve T,M"\0, ze M.
In this case the Riemann metric on T M is defined by
g(X,Y) = —2iw(X10 YO = (X, 4Y), VX,Y € Vect(M)
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and the hermitian metric h on (T M, J) satisfies
Reh =g, Imh=—w. a

For a proof of the following result we refer to [15, IX84].

Proposition 3.2.13. Suppose (M, g, J) is an almost Kiihler manifold. Denote by V9 the Levi-Civita
connection on T M. Then (M, g, J) is Kéhler if and only if VIJ = 0, i.e.

VI (JY) = J(VLY), VX,Y € Vect(M). 0

Example 3.2.14. (a) (The standard (Euclidean) Kahler metric) The vector space C" equipped
with the natural complex structure and hermitian metric h is a Kdhler manifold. If we denote by

2# = 2 4 4y/* the natural complex coordinates, and we set

. 6 . 8
€L = @’ fr = GT/’“’

then we have

1 1
k E sk ko _k E =k —k
e’ =dx”, =dy”, "= —=dzz", & =—dz
/ Y 7 7
so that .
h=Y"d*ed, w:%ijﬁAﬁ@

k k

We set .
@k:fﬂ%%kzia%kfa%w,zﬂﬂ%k:i@h
1

82k = Po’laxk = 5(8xk + z8yk)

Then

0=> dz" N, 0= 7"N0u.
k k

(b) Suppose ¥ is a compact oriented Riemann surface equipped with a Riemann metric on M. Then
the Hodge *-operator induces an operator

% TS - T, 2= —1.

By duality this induces an almost complex structure on . We obtain in this fashion an almost
Hermitian structure (g,*) on 3. The associated 2-form is the volume form dV; which must be
closed since its differential is zero due to dimensional constraints. We deduce that this structure is
almost Kihler. Dimensional constraints imply

d=0+0
so that by Proposition 3.2.8 this structure is also Kéhler.

(c)(The Fubini-Study metric) Consider the projective space CP". Recall that this is defined as a
quotient of C"*1 \ {0} with respect to the natural action of C*. Set Z = (2°,..., 2"), and

n 'L _
2P = 21", w = 5 0018 |2 = 2MH(CT0),
k=0

For every holomorphic function f defined on an open set U C C"*!\ 0 we have

log | f|*|Z)* = log | f|* +log | Z|* = log(f f) + log | Z|*.
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and a simple computation shows that
d20log(ff) = 0.
In particular, this shows that for z* # 0 if we set
(_;C = (zo/zk, ... ,zk_l/zk,zkﬂ/zk, LY P

we have _

wo = 5-09log(1+ |G ).
The vector (; defines local coordinates on the region

U = {[zo,...,z"] e CP;, ¢+ O}.
The above equality shows that on the overlap U; N U}, we have
5-001og(1+[Gi[?) = 3-00log(1 + |G[)

so that the collection of forms %85 log(1 + |Cx|?) defines a global (1,1)-form on CP". This is
called the Fubini-Study form. We will denote it by Qpg

Observe that Qg is closed and it is invariant with respect to the action of U(n + 1) on CP". If
we write generically ¢ = (¢!, ...,¢") and

1 = 9
QFS = %8810g( 1 + Z |C]| )
J
we deduce that

Qps= " ( L+ (T D de? ndc? — (3 clde) n (3 ¢hack) ) (3.2.15)
J k

2n(1 1 CP)? j
Observe that at the point Py € CPP™ with coordinates E = (1,0,...,0) we have

1 _ _
g, = Qs |y con= 1= (d¢ AdC* +2 7 dch A dct).
k>1

In particular, arguing as in (a) we deduce that for every X, Y € Tp,CP" \ 0
Qrs(X,6X) >0, Qrs(X,iY) = Qps(Y,iX).

Using Proposition 3.2.9 we deduce that Q2rg defines an almost Kihler structure on CP™. Since
the underlying almost complex structure is integrable we deduce that this structure is Kéhler. It is
known as the Fubini-Study structure.

(d) Any complex submanifold M of a Kihler manifold X has a natural Kéhler structure induced
from the structure on X. In particular, any complex submanifold of CP™ has a natural Kéhler
structure induced by the Fubini-Study theorem. Chow’s Theorem (see [12, Chap.L,§3]) implies that
every complex submanifold of CP" is algebraic, i.e., it can be described as the vanishing locus
of a finite collection of homogeneous polynomials. Thus the projective algebraic manifolds admit
Kihler structures. O



Notes on the Atiyah-Singer index Theorem 109

Definition 3.2.15. A rank r holomorphic vector bundle 7 : W — M over a complex manifold M
a complex vector bundle described by a trivializing cover (U,,) together with local trivializations

\I’a : W|Ua*> Q’I}a

such that the transition maps
9Ba : Uap = GL,(C) C cr

are holomorphic. O

The total space of a holomorphic vector bundle W — M is equipped with a holomorphic
structure. Two holomorphic bundles over the same complex manifold are isomorphic if there exists
a biholomorphic bundle isomorphism between them.

If U C M is an open set, then a section s : U — W of W over U is called holomorphic if it is
holomorphic as a map between the complex manifolds U and WW. We denote by Oy (U) the space
of holomorphic sections of W over U.

Example 3.2.16. (a) If M is a complex manifold then the trivial line bundle C,, admits a trivial
holomorphic structure. A holomorphic line bundle isomorphic to the trivial line bundle is called
holomorphically trivial. We want warn the reader that there exist complex line bundles which can
be trivialized topologically but cannot be trivialized holomorphically .

(b) If M is a complex manifold then the bundles AP9T* M are equipped with natural holomorphic
structures.

(c) A holomorphic line bundle over a complex manifold is uniquely determined by an open cover
(Uy) and a holomorphic gluing cocycle ggo : Uy — C*. We deduce that the tautological line
bundle over CPP" is equipped with a natural holomorphic structure.

(d) All the tensorial operations on bundles transform holomorphic vector bundles to holomorphic
vector bundles. Similarly, the pullback of a holomorphic vector bundle via a holomorphic map is a
holomorphic vector bundle.

We denote by Pic (M) the collection of isomorphism classes of holomorphic line bundles over
the complex manifold M. The tensor product induces a group structure on Pic (M) with identity
element C,,; and inverse L~! := L*. This group is known as the Picard group of M. g

Definition 3.2.17. Suppose M is a complex manifold and W — M is a complex vector bundle.
We set

QPAU(TV) = C°(APIT* M ¢ W). 0

Definition 3.2.18. Suppose that W — M is a complex vector bundle over the almost complex
manifold M. A C R-operator (Cauchy-Riemann) on F is a first order p.d.o.

L:C®(W) = C®(T*M™ M o W),
such that for any smooth function f : M — C and any smooth section u of W we have
L(fu) = (0f) @ u+ f(Lu). 0

Proposition 3.2.19. Suppose W — M is a rank r holomorphic vector bundle over a complex
manifold M. Then W is equipped with a canonical CR (Cauchy-Riemann) operator Oy uniquely
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determined by the following requirement: for any open set U C M and any holomorphic section
u € Ow (U) we have dyu = 0.

Proof. Existence. Suppose that the bundle W has the gluing description
W = (Use, goo, GL-(C))

where the maps gee : Use — GL,(C) C Cr* are holomorphic. Then a smooth section u of E is
defined by a collection of smooth maps u,, : U, — CT satisfying the gluing conditions

ug(x) = gga(x) - ua(x), Vo,B, x € Uyp.
Define

Vo = OUg.
Observe that on the overlap U,z we have
v = Oug = 9(gsatia) = (9gsa)ta + ggadua-
Since gg,, is holomorphic we deduce 5gﬁa = 0 and thus
V8 = gpadla = gpava-
Hence the collection (v,,) defines a global section v of T* M%! @ W and we set
owu = v.

Observe that u is holomorphic if and only the function uq : Uy — C" are holomorphic. Clearly,
in this case Oy u = 0 since Ju,, = 0. This definition implies immediately that © — Oy u is a CR
operator.

Uniqueness. Conversely, suppose that dy and 5{/V are two C'R-operators. Consider the holomor-
phic gluing cocycle gg, : Uys — GL,(C). This signifies that we have biholomorphically identi-
fied Wy, with the trivial holomorphic vector bundle C7; . Thus, Wy, has a holomorphic frame
ei, ..., e, corresponding to the tautological holomorphic frame of C7; . Any smooth section u of
W over U, as the form

n
u= Zujej, w € C®(U,,C).
j=1
Since 5Wej = _{,Vej = 0, V7, we deduce
owu = Z(éuj) ® e; = Oy u.
j
O

On a complex manifold the bundles AP2T* M are holomorphic vector bundles. Iterating the
construction in Proposition 3.2.19 we obtain for every p € Zx>( a sequence of first order p.d.o.-s

0 — POW) 2% QPL (W) — - — QPIW) D% QPati (W) o - (3.2.16)
More precisely the operator dyy : QP4(E) — QP9+ (E) is defined as the composition

C®(APIT*M @ W) 2% 0o (T* MO @ APIT*M © W) L5 C(APSHIT* M @ W),



Notes on the Atiyah-Singer index Theorem 111

From the definition of dyy it follows that 5124, = (0 sothat (3.2.16)is a cpchain complex. It is known
as the p-th Dolbeault complex of W. We will denote it by QP*(W), 9y ) the cohomology groups
of this complex are denoted by

HPI(W) = ker(éw_: QPYW) — QP’QH(W)) .
9 Range (8W QP (W) — Qp,q(E))

Observe that dyy is a first order p.d.o, and for every 2 € M and every £ € T* M we have
ow (€)== o (Ow) (&) = PN APITIM @ W, — APITITEM @ W,
where £%! denotes the T3 M%! component of & with respect to the canonical decomposition
TrMe = TMY @ T MOt
Lemma 3.2.20. The p-th Dolbeault complex is an elliptic complex, i.e., for every x € M and every
¢ € TxM \ 0 the symbol complex
0= AT M oW M AT A oW o AT M o W S AT M oW s

is acyclic. O

The proof is left as an exercise. Using the above lemma and the general Hodge Theorem 2.1.38
we deduce the following result.

Theorem 3.2.21 (Hodge). Suppose that M is a compact complex manifold and W — M is a
holomorphic vector bundle. Then the cohomology groups of the p-th Dolbeault complex are finite
dimensional. Moreover, for any hermitian metric h on T'M and any hermitian metric hyy on W we
have

HEN(W) = {a € WPIW); Owa = Ojya= 0},

where 5;}, denotes the formal adjoint of Oy with respect to h and hr. a

We set
hPU(W) = dime HE(W)
We will refer to these numbers as the holomorphic Betti numbers of W. These numbers are invari-

ants of the holomorphic structure on W. If we vary the holomorphic structure while keeping the
topological structure on F fixed these numbers could change. When W = C,, we set

WPA(M) = hP9(Cyy)

and we will refer to these as the holomorphic Betti numbers of M. We define the holomorphic
Poincaré polynomials

FO () =Y BP9, Hy(s,t) = Y HY (0P =Y WPIW)sPt.
q p psq

When W = C,, we write 3, instead of Hc .
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Remark 3.2.22. To put things in some perspective we need to to invoke some sheaf-theoretic con-
cepts. For more details we refer to [12, 32]. Let W — M be a holomorphic vector bundle. For
any g € Zx>( and any open subset U C M we denote by éagv’q(U ) the space of smooth sections of

A%9T* M ® W over U. The correspondence U — éagl}q(U ) is a pre sheaf of complex vector spaces
over M, and so is the correspondence U +— Oy (U). Observe that

Ow(U) = ker(éw L E0U) - gvovvl(U)).
We obtain a sequence of presheaves and morphisms of presheaves
0 Ow (=) = 6" () M 651 (=) 2o

A version of Poincaré lemma shows that this defines an exact sequence of sheaves. The above
sequence is called the Dolbeault resolution of the (pre)sheaf Oy, and the cohomology H%* (W) of
the O-th Dolbeault complex can be identified with the cohomology of the sheaf Oy . O

To relate the Dolbeault complex with geometric Dirac operators we need to discuss another
important concept.

Definition 3.2.23. Suppose W — M is a complex vector bundle over the complex manifold M.
Then for every connection V on W we define Jy as the composition

dy : C°(W) —2 C°(T*M® @ W)—C>®(T* ML @ W).
We will refer to v as the CR operator defined by the connection V. O

Proposition 3.2.24 (Chern). Suppose W — M is a holomorphic vector bundle over the complex
manifold M. Then for every hermitian metric h on W there exists a unique hermitian connection
V" on W satisfying

Jeon = Dy

The connection V" is known as the Chern connection determined by h.

Proof. For every vector field X € C°°(TM¢) we denote by X its conjugate, by X1 and X1 its
(1,0) and respectively (0, 1)-components. Suppose X € C>(TM®), u,v € C*°(W). Then for
every hermitian connection V on W we have
Lxh(u,v) = h(Vxu,v)+ h(u, Vgv)

since h(—, —) is conjugate linear in the second variable. In particular

LX1,oh(u, U) = h(vxl,ou, U) + h(u, VXO,M}).
We deduce that

Oh(u,v) = h((V — Ov)u, v) + h(u, dgv).

Hence

h(Vu,v) = 0h(u,v) + h(dgu,v) — h(u, Ogv).
This shows that V is completely determined by the associated CR operator, and thus establishes the
uniqueness claim. To prove the existence we use the last equality as a guide and define

h(u, V') := Oh(u,v) + h(dwu,v) — h(u, dyv). (3.2.17)

One can show that this defines indeed a hermitian connection on W. O
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Example 3.2.25. (a) Suppose M is a complex manifold and h is a Hermitian metric on T'M. The
metric h induces hermitian metrics on all the holomorphic bundles AP2T* M. If the Levi-Civita is
compatible with the complex structure on T'M, i.e., if M is Kéhler then the Levi-Civita connection
induces hermitian connections on all these holomorphic bundles. Moreover, these induced connec-
tions are exactly the Chern connections determined by the corresponding metrics and holomorphic
structures.

(b) Suppose W — M is a holomorphic vector bundle and (e,) is a local holomorphic frame of W.
We set

hab = h(ea, Cb).
If (27) is local holomorphic coordinate system, using (3.2.17) we deduce

Ohy,
h(V’;jea,eb) =5

h c
Viiea = g Fjaec
Cc

If we write

then we deduce

. Ohap
Z Djaher = 929

sO in matrix notation we can write
oh _1 0h
The connection 1-form with respect to this frame is then
I'=> T;d =h™'0h.
J

(3.2.18)

The curvature is then given by
F=dU +T AT =d(h~'0n) + h~'on AL 10h.
Using the identity
d(h=oh) = d(h~ton) + d(h™10h) = —hL1Oh A ™10 + 0T = —T AT + 0T’
we deduce
F =00 =—-h"'onhAh7'0h + h7100h € QL (End(W)). (3.2.19)
a

Suppose M is a compact Kihler manifold with underlying Riemann metric g . We denote by V9
the hermitian connections induced by the Levi-Civita connection on A**7T*M. Let W — M be a
holomorphic vector bundle equipped with a hermitian metric. We denote by V'V the corresponding
Chern connection.

As explained in §2.2.1, the hermitian vector bundle A%*T*M is a bundle of Clifford modules
in a natural way, where the Clifford multiplication is given by

c(a) = \@(ao’l A—a01), Yae Q' (M)®C,

where
a0 g =gl ), VB (M) ®C,
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and gi denotes the extension by complex bilinearity of the Riemann metric g' on 7*M to a sym-
metric bilinear form on 7" M & C.

Let us point out, that for every z € M the C1(T} M)-module A%*T* M is isomorphic to the
dual of the complex spinor module Stx . In particular, this shows that the Clifford multiplication
by a real 1-form is skew-hermitian. Tautologically, this Clifford multiplication is compatible with
the Levi-Civita connection. We conclude that (A%*, ¢, V9) is a Dirac bundle.

Proposition 3.2.26. The geometric Dirac operator 9 determined by the Dirac bundle (A>*, ¢, V9)
is equal to

V2(0 4 0%) - Q¥ (M) — QO (M).

Proof. Fix a point p, € M. Since M is Kéhler we can choose normal coordinates z*, y* near p,
such that

(Do) = ¥ (po) =0, JOpe = Dy, V.

Set
ek = Oy, fr = Oy, e =da¥, R =dyF, 2F=aF+ ik
1 1
k ko -k &
e = —dz", & =—=dz".
V2 V2
1 . _
Er = E(ek — ’Lfk) = \/§8Zk, EL = \6821@
Then

2 =v2)> ("AVL —Fave ).
k

0= d"*Nds =) " N0,
k k
We denote by o(1) any bundle morphisms 7 such that T'(p,) = 0. Since (z*,y") are normal
coordinates at p, we deduce the following identities
divg(er) = divy(fi) = o(1), VI =0., +0(1), VI =0z +o(1)
so that
(VE)" =05, +0(1) = =0, +o(1) = =VI, +0o(1) = 05, = =V, +o(1).

Using the equalities

Veifj = ijei =0 atpg, Vi,7,
we deduce

(¥ NOs)* = (05) (") = (=V4 4+ 0(1) ) (ex ) = —ex 1 VI, +0(1).
This implies that
2 =V2(0+0%) +o(1).

The proposition now follows from the fact that the point p, was chosen arbitrarily. O
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We can twist this Dirac bundle with any other complex Hermitian vector bundle W equipped
with hermitian connection A and we deduce that the corresponding geometric Dirac operator is

Dw =204 + %) : QV(W) = QO (W).

In particular, if we tensor with APT*M ® W, where APOT* M is equipped with the Levi-Civita
connection and W is equipped with the Chern connection we deduce that the geometric Dirac
operator associated to the Dirac bundle AP*T*M & W is

Dwp = V2w + iy).
In particular, we deduce that
ind Zy,p = »_(~1)ThPU(E) =: x,(W).
q>0
When W is the trivial line bundle we set
Xp(W) =2 xp(M) > (=1)ThP9(M).
q=0

Theorem 3.2.27 (Riemann-Roch-Hirzebruch). Suppose (M, g) is a Kéiihler manifold, dimgp M =
2m, and W — M is a holomorphic vector bundle equipped with a hermitian metric. Then

Yo(W) = /Mtd<M> ch(W).

where td(M) denotes the Todd genus of TM'° and ch(W) denotes the Chern character of E.

Proof. It suffices to consider the case when W is the holomorphically trivial line bundle. The
general case follows from this one by invoking (3.1.1). We have to show that

N 11430, _
XO(M)—;)( 1)70%4(01) /Mtd<M>.

Consider the Dirac bundle (&,V) = (A%*T*M,V9). We denote by R the Riemann curvature
tensor and by F'¢ the curvature of V.

Fix a point py € M, normal coordinates (xk, yk) at py and define as before
e = Ok, ,fr= 8yk, ek = da, fk = dyk, 2k =gk +iyk, 1<k<m.
We set e;4., := f;. The twisting curvature of V is
F&S = FE(X,Y) — ¢(R) € Q*(End(8)),
where according to (2.2.12) we have
c(R)(X,Y) = % > 9(R(X,Y)er,er)cler)e(er), VXY € Vect(M).  (3.2.20)
1<k, £<2m

We need to better understand the nature of these quantities. We begin with the curvature F¢. Set as
before

1 : _ 1 : PR S S
er = —=(ex —tfr), & = —=(ex +1fr), € = —=dz", & = —=dz". 3.2.21
k ﬂ( k= tfk)s Ek \/5( K+ 2fk) 7 7 ( )
For every ordered multi-index I = (41, ...,1;) we set

el=gt n . pE,
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For every X,Y € Vect(M) and u : M — C we set
FE¢uX,Y) = F&(X,uY) = uF¢(X,Y) € End(¢&).
Then
FE=>"F(epen)e® Ne + ) Fo(e,a)e" net + > F(ep,e0)e" N
k<t k<t k0
The identity (3.2.19) implies that F¢ € Q! (End €) so that the first two terms above vanish. Hence
F¢ = ZFe(ek,ég)ek A&l
k¢
The curvature F'¢ is induced from the Riemann curvature tensor and if for simplicity we set F¢(—) =

FE(eg, &) then
Fe(-)é = R e—zgc ~)e, el = (ch Jess &) - e(&) - i(es) )
In general we have
5‘:< ge(R(-)es &) e (éj)-i(ss))e_l.

For simplicity set
Ri7 = g(R(=)e &), C* :=c(M)e(eh), CF = c(e")c(dh), etc.
Since c(&%) = v/2¢(&%), c(ef) = —/2i(eh)
1 _
FE= -2 ; Ry O = Z Ry + kzﬂ RyC*.

To describe the term ¢(R) let us observe that the expression in the right-hand-side of (3.2.20)
is independent of the dual pair of bases {(e;), (¢‘)} of TM ® C and T*M ® C. We would like to
express everything in terms of the bases

{(ej.&n), (7,85}

A few cancellations take place. Recall that for every X € Vect(X) we have

1 1
XMW =-1-inx, X% = F(I+3D)X

= 2(
so that
X = X104 x01 gx10_ jx10  jx01 — _;x01

Ge(X 10 Y10y = g (X0 yOly = 0 g (X10, YOy 1 g, (X0, Y10) = 2¢(X,Y).

Since the Levi-Civita connection is compatible with J we have
R(=)J = JR(=), (R(-)X)"* = R(-)X", (R(-)X)*" = R(-)X"".
Writing for simplicity R instead of R(X,Y") and using the equalities
R = —Rg, Yk 0, CH =_C% k40
we deduce
CR)XY) =5 37 (RO + RyyCH) = %ZRMC’“Z.

1<k, £<m =
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Hence 1
&/s
F&/5 = 3 > Ry
k

The quantity ), R, is precisely the curvature of det 7 M 0l > det TMW0 =~ K]\}l. Using the
decomposition

T™M @ C=TM"Y & TM"!
and the compatibility of the Levi-Civita connection with the complex structure we deduce a decom-
position of the Riemann tensor

R=R" ® R,
and we have
FE/8 = %tr R,

Recall - -

- B a2

A (x) P td (z) e A (x)
We deduce

1 A
th (zg) = exp(§ Zxk) HA (x)
k k k
so that
. L A )
td(M) = td (iRlv()) - exp(5 tr %RLO)A (M) = A (M) - ch(&/S). (3.2.22)

The general case when we twist the Hodge-Dolbeault operator with a holomorphic complex bundle
follows from (3.1.1). This concludes the proof of the Riemann-Roch-Hirzebruch theorem. O

Example 3.2.28. Suppose that X is a Riemann surface of genus ¢g(X) equipped with a Riemann met-
ric h. As explained in Example 3.2.14(b) this induces a Kihler structure on 3. Given a holomorphic
line bundle L — 3 equipped with a Hermitian metric we obtain a Hodge-Dolbeault operator

or - QY9(2) = Q% (®).
Then
ind 9y, / £d(%) - ch(L).
We have .
td(X) = 1+%c1(2)+--- , ch(L)=1+c¢(L)+---
so that the degree 2 part of td(X) - ch(L) is 1¢1(X) + ¢1(L). Hence

ind@L—;/Ecl(E)—i—/Ecl(L).

Observe that ¢1(X) = e(X) so the Gauss-Bonnet theorem implies

;/Ecl(z) —1-g(%).

The integer fz c1(L) is called the degree of L and it is denoted by deg L. We obtain the classical
Riemann-Roch formula
ROO(L) — hY(L) =1 — g(¥) + deg L. O
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Example 3.2.29. Suppose (M, h) is a Kéhler surface (complex dimension 2) and L — M is a
holomorphic line bundle. Then

Xhat(L) = KOO(L) = H4(L) + WO(L) = [ +d(01) -ch()
M

Writing for simplicity ¢ := ¢, (M) we have

1 1
td(M):1+%+E(c§+cQ)+---, ch(L):1+c1(L)+§c1(L)2+---,

so that the degree 4 part of td(M) - ch(L) is

1, 1 1,
— — L —cy1(L)~.
12(01+C2)+ 26101( )+ 201( )

Let us now describe a convention frequently used in algebraic geometry, namely that in computa-
tions involving characteristic classes we will replace ¢1 (F) with E for any complex line bundle E.
Now observe that

c1(M) = ei(det(TM)YY), det(TM)H0 = (det(T*M)H0)* = K3,

Thus, ¢ (M) = —ci1(K)pr) and instead of ¢ (M) we will write —Kj7. Also, we will write the
integration [}, as a Kronecker pairing (—, [M]). We deduce

Xnot(L) = 75 K3y ea, [M]) — 2 (Kog - L [M]) + (12, [M]).
Now observe that co(M) = e(M) so the Gauss-Bonnet theorem implies
{ca(M), [M]) = Xtop(M).
We deduce
Xnot(L) = %xmp(M) + i(K%w, [M]) + %(L(L — Ku), [M]). (3.2.23)

12
This can be further simplified using Hirzebruch signature theorem. Observe that

p1(M) = —co(TM ® C).

On the other hand,
1+c1(TM®C)+c2(TM ®@C) = ¢(TM ® C)
= c(TM")e(TM*) = «(TM"0) - c((TM0)*)
=(1+ca(M)+ca(M))(1—ci(M)+e(M)) =1— Kj; + 2c2(M).

Hence

p1(M) = K3, — 2ea(M),
so that

(K3r. [M]) = 2(c2(M), [M]) + (p1 (M), [M]).

The Hirzebruch signature theorem implies

{p1(M), [M]) = 3sign(M),
while by Gauss-Bonnet we have

(ca(M), [M]) = Xtop(M).
Hence

(K3, [IM]) = 2x10p(M) + 3sign(M).
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Using this information in (3.2.23) we deduce

1 . 1
Xial(L) = 3 (Xtop(M) + sign(M) ) + S(L(L = Ky), [M]). (3.2.24)
If in the above equality we choose L to be the trivial line bundle we obtain the Noether theorem
1
hOO (M) — ROV (M) + K02 (M) = 7 (Xtop(M) + sign(M) ). (3.2.25)
a

3.2.4. The spin Dirac operators. We would like to present what is arguably the most important
example of geometric Dirac operator. This operator generates in a certain sense all the other ex-
amples of geometric Dirac operators. This will require a topological detour in the world of spin
structures. We will use the basic facts about the spin group proved in §2.2.2.

Suppose (M, g) is a compact connected, oriented Riemann manifold of (real) dimension n. The
tangent bundle 7'M can be described by a SO(n) gluing cocycle
(Ua, Jap - Uag — SO(n) )

We regard this cocycle as defining the principal bundle of oriented orthonormal frames of T'M.
Consider the double cover
p: Spin(n) — SO(n), kerp= {£1}.

The manifold M is called spinnable if the principal bundle of oriented orthonormal frames of 7'M
can be given a Spin(n)-structure, i.e. there exists a gluing cocycle

(Ua, Gap : Uap — S’pin(n))

such that the diagram below is commutative

Spin(n)

Uaﬁ gTﬁ) SO(TL)

A lift as above is called a spin structure. Spin structures may not exist due to the possible presence
of global topological obstructions. To understand their nature we try a naive approach.

Assume that the open cover U = (U, ) is good, i.e. all the overlaps U,g..., are contractible.
Such covers can be constructed easily by choosing U, to be geodesically convex. Since U,g is
contractible, each of the maps g,3 admits lifts to Spin(n). Pick one such lift g, for every U,z # 0.
Assume gg, = g;g We have to check whether such a random choice does indeed produce a
Spin(n)-cycle, i.e.

€apy = GapdpyGra = 1.
All we can say at this moment is
€apy € ker p = {£1}.

Let us observe that €, itself satisfies a cocycle condition

€873 " €Bda " €fary * €yad-
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= 08v9~6 958 * 985 G5 JaB * 9Ba JarGyB * GraJasJsy
=1 =1
= gﬁ'y g'yé ' géa ' gow g’yﬂ ’ gvaéaég&y
—_——
=€~éa
(use the fact that €5, € ker p is in the center of Spin(n))
= €yéa - gﬁ'ygvﬁ : g’yagaégéw = g’yagocégéw " €yda
=1
:g’ya “Jas - gé'y : -6’75 “Géa - ga'y =1.
=1
If we identify {£1} with the group (Z/2,+) we see that a choice of lifts §o5 : Uag — Spin(n)
produces a collection €43, € Z/2, one element for each triplet (v, 3,7) such that Uag, # 0
satisfying the cocycle condition
€86 T €arys T €aps + €apy =0, YUapys # 0. (3.2.26)
Let us rephrase this in a more intuitive way using basic facts of Cech cohomology. For more
information on this important concept we refer to [5, 13, 29].

First, let associate to the cover U a simplicial complex N(U) called the nerve of the cover. For
every ¢ > 0 the g-simplices of N(U) correspond to the collections

q
{Uag, -+ 7an} C U such that ﬂ Uy, # 0.
k=0

We denote by N,(U) the collection of g-simplices of the nerve. We denote by C,(U) the free Z-
module generated by the collection {o € N, (U)}. We set

C1(U,Z/2) := Hom(Cy(U),Z/2).
The collection €, can be viewed a function
e:No(U) = Z/2, 0 =[a,B,7] — €(0) := €apy
We extend it by linearity to a morphism
¢ € Hom(Cy(U),Z/2) = C*(U,Z/2).

We have a boundary operator
q

0 : Cy(U) = Cya(W), O, o, ag) = > (=1)Fag, -+, b, ),
k=0
where a hat indicates a missing entry. This operator satisfies
& =0.
Using this operator we define a coboundary operator
§:CUU,Z/2) — CIT (U, Z/2),
(0n)(o) :=n(00), VYne CHU,Z/2), o€ Cyr1(U,Z/2).
This operator satisfies
5 =0.
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The cocycle condition (3.2.26) can be rewritten as
de = 0.
We denote by HY (}L, Z,/2) the cohomology groups of the cochain complex ( C*(U,Z/2),4 ). They
are known as the Cech cohomology groups of the cover U. Given two lifts
GaB> 9ap : Uap — Spin(n)
of gap : Uag — SO(n) we set
Ko = JaB g;g € ker(Spin(n) — SO(n)) =2 Z/2.
We regard k.43 as an element x € C L(U,Z/2). If we denote by ¢ the cocycle corresponding to Gee
and by € the cocycle corresponding to gee We deduce
€aBy — €afy = KBy — Kay + Kag, Y[, B,7] € No(U).
We can rewrite the last equality as
€ —¢=0kK.

Thus the cocycles € and ¢ are Cech cohomologous and thus determine a cohomology class

wo(U) € H*(U,Z/2).
This is called the second Stiefel-Whitney class of the cover U.

A theorem of Leray ([S, Thm.15.8]) shows that for every good cover U of M there exists a

natural isomorphism

Iy : HY(UW,Z/2) — H1(M,Z/2),
where the group in the right-hand-side denotes the singular cohomology with 7 /2-coefficients.
Additionally, one can show that the image of wy(U) in H?(M,Z/2) via Iy is independent of the
good cover. We thus obtain a cohomology class wo(M) € H?(M,Z/2) called the second Stiefel-
Whitney class of M.

If the manifold M is spinnable, and Ges : Use — Spin(n) is a gluing cocycle covering gee then
the associated cocycle €, is trivial and therefore wy(M) = 0. Conversely, if wa(M) = 0 then
one can show (see [17, II§2]) M is spinnable. Two spin structures described by lifts g3 and Bag
are called isomorphic if there exists a collection of continuous maps

€a : Uy — ker( Spin(n) — SO(n))
such that for every x € U,g we have a commutative diagram
Spin(n) o), Spin(n)
gaﬁ(x){ Jﬁaﬁ(f’f)@ Ea($)§aﬁ(x) = Ea5($)65($)-
Spin(n) ey Spin(n)
We denote by Spin(M) the set of isomorphisms classes of spin structures on M. A spin manifold

is a manifold M together with a choice of A\ € Spin(M).

Observe that given a spin-structure A defined by the lift goe and a cohomology class ¢ €
H'(M,7Z/2) described by the Cech cocycle €qe We can produce a new spin structure ¢ - \ defined
by the lift

goo = €o0 goo-
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The isomorphism class of gee depends only on the isomorphism class of gee and the cohomology
class of €qq. In other words, we have produced a map
HY(M,Z/2) x Spin(M) — Spin(M), (c,\) — c- X
which satisfies the obvious relation
(c1+c2)- A=c1-(c2- ).

In other words, we have produced a left action of H'(M,Z/2) on Spin(n), and one can check (see
[17, 11§2]) that this action is free and transitive. We say that Spin(M) is a H'(M, Z/2)-torsor. In
particular there exists a non-canonical bijection

HY(M,Z/2) — Spin(M).
Let us summarize the results established so far.

Proposition 3.2.30. Suppose M is a compact, oriented, connected smooth manifold. Then M
is spinnable iff wo(M) = 0. If this is the case then there exists a free and transitive action of
H'(M,Z/2) on Spin(M).

Example 3.2.31. So far we have produced arguments that spin structures might not exist. Let us
describe a few instances when spin structures do exists. Suppose M is a smooth, compact, oriented,
connected manifold. The universal coefficients theorem implies

HY(M,Z,/2) = Hom(H,(M,Z),Z,/2) & Ext(H,_1 (B, Z),7/2)

~ HI(M,7) ® Z/2 ® Tor(H™ (M, Z),7/2).
We deduce that if bo(M) = b;(M) = 0 and Ho(M,Z) and H,(M,Z) have no 2-torsion than

H?(M,Z/2) = 0 and thus M is spinnable. In particular it admits a unique spin structure. For
example, the lens spaces L(p, q) with p odd satisfy these conditions.

If the tangent bundle of M is trivializable, then any trivialization of M defines a spin structure
on M. It is known that the tangent bundle of a compact, connected oriented 3-manifold is trivial-
izable and thus such manifolds are spinnable. Similarly, a compact Lie group admits a canonical
spin-structure induced by the natural trivialization.

There are subtler conditions which imply ws (M) = 0. We list without proof a few of them.

Suppose M is a compact, simply connected 4-manifold without boundary. Then M is spinnable
iff the intersection form Qs of M is even, i.e.,

Qur(c,c) =0 mod 2, Ve € Hao(M,Z)/Torsion.

Equivalently, if we represent the intersection form of M as a unimodular symmetric matrix [y,
then the intersection form is even iff all the diagonal elements of I, are even. For example the
intersection form of M = S? x S? with respect to the canonical basis

c1 =[S x {x}], co=[{x} xS

Vol

Thus the intersection form is even. The manifold S? x S? is spinnable and in fact it admits a unique
spin structure.

is given by the matrix
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The complex projective plane CP? is simply connected, by(M) = 1 and the intersection form
is given by the 1 x 1 matrix [1]. This shows that CP? is not spinnable.

Recall that we have a canonical morphism
io: H*(M,Z) — H*(M,7Z/2)
which sits in a long exact sequence
s HTY M, Z)2) s HI(M, Z) 25 HY(M,Z) 2 HY(M,Z)2) — - |

where [ is the Bockstein morphism. One can prove (see [17, Example D.6]) that if M is an almost
complex manifold then

(M) =wa(M) mod 2 < ig(c1) = wo. (3.2.27)

In particular if Hy(M,Z) has no 2-torsion then H'(M,Z/2) = 0, B = 0 and thus i2(c;) = 0 iff
there exists z € H?(M, Z) such that
2 = c1(M).

Using this fact one can prove (see [13, §22]) that any smooth complex hypersurface in CP"+!
defined by a degree d homogeneous complex polynomial is spinnable iff d + n is even. In particular
a quartic in CP? (degree 4 hypersurfaces) are spinnable. These quartics are also known as K3
hypersurfaces. The degree 5 hypersurfaces in CP* (also known as Calabi-Yau hypersurfaces) are
also spinnable. g

Suppose (M, g) is a smooth, compact,connected, oriented Riemann manifold without bound-
ary, and A is a spin structure on M. Assume dimg M = 2m. Denote by 7 : P — M the
principal SO(2m)-bundle of oriented orthonormal frames of 7'M . The spin structure A produces
a Spin(2m)-principal bundle 7 : Py — M and the natural morphism p : Spin(2m) — SO(2m)
induces a smooth map p : Py — P such that the diagram below is commutative

P, —— P

N;

and for every x € M the restriction p : 7~ 1(z) — 7 1(z)is 2: 1.

Fix a metric identification R?™ = C™ and set Sy,,, = A®*C™. We obtain an isomorphism of
s-algebras
$ : CI(R*™) ® C — End(Sam ),
such that for any v € R?™ the endomorphism ®(v) of Sy, is skew-adjoint. We denote by ¢ :
Spin(2m) C Cla,, — Aut(Say,) the induced complex spinor representation.

Lemma 3.2.32. For any g € Spin(2m) the operator (g) : Sam — Sop, is unitary.

Proof. For any v € R?>™, |v| = 1, the endomorphism ®(v) of Sa,, is skew-hermitian. If v, w €
R?™ are orthogonal unit vectors then ®(vw) is also skew-hermitian. Indeed

¢(vw)" = (2(v)(w))" = P(w) P(v)" = P(w)P(v) = ~(v)P(w),
where at the las step we used the fact that v + w = 0 since v L w. It follows that @(et”w)
is a unitary operator. The claim in the lemma follows from Proposition 2.2.14 which states that
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any element g € Spin(2m) is a product of elements of the form % with v, w orthogonal unit
vectors. O

We can form the associated vector bundle
S)\ = P)\ X ng.

We say that Sy is the complex spinor bundle associated to the spin structure A\. Note that it is
equipped with a natural Z/2-grading

St ;S
Sy =8} ®5,.
The metric on Sy, induces a hermitian metric on Sy.

Proposition 3.2.33. Any Spin(2m)-invariant hermitian metric on So,, induces on Sy a natural
structure of Dirac bundle whose twisting curvature is trivial.

Proof. We need to produce a hermitian connection on Sy and a Clifford multiplication on Sy which
is compatible with both the metric and the connection.

Fix a good cover U = (U, ) of M and a gluing cocycle
Jee : Use — SO(2m)
describing (T'M, g). The spin structure \ picks a lift
Goo : Use — Spin(2m)
of ges. The Levi-Civita connection on 7'M is described by a collection of 1-forms
Ay € QY (U,) ® so(2m)
satisfying the transition rules
Ag = 98aAadze — d9sa - 9ga = Ad(ga)Aa — dgsa - G5a-
The representation p : Spin(2m) — SO(2m) induces an isomorphism of Lie algebras
ps © spin(2m) — so(2m)
described explicitly in (2.2.9). Set
Ao = p;H(An) € QY(UL) ® spin(2m).
Then the collection (A,) satisfies the transition rules
Ag = Ad(§pa)Aa — dGsa - e (3.2.28)
The derivative of ¢ at 1 € Spin(2m) induces a morphism of Lie algebras
©x : spin(2m) — u(Say,) = skew-hermitian endomorphisms of Sa;,

and we set

Be := @i (As).

The transition rules (3.2.28) imply that the collection B, defines a connection V9 on Sy compatible
with the hermitian metric and the Z/2-grading.

To produce a Clifford multiplication we first describe T'M as a subbundle

c:TM — End(S,)
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such that for every
c(X)? = —|X[2 - 1s,, e(X)* =—c(X), VX € Vect(M). (3.2.29)
Observe that the spinor representation ¢ induces a representation on End(Sa;,)
@, = Spin(2m) — Aut(End(Say,)),
05(9)T = ¢(9)To(9)™", Vg € Spin(2m), T € End(Sam).

Observe that
(1) =1

so this representation factors through a representation of SO(2m), i.e. there exists
[py] : SO(2m) — Aut(End(S2m) )

such that the diagram below is commutative

Spin(2m) —2— Aut(End(Sam))

7
p 7
-7 vl

SO(2m)
We have and inclusion
¢ : R¥™ < Cly,, == End(Sam).

and we know that any vector space isomorphism Cly,, — Cls,,, induced by an orthogonal changes
of basis in R?™ leaves the subspace R2™ < Cly,, invariant. Identifying Cly,,, ®C with End(Ss,,)
via ¢ and denoting by Auty (U) the group of vector space isomorphisms

T:U—U suchthat T(V)CV

we deduce the above diagram can be refined to a commutative diagram

Spin(2m) —2— Autgem (End(S2m))

Now observe that

End(Sy) = Py X, End(Sa)
and since R?™ is a ¢,-invariant subspace of End(Sa,,,) we deduce from the above diagram that we
can view

TM = Py x;0, R*™

as a subbundle of End(Ss,,). We denote by ¢ : TM < End(Ssy,,) the inclusion. Since all
the above constructions are invariant under the various symmetry groups we deduce that c satisfies
tautologically the conditions (3.2.29). In particular, the Clifford multiplication ¢ : TM — End(S,)
must also be V9-covariant constant because the above discussion shows the inclusion

c:TM — End(Sey)
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is a Spin(2m)-invariant element of the Spin(2m)-module Hom(R?™, End(S2y,) ). Thus, the
resulting bundle map ¢ : TM — End(S,) is a covariant constant section of the bundle

Hom (T M,End(S,) ).
Now define a Clifford multiplication ¢ : T*M — End(S)) using the metric duality isomorphism

t ~
T*M — T M. Finally, let us prove that the twisting curvature of V9 is trivial.

Fix an oriented local orthonormal frame (e;) of TM and denote by (e*) the dual coframe. Let
R be the curvature of the Levi-Civita connection on 7M. For every X,Y € Vect(M) we identify
R(X,Y) € so(TM) with the section of A2T'M

WR = Zg(R(X, Yes, e; )el- Aej.

i<j
Then, using (2.2.10) we deduce
1
1RX Y) Zg (X,Y el,e])ele] 4Zg(R(X,Y)ei,ej)eiej.
z<] 2y
The curvature R of V9 is described by
R(va):(p*(p* Zg X Y 6176]) ( )C(ej)
‘ A (3.2.30)
fZg (X,Y)ei, ej )ele')e(e?) = c(R).
This shows that FS»/S = 0. O

We denote by
D,y : COO(SI) — C™(8S))
the geometric Dirac operator determined by the above Dirac bundle. We will refer to it as the spin

Dirac operator associated to a Riemannian spin manifold (M, g, ). Using the above proposition
we deduce from the index theorem the following result.

Theorem 3.2.34 (Atiyah-Singer).

indCDA:/ A(M). O
M

Suppose M is a spinnable 4-manifold. Then for every spin structure A € Spin(M) we have
1
de Dy = —— M).
inde Dy =~ [ pi(M)

Using the Hirzebruch signature theorem we deduce
1
indc D), = ~3 sign(M).

Corollary 3.2.35. The signature of any smooth spinnable 4-dimensional manifold is divisible by
8. O
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One can prove this divisibility result by relying on more elementary elementary results. More
precisely, a smooth 4-manifold is spinnable if and only if its intersection form is even, and one can
show that the signature of any even, unimodular symmetric bilinear form over Z is divisible by 8;
see e.g. [29].

Theorem 3.2.34 will allow us to prove a stronger result concerning the symmetric, even uni-
modular bilinear forms which are intersection forms of some smooth spinnable 4-manifolds. We
will need the following fact.

Proposition 3.2.36. If M is a smooth, connected, spinnable 4-manifold and \ € Spin(M), then
indc D), € 2Z.

Proof. The proof relies on a concrete description on Spin(4) and S4. Consider again the division
ring of quaternions

H =R+ Rz +Rj + Rk.
It is equipped with an involution
Hag=a+bi+cj+dk—g=a—-bi—cj—dk
such that
q-G= g =a®+ b+ +d%
Recall that we have identified Spin(3) with the group of unit quaternions. We want to prove that
Spin(4) = Spin(3) x Spin(3) =2 SU(2) x SU(2).
Let
G = {cj': (q1,q2) € Hx H; |q1] = |g2| = 1} = Spin(3) x Spin(3).
We have a natural representation
p: G — Autg(H), p(q1,92)h = qhg, Y(q1,q2) € G, h € H.
Observe that
[q1hg2| = |h|
so that p(q1, g2) is an isometry of H. Since G is connected we deduce that we have a morphisms
7:G — SO(H) = SO(4).

One can check that ker p = {£1} and we deduce that p is a nontrivial double cover of SO(4) and
thus

G = Spin(4).
We regard H? as a right H-module and thus we can identify Endg(H?) with the space of 2 x 2-
quaternion matrices. The map

0 —q

®:R*=H — Endy(H?), H> ¢+ &(q) = [ 7 0 } € Endy (H?),

satisfies the identity
®(q)? = —[q’L,
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and thus induces a morphism of s-algebras ® : Cl; — Endy(H?). One can check (see [17, 1§4])
that the above morphism is an isomorphism. Then Spin(4) can be identified with the diagonal
subgroup (see Exercise 3.3.12)

Spin(4) = {Diag(q1,¢2) € Endu(H); |q1] = g2 = 1}.
The induced complex spinor representation is then the tautological one (see Exercise 3.3.12)

¢ : Spin(4) — Endg(H?) — Autg(H?).

h h
dlae) |t | =80,

More precisely

Moreover
Sf=H&®0, S; =08 H.

For every x € H we denote by L, : Endg(H?) (resp. R, € Endgr(H?)) the left (resp. right)
multiplication by x. Observe that RZ? = —1 so that R; induces a complex structure on H and

o(q1,q2) o Ri = Riop(q1,q2), Y(q1,q2) € G.
In other words the linear maps ¢(q1, g2) are complex linear with respect to the complex structure
induced by R;. Similarly we have

o(q1,q2) o Rj = Rjop(q1,q2), V(q1,42) € G.

This shows that ST has a canonical structure of right H-module, the complex structure is induced
from the inclusion C < H and that the R-linear endomorphisms (g1, g2) are morphisms of right
H-modules. Equivalently, this means that Sff has a Spin(4)-invariant structure of right H-module.

If (M, g, ) is a spin 4-manifold, then Sf have natural structures of right H-modules. These
are covariant constant with respect to V9 and moreover, from the description
Cly = Endy (H?)
we deduce
[e(a), R;] = [e(a), Rj] = [e(a), Rx] = 0, Ya € Q'(M).
This implies that ker D and ker D} are right H-modules and in particular
inde D = 2indyg D € 27Z.

Corollary 3.2.37 (Rokhlin). If M is a compact, oriented, simply connected smooth 4-manifold
without boundary and even intersection form then

sign(M) € 16Z. O

Remark 3.2.38. Three decades after Rokhlin proved this result, M. Freedman has shown that there
exists a compact, oriented, simply connected fopological 4-manifold M without boundary whose
intersection form is even and

sign(M) = 8.

Rohlin’s result shows that such a manifold cannot admit any smooth structure!!! O
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Remark 3.2.39 (The Rockhlin invariant). A compact 3-manifold M is called a homology 3-sphere
if

Hy(M,7Z) = Hy(S3,Z), Vk>0.
The Rockhlin invariant of a homology 3-sphere is a Z/2-valued homemorphism invariant of M. We
briefly outline its definition referring for details to [28].

Any oriented homology 3-sphere is the (oriented) boundary of a 4-manifold M whose intersec-
tion form
Qyy : Ho(M,Z)/Tors x Hy(M,Z)/Tors — Z,
is even, i.e.,
Q,y(c,c) € 2Z), Ve € Hy(M,Z)/Tors.
The signature form @) ;' being both unimodular and even it follows from [29] that its signature is
divisible by 8. We set

1
u(M) = s sign @y, mod 2. (3.2.31)

If M is the oriented boundary of another oriented 4-manifold M’ with even intersection form, then
we can form the closed manifold
X = MUy —M'.
Then the intersection form of X is the direct sum of the intersection forms of M and M’ and thus it
is even. Rokhlin’s theorem then implies that
sign @ y; — sign @, = Q@x = 0 mod 16.
Hence

1 1
3 sign Q y; = 3 sign @ y;, mod 2
This shows that the quantity p(M) defined in (3.2.31) is an invariant of M.
The Rockhlin invariant has many interesting properties, but we will its only two.

Observe that if My, M are two oriented integral homology spheres then so is their connected
sum My# M. Moreover

p(Mo#My) = p(Mo) + p(My).
Two oriented homology 3-spheres My, M; are said to be homology cobordant and we write this
My ~y, M, if there exists an oriented 4-manifold with boundary M with the following properties.
o OMM; U —My.
e The inclusions My < M and M; < M induce isomorphisms in homology.
The homology cobordism relation if an equivalence relation on the set of oriented homology
3-spheres and
Mo ~p My = p(Mo) = p(My).
The homology cobordism relation is compatible with the operation of connected sum, i.e.,

Mo ~p, My, No ~p N1 = Mo#No ~p M1#N;.

The set of homology cobordism classes of oriented homology 3-spheres becomes an Abelian group
with respect to the operation of connected sum. The identity element is played by the 3-sphere S°.
This group is denoted by @%. We see that p is a group morphism

w03 — 7./2.
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A theorem of Galewski-Stern [9] and Matumoto[19] shows that the following statements are equiv-
alent.

(a) Any compact topological manifold of dimension M is triagulable.
(b) There exists an element of order two in @% which does not lie in the kernel of the Rokhlin
morphism.

Recently, C. Manolescu [18] has shown that all the elements of order 2 of @% lie in the kernel of 1,
so that, there exist high dimensional topological manifolds that cannot be triangulated. O

3.2.5. The spin® Dirac operators. Suppose (M, g) is a compact connected, oriented Riemann
manifold of (real) dimension n. The tangent bundle T'M can be described by a SO(n) gluing
cocycle
(Ua, Jap - Uag — SO(n) )
We regard this cocycle as defining the principal bundle of oriented orthonormal frames of T'M.
Identify Z /2 with the multiplicative group {£1}. Recall that Spin©(n) is the Lie group

Spin‘(n) = (Spin(n) X Sl)/Z/Q
where Z /2 acts diagonally on Spin(n) x S*
t-(g,s) = (tg,ts), Vg € Spin(n), se S, teZ/2.

Consider the group morphism

p¢ : Spinf(n) — SO(n).
A spin€ structure on M is a gluing cocycle

Goo : Use — Spin(n)
such that

P (Gap) = Gap, Vo, B,

i.e., the diagram below is commutative

Spinf(n)

Uap — SO(n).

Spin structures may not exist due to possible presence of global topological obstructions. To under-
stand their nature we follow the same approach used in the description of spin structures. Assume
that U is a good open cover, i.e., all the overlaps are contractible Over each U, g we choose arbitrar-
ily
Gop = [Jap, 2ap = exp(mifag)] € Spin‘(n),
ga[g : Uag : Uag — Spin(n), Qag c COO(Uaﬁ,R), p(gag) = Gap-
Assume

o = Gpar Jaa =1, Oap = —0pa.
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Denote by K the kernel of p : Spin(n) — SO(n) and by K€ the kernel of p° : Spinc(n) — SO(n)
K¢=(z/2x SY))7)2=S'.
Observe that K¢ lies in the center of Spin®(n). We hope that

gwa = g’yﬁgﬁa — 1= ga’yg’yﬁgﬁa-

If choose the lifts g,z carelessly all we could say is

Pc(gavgwﬁgﬂa) =1
We set
€y80 = Jar@rBiBar Cyfa = ZayZyB2Ga € S
Since pe(GayGyp9sa) = 1 we deduce
€y € K C St
For gee to be a gluing cocycle we need
CvBa = €ypa € L)2 = exp(miZ) C S'.

In particular we deduce
2 .2

2 _ 2
Cpa =12, = 255 %R

ie., (22,)is a S'-gluing cocycle for some complex line bundle L — M. We set

Oy =2 (975 +0a + eav)'
The equality ci 3o = 1 implies
67504 e 7.
Note also that the image of 6., in $Z/Z = Z/2 coincides with €,g,.

As in the previous subsection we denote by N, (U) the collection of g-simplices of the nerve
of the open cover U. We denote by C,(U) the free Z- module generated by the collection {o €
N,y (U)}. For every Abelian group G we set

C1(U,G) := Hom(Cy(U), G).
Then
€50 € C*(U,Z/2), O, p4 € C*(U, 7).
We deduce as before that the above Cech cochains are in fact Cech cocycles. The cohomology class
of the cocycle (€44) is the second Stieffel-Whitney class wo(M) € H?(M,Z/2) of the manifold
M, while the cohomology class of the cocycle (6.,3,) is the first Chern class c¢1(L) € H%(M,Z)
of the complex line bundle I — M defined by the gluing cocycle 22, (see [12, Chap.1] for a proof
of this general fact). Thus, the existence of a spin® structure implies the existence of an integral
cohomology class ¢ € H2(M, Z) such that
cmod 2 = wo(M) € H*(M,Z/2).
Arguing in reverse one can prove the following result (see Exercise 3.3.13).

Proposition 3.2.40. The manifold (M, g) admits spin® structures if and only if wa (M) is the mod
2 reduction of an integral cohomology class. O
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Two spin® structures described by lifts g,s and Bag are called isomorphic if there exists a
collection of continuous maps

ko : Uy = K€ = ker(Spin(n) — SO(n))
such that for every x € U, we have a commutative diagram
Spin‘(n) M, Spin(n)
gan laaﬁ < kaJap = hagkp.
Spin©(n) R Spinf(n)
We denote by Spin®(M) the set of isomorphisms classes of spin® structures on M. A spin®

manifold is a manifold M together with a choice of o € Spin(M).

Denote by Pici(M) the topological Picard group, i.e., the space of isomorphisms classes of
complex line bundles over M. To a spin® structure o over M given by the gluing cocycle g,z =
[Gap: Zap = exp(mifypg)] we associate a complex line bundle det o given by the gluing cocycle
(22 5)- One can show that this induces a map

det : Spin® — Pici(M), o+ deto.
The image of this map consists of line bundles L — M such that
c1(L) mod 2 = wyo(M).
Note that Pic;(M) is a group with respect to ®. Moreover, the first Chern class induces an isomor-
phism
c1: (Picy(M), ®) — H*(M, 7).

Proposition 3.2.41. There exists a natural free and transitive action of Pic,(M) on Spin®(M)
Pic,(M) x Spin®(M) — Spin“(M), (L,o)— L-o

satisfying
det(L - 0) = L* ® det 0.

Sketch of proof. Consider a spin® structure o given by the gluing cocycle Jos = [(ag; Zap =
exp(7ib6,3)] and a line bundle L given by the gluing cocycle (,3. We define L - o to be the spin®
structure given by the gluing cocycle [§o 3, 2a5Ca/3]-

We let the reader check that this action is well defined and free, i.e.
[9a8 = (a8, 2ap] = [[Ga; 2aCaB] <= (Cap) = (1).

The line bundle associated to L - ¢ is given by the gluing cocycle (Ci

5%2) so that
det(L ® 0) = L? @ det 0.
To prove that the action is transitive consider two spin® structures og, o1 given by gluing cocycles
00 = Jap = [daps 7apls 01 = hag = [hap, vag].
we can arrange so that
rpdpador = hyshpahas.
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Then o1 = L - o9 where L is the line bundle given by the gluing cocycle
Ca,B = Uag/zag. g

The results in the above proposition is often formulated by saying that Spin®(M) is a Pici(M)-
torsor or H?(M, Z)-torsor.

Example 3.2.42. (a) A spinnable manifold M admits spin® structures. In fact, to any spin structure
€ € Spin(M) there corresponds a canonical spin® structure o (€) such that det o (e) is trivial. We
thus have a natural map
Spin(M) — Spin®(M), €+ o(e)
We denote by 3 the Bockstein morphism
B:HYM,Z/2) — H*(M,Z).

We know that Spin(M) is a H'(M, Z/2)-torsor. For every A € H (M, Z/2) we have

o(Xe) = B(N) - o(e), Ve e Spin(M).
Observe that if Spin®(M) # () then Spin(M) # 0 if and only if for any (or for some) spin®
structure o on M there exists L € Pic;(M) such that L? = det 0. We will denote by v/det o the
collection of such line bundles. Hence

Spin(M) # 0 <= V(3o € Spin°(M) : Vdet o # 0.

Given a spin® structure o on M we can identify the image of Spin(M) in Spin®(M) with the
collection of spin® structures

{L_l o € Spin(M); L? = det a}.
Since the compact oriented manifolds of dimension < 3 are spinnable we deduce that any such
manifold admits spin® structure.

(b) A result of Hirzebruch-Hopf shows that any compact, oriented smooth 4-manifolds admits spin®
structures.

(c) Using the identity (3.2.27) in the previous subsection we deduce that any almost complex man-
ifold admits spin® structures. In fact we can be much more precise. Suppose (M, J) is an almost
complex manifold and g is a Riemann metric compatible with J. Then dimg M = 2m and the
tangent bundle is described by a gluing cocycle

s : Ung — U(m) <> SO(2m).
Using Proposition 2.2.20 in §2.2.2 we deduce that there exists a smooth group morphism
D, : U(m) — Spin‘(2m)
such that the diagram below is commutative.
Spin(2m)

.
P 7 .
7 p

Then
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defines a spin® structure on M called the spin® structure associated to an almost complex structure.
We will denote it by o¢. Observe that we have a commutative diagram

Spin©(2m)

U(m) —— 8!

where we recall that the vertical arrow is given by [§, z] — z2. This shows that the line bundle
associated to oc is given by the gluing cocycle det g, g. It is therefore isomorphic to

detc(TM, J) = K,

Hence
detoc = K;/

We deduce that an almost complex manifold is spinnable iff /Ky, # () and we can bijectively
identify the spin structures with the square roots of the canonical line bundle. O

Suppose (M, g) is a compact oriented Riemann manifold of even dimension dimg M = 2m.
Assume the tangent bundle is defined by a gluing cocycle

Joe : Use — SO(2m)
Fix a spin®-structure o € Spin®(M) described by a gluing cocycle
Goo = [Joe; Zes] : Use —> Spin(2m).
We denote by P, the principal Spin©(2m) bundle determined by this cocycle so that
TM = P, x e R*™.

The group Spin®(2m) can be naturally viewed as a subgroup in Clg,, ®C C End¢(Ss,,) and as
such we have representations

©% 1 Spin©(2m) — Autc(ST)), ¢° = 5 @ ¢°.
Define
So— = PO— X pe Szm.

As in the previous section we see that S, has a natural structure of C1(7* M )-module. Moreover, if
we fix a Spin®(2m)-invariant metric on Sy, then the induced Clifford multiplication

c:T"M — Endc(S,)

is odd and skew-symmetric with respect to the induced metric on S,,.

Suppose that the Levi-Civita connection on 7'M is described by a collection
A, € Ql(Ua) ® &(2m)a Aﬁ = gﬁaAagEi - d.g,Boz : gﬁ_i-

We denote by p, : spin(2m) — so(2m) the differential of p : Spin(2m) — SO(2m) described
explicitly in (2.2.9) and set

Ay = p H(An) € QY UL) @ spin(2m).
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Then the collection (A,) satisfies the transition rules
Ag = gﬁaﬁagﬁj — djgo - Gpa- (3.2.32)
Observe that although gee is only defined up to a £1 € ker p, this ambiguity is lost in the above

equality. Consider a connection B on the line bundle defined by the cocycle (z2,). It can be
described by a collection

dzga PN 1 1 dZBa.

B, € Q' (U,) ®u(l): Bg= B, —2
ZBo 2

We deduce that the collection
Ay = (Aa, %Ba> € Q' (U,) @ spin®(2m)
satisfies the gluing conditions
Ap = Jpadafza — dGsa T5a
and thus defines a connection on P,. In particular it induces a connection on S, which we denote

by V%5. As in the previous subsection one can verify that (S,, Vo) is a Dirac bundle. Moreover,
arguing as in the proof of (3.2.30) we deduce that the twisting curvature is

1
FSe/S = 5B

where Fp € Q%(M) ® u(1) denotes the curvature of the connection B on det o. We denote by
D, :C®(St) — C>=(S;)
the associated geometric Dirac operator.

Theorem 3.2.43 (Atiyah-Singer).
. ; . 1
indc Dy = / A(M) A exp(ﬁFB) = (A(M) exp(5er(det 0)), [M]),
M

where we denoted by (—,—) : H*(M,R) x He(M,R) — R the Kronecker pairing. 0

Example 3.2.44. Suppose that M is a complex manifold, g is a metric compatible with the canonical
almost complex structure on 7'M, and o is the spin®-structure associated to the complex structure
and constructed as in Example 3.2.42. In this case, using the equality (2.2.5) we deduce

Sy = ALT M0 = AO*T* ).
The induced geometric Dirac operators D, p have the same principal symbols as the Hodge-
Dolbeault operator o
\/5(8 + a*) . QO,even(M) N QO,odd(M)
and thus they have the same index. Since
det o = K]\}l =~ det 7MY

we deduce
ci(deto) =1 (M) = c1(TM).

Theorem 3.2.43 implies the Riemann-Roch-Hirzebruch formula for non-Kdéhler manifolds

’ 7 . B “ 1 (3.2.22)
hOO(M)—h01(M)+.--_mdpoﬂ_/MA(M)exp(ch(M)) = /Mtd(M). 0
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3.3. Exercises for Chapter 3

Exercise 3.3.1. Prove (3.1.1). O
Exercise 3.3.2. Prove (3.2.11). O
Exercise 3.3.3. Prove Proposition 3.2.6. O
Exercise 3.3.4. Prove the identity (3.2.14). O
Exercise 3.3.5. Prove the identity (3.2.15). O
Exercise 3.3.6. Prove Proposition 3.2.12. O

Exercise 3.3.7. Prove Lemma 3.2.20.
O

Exercise 3.3.8. Suppose that X is a compact, oriented Riemann surface, . — 3 is a complex line
bundle equipped with a hermitian metric h and a connection V compatible with h. Denote by Fy
the curvature of V so that Fy € Q?(X) ® C. Prove that

- / Fy e Z.
2w »
This integer is independent of the connection, it is called the degree of L, and it is denoted by deg L.
O

Exercise 3.3.9. Suppose that . is a compact Riemann surface (compact oriented surface equipped
with a complex structure.) Assume that pq, . .., px is a collection of distinct points on X and

k

D= anépj, n; € Z,
j=1

is a divisor supported at these points. Pick disjoint coordinates neighborhoods U; of p; and a
holomorphic coordinate z; on U; such that z;(p;) = 0. Define

fi U = Ui\ pi} = €, filz) = 27
Set
Uo :E\{pl,-.-,pk}, A= {0717""k}’

and denote by fo the function fy : Uy — C, fo = 1. For any a, 5 € A such that U, N Ug # 0
define the holomorphic function

. f
G50 Ua NU3 € = GLI(O), g3 = 72,
«
The collection (gg, ) is a gluing cocycle for a holomorphic bundle (D) — X. Prove that

k
deg L(D) = deg D := an,
j=1
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where deg L(D) is the integer defined in Exercise 3.3.8. O

Exercise 3.3.10. Suppose that 3 is a compact Riemann surface, L — 3 is a holomorphic line
bundle equipped with a Hermitian metric h. Fix a nontrivial holomorphic section u : 3 — L.

(a) Suppose that p € ¥ is a zero of u, u(p) = 0. We can find a coordinate neighborhood U of p
equipped with a coordinate z such that

(1) z(p) =0
(2) There exists a holomorphic isomorphism ¥ : Ly — C;;, where Ly denotes the restriction
of L to U and C;; denotes the trivial line bundle C x U — U. We can then identify W o u
with a holomorphic function f : U — C.
Show that the quantity
. df
— lim —
2711 e\0 |2|=¢ f
is an integer independent of all the choice of local coordinate z satisfying (i) and the local holomor-
phic trivialization U. We denote by deg(u, p) this integer.
(b) Show that
degL= Y deg(u,p). (3.3.1)
u(p)=0
(c) Show that the conclusion of Exercise 3.3.9 follows from (3.3.1).
(d) Show that if a holomorphic line bundle L. — 3 satisfies deg L < 0, then it admits no nontrivial
holomorphic sections. ad

Exercise 3.3.11. Suppose that (M, g) is an oriented Riemann manifold of dimension n = 2m and
E — M is a Clifford bundle. Prove E admits a connection compatible with both the metric on £
and the Clifford multiplication.

Hint: Assume first that M is spinnable. Reduce the general case to this case using partitions of
unity. O

Exercise 3.3.12. (a) Show that we have an isomorphism of Z/2-graded algebras
Cly = Endy (H?).

(b) Equip H? with the complex structure defined by R; so as a complex vector space we have
H? = C*. Prove that
Cl; ®C = Endc(H?).
(c) Show that Spin(4) C Cly can be identified via the isomorphism Cl; = Endy(H?) with the
diagonal subgroup
{Diag(q1,q2); |q1l = [g2] = 1}.

Exercise 3.3.13. Prove Proposition 3.2.40 a






Chapter 4

The heat kernel proof of
the index theorem

4.1. A rough outline of the strategy
To understand the main idea behind the heat equation approach to the index theorem we describe it
in a simple finite dimensional situation.
4.1.1. The heat equation approach: a baby model. Suppose that U 1 are two finite dimensional
complex Hermitian vector spaces and
D:U,—->U_
is a complex linear operator. Then the equalities
R(D) = (ker D*)*, R(D*) = (ker D)*
imply that D induces an isomorphism D : R(D*) — R(D) and thus
ind D = dimker D — dimker D* = dimU,; —dimU _.

Let us present a rather complicate alternate proof of this equality which has the advantage that it
extends to infinite dimensions.

Set U := U, @ U _ and denote by & the operator

0 D
@—[D 0 }.U—>U. 4.1.1)

This is a symmetric a operator and observe that

D*D 0
2 _
@_[ 0 DD*}

The operator 22 is nonnegative so that

spec(2?%) C [0, 00).

139
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Moreover for any 1 > 0 we have

ker(pu — 2%) = ker(\/ji — 2) @ ker(\/n + 9).
On the other hand, 2?2 commutes with the grading
_ | 1o, 0 .
’y[ 0 _HU}.U%U

so that for any eigenvalue A of %2 the corresponding eigenspace Ey = ker(A — 2?) admits an
orthogonal direct sum decompostion

Ey=Ef®E;, Ff:=E\nU..
Here is the key observation behind the heat equation approach to the index formula.

Lemma 4.1.1. For any nonzero eigenvalue X\ of 9 we have
dim By = dim E; .
More precisely, the restriction of D to E; defines a linear isomorphism

.ot -
D:Ef - E;.

Proof. Observe that 2 commutes with 22 so that E is Z-invariant,
DE) C E).

Since A # 0 we deduce that the restriction of Z to E) is injective so that the map & : E)\ — FE)
is a linear isomorphism. From the description (4.1.1) of & we deduce that the above isomorphism
induces two isomorphisms

D:Ef - E,, D*':E  — E}.

From the equalities
+ +
uvt= P E
A€Espec(2?)
we deduce that for any ¢t > 0 we have
stre™'?” = Z e (dim EY — dim E).
AEspec(2?)
For t > 0 Lemma 4.1.1 implies that
stre'”* = dim B — dim E; = dimker D*D — dim ker DD*
= dimker D — dim ker D* = ind D.

Thus

ind D = lim stre ™’ =strly = dimU,. — dimU _.
t

In the infinite dimensional case, when Z is a geometric Dirac operator on a Riemann manifold
2 .
(M, g), we can express stre 7", t > 0, as an integral over M,

Stre_t@2 :/ pedVy, pr € C> (M),
M
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and moreover, we can describe quite explicitly the limit pg = lim¢\ o p; thus arriving at an equality
of the type

ind D = limstre 7" = / podVy,.
t\,0 M g

4.1.2. What really goes into the proof. Suppose that D : C*°(Et) — C°(E™) is a Dirac type
operator acting between two Hermitian vector bundles on the compact, oriented Riemann manifold
(M, g), dim M = n. As usual we denote by Z the operator

D 0

We already observe the first obstacle, namely the spectral properties of &. Fortunately, we have the
following result.

@:[ 0 D ] . C®(E) —» C®(E), E=E" & E".

Fact 1. The spectrum of %? is a discrete subset of [0, c0), and there exists a Hilbert orthonormal
basis of L?(E) consisting of eigen-sections of 22. Moreover, for any A € spec(2) the eigenspace
&) = ker(\ — Z) is finite dimensional, it is contained in C°°(E') and decomposes as an orthogonal
direct sum
H),=H{®H,, Hf =H,nC®E?). 0
We have
spec 2? = {\ € [0, 00; +V\ € spec 7 }.
and one can show easily that for any A € spec(2?) we have
I—If = ker(A — Ay),
while for A € spec(2?), A # 0 the operator D induces an isomorphism
gt -
D:H} - Hj.
Denote by P, the orthogonal projection onto H . For L > 0 set
U = @ H,
A<L
and denote by &}, the orthogonal projection onto U f,,
PL=Y P
A<L

Denote by mg, m : M x M — M, the natural projections given by

T0(Po, P1) = Pos m1(Po:P1) = P1-
For complex vector bundles Ey, £y — M we define a vector bundle £y X E; — M x M by setting

EyX Eq = ﬂ'SEO ®7TTE1.

For any section ¥ € C°°(E) we denote by U* € C°°(E™*) the section corresponding to ¥ via
the conjugate linear isomorphism £ — E*. Two sections ¥y, ¥; € C°°(F) define a section
Vo XUt € C°(EX E*) given by

Wo X W] (pg, p1) = Po(py) ® Vi(py) € (EXE") = Ep, ® B = Hom(Ep,, Ep,).

(PosP1)

For each \ € spec(2?) fix an orthonormal basis
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4.2. The heat kernel

4.2.1. Spectral theory of symmetric elliptic operators. To fix things, suppose that (M, g) is a
compact oriented Riemann manifold of dimension n, E — M is a complex vector bundle equipped
with a Hermitian metric A a connection V compatible with the metric h. In the sequel, all the
Sobolev norms will be defined in terms of these data.

Finally, let as assume that 7 : C*°(E) — C°°(FE) is a symmetric elliptic operator of order /.
For every r € R the operator &, := & — r is also a symmetric elliptic operator of order . It is also
symmetric if » € R. Hence

ker( 9, : LY2(B) — L2(E)) c O%(E),
and for this reason we will use the simpler notation

ker &, = ker(@r LY2(E) - LQ(E)>.
Theorem 2.1.29 implies that dim ker 2, < oo, Vr € C.

Definition 4.2.1. An eigenvalue of Z is a complex number A such that
ker< 9 — A) # 0.

The spectrum of &, denoted by spec(Z), is the collection of eigenvalues of 2. 0

The above discussion implies immediately the following result.

Proposition 4.2.2. The spectrum of 9 is contained in the real axis. Moreover, for any \ € spec(2)
we have
ker(Z2 — \) C C*(E), dimker(Z — \) < 0. O

Observe that
A#XN = ker(2 — \) Lker(2 — X),
and
spec(2) = r + spec(Zy). 4.2.1)
We have the following fundamental result.

Theorem 4.2.3 (Spectral Theorem). (a) The spectrum of Z is a discrete nonempty subset of R.

(b) For any \ € spec(Z) we denote by Py the orthogonal projection onto ker(2 — \). Then for
any u € L*(E) we have

u= Y Pw Julf= ) [Pwl..
AEspec(2) Aespec(2)
(c)
e I¥(B) = 3 NPl
X€spec(2)
and ifu € LY2(E), then
Ju= Y APw.

A€spec(2)
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Proof. We will cary the proof in several stages.

Lemma 4.2.4. R\ spec(2) # (), i.e., there exists v € R such that ker 9, = 0.

Proof. We argue by contradiction. Suppose that ker &, # 0 for any » € R. Since %, is elliptic
we deduce that ker 2, C C°°(E). Hence we can find a sequence (u, ), >0 of smooth sections of F
such that

1
lunllze =1, Puy = ~u,, Vv > 0.
1%

Since u, L ker 9, Vv > 0, we deduce that there exists a constant C' > 0 such that

C
luwllpes < ClPunllpz = .

Hence u,, — 0in L%?(E) as v — oo. This contradicts the requirement
|lupllz2 =1, Yv > 0.
O

Fix r € R such that ker(%,) = 0. In view of (4.2.1) we lose no generality if we assume r = 0,
i.e., 2 = 2,. We deduce from Theorem 2.1.29 that the induced continuous operator

2 : L**(E) — L*(E)
is invertible with bounded inverse
9271LY(E) — LY*(E).
Denote by A the composition of 2! with the canonical inclusion i : L%?(E) < L*(E),
A:L2(E) 75 LV2E & L2(E).

The bounded operator A is the composition of a bounded operator with a compact operator, and
thus it is compact.

Lemma 4.2.5. The operator A is selfadjoint, i.e., for any u,v € L?(E) we have
(Au,v)r2 = (u, Av) 2.

Proof. Let u,v € L?(E). We can find 4, 9 € L*?(E) such that
Du=u, 90 =nw.
Then Au = 4, Av = 0, and we deduce

(AU,”U)LQ = (’&7 @’LA))LQ = (@ﬂ,@)LQ = (U, A’U)LQ.

Thus A is a compact, selfadjoint operator
A:L*(E) — L*(E), ker A =0.

Denote by spec,(A) the collection of eigenvalues of A, spec,(A) C R\ 0. For every i € spec,(A)
we denote by @, the orthogonal projection onto ker(A — p).
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Invoking the spectral theorem for compact selfadjoint operators [6, Thm. 6.11] deduce that
spec,(A) is a bounded countable subset of the real axis which has a single accumulation point, 0.

Moreover, for any u € L?(E) we have

u= Quu, llullfz= D 1QuullZ:,
pespec, (A) pespec, (A)
Au = Z Q.
peEspec, (A)

For each p € spec,(A,) and ¥ € ker(A — p) we have
AV = pv
so that ¥ € R(A) ¢ L%?(E). We deduce

1
U =AY = p2V = pov <= 2V = A\(p)¥, Ap) = m
Conversely, if A € spec(Z), ¥ € ker(Z — \), then

DU =\—T, AV = 0,

1
A
<~
A)

=

This proves that
w € spec,(A) <= A(u) € spec(2), ker(A—pu) = ker(@ - )\(u)).

This implies (a) and (b) of the Spectral Theorem.
To prove (c) observe first that, by construction, L*?(E) = R(A). Thus we can find

v=" Y v, €L*E), v, € ker(A—p)
pespec, (A)

such that
u=Av = Z T
o

Note that
uy = Pyu = puy, p= p(A).

Now observe that )

D lvallfz < oo = WHUAII%2 < o0
Iz A€spec(2)
so that
> Nuallze < o
A€Espec(2)
Conversely, if (4.2.3) holds, than

u=a | % an € R(A) = L'2(E).

pnespec, (A)

€L2(E)

(4.2.2a)

(4.2.2b)

4.2.3)
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Finally, if
U= Z uy € LZ’Q(E)7 uy = Pyu,
A€spec(2)
then
Z Quu=u=A%u (4.2.26) Z nQu2u,
pnespec, (A) pespec, (A)

and we deduce Q u = pQ,Yu, ie.,

1
Qu2u = ;Quu and P\9u = Auy.

Hence
Du = Z P,\.@u = Z )\u,\.
A€Espec(2) A€espec(2)
a
Corollary 4.2.6. Let u € L?(E),
U= Z uy, uy = Pyu.
A€spec(2)
Then
uweC®(E) < Y ANFuylli. < oo, Vk € Ziso.
A€Espec(2)
Proof. We have
u€C®(E) < F*u e I*(E), Vk€Zso= Y MN¥usll}z < oo, Vk € Zs.
A€spec(Z)
a

Suppose now that the bundle E is Z/2-graded, E = E™ & E~, and Z is a supper symmetric
Dirac operator, i.e., it has the form
9 = [ 0 D* ]

D 0
where D : C*®°(E1) — C°°(E™) is a first order elliptic operator. Observe that
D*D 0
2 _
7= [ 0 DD~ } '

Set
A, =D*D, A_=DD".
For any A € R and any p > 0 we set
Y\ = ker(A — 2),
Vi = ker(u — Ay) C C®(FE*), Nj = dimker(u — Ay),
V,=V}ieH, cCE).
Observe that Vj = ker 22 = ker 2, and V , = ker(u — 2?). In general for any p > 0 we have a

natural inclusion
4 Vi DYV Vi C VN'
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Proposition 4.2.7. For any p > 0 we have
Aj/\/ﬁ EB 7/,\/!7 — VM‘
Moreover

N =N, , Vu € spec(2®)\ {0}. (4.2.4)

[T

Proof. Observe that #V,, C V,,. Thus Z induces a selfadjoint operator on the finite dimensional
space ;. Since 2% = y1 on V , we conclude that

H, C ker(x/li — 2) @ ker(\/ii + 2).

To prove the equality IV, J = N, observe that DV;r C V, and the resulting map D : V:[ -V,
is an isomorphism. U

4.2.2. The heat kernel. We begin by defining the notion of integral kernel or Schwartz kernel.
This will be a section of a certain bundle over M x M.

Observe that we have a natural “roof” of smooth mappings
M x M

MZ/ \M

where
lp,q) =p, r(p.q) =g, Yp,q M xM.
We define a bundle E X E* over M x M by setting

ERE* = ((*E)  (r*E*).
Observe that the fiber of E' X E* over (p, q) is

(E®E") = Ep® E,=Hom(Ey, Ep).

(p.9)
Definition 4.2.8. An E-integral kernel over M is a smooth section of the vector bundle £ X E*.0O

Example 4.2.9. (a) Observe that given two smooth sections u € C*>°(FE), v € C*°(E*) we obtain
a section u X v € C°(E X E*) whose value at (p, q) is

(uXv)(p,q) = u(p) ®v(q) € (EﬁE*)

(b) Note that we have a conjugate linear map

C®(E)> V¥ — U* e C*(E")

(p,q)

defined by equality
(U (p), ®(p) ) = hp(P(p), ¥(p)), V& € C=(E),

where A is the Hermitian metric on F and (—, —) : E, X E, — Cis the natural pairing between a
vector space and its dual.

Thus, any pair of smooth sections ®, ¥ € C*°(E) defines a kernel ® X U* € C>*°(E X E*).O
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Observe that if K € C*°(E X E*) is an integral kernel and v € C*°(E), then for any (p, q) €
M x M we obtain a linear operator K (p, q) : Eq — Ep, and a vector

K(p,q)u(q) € Ep.

In particular, we obtain a smooth map
M > q+— K(p,q)u(q) € Ep

which we can integrate to obtain another vector in E,,

/ K(p,q)u(q)dVy(q) € Ep.
The correspondence

M3pos /M K(p, @)u(q)dVy(q) € Ey

is then a smooth section of E. We have thus produced a linear map
i+ C¥(E) = CB). Sxulp) = [ Kp.ayula)avi(a).

The operator Yk is called the smoothing operator determined by the integral kernel K.

Observe that .7k extends as a linear operator
I L*(E) — C*(E).
because the integral

/Kp, Q)dV,(a)

can be differentiated in the p-variable as many times as we wish for any u € L?(E).

Example 4.2.10. Let )\ € spec(Z). Set
my = dim ¥\ = dimker(Z — \)

and denote by P, the orthogonal projection onto 7). Fix an orthonormal basis ¥y,...,¥,, of
ker(2 — X) and define

mx
&= U;RT: € C*(ERE"). (4.2.5)
j=1
Observe that for any u € C°°(FE) we have
Fou=30,() [ h(uta) (@) dVyla) 3 (0.9),.9, = P 0
j j

To proceed further we define a family of norms on C*°(E). More precisely, for u € C°(E)
and k£ > 0 we set
i = NullZs + 12*ulZ..
For uniformity we set
[ullo == llull2.
The elliptic estimates for & imply that for any k£ > 0, there exists C}, > 1 such that

1
o, lellzee <l < Cillelzee.
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The above equality shows that the closure of C°°(F) in the norm || — || is the Sobolev space
LF2(E).

From the Sobolev inequalities we deduce that if m > k + &, then there exists C' = C(m, k)
such that

ullow < Clluf],,, Yue C=(E). (4.2.6)
For any compact interval I C [0, co] we set
Er:=Y & €C(ERE")
INeI

The smoothing operator associated to this integral kernel is the orthogonal projection #’r onto the

space
M =P h=>) Vi

INer AeT
When I = {c} we set
A= Hiy = Voo ® V=V .
Observe that

Pr= @ Py, d(I):=dims#7 = Z my.
|A\leX [Aer

Moreover, if
U, j=1,...,d(I)
is an orthonormal basis of 77, then
d(I)

Er=> VRV (4.2.7)
j=1

Proposition 4.2.11. (a) Set r := rank (E). There exists a constant Cy > 0 such that
d(I) < C3rvoly(M)(1 +b**), ¢y = |n/2] +1, VI = [a,b] C [0,00). (4.2.8)

(b) For any k > 0 there exists a constant Zy, > 0 such that for any compact interval I = [a,b] C
[0, 00) we have

1€Tllor < Zi(1+07%), pe=2(In/2] +1+k). (4.2.9)

Proof. We adopt the strategy in the proof of [14, Thm. 17.5.3]. For u € L?(E) we set uy := Pru.
For any positive integer £ and u € C'™° we have

lurl? = I urll® + 12 ur|* < (1 +6) |Jul|*. (4.2.10)
For any any nonnegative integer k we set
by = LEJ +k+1,
2
so that L*%(E) < C*(E). In particular, we deduce that there exists a constant Zo > 0 such that

1
lurllco < Zo( 1+ %) 2|ul| 2, Yu € L*(E). (4.2.11)
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Fix py € M, and e € Ej, a unit length vector. We set

Vp,.c(a Zhe\l/ (py) )¥;(q) € C™(E).

From the equality

ur(po) = Y (u, ¥;)12¥;(py), u € L2oo(E)
J
we deduce
h(uf(po)ve) = (u7vp0,e)L2'

Hence for any u € L%(E) we have
1
(4 Vige ) 2 = h(ur(pg),e) < [lurllco < Zo(1+ 5% )2 |Jul| 2.
This implies that
1
Vapell < Zo(1+0%°)>.

Observe that since sections (V) form an orthonormal basis of .77 we have

d(I)
Vol = Z\hew @) [ [ 19, @Pavi(a =3l vsten)) [
Letey,...,e; be an orthonormal frame of Ey, , 7 = rank (E). We deduce
r r d(I)
2
ZHVpo,ek”2 ZZlh ey, ¥ )l
k=1 k=1 j=1
dI) d(I)
2 2
= ‘h(ek,‘l’j(Po)H :Z"l’j(Po)‘
j=1 k=1 j=1

Hence
DRZID) ? < Z2r(1+0%).

Integrating the above inequality we deduce (4.2.8).
Next observe that, for any ¥ € 77 we have

[Wlle, < V142 0].

Hence, there exists C' = C}, > 0, independent of I, such that

]| cr < Cry/1+ b2 || 0|, VT € 4.
From the equality (4.2.7) we deduce that
d(I)
I lon <) 15112 < Crd(I)(1+ b2%) < Z3rCy,voly (M) (1 + b* ) (1 + b**)
=1
< Zy (14 2ot
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We have reached the desired conclusion since

e = 2(fo + Lk).

For any continuous and bounded function f : R — R we have a bounded linear operator
[(2): LX(E) = LX(E), [(Z)u= ) [NPw
A€Espec(2)

The series

> fW)Pw

X€spec(2)

converges in L2(E) because

D ORI Pl <( sup [FOF ) llul.
N te

Proposition 4.2.12. Suppose that f : R — R is a continuous function with fast decay at o, i.e.,

lim |Aff(\) =0, Vk>0.
[A| =00

Then f(2) is the smoothing operator determined by the integral kernel

Ky = Z F(N)éx.

A€spec(2)

Proof. For any v € Z>q we set
Krp= > fNVé,
IAl€vr+1]
where for simplicity we set &) = 0 if A &€ spec(2). This is an integral kernel. Let us show that
> Ko
v>0

converges in C*(E x E*) for any positive integer k. Set

d, = dim t%ﬁ[u,u+1]v fv:= sup ’f<t)‘
[t|€[v,v+1]
Observe that

1K pullor < ( sup [F@)) D e

ltI€v,v+1] A€, v+1]

4.2.9) (4.2.8)
( < Dfudy (1+0) < Zif (1 40)207P",

Since f is fast decaying we deduce that

o0
qu(l —l—l/)zeﬁpk < 00.
v=0
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The function f;(\) = e~**" is fast decaying for any ¢ > 0. Thus, for ¢ > 0 the operator
ft(@) — eft\@z
is smoothing. We denote by .%7; the integral kernel of this operator.

Definition 4.2.13. The collection of integral kernels (.#;);~¢ is called the heat kernel associated to
the Dirac operator Z. O

Denote by 7 the natural projection R~ x M x M — M x M. The collection (#;);~¢ defines
a section .Z~ of the pullback

EXE* :=r*(ERE*).
Proposition 4.2.14. (a) The heat kernel defines a smooth section of the bundle
EXE* — Rag x M x M.
(b) For any q € M, fixed, we have
0K (P, q) + ZpHi(p.q) = 0, (4.2.12)

where 9y, indicates that the operator 9 acts only on the variable p.
(c)If ue C®(FE) and
up = et 7%y = JK,u,
then
li — =0.
iy e — o

Proof. For any positive integer N we set

Hinpg) =Y N aD q)
NN

This is a smooth function for any /N and the proof of Proposition 4.2.12 shows that for any £ > 0

J; N converges to %; as N — oo in the C*-topology, uniformly for ¢ on the compacts of R.
Moreover

(0 + Zp) Hin =0,

because
D6\ = N6y
The integral kernels @;2;%, ~ converge in any C*-topology to the smooth integral kernel associated
—tAZ

to the fast decaying function A — \2e
proves that .#; is C'! and

. It does so uniformly for ¢ on compacts of R~ . This

oM = — D>
Iterating this procedure we deduce that #; is smooth in all variables and
of A = (1) 2" .
To prove (c), let u € C*°(E). Then

U = Z uy, uy = Pyu.
A€spec(2)
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For any positive integer m we have

lullz, = 1127™ul® = D AP [lux]|? < co.
A

_+)\2
Up = g et U

A€spec(Z)

Observe that

and

2
lue —ullze = > (e7 = DPAP" lua]*.
A€spec(2)

Aplying the dominated convergence theorem to the functions
2
prispec(2) = R, or(A) = (7 = PP un|f?,
where spec(2) is equipped with the canonical discrete measure, we deduce
li —ul2, =0, Vm.
t{% ”ut u”m s m
We obtain the desired conclusion by invoking the Morrey-Sobolev embedding theorem. O

Theorem 4.2.15. The heat kernel is the unique smooth section (K;)¢~o of
ERE* = Rogx M x M
satisfying the following properties.
(a) The integral kernel K.(p, q) satisfies the heat equation (4.3.4) for any q fixed.
(b) If u € C*(E) we have

}{% HjKtu - UHCO =0.

Proof. The proof is based on the following uniqueness result.

Lemma 4.2.16. Denote by E the pullback of the bundle E — M over the cylinder [0, 00) x M.
For any uy € C™(E) the initial value problem

(0 + 2%)u(t,p) =0, u(0,p) =uo(p), Yp € M (4.2.13)

admits a unique solution u which is a continuous section of E on [0,00) x M and smooth on
(0,00) x M.

Proof. Denote by u, the restriction of w to {¢} x M. It suffices to show that if ug = 0 then u; = 0,
vVt > 0. We have

d
%HutHQ = (uj, u) 2 + (U, u}) 2 = —(.@2ut,ut)L2 — (ug, QQ)LQ = —QHQWHZ < 0.
Hence

0 < fluel| < [luoll =0, V&> 0.
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The above Lemma and the results proven so far show that the unique solution of the inial value

problem (4.2.13) is

_+92
U = € t7 uQ.

Suppose now that we have a family of integral kernels (K} ):~¢ satisfying the conditions (a), (b) in
the theorem. For any u € C*°(E) and ¢t > 0 set

ur = Sk, .
For ¢ > 0, the sections vy = w4, satisfy the initial value problem

(875 + @2)% = 0, V=0 = Ug.

29

_ 2 .
Hence v; = ¢ Ug, 1.€.,

_+92
IK, U =€ t7 Ug.

If we let € ™\, 0 we deduce
ﬂKtuo = e_t@2u0 = f;gt’lm, Yug € COO(E)

This implies % = K3, Vi > 0. O

4.2.3. The McKean-Singer formula. Recall that
P?=AN,®A_, A, =D*D, A_=DD".
Forany p1 € V, = ker(u — 9?) we choose an orthonormal basis

U, \I/f% € C®(E*) c C*(E)

of Vljf = ker(u — A+). The collection

+ . 2 . +
{95 mespec(27), 1<j< N}

is an orthonormal basis of L?(E). We have
—t2? _ —t
€ = Z e u(PVjJFPV;)
pEspec(22
where {7 denotes the orthogonal projection onto a closed subspace U C L?(E).

The Schwartz kernel of Pfo is

N
Ki(p.q) =Y Vi (p)RV;, (q)
7=1

From the equality
+ - _
Vu EBVM —”//_\/,769”//\/,7
we deduce

K (p,q) + K, (p,q) =& su(p,q) + E/u(p,q)
and

Hip.q)= Y e (Kf(p.q)+K,(pq))cHom(EqEp).
uespec(22)

Observe that K,(p, p) € End(Ep) and
str K,(p, p) = tr K, (p,p) — tr K, (p,p)

=:K,(p,q)
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N Ny
=> 1wl -1,
j=1 j=1

Hence
N Ny
stri(p,p) = > e YW )P =D 19, |,

uespec(22) j=1 j=1

so that
N;F Ny

[T AL D SRR O O MU AIARED S ML AR IRIAT
M pEspec(22) Jj=1 M Jj=1 M

= 3 ey N U2V N - iy

uespec(22)
We have thus proved the following important result.

Theorem 4.2.17 (McKean-Singer). If D : C*°(E™) — C>°(E™) is a Dirac type operator,

0 D
=15 7|

and %; is the integral kernel of e_tW, t > 0, then

indD =N — Ny, = / str #(p, p)dV,(p), Vt > 0. 0
M

4.3. The proof of the Index Theorem

We will use the McKean-Singer formula to give a proof of the index theorem. We will achieve this
in two conceptually different steps. First we will produce a more approximation for the heat kernel.
We then show that if & is a geometric Dirac operator then the super trace of the approximation can
be understood quite explicitly.

4.3.1. Approximating the heat kernel. The approximation of the heat kernel we are able to pro-
duce takes the form of an asymptotic expansion.

Definition 4.3.1. Let f be a function defined on the positive semiaxis (0, co) and valued in a Banach
space X. A formal series

> an(t), ag:(0,00) > X,
k=0

is called an asymptotic expansion for f near t = 0 and we indicate this by

FO) ~ S anl),
k=0

if for each positive integer IV there exists £y > 0 such that, for any £ > ¢ there exists a constant
C =C(¢ N)and7(¢,N) > 0 such that
L

Hf(t) -2 ax(t)

k=0

< CU, NN, Vo<t <7l N). O
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We have the following important result.

Theorem 4.3.2. Suppose that (M, g) is a compact oriented Riemann manifold, E = E* & E~ —
M is a Hermitian 7./2-graded vector bundle and 9 : C*(E) — C*(FE) is a supersymmetric
formally selfadjoint Dirac operator. Denote by J¢; the heat kernel of 2 and by

dist : M x M — [0, 00)

the geodesic distance function on M determined by the Riemann metric g. For any t > 0 define
dist(p, ¢)
exp | ————— .
P At

(a) There exists an asymptotic expansion for J&; of the form

Hi(p,q) ~ hi(p, q) (©o(p,q) +101(p,q) + t*O2(p, q) +---) ,
where ©; € C*(EX E*),Vj=0,1,2,....
(b) The expansion in valid in the Banach space C"(E X E*) for any integer r > 0. It may

differentiated formally with respect to t, p, q to obtain asymptotic expansions for the cor-
responding derivatives of the heat kernel ;.

hi: M x M =R, h(p,q) =

B

(4mt)
Then the following hold.

(c) The jets of the sections © ; along the diagonal are described by universal algebraic expres-
sions involving the metrics, the connection coefficients and their derivatives. Moreover

O0(p,p) = 1g,.
To prove the theorem we need a simple criterion for recognizing an asymptotic expansion of the

het kernel when we see one. This is based on the concept of approximate heat kernel.

Definition 4.3.3. Let m be a positive integer. An approximate heat kernel of order m for & is a
time dependent section K (p, q) of EX E*, ¢t > 0 which is C! in t and C? in p, q and satisfying
the following conditions.

(a) For any u € C*°(E) we have

iy |-Zrju — ul|co = 0.

(b)
(0 + 27) Ki(p.q) = t"ri(p,q), Vt >0, p,qe M,
where r; is a C™-section of F Xl E* which depends continuously on ¢ for ¢ > 0. O

Proposition 4.3.4. Suppose that we have a sequence of sections ©; € C*°(EXE*), j =0,1,2,...,
such that for any positive integer m there exists J,, > 0 with the property that for any J > J,, the
integral kernel

J
K{(p.q) = h(p.q)Y_t'0;(p, q).
§=0
is an approximate heat kernel of order m. Then the formal series
o0
hi(p,q) ) ¥'0;(p,q)
§=0

is an asymptotic expansion for the heat kernel in the sense of (a),(b) of Theorem 4.3.2. O
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To keep the flow of arguments uninterrupted we defer the proof of this proposition.
Proof of Theorem 4.3.2. We follow the approach in [27, Chap.7]. As we know 2?2 has the block

form A
2 + 0
s
where Ay : C®(Ey) — C*°(EyL) is a formally selfadjoint generalized Laplacian. Hence there
exists metric connections V* on £* and Hermitian bundle endomorphisms % : E¥ — E* such
that
Ay = (VEY'VE + 2,
SetV=VT"aV ,%Z =%, ®ZA_ so that V is a metric connection on E compatible with the
7/2-grading and Z is an even, Hermitian endomorphism of E. By construction

P2 =V'V+2A.

Let A, : C°°(M) — C°°(M) denote the scalar Laplacian defined by the metric g. For any smooth
function f : M — R we denote by grad f € Vect(M) the gradient of f with respect to the metric
g, 1.e., the metric dual of df.

The symbol of Z defines a Clifford multiplication on E
c:T*M — End(E), c(df)=1[2,f], Vf e C®(M).
A simple computation shows that
(22, flu = —2V grad fu + (Agf)u, Yu € CF(E), f € C®(M). (4.3.1)

Using Proposition 4.3.4 we seek sections ©; € C*(E X E*), j = 0,1,2,..., such that for any

m > 0 the integral kernel
J

K{(p,q) = hi(p.q)>_¥6;(p,q)
j=0
is an approximate heat kernel of order m for all J sufficiently large. Note that it suffices to construct
©; for p close to g because for (p, q) outside a neighborhood of the diagonal the function h;(p, q)
goes to zero faster than any power of £ as ¢ — 0.

Let us fix the point g and normal coordinates '

T‘2 — Z(:CZ)2

i=1
so that r(z) = dist(x, 0). Observe that 0, is the radial vector field and

, ..., x" with g as origin. We set

grad r? = 2r0,, Agr2 =2n —ro,log|g|, |g|:= det(gi;).
With ¢ fixed h¢(p, q) becomes a function of ¢ and r

1 r2
hy = e At
(4mt)2
Some elementary computations show that
h
grad h; = —2—;7“&, (4.3.2a)

h
(8 + Ag)hy = ﬁr@ log |g]. (4.3.2b)
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Using (4.3.1), (4.3.2a) and (4.3.2b) we deduce that for any ¢-dependent smooth section v of F (or
E ® Eq4) we have

hi(at +27) () = @+ P+ (0, Toslgl)o + %Vrarv. 4323)
If we let H denote the conjugate heat operator
H:= }i(at + 2% ) (4.3.4)
then we can rewrite the last equality as
H= (0 +2°) + %vraT + (0 tog ). 43.5)

In particular, if v = thu, u independent of ¢, then
H(tv) = ! (Vraru i+ 28’” log |g| )u + 9%, (4.3.6)

Now write
u ~ ug + tug + tPug + - -
where u; are independent of ¢ and attempt to solve the equation
(0 + 2?)(hyu) = 0 <= Hu =0,

by equating to zero the coefficients of powers of ¢ that arise from the equality (4.3.6). We obtain the
following system of equations for 7 = 0,1,2, ...

.10,
V,o,uj + (y + r4i“g|‘|q'> uj = —2*uj_1. (4.3.7)

The equations (4.3.7) are just ordinary differential equations along the geodesic emanating from ¢
. . . . . 1 .

and once can solve them recursively. To do this we introduce an integrating factor |g|4 and rewrite

the equations as

0, J=0,

) 4.3.8
—7"]_1|g|i@2uj_1, j>1. ( )

T

Vo, (1 lgltu; ) = {
For j = 0 this shows that w; is uniquely determined by its initial value u;(0) which we fix as
up(0) =1 E,- For j > 1 the equation determines u; in terms of of u;_; up to the addition of a term
of the form C;jr~| g|7%. The requirement of smoothness at g forces C'; = 0 so we conclude that all
the u; are uniquely determined by the single initial condition uo(0) = 1g,.

Define ©(p, q) to be the section of £ X E* over a neighborhood % of the diagonal which is
represented in normal coordinates near g by the sections u; constructed above. Fix another smaller
open neighborhood of the diagonal ¥ C % and a smooth function ¢ : M x M — [0, c0) such that

1, (p,q) €V,

“’(p"’):{o, (p.ac(M x M)\ 7.

Set
J

K (p.q) = ¢(p.@)hu(p.q) > _t0;(p,q).
=0
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Since Og(p,p) = 1k, we deduce that

%{% |Ikyu—ullco =0, Vue C¥(E).

Moreover, the construction of the u;-—s shows that

(0 + Z) K] (p,q) = t'hi(p, @)e! (P, q), >0,

where e; € C°°(EE*) depends continuously on ¢ down to t = 0. For J > m + & the function
t’hi(p, q) tends to zero in the C™-topology as ¢ — 0. Thus, for any .J > m + 5 the integral kernel
K/ is an approximate heat kernel of order m. Invoking Proposition 4.3.4 we deduce that the formal
series

ht p7 ZtJG D,q

is an asymptotic expansion of the hear kernel, i.e., satlsﬁes the conditions (a), (b) of Theorem 4.3.2.
The claim (c) of the theorem follows inductively from the differential equations (4.3.8). O

Theorem 4.3.2 has the following immediate consequence.

Corollary 4.3.5. (a) If n = dim M is odd then ind D = 0.
(b) If dIm M = n = 2m is even then

ind D =

<4;>’5 /M str 2 (q, q)dV(q). ]

Thus the name of the game is determining the index density, i.e., the function
M>q— str(ag(q,q) € R.
This is the goal of the next two subsections.
4.3.2. The Getzler approximation process. To determine the index density we will make an ad-

ditional assumption. More precisely we require that & be a geometric Dirac operator. In other
words, we require that E is equipped with an odd, skew-hermitian multiplication

c:T"M — End(F)
and a herminitan connection V compatible with both the Z/2-grading of E and the Clifford mul-
tiplication. This means that for any v € C*°(E), any a € C*(T*M) and any vector field
X € Vect(M) we have
Vx(ela)u) = e(Via)u + c(a)Vxu,
where V9 denotes the Levi-Civita connection. The operator & has the form
P =coV:0®(E) % C®(T*M @ E) -5 C®(E),
and satisfies the Weitzenbock formula
2% = V*V + 5(49) + ¢(FE/5),
where s(g) is the scalar curvature of g,

FES .= F — ¢(R) € Q*( Cl(M)& Endgy ) (E) ),
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1

c(R)(e;,e5) = 1 Z g(R(ei, e5)er, e )c(ek)c(ee) cc Q*(End(E)),
kb
c(FPI8) =3 " /(e e5)e(e)e(e)),
i<j
and (e, ..., ey,) is an oriented orthonormal basis of a tangent space T, M.

Fix a point g, € M, an oriented orthonormal basis e, . .., e, of T4 M. This basis determines
normal coordinates (z', ..., z") defined on an open geodesic ball Br(q,). Using these coordinates
we identift Br(q,) with the open ball Br(0) C Ty, M and Tq, M with the Euclidean space R". Set

EO = qu.

Using the V-parallel transport along geodesics starting at g, we can produce a trivialization of £
over Bgr(q,). The functions

Br(qo) 3 p— 0;(p, o) € Hom(Ey, Ep),
can be viewed as functions

TqoM D Br(0) > x — 0©,(z) € End(Ep). (4.3.9)
As such, they have Taylor expansions

@](.T) = Zl’a@jﬂ, @j@ S End(E[)).

where for any multitindex o € Z, we set
2% o= (@)™ (@), ol = Joa] + -+ o,
The fiber Ej is a Z/2-graded C1(Tg M )-module and thus it has the form
Ey = S,&W

where S,, = ST @ S, is the space of complex spinors associated to the Clifford algebra Cl(1g M).
Denote by el,...,e" the dual basis of T&"OM . This oriented, orthonormal basis eq, .. ., e, identifies

CI(T,;‘OM ) with Cl,,.
For every order multi-index [ = (1 <i; < --- < k < N) we set |I| := k and
M=t A Ae, el = ele) - ele).
From Proposition 2.2.6 we deduce that any operator 7' € End(Ej) decomposes as a sum

T=> ¢ ®T;, T;=End(W)= Ende,(Eo).
1

We say that T has order < k, ord T < k, if Ty = 0, for |I| > k. If ord T' < k we set

Tlp= > eM®T; € AT; M&End(W) = AR"® End(W) =: .%,(W).
|[I|=ord T’

We say that ord 7' = k if ord T < k and [T'], # 0. We set
[T] := [Torar € Fn(W),

and we will refer to [T'] as the Getzler symbol of T'.
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Note that if 77, 7> € End(Ey), ord Th < k1, ord Ty < ko, then ord(7175) < k1 + k2 and
(T To]ky 1k = [T1]ky [T2]ky -
Note that ord 7' < n, VI' € End(Ej). From Proposition 2.2.8 we deduce that
ordT < n = strlT =0.
Moreover, when ord T = n = 2m, then
strT = (—24)" str T 2. p =: str[T],.
We can rewrite the last facts in a compact form
str T = str[T],, VT € End(E)). (4.3.10)
Define the order of a monomial z® to be — ||,
ordz® := —|q|

Denote by C|[[z]] the ring of formal power series in the variable (x!, ..., 2™) with complex coeffi-
cients, and by Z(Ey) the noncommutative ring of smooth maps Br(0) — End(Ejy). If T' is a map
in Z(FEy) is a smooth map with Taylor expansion at 0 given by

T(z) ~ Y a°T, € C|[z]] ® End(Ej).

then we say that ord 7'(z) < k if
ordT, — |a| = ord Ty, + ord 2 < k, Vau.
Iford T < k we set
[T@)e =Y,  2°[Ta] € Cllz]] ® Lu(W).
ord T —|a|<k
The ring C[[z]] ® .7, (W) can be identified with the ring .#, (W )[[x]] of formal power series in the
variable z = (x!,...,2™) with coefficients in the (noncomutative) ring .%,(W). We will use the
notation
(W) = Clla]] @ L (W).

Hence

[T(@)]k € Sn(W, 2).
We say that ord T'(z) = k if ord T'(z) < k and [T'(x)] # 0. We set

[T'(x)] = [T'()]ora
and we will refer to [T'(x)] as the Gerzler symbol. Note that for any smooth map 7' € Z(Ey) we
have ord T'(x) < n and

str T'(0) = (str[T(x)]n)xZO = str[Tp]n.

We want to extend the above concept of order and symbol to differential operators. Let Z(Ey)[0] be

the ring of partial differential operators with coefficients in Z(Ey), acting on Z(Ep). A differential
operator P € #(Ey)|0] can be put in the canonical form

P =Y " P.0% Pac % (Ep)

where all but finitely many P, ’s are zero, and for any multi-index o we set

0% =00 -+ Oy, 0; = 0.
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The product of two such operators can be put in canonical form by iteratively employing the com-
mutation relations

8ioT:(6@-T)o<90+T8i, VTE%(E()), 1=1,...,n.

Given

P =" P.0% € Z(E)|0)
we say that ord P < k if

ord P, + |a| < k.

Denote by .7, (W, x)[0] the ring of formal partial differential operators with coefficients in .7, (W, x).
If

P =) " P.0" € #(E)),

and ord P < k, then we set
[Pl =) [Pali—ja)0™ € Fn(W,2)[0)].

(67

The operator P is said to have order k if ord P < k and [P];, # 0. In this case we set
[P] = [Pl = [Plorar
and we say that [P] is the Getzler symbol of P. Note that
ord 0% = |a] [0%] = 0.
Moreover if P,Q € Z(Fy)[0], ord P < k, ord Q < ¢, then
ord PQ <k + 0, [PQlpte = [Plk[Qle- (4.3.11)

Using the above trivialization of E over Br(q), we can regard V as a connection on the trivial

bundle Ey Br(0) and as such it has the form

V=V"+4, AcQ(Bg(0))®End(E),
where VY denotes the trivial connection. Set V; = Vg, and A; = 0; 1 A € Z(Ey) so that
Vi=0;+4; € %(Eo)[a]

We have the following elementary but miraculous consequence of the fact that V is compatible with
the Clifford multiplication, [4, Lemma 4.15].

Lemma 4.3.6. We have
1 A
Ai = 4 Z Ryeija’ e’ + Z fire(x)ebe’ + gi(x),

k<t k<t

where R is the Riemann curvature of g
Rijkf = Yq, (eia R(ek‘a €g)€j),

fike € C=(BRr(0)), ord fire < =2,

and
gi : BR(O) — End(W)

is a smooth function such that g;(x) = O(|z|) as x — 0 so that ord g; < —1. 0
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Using Lemma 4.3.6 we deduce that ord V; < 1 and we observe that the Getzler symbol of V;
18

1 .
Vil =0+ [Ah =0+ 5 > Y Runiga’e® A e’ (4.3.12)
J k<t
We set
Rij =Y Rpyje" ne' € A°R", Vi, j
k<t
so that we can rephrase (4.3.12) as
1 . .
[Vili =0 +[Ail1 = 0 + > I Rijal. (4.3.13)
J

Observe that
n

i=1

Since ord ¢! < 1 and V,;¢? = 0 at 0, we deduce from (4.3.11) that ord 2 < 2 and
A 1 .
[D]2 = Z e'0; + 1 Z Z Risijriet AeP N et € 7 (W, x)[d].
% i g,k<l

In particular, we deduce that ord 22 < 4. In fact, we can do a lot better.

Proposition 4.3.7. ord 22 = 2 and
2

[Z)a == [ViP==> [ai+ % > @Ry | + FER € S (W, 2)[0). (4.3.14)
: : -

Proof. From the Weitzenboock formula we deduce
P* =V*V + 8(49) + c(FE/S) =V'V+ 5(49) + ZFE/S(ei, ej)e(e)e(e?).
1<j
Since
FE/5(e;,e5) € Endgy, (Ey) = End(W),
we deduce that
ordc(FE/S) =2, [c(FE/S)] = ZFE/S(ei, ej)el Nl = FE/S,
1<j
Note that ord s(g) < 0. On the other hand,
VIV ==Y MYV - T V),
i?j?k
where I’} ;. are the Christoffel symbols of g in the coordinates x. Since x are normal coordinates, we
deduce Fék(O) = 0 so that ord Fék < —1 and thus

ord r;lkvi <0.
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We have ord ¢/ < 0 and [¢/¥]g = ¢7%(0) = §/%. Hence V*V has order 2 and using (4.3.13) we

deduce
2

V=~ YVl = YW ==Y [0+ YR,

O

The functions ©;(z) defined in (4.3.9) belong to the noncommutative ring % (Ej) and satisfy the
differential equations (4.3.7)

Tar’g‘
4lg|

V5,0 + <j + ) 0, = —-2°0;_1, and 6¢(0) = 1, (4.3.15)

Observe that
rop = Z z'0;
i

so that
ordrd, <0, [rdyo=[rd;] =10, = leﬁl

Observe that
Vyor] = Z[xz&'] + [Z Rijz'a’] = ro,
i ,J

since R;; = —Rj;. Since 0, |g| = 0 at 0 we deduce that

ord rorlg| <0= {rc‘)ﬂg} =0,
49| 4lgl 1o

and we conclude that
[O0] = 15, r0:[0;]+j[0,] = —[2°][©;-1], Vi=1,2,.... (4.3.16)
This implies inductively that
ord©®; < 2j.
Consider the ring Z(Eo)[[t~*, ] which consists of formal series of the form
Si(x) =Y _t7S;(x), Si(x) € Z(Ey),
JEZ
such that S; = 0 for j > 0. We say that ord Sy(z) < k if
—2j+ordS; <k, Vj.

We set '
[Se(@)]k =D (S (@)|hs2j € Fn(W, ) ([t 1].
J

We say that S;(z) has order k if ord S;(z) < k and [S¢(x)]x # 0. In this case we define the Getzler
symbol of S¢(z) to be
[St(2)] = [Se(@)]k-
Note that
ordt/ = —2j, [t/] =
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The series
r

1 2
he(x — €x ( )]1 tF Qk]l
)= g O g ) = (m H ;0 4’%'

can be viewed both as an element in %Z(Ep)[[t~!,] and as an element in .7, (W, z)[[t"1,t]. As
an element in Z(Ey)[[t !, 1] satisfies ord h;(z) = n. Moreover we have the following equality in
yﬂ(Wv m)[[t_lv t]

[h(2)] = he(2).
Consider the ring Z(E)[t !, t] of Laurent polynomials with coefficients in the ring %Z(Ey). Form
the ring
A(Eo)[t ™, 1][0r, 0u]
of partial differential operators with coefficients in Z(Eo)[t !, ].

P= ZZPQ,” )JOFO®, Pari(x) € B(Ro)[t™1,t] € Z(Ro)[[t™ ", 1].

We set
ord P := n%ax(ord Py i(x) + 2k + |of ),
,Q
and we define th Getzler symbol of P to be

[P = > (Pt @)0f0" € Su(W. )t 8)01, 0]
2k+|a|=ord P—ord Py, q ¢

If P, Q are two such operators, then ord PQ) < ord P + ord () and
[PQ] = [P][Q].
We want to remark that
ord at = 2, [8t] = 8t.
Note that

O+ 2% € Z(Eo)[t ™1, 1][0y,0,], H= (at + Dby € B(Eo)[t™1, 1[0k, Oa).

hy
Recalling the equality (4.3.5)
1

H=0,+ 9"+ V0, + (0, log g))

we deduce that ord H < 2 and

[H] = [H]y = 0, + [2°] + [1vraT] =0+ (2% + ga,,.

If set .
n
[Ou(x)] =) [0;(x)] € Fu(W,2)[t] € Ln(W,)[[t7", 1],
j=0
then we can rewrite the equalities (4.3.16) in the compact form

[H][©(2)] = 0.
Given that H hi (0y + 9?)h; we can further rewrite the last equality as a differential equation in
Fn(W)[[t1,1],
(0 + [2%)) ([©:(x)]) = 0.
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If we set

3

Ki() := hu(2) | t[0;(2)] € (W, 2)[[t™", 4]

J
and invoke (4.3.14), then we see that K () satisfies the differential equation

(at - Z@i + injRij> FE/S> () =0. (4.3.17)

i J
4.3.3. Mehler formula. Suppose we are given the following data.
e A finite dimensional commutative C-algebra .o7'.
e A finite dimensional complex vector space W.
e Ann x n skew-symmetric matrix R with coefficients in 7.
e Anelement F' € End(W) ® 7.

Denote by # the ring of smooth function Br(0) — End(W) ® /. Form the differential
operator

Su@%%,S:—zx&+%2y%ﬂf+E
i J

=So
Observe that Sy commutes with H.

Proposition 4.3.8. For any Ay € End(W) ® o there exists a unique formal solution p;(x) =
pi(x, R, F, Ay) € Z of the the heat equation

(O + Sz)pe(z) =0 (4.3.18)
which has the form
ZtktI)k ., ®(0) = A. (4.3.19)
%,_/
=:04(z)

Proof. Observe that the equation
1
(0 + Sx)(ht(a:)@t(a:)) =0<= (8,5;7"& + S5z )(I)t(x) =0

< r0, Py =0, (ro, + k)P =—-5,Pr_1 =0, Vk>D0.
We see that @ is the constant function ag while the second equation reads
Or(r*®y) = —rF 18, &),

which determines ®; € % uniquely. ad

For any symmetric n x n matrix A with coefficients in .o/ we set

(z|Alz) : Za”x .
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Proposition 4.3.9 (Mehler formula).
tR/2
sinhtR/2

1

1
pi(x, R, F, Ag) = —det2 <

4rt)2

) exp(—4lt<x\(m/2) coth(tR/2)\x>> exp(—tF) Ap.
O

4.3.4. Putting all the moving parts together.
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s-commutator, 69, 75
s-bundle, 84
grading, 84
s-space, 68
grading, 68
s-trace, 68

Liviu I. Nicolaescu



Notes on the Atiyah-Singer index Theorem

171

relative, 74, 93
scalar curvature, 40, 87
Schwartz kernel, 146
section, see also vector bundle
sectional curvature, 39
smoothing operator, 147
Sobolev spaces, 56
spectrum, 142
spin
manifold, 121
structure, 119
spinorial representation, 73
twisted, 73
Stiefel-Whitney class, 121
structure
almost complex, 103
integrable, 104
almost Hermitian, 105
almost Kihler, 106
Fubini-Study, 108
Kihler, 106
supertrace, 68
relative, 74

theorem
Atiyah-Singer index, 66, 94, 126, 135
Chern-Weil, 23
Chow, 108
continuous dependence of the index, 61
Fredholm alternative, 59
Gauss-Bonnet-Chern, 99
Hahn-Banach, 60
Hirzebruch signature, 102, 118, 126
Hodge, 65, 111
McKean-Singer, 154
Nirenberg-Newlander, 105
Noether, 119
Riemann-Roch-Hirzebruch, 115
Rokhlin, 128
Sobolev embedding, 57
spectral, 142

torsor, 122, 133

transgression, 24

twisting, 86

twisting curvature, 85, 115, 124

vector bundle, 1
G-structure, 11
base, 2
canonical projection, 2
canonical orientation, 8
connection, 12
compatible with metric, 17
curvature, 18
trivial, 13
fiber, 1
hermitian metric, 8
holomorphic, 109
holomorphic section, 109
local frame, 9
metric, 8

morphism, 3

orientable, 5

orientation, 5

oriented, 5

parallel, 16

pullback, 6

rank, 2

section, 6
p-integrable, 55
covariant constant, 16
measurable, 55
pullback of, 9
weakly differentiable, 55

standard fiber, 2

total space, 2

trivial, 2

trivializable, 4

trivialization, 4

trivialized, 4

vector field, 7

weak solution, 55

Weitzenbock
remainder, 54
connection, 54
formula, 87
presentation, 53

Weyl
group, 30
lemma, 58



	Introduction
	Notations and conventions
	Chapter 1. Geometric Preliminaries
	1.1. Vector bundles and connections
	1.1.1. Smooth vector bundles
	1.1.2. Principal bundles
	1.1.3. Connections on vector bundles

	1.2. Chern-Weil theory
	1.2.1. Connections on principal G-bundles
	1.2.2. The Chern-Weil construction
	1.2.3. Chern classes
	1.2.4. Pontryagin classes
	1.2.5. The Euler class

	1.3. Calculus on Riemann manifolds
	1.4. Exercises for Chapter 1

	Chapter 2. Elliptic partial differential operators
	2.1. Definition and basic constructions
	2.1.1. Partial differential operators
	2.1.2. Analytic properties of elliptic operators
	2.1.3. Fredholm index
	2.1.4. Hodge theory

	2.2. Dirac operators
	2.2.1. Clifford algebras and their representations
	2.2.2. Spin and Spinc
	2.2.3. Geometric Dirac operators

	2.3. Exercises for Chapter 2

	Chapter 3. The Atiyah-Singer Index Theorem: Statement and Examples
	3.1. The statement of the index theorem
	3.2. Fundamental examples
	3.2.1. The Gauss-Bonnet theorem
	3.2.2. The signature theorem
	3.2.3. The Hodge-Dolbeault operators and the Riemann-Roch-Hirzebruch formula
	3.2.4. The spin Dirac operators
	3.2.5. The spinc Dirac operators

	3.3. Exercises for Chapter 3

	Chapter 4. The heat kernel proof of the index theorem
	4.1. A rough outline of the strategy
	4.1.1. The heat equation approach: a baby model
	4.1.2. What really goes into the proof

	4.2. The heat kernel
	4.2.1. Spectral theory of symmetric elliptic operators
	4.2.2. The heat kernel
	4.2.3. The McKean-Singer formula

	4.3. The proof of the Index Theorem
	4.3.1. Approximating the heat kernel
	4.3.2. The Getzler approximation process
	4.3.3. Mehler formula
	4.3.4. Putting all the moving parts together


	Bibliography
	Index

