
KNOTS AND THEIR CURVATURES

LIVIU I. NICOLAESCU

ABSTRACT. I discuss an old result of John Milnor stating roughly that if a closed curve in space is not
too curved then it cannot be knotted.
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1. THE TOTAL CURVATURE OF A POLYGONAL CURVE

An (oriented) polygonal knot (or curve) is a closed curve C in R3, without selfintersections, ob-
tained by successively joining n distinct points

p1, . . . ,pn, pn+1 = p1 ∈ R3

via straight line segments
[p1p2], . . . , [pn−1pn], [pn,p1].

The points pi are called the vertices of the polygonal knot C. We denote by VC the set of vertices.
To each oriented edge [pi,pi+1], 1 ≤ i ≤ n, we associate the unit vector

γi :=
1

|−−−−→pipi+1|
· −−−−→pipi+1.

Denote by S2 the unit sphere in R3 centered at the origin. We obtain in this fashion a map

γ = γC : VC → S2, γ(pi) = γi.

This is known as the Gauss map of the polygonal knot C.
Let αi ∈ [0, π) be the angle between γi and γi+1; see Figure 1. We obtain in this fashion a map

α = αC : VC → [0, π), α(pi) = αi.

We define the total curvature of C to be the positive real number

K(C) =
1

2π

∑
p∈VC

αC(p) =
1

2π

n∑
i=1

αi. (1.1)
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FIGURE 1. A planar polygonal knot.

Observe that if C is a convex, planar polygonal curve then K(C) = 1.
We can give a simple geometric interpretation to the total curvature. The points γi and γi+1 on

S2 determine a great circle (think Equator) on the sphere obtained by intersecting the sphere with the
plane Πi through the origin and containing these two points. This great circle is divided into two arcs
by the points γi and γi+1. We let σi denote the shorter of the two arcs. Note that

αi = length(σi).

The collection of curves σi trace a closed curve σC on S2 called the gaussian image of C. We deduce

K(C) =
1

2π
length(σC).

2. A PROBABILISTIC INTERPRETATION OF THE TOTAL CURVATURE

Every unit vector u ∈ S2 determines a linear map

Lu : R3 → R, Lu(x) = u · x,
where “·” denotes the dot product in R3. This induces by restriction a continuous map

`u = Lu|C : C → R.
A vertex p of C is a local minimum of `u if

`u(p) ≤ `u(x), for all x ∈ C situated in a neighborhood of p.

We now define

µC : S2 × VC → R, S2 × VC 3 (u,p) 7→ µC(u,p) =

{
1, if p is a local minimum of `u,
0, otherwise.

We set

µC : S2 → R, µC(u) = the number of vertices of C that are local minima of `u.

Let us point out that that µC(u) =∞) for some u’s. Observe that

µC(u) =
∑

p∈VC

µC(u,p). (2.1)

Let us have a look at the function µC . First let us call a unit vector u ∈ S2 nondegenerate (with
respect to C) if the restriction `u : VC → R, i.e., the function `u takes different values on different
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vertices of C. Otherwise, we say that u is degenerate (with respect to C). We denote by ∆C ⊂ S2

the collection of degenerate vectors.
Note that u is degenerate if and only if there exist pi,pj ∈ VC such that u · (pi − pj), i.e., u is

perpendicular to the line `ij determined by pi and pj . In other words, u belongs to the great circle
Eij ⊂ S2 obtained by intersecting S2 with the plane through origin perpendicular to `ij . Thus

∆C =
⋃

1≤i<j≤n
Eij .

In particular, the set ∆C has zero area, i.e., most vectors u ∈ S2 are nondegenerate. Set

S2
C := S2 \∆C .

Let us point out that
u ∈ S2

C ⇒ µC(u) <∞.
The set S2

C is the complement of finitely many great circles, and thus consists of the interiors of
finitely many spherical polygons,

S2
C = P1 ∪ · · · ∪ Pν .

Let us observe that if u0,u1 ∈ S2
C belong to the interior of the same polygon Pk then

µC(u0,p) = µC(u1,p), ∀p ∈ VC .

To see this we choose a continuous path u : [0, 1]→ Pk such that

u(0) = u0, u(1) = u1.

We set `t := `u(t), we consider a vertex p of C and we denote by p′ and p′′ its neighbors. Since the
vector u(t) is nongenerate the quantities

d′t = `t(p′)− `(p) and d′′t = `t(p′′)− `t(p)

are nonzero for any t ∈ [0, 1]. In particular, the signs of these quantities are independent of t. Observe
that p is a local minimum for `0 if and only if both d′0 and d′′0 are positive, that is, if and only if d′1
and d′′1 are positive. Thus p is a local minimum for `0 if and only if it is a local minimum for `1, i.e.,

µC(u0,p) = µC(u1,p).

This shows that the function µC is constant and finite on each of the regions Pk and in particular, it is
integrable.

Now define

κ(C) :=
1

area (S2)

∫
S2
µC(u) dAu =

1
4π

∫
S2
µC(u) dAu,

where dA denotes the area element on S2. In other words κ(C) is the average number of local
minima of the collection of function {

`u : C → R; u ∈ S2
}
.

We have the following beautiful result due to Milnor [2]

Theorem 2.1. For any polygonal curve C ⊂ R3 we have K(C) = κ(C).

Proof. The proof is based on one of the oldest tricks in the book, namely, changing the order of
summation (or integration) in a double sum (or integral). We have

κ(C) =
1

4π

∫
S2
µC(u) dAu =

1
4π

∫
S2

(∑
p∈VC

µC(u,p)

)
dAu =

1
4π

∑
p∈VC

∫
S2
µC(u,p) dAu.
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Let VC = {p1, . . . ,pn}. We want to compute the integral∫
S2
µC(u,pi) dAu.

Above, for almost all u we have µC(u,pi) = 0, 1. Note that pi is a local minimum of `u if and only
if u belongs to the lune Li ⊂ S2 defined as follows.
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FIGURE 2. A planar section of a dihedral angle and the associated lune with opening
βi = αi.

Consider the planes πi and πi−1 perpendicular to the lines pipi+1 and respectively pi−1pi; see
Figure 2. The planes πi and πi−1 determine four dihedral angles. Let let Di denote the dihedral angle
characterized by the inequalities

u ∈ Di⇐⇒u · pi ≤ u · pi−1, u · pi+1.

Then Li = Di ∩ S2. The area of the lune Li is twice the measure βi of the dihedral angle Di (can
you argue why?) and upon inspecting Figure 2 we see that βi = αi Hence

1
4π

∫
S2
µC(u,pi) dAu =

1
4π

area (Li) =
αi
2π
.

Hence

κ(C) =
1

2π

n∑
i=1

αi = K(C).

ut

Remark 2.2. For a different probabilistic interpretation of K(C) we refer to the paper of Istvan Fáry
[1]. ut

3. THE TOTAL CURVATURE OF A SMOOTH CLOSED CURVE

Suppose now that C is a C2 closed curve in R3 without self-intersections. In other words we can
find a twice continuously differentiable map r : R→ R3, t 7→ r(t) that is 1-periodic,

r(t+ n) = r(t), ∀t ∈ R, n ∈ Z,

its restriction to [0, 1) is injective, and

ṙ(t) 6= 0, ∀t ∈ R,

where the dot indicates a t-derivative, such that C coincides with the image of r. The parametrization
r induces an orientation on C. We set p0 = r(0).
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For every p = r(t) ∈ C we denote by γC(p) the unit vector tangent to C at p and pointing in the
same direction as the velocity vector ṙ(t) at p. More formally,

γC(p) =
1
|ṙ(t)|

ṙ(t).

We the resulting C1-map
γC : C → S2

is called the Gauss map of the oriented closed curve C. Its image σC is a C1 curve on S2 called the
gaussian image of C.

We denote by ds the arclength element along C, ds = |ṙ(t)|dt so that

LC := length(C) =
∫
C
ds =

∫ 1

0
|ṙ(t)|dt.

For every p ∈ C \ {p0} we denote by s(p) the length of the arc of C connecting p0 to p following
the orientation given by r. Set s(p0) = 0. We can use the quantity s to indicate the position of a
point on C. Thus we can view r as a function of s, r = r(s). Note that∣∣∣∣drds

∣∣∣∣ = 1,
dr

ds
= γ(s).

We approximate C by a sequence of inscribed polygonal curves Cn, obtained inductively as follows.
• The polygonal curve C1 has 2k vertices p0,p1, . . . ,p2k−1,p2k = p0 oriented following the

orientation of C, and s(pi)− s(pi−1) = LC

2k .
• VCn ⊂ VCn+1 and new vertices of Cn+1 are the midpoints of the arcs of C formed by the

consecutive vertices of Cn.
Observe that the set

V∞ =
⋃
n≥1

VCn

can be identified with the dense subset of [0, LC ]

V∞ =
{
s ∈ [0, L], s =

m

2n
LC ; m,n ∈ Z≥0, n ≥ k, m ≤ 2n

}
.

Note that if p ∈ V∞, then p ∈ VCn for all n � 1. Denote by pi,n the vertex i of Cn that coincides
with p, and by pi+1,n its succesor. We set

si,n := s(pi,n), si+1,n := s(pi+1,n).

Note that

γCn(p) =
1

|r(si+1,n)− r(si,n)|
(
r(si+1,n)− r(si,n)

)
,

so that

lim
n→∞

γCn
(p) = lim

n→∞

1
|r(si+1,n)− r(si,n)|

(
r(si+1,n)− r(si,n)

)
γC(p).

= lim
n→∞

1
si+1,n − si,n

(
r(si+1,n)− r(si,n)

)
= γC(p).

Thus the gaussian images ofCn are curves converging to the gaussian image ofC, so we could expect
that

lim
n→∞

length(σCn) = length(σC).
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In fact something more precise is true. We set

K(C) =
1

2π
lengthσC =

1
2π

∫
C

∣∣∣∣dγds
∣∣∣∣ ds. (3.1)

The quantitity K(C) is called the total curvature of C and it is a measure of the total “bending” of C.

Theorem 3.1. (a) K(Cn) ≤ K(Cn+1), ∀n ≥ 1 and

lim
n→∞

K(Cn) = K(C).

(b) There exists n0 > 0 such that for any n ≥ n0 and any u ∈ S2 we have

µCn(u) ≤ µCn+1(u) = µC(u) := the number of local minimal of Lu|C .
Moreover

lim
n→∞

∫
S2
µCn(u) dAu =

∫
S2
µC(u) dAu.

The proof is not very hard, but it is rather technical and we refer for details to [2]. In particular we
deduce that for any closed C2 curve we have

K(C) = κ(C), (3.2)

where the left-hand side is the bending measure (3.1) and it is a purely geometric quantity, while
κ(C) is a probabilistic quantity

κ(C) =
1

4π

∫
S2
µC(u) dAu. (3.3)

4. TOTAL CURVATURE AND KNOTTING

The topologists refer to closed C2 curves in R3 as knots. In the 40s K Borsuk ask the following
question

Is it true that if a knot C is “not too bent”, then it is not really knotted? More precisely, he sked to
prove that if K(C) ≤ 2 then C is not knotted.

In 1949, while an undergraduate at Princeton, J. Milnor gave a proof to this conjecture in the
beautiful paper [2] that served as inspiration for this talk. At about the same time, in Europe, I. Fáry
gave a different but related proof of this fact. We want to prove a slightly weaker result.

Theorem 4.1 (Milnor-Fáry). If C is a knot and K(C) < 2, then C is not knotted.

Proof. Here is briefly Milnor’s strategy. He introduced an invariantm(C) of a knotC, called crooked-
ness and he showed that if m(C) = 1 then C is not knotted. A simple argument based on (3.2) then
shows that K(C) ≤ 2 implies that m(C) = 1.

The crookedness m(C) is the integer

m(C) := min
u∈S2

µC(u).

Lemma 4.2. If m(C) = 1 then C is not knotted.

Proof of the lemma. Since m(C) = 1 there exists u ∈ S2 such that the function Lu|C has a unique
local minimum, which has to be a global minimum. In particular this function must have a unique
local maximum, because between two local maxima there must be a local minimum.

By a suitable choice of coordinates we can assume that u is the basic vector k, so that

Lu(xi+ yi+ zk) = z
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i.e., Lu is the altitude function.

1 2 3 4 5

k

FIGURE 3. Unknotting a curve with small crookedness.

By removing two small caps, i.e., small connected neighborhoods of the minimum and the maxi-
mum points we obtain two disjoint arcs in R3 as depicted in Figure 3-2. The restriction of the altitude
along each of these arcs is a continuous injective function. These two arcs start at the same altitude
z0 and end at the same altitude z1 > z0. For t ∈ [z0, z1] these two arcs intersect the horizontal plane
{z = t} in two points pt and qt. Denote by St line segment connecting pt to qt. The union of these
segments spans a ribbon between the two arcs which shows that they can be untwisted, as in Figure
3-3,4,5. To unknot C we let the boundary of the caps follow the boundaries of the two arcs as they
are untwisted. ut

We can now complete the proof of Theorem 4.1. We observe that

K(C) =
1

4π

∫
S2
µC(u) dAu ≥

1
4π

∫
S2
m(C) dAu = m(C).

Thus if K(C) < 2 then the positive integer m(C) is strictly less than 2 so that m(C) = 1. From
Lemma 4.2 we deduce that C is not knotted. ut
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