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Introduction

Shape is a fascinating and intriguing subject which has stimulated the imagination
of many people. It suÆces to look around to become curious. Euclid did just that and
came up with the �rst pure creation. Relying on the common experience, he created
an abstract world that had a life of its own. As the human knowledge progressed
so did the ability of formulating and answering penetrating questions. In particular,
mathematicians started wondering whether Euclid's \obvious" absolute postulates
were indeed obvious and/or absolute. Scientists realized that Shape and Space are
two closely related concepts and asked whether they really look the way our senses
tell us. As Felix Klein pointed out in his Erlangen Program, there are many ways
of looking at Shape and Space so that various points of view may produce di�erent
images. In particular, the most basic issue of \measuring the Shape" cannot have a
clear cut answer. This is a book about Shape, Space and some particular ways of
studying them.

Since its inception, the di�erential and integral calculus proved to be a very ver-
satile tool in dealing with previously untouchable problems. It did not take long until
it found uses in geometry in the hands of the Great Masters. This is the path we
want to follow in the present book.

In the early days of geometry nobody worried about the natural context in which
the methods of calculus \feel at home". There was no need to address this aspect since
for the particular problems studied this was a non-issue. As mathematics progressed
as a whole the \natural context" mentioned above crystallized in the minds of math-
ematicians and it was a notion so important that it had to be given a name. The
geometric objects which can be studied using the methods of calculus were called
smooth manifolds. Special cases of manifolds are the curves and the surfaces and
these were quite well understood. B. Riemann was the �rst to note that the low
dimensional ideas of his time were particular aspects of a higher dimensional world.

The �rst chapter of this book introduces the reader to the concept of smooth man-
ifold through abstract de�nitions and, more importantly, through many we believe
relevant examples. In particular, we introduce at this early stage the notion of Lie
group. The main geometric and algebraic properties of these objects will be gradually
described as we progress with our study of the geometry of manifolds. Besides their
obvious usefulness in geometry, the Lie groups are academically very friendly. They
provide a marvelous testing ground for abstract results. We have consistently taken
advantage of this feature throughout this book. As a bonus, by the end of these
lectures the reader will feel comfortable manipulating basic Lie theoretic concepts.

To apply the techniques of calculus we need \things to derivate and integrate".
These \things" are introduced in Chapter 2. The reason why smooth manifolds have
many di�erentiable objects attached to them is that they can be locally very well
approximated by linear spaces called tangent spaces . Locally, everything looks like
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traditional calculus. Each point has a tangent space attached to it so that we obtain
a \bunch of tangent spaces" called the tangent bundle. We found it appropriate to
introduce at this early point the notion of vector bundle. It helps in structuring both
the language and the thinking.

Once we have \things to derivate and integrate" we need to know how to explicitly
perform these operations. We devote the Chapter 3 to this purpose. This is perhaps
one of the most unattractive aspects of di�erential geometry but is crucial for all
further developments. To spice up the presentation, we have included many examples
which will found applications in later chapters. In particular, we have included a
whole section devoted to the representation theory of compact Lie groups essentially
describing the equivalence between representations and their characters.

The study of Shape begins in earnest in Chapter 4 which deals with Riemann
manifolds. We approach these objects gradually. The �rst section introduces the
reader to the notion of geodesics which are de�ned using the Levi-Civita connection.
Locally, the geodesics play the same role as the straight lines in an Euclidian space
but globally new phenomena arise. We illustrate these aspects with many concrete
examples. In the �nal part of this section we show how the Euclidian vector calculus
generalizes to Riemann manifolds.

The second section of this chapter initiates the local study of Riemann manifolds.
Up to �rst order these manifolds look like Euclidian spaces. The novelty arises when
we study \second order approximations " of these spaces. The Riemann tensor pro-
vides the complete measure of how far is a Riemann manifold from being at. This
is a very involved object and, to enhance its understanding, we compute it in several
instances: on surfaces (which can be easily visualized) and on Lie groups (which can
be easily formalized). We have also included Cartan's moving frame technique which
is extremely useful in concrete computations. As an application of this technique
we prove the celebrated Theorema Egregium of Gauss. This section concludes with
the �rst global result of the book, namely the Gauss-Bonnet theorem. We present
a proof inspired from [21] relying on the fact that all Riemann surfaces are Einstein
manifolds. The Gauss-Bonnet theorem will be a recurring theme in this book and we
will provide several other proofs and generalizations.

One of the most fascinating aspects of Riemann geometry is the intimate correla-
tion \local-global". The Riemann tensor is a local object with global e�ects. There
are currently many techniques of capturing this correlation. We have already de-
scribed one in the proof of Gauss-Bonnet theorem. In Chapter 5 we describe another
such technique which relies on the study of the global behavior of geodesics. We
felt we had the moral obligation to present the natural setting of this technique and
we briey introduce the reader to the wonderful world of the calculus of variations.
The ideas of the calculus of variations produce remarkable results when applied to
Riemann manifolds. For example, we explain in rigorous terms why \very curved
manifolds" cannot be \too long" .

In Chapter 6 we leave for a while the \di�erentiable realm" and we briey discuss
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the fundamental group and covering spaces. These notions shed a new light on
the results of Chapter 5. As a simple application we prove Weyl's theorem that
the semisimple Lie groups with de�nite Killing form are compact and have �nite
fundamental group.

Chapter 7 is the topological core of the book. We discuss in detail the cohomol-
ogy of smooth manifolds relying entirely on the methods of calculus. In writing this
chapter we could not, and would not escape the inuence of the beautiful monograph
[14], and this explains the frequent overlaps. In the �rst section we introduce the
DeRham cohomology and the Mayer-Vietoris technique. Section 2 is devoted to the
Poincar�e duality, a feature which sets the manifolds apart from many other types of
topological spaces. The third section o�ers a glimpse at homology theory. We intro-
duce the notion of (smooth) cycle and then present some applications: intersection
theory, degree theory, Thom isomorphism and we prove a higher dimensional version
of the Gauss-Bonnet theorem at the cohomological level. The fourth section analyzes
the role of symmetry in restricting the topological type of a manifold. We prove �Elie
Cartan's old result that the cohomology of a symmetric space is given by the linear
space of its bi-invariant forms. We use this technique to compute the lower degree co-
homology of compact semisimple Lie groups. We conclude this section by computing
the cohomology of complex grassmannians relying on Weyl's integration formula and
Schur polynomials. The chapter ends with a �fth section containing a concentrated
description of �Cech cohomology.

Chapter 8 is a natural extension of the previous one. We describe the Chern-Weil
construction for arbitrary principal bundles and then we concretely describe the most
important examples: Chern classes, Pontryagin classes and the Euler class. In the
process, we compute the ring of invariant polynomials of many classical groups. Usu-
ally, the connections in principal bundles are de�ned in a global manner, as horizontal
distributions. This approach is geometrically very intuitive but, at a �rst contact, it
may look a bit unfriendly in concrete computations. We chose a local approach build
on the reader's experience with connections on vector bundles which we hope will at-
tenuate the formalism shock. In proving the various identities involving characteristic
classes we adopt an invariant theoretic point of view. The chapter concludes with the
general Gauss-Bonnet-Chern theorem. Our proof is a variation of Chern's proof.

Chapter 9 is the analytical core of the book. Many objects in di�erential geome-
try are de�ned by di�erential equations and, among these, the elliptic ones play an
important role. This chapter represents a minimal introduction to this subject. After
presenting some basic notions concerning arbitrary partial di�erential operators we
introduce the Sobolev spaces and describe their main functional analytic features. We
then go straight to the core of elliptic theory. We provide an almost complete proof
of the elliptic a priori estimates (we left out only the proof of the Calderon-Zygmund
inequality). The regularity results are then deduced from the a priori estimates via
a simple approximation technique. As a �rst application of these results we consider
a Kazhdan-Warner type equation which recently found applications in solving the
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Seiberg-Witten equations on a K�ahler manifold. We adopt a variational approach.
The uniformization theorem for compact Riemann surfaces is then a nice bonus. This
may not be the most direct proof but it has an academic advantage. It builds a circle
of ideas with a wide range of applications. The last section of this chapter is devoted
to Fredholm theory. We prove that the elliptic operators on compact manifolds are
Fredholm and establish the homotopy invariance of the index. These are very general
Hodge type theorems. The classical one follows immediately from these results. We
conclude with a few facts about the spectral properties of elliptic operators.

The last chapter is entirely devoted to a very important class of elliptic operators
namely the Dirac operators. The important role played by these operators was singled
out in the works of Atiyah and Singer and, since then, they continue to be involved
in the most dramatic advances of modern geometry. We begin by �rst describing
a general notion of Dirac operators and their natural geometric environment, much
like in [10]. We then isolate a special subclass we called geometric Dirac operators.
Associated to each such operator is a very concrete Weitzenb�ock formula which can
be viewed as a bridge between geometry and analysis, and which is often the source
of many interesting applications. The abstract considerations are backed by a full
section describing many important concrete examples.

In writing this book we had in mind the beginning graduate student who wants
to specialize in global geometric analysis in general and gauge theory in particular.
The second half of the book is an extended version of a graduate course in di�erential
geometry we taught at the University of Michigan during the winter semester of 1996.

The minimal background needed to successfully go through this book is a good
knowledge of vector calculus and real analysis, some basic elements of point set topol-
ogy and linear algebra. A familiarity with some basic facts about the di�erential ge-
ometry of curves of surfaces would ease the understanding of the general theory, but
this is not a must. Some parts of Chapter 9 may require a more advanced background
in functional analysis.

The theory is complemented by a large list of exercises. Quite a few of them con-
tain technical results we did not prove so we would not obscure the main arguments.
There are however many non-technical results which contain additional information
about the subjects discussed in a particular section. We left hints whenever we be-
lieved the solution is not straightforward.

Personal note It has been a great personal experience writing this book and I
sincerely hope I could convey some of the magic of the subject. Having access to the
remarkable science library of the University of Michigan and its computer facilities
certainly made my job a lot easier and improved the quality of the �nal product.

I learned di�erential equations from Professor Viorel Barbu, very generous and
enthusiastic person who guided my �rst steps in this �eld of research. He stimulated
my curiosity by his remarkable ability of unveiling the hidden beauty of this highly
technical subject. My thesis advisor, Professor Tom Parker, introduced me to more
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than the fundamentals of modern geometry. He played a key role in shaping the
manner in which I regard mathematics. In particular, he convinced me that behind
each formalism there must be a picture and uncovering it is a very important part
of the creation process. Although I did not directly acknowledge it, their inuence
is present throughout this book. I only hope the �lter of my mind captured the full
richness of the ideas they so generously shared with me.

My friends Louis Funar and Gheorghe Ionesei read parts of the manuscript. I am
grateful to them for their e�ort, their suggestions and for their friendship. I want to
thank Arthur Greenspoon for his advice, enthusiasm and relentless curiosity which
boosted my spirits when I most needed it. Also, I appreciate very much the input I
received from the graduate students of my \Special topics in di�erential geometry"
course at the University of Michigan which had a bene�cial impact on the style and
content of this book.

At last, but not the least, I want to thank my family who supported me from the
beginning to the completion of this project.

Ann Arbor, 1996.
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