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My task which I am trying to achieve is by the power of the written word, to make you
hear, to make you feel - it is, before all, to make you see. That - and no more, and it is
everything.

Joseph Conrad

Almost two decades ago, a young mathematician by the name of Simon Donaldson took the
mathematical world by surprise when he discovered some “pathological” phenomena concerning
smooth 4-manifolds. These pathologies were caused by certain behaviours of instantons, solutions of
the Yang-Mills equations arising in the physical theory of gauge fields.

Shortly after, he convinced all the skeptics that these phenomena represented only the tip of
the iceberg. He showed that the moduli spaces of instantons often carry nontrivial and surprising
information about the background manifold. Very rapidly, many myths were shattered.

A flurry of work soon followed, devoted to extracting more and more information out of these
moduli spaces. This is a highly nontrivial job, requiring ideas from many branches of mathematics.
Gauge theory was born and it is here to stay.

In the fall of 1994, the physicists N. Seiberg and E. Witten introduced to the world a new set of
equations which according to physical theories had to contain the same topological information as
the Yang-Mills equations.

From an analytical point of view these new equations, now known as the Seiberg-Witten equa-
tions, are easier to deal with than the Yang-Mills equations. In a matter of months many of the
results obtained by studying instantons were re-proved much faster using the new theory. (To be
perfectly honest, the old theory made these new proofs possible since it created the right mindset to
think about the new equations.) The new theory goes one step further, since it captures in a more
visible fashion the interaction geometry-topology.

The goal of these notes is to help the potential reader share some of the excitement afforded by
this new world of gauge theory and eventually become a player him /herself.

There are many difficulties to overcome. To set up the theory one needs a substantial volume of
information. More importantly, all this volume of information is processed in a nontraditional way
which may make the first steps in this new world a bit hesitant. Moreover, the large and fast-growing
literature on gauge theory, relying on a nonnegligible amount of “folklore”!, may look discouraging
to a beginner.

To address these issues within a reasonable space we chose to present a few, indispensable,
key techniques and as many relevant examples as possible. That is why these notes are far from
exhaustive and many notable contributions were left out. We believe we have provided enough
background and intuition for the interested reader to be able to continue the Seiberg-Witten journey
on his/her own.

It is always difficult to resolve the conflict clarity vs. rigor and even much more so when presenting
an eclectic subject such as gauge theory. The compromises one has to make are always biased and
thus may not satisfy all tastes and backgrounds. We could not escape this bias, but whenever a
proof would have sent us far astray we tried to present all the main concepts and ideas in as clear
a light as possible and make up for the missing details by providing generous references. Many
technical results were left to the reader as exercises but we made sure that all the main ingredients
can be found in these notes.

Here is a description of the content. The first chapter contains preliminary material. It is
clearly incomplete and cannot serve as a substitute for a more thorough background study. We have
included it to present in the nontraditional light of gauge theory many classical objects which may
already be familiar to the reader.

1That is, basic facts and examples every expert knows and thus are only briefly or not at all explained in a formal
setting. They are usually transmitted through personal interactions.
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The study of the Seiberg-Witten equations begins in earnest in Chapter 2. In the first section
we introduce the main characters: the monopoles, i.e. the solutions of the Seiberg-Witten equations
and the group of gauge transformations, an infinite dimensional Abelian group acting on the set of
monopoles. The Seiberg-Witten moduli space and its structure are described in Section 2.2 while
the Seiberg-Witten invariants are presented in Section 2.3. We have painstakingly included all the
details concerning orientations because this is one of the most confusing aspects of the theory. We
conclude this chapter with two topological applications: the proof by P. Kronheimer and T. Mrowka
of the Thom conjecture for CP? and the new proof based on monopoles of Donaldson’s first theorem,
which started this new field of gauge theory.

In Chapter 3 we concentrate on a special, yet very rich, class of smooth 4-manifolds, namely the
algebraic surfaces. It was observed from the very beginning by E. Witten that the monopoles on
algebraic surfaces can be given an explicit algebraic-geometric description, thus opening the possi-
bility of carrying out many concrete computations. The first section of this chapter is a brief and
informal survey of the geometry and topology of complex surfaces together with a large list of exam-
ples. In Section 3.2 we study in great detail the Seiberg-Witten equations on Kéahler surfaces and,
in particular, we prove Witten’s result stating the equivalence between the Seiberg-Witten moduli
spaces and certain moduli spaces of divisors. The third section is devoted entirely to applications.
We first prove the nontriviality of the Seiberg-Witten invariants of a Kéahler surface and establish
the invariance under diffeomorphisms of the canonical class of an algebraic surface of general type.
We next concentrate on simply connected elliptic surfaces. We compute all their Seiberg-Witten
invariants following an idea of O. Biquard based on the factorization method of E. Witten. This
computation allows us to provide the complete smooth classification of simply connected elliptic sur-
faces. In §§3.3.3, we use the computation of the Seiberg-Witten invariants of K3-surfaces to show
that the smooth h-cobordism theorem fails in four dimensions. We conclude this section and the
chapter with a discussion of the Seiberg-Witten invariants of symplectic 4-manifolds and we prove
Taubes’ theorem on the nontriviality of these invariants in the symplectic world.

The fourth and last chapter is by far the most technically demanding one. We present in great
detail the cut-and-paste technique for computing Seiberg-Witten invariants. This is a very useful
yet difficult technique but the existing written accounts of this method can be unbalanced as regards
their details. In this chapter we propose a new approach to this technique which in our view has
several conceptual advantages and can be easily adapted to other problems as well. Since the volume
of technicalities can often obscure the main ideas we chose to work in a special yet sufficiently general
case when the moduli spaces of monopoles on the separating 3-manifold are, roughly speaking, Bott
nondegenerate.

Section 4.1 contains preliminary material mostly about elliptic equations on manifolds with
cylindrical ends. Most objects on closed manifolds have cylindrical counterparts which often encode
very subtle features. We discovered that a consistent use of cylindrical notions is not only sesthetically
desirable, but also technically very useful. The cylindrical context highlights and coherently organizes
many important and not so obvious aspects of the whole gluing problem. An important result in
this section is the Cappell-Lee-Miller gluing theorem. We adapt the asymptotic language of [110],
which is extremely convenient in gluing problems. This section ends with the long subsection §§4.1.6
containing many useful and revealing examples. These are frequently used in gauge theory and we
could not find any satisfactory reference for them.

In Section 4.2 we study the finite energy monopoles on cylindrical manifolds. The results are
very similar to the ones in Yang-Mills equations and that is why this section was greatly inspired
by [96, 133].

Section 4.3 is devoted to the local study of the moduli spaces of finite energy monopoles. The
local structure is formally very similar to that in Yang-Mills theory with a notable exception, the
computation of the virtual dimensions, which is part of the folklore. We present in detail this
computation since it is often relevant. Moreover, we describe some new exact sequences relating
the various intervening deformation complexes to objects covered by the Cappell-Lee-Miller gluing
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theorem. These exact sequences represent a departure from the mainstream point of view and play
a key role in our local gluing theorem.

Section 4.4 is devoted to the study of global properties of the moduli spaces of finite energy
monopoles: generic smoothness, compactness (or lack thereof) and orientability. The orientability
is no longer an elementary issue in the noncompact case and we chose to present a proof of this fact
only in some simpler situations we need for applications.

Section 4.5 contains the main results of this chapter dealing with the process of reconstructing
the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. This
manifold decomposition can be analytically simulated by a neck stretching process. During this
process, the Seiberg-Witten equations are deformed and their solutions converge to a singular limit.
The key issue to be resolved is whether this process can be reversed: given a singular limit can we
produce monopoles converging to this singular limit?

In his dissertation [99], T. Mrowka proved a very general gluing theorem which provides a satis-
factory answer to the above question in the related context of Yang-Mills equations. In §§4.5.2, we
prove a local gluing theorem, very similar in spirit to Mrowka’s theorem but in an entirely new con-
text. The main advantage of the new approach is that all the spectral estimates needed in the proof
follow immediately from the Cappell-Lee-Miller gluing theorem. Moreover, the Mayer-Vietoris type
local model is just a reformulation of the Cappell-Lee-Miller theorem. The asymptotic language of
[110] has allowed us to provide intuitive, natural and explicit descriptions of the various morphisms
entering into the definition of this Mayer-Vietoris model.

The local gluing theorem we prove produces monopoles converging to a singular limit at a certain
rate. If all monopoles degenerated to the singular limit set at this rate then we could conclude that
the entire moduli space on a manifold with a sufficiently long neck can be reconstructed from the
local gluing constructions. This issue of the surjectivity of the gluing construction is conspicuously
missing in the literature and it is quite nontrivial in non-generic situations. We deal with it in §§4.5.3
by relying on Lojasewicz’s inequality in real algebraic geometry.

In §84.5.4 we prove two global gluing theorems, one in a generic situation and the other one in
a special, obstructed setting.

Section 4.6 contains some simple topological applications of the gluing technique. We prove the
connected sum theorem and the blow-up formula. Moreover, we present a new and very short proof
of a vanishing theorem of Fintushel and Stern.

These notes were written with a graduate student in mind but there are many new points of view
to make it interesting for experts as well (especially our new approach to the gluing theorem). The
minimal background needed to go through these notes is a knowledge of basic differential geometry,
algebraic topology and some familiarity with fundamental facts concerning elliptic partial differential
equations. The list of contents for Chapter 1 can serve as background studying guide.

* % X%

Personal note. I have spent an exciting time of my life thinking and writing these notes and I
have been supported along the way by many people.

The book grew out of a year long seminar at McMaster University and a year long graduate
course I taught at the University of Notre Dame. I want to thank the participants at the seminar
and the course for their patience, interest, and most of all, for their many useful questions and
comments.

These notes would perhaps not have seen the light of day were it not for Frank Connolly’s
enthusiasm and curiosity about the subject of gauge theory which have positively affected me,
personally and professionally. I want to thank him for the countless hours of discussions, questions
and comments which helped me crystallize many of the ideas in the book.

For the past five years, I have been inspired by Arthur Greenspoon’s passion for culture in
general, and mathematics in particular. His interest in these notes kept my enthusiasm high. I am
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greatly indebted to him for reading these notes, suggesting improvements and correcting my often
liberal use of English language and punctuation.

While working on these notes I benefited from the conversations with Andrew Sommese, Stephan
Stolz and Larry Taylor, who patiently answered my sometimes clumsily formulated questions and
helped clear the fog.

My wife has graciously accepted my long periods of quiet meditation or constant babbling about
gauge theory. She has been a constant source of support in this endeavor. I want to thank my entire
family for being there for me.

Notre Dame, Indiana 1999
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Chapter 1

Preliminaries

The last thing one knows in constructing a work is what to put first.

Blaise Pascal, Pensées

The first chapter contains a fast and unavoidable biased survey of some basic facts needed
in understanding Seiberg-Witten theory. The choices in this minimal review reflect the author’s
background and taste and may not answer everyone’s needs. We hope the generous list of references
will more than make up for the various omissions.

This introductory chapter has only one goal, namely to familiarize the reader with the basic
terms and points of view in the Seiberg-Witten world and cannot serve as a substitute for a solid
background.

1.1 Bundles, connections and characteristic classes

8§1.1.1 Vector bundles and connections

Smooth vector bundles formalize the notion of “smooth family of vector spaces”. For example, given
a smooth manifold M and a vector space F we can think of the Cartesian product

F=Fy:=FxM

trivial vector bundle with fiber F' and base M.
We can obtain more interesting examples by gluing these simple ones using gluing data. These
consist of
A. an open cover (U,) of a smooth manifold M,
B. a gluing cocycle, i.e. a collection of smooth maps

as a smooth family (F,)yen of vector spaces. This trivial example is not surprisingly called the

9pa * Uaﬂ — Aut (F)
(where U,g = U, NUp), such that
Gaa(2) = 1p, gya = 948(2) - gga(x) Vo € Uagy := U NU N U, # 0.

The open cover U, is also known as a trivializing cover. We will also say it is the support of the ggq.

The map g, describes the “transition from F, := EUQ to Eﬂ” in the sense that for every
r € Uyp the element (v,x) € F,, is identified with the element (gso(7)v,7) € F45. Pasting together
the trivial bundles F', following the instructions given by the gluing cocycle we obtain a smooth
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manifold E (called the total space), a smooth map 7 : E — M (called the canonical projection) and
diffeomorphisms
¢a : W_l(Ua) - Ea

(called local trivializations) such that for all z € Uyg, v € V
vs oty (v,2) = (gpa(2)v, ).

E 5 M as above is called a vector bundle over M. The rank of E is by definition the dimension of
the standard fiber F' (over its field of scalars). Rank-one bundles are also known as line bundles.

Example 1.1.1. Consider the projective space CP" defined as the set of one-dimensional complex
subspaces of C"*!. There is a natural projection

7 :C"T\ {0} — CP”
where () := the one-dimensional subspace spanned by x. The fibers
7 (p), p€ CP",

are vector subspaces of C"*1. The family 7—1(p) is indeed a smooth family of vector spaces in the
sense described above. It is called the tautological (or universal) line bundle over the projective
space and is denoted by U,,.

Exercise 1.1.1. Describe a gluing cocycle for U,,.

Suppose that X 1. Y is a smooth map and F — Y is a smooth vector bundle given by a gluing
cocycle ggq supported by an open cover (Uy) of Y. Then f induces a vector bundle on X called the
pullback of E by f and denoted by f*E. It is given by the open cover (V,, = f~1(U,)) and gluing
cocycle hgo = gga o f.

The following exercise describes a very general procedure of constructing smooth vector bundles.

Exercise 1.1.2. Consider a smooth map P from a compact, connected, smooth manifold X to the
space End (V) of endomorphisms of a vector space V such that P%(z) = P(z) Vz € X, i.e. P(z) is
a smooth family of projectors of V.

(a) Show that dimker P(x) is independent of z € X. Denote by k this common dimension.

(b) Show that the assignment x +— ker P(x) defines a rank-k smooth vector bundle over X.

(c) Provide a projector description of the tautological line bundle over CP".

(d) Show that any map X — V*\ {0} defines in a canonical way a vector bundle over X of rank
dimV —1.

Remark 1.1.2. Denote by G (V') the Grassmannian of k-dimensional subspaces of an n-dimensional
vector space V. Assume V is equipped with an inner product. For each k-dimensional subspace
U C V denote by Py the orthogonal projection onto U~+. The smooth family

Gk(V) = U = PU

defines according to the previous exercise a rank-k vector bundle over G (V) called the universal
vector bundle and denoted by Uy,,. When k = 1 this is precisely the tautological line bundle over
RP"' or CP" .

Exercise 1.1.3. Suppose that  — P(X) is a smooth family of projectors of a vector space V
parameterized by a connected smooth manifold X. Set k = dimker P(z) and n = dim V' and denote
by f the map

f:X = Gp(V), o ker P(z) € Gi(V).

Show that f is smooth and that the pullback of Uy ,, by f coincides with the vector bundle defined
by the family of projections P(x).
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A smooth map s from a smooth manifold X to a vector space F' is a smooth selection of an
element s(z) in each fiber F' x x of F. In other words, it is a smooth map s : X — F 5 such that
mos = lx where m : F'y — X is the natural projection. Replacing F'y with any smooth vector
bundle £ 5 X we get the notion of smooth section of E. The space of smooth sections of E will be
denoted by T'(E) or C*(E). In terms of gluing cocycles we can describe a section as a collection of
smooth maps

Sq : Uy — F

such that
sg(x) = gga(z)sa(x), Vo€ Uy NUs.

The functorial operations in linear algebra have a vector bundle counterpart. Suppose E; = X
(i = 1,2) are two vector bundles over X with standard fibers F;, i = 1,2, given by gluing cocycles
JBa;i along the same support. For example, the direct sum F; @ F, corresponds to the direct
(Whitney) sum E1 @ E, given by the gluing cocycle gga1 @ ggas2-

The dual vector bundle EY is defined by the gluing cocycle (gzm;l)’1 where “x” denotes the
conjugate transpose.

We can form tensor products, symmetric, exterior products of
vector bundles, etc. In particular, the bundle E} ® E will be denoted by Hom (E1, Es). Its sections
are bundle morphisms, i.e. smooth maps T : Ey — Es mapping the fiber F;(x) of E; linearly to the
fiber Eo(x) of E5. When E; = E; = F we use the notation End (E). If the induced morphisms T'(x)
are all isomorphisms then T is called a bundle isomorphism. A bundle automorphism of a vector
bundle F is also called a gauge transformation. The group of bundle automorphisms of E is denoted
by G(F) and is known as the gauge group of E.

Exercise 1.1.4. Suppose L — X is a smooth complex line bundle over X. Show that
§(L) = C(M,C*).
The line bundle A™%(E1) B, is called the determinant line bundle of E1 and is denoted by det Ej.

If E — X is an R-vector bundle then a metric on E is a section h of Symm?(E*) such that h(z)
is positive definite for every x € X. If F is complex one defines similarly Hermitian metrics on F.
A Hermitian bundle is a vector bundle equipped with a Hermitian metric.

The next exercise will show how to use sections to prove that any complex line bundle over a
compact manifold is the pullback of the universal line bundle over a complex projective space.

Exercise 1.1.5. Suppose M is a smooth compact manifold and E — M is a complex line bundle.
A subspace V' C C*°(FE) is said to be ample if for any x € M there exists u € V such that u(z) # 0.
(a) Show that there exist finite-dimensional ample subspaces V' C C*(E).

(b) Let V' be a finite-dimensional ample subspace of C*°(E). For each x € M set

Ve ={veV; v(z) =0}

Equip V with a Hermitian metric and denote by P(z) : V — V the orthogonal projection onto V.
Show that dimker P, = 1 and the family of projections {P(z); = € M} is smooth. As in Exercise
1.1.2(b) we obtain a complex line bundle Ey — V.

(¢) Show that the line bundle E is isomorphic to Ey . In particular, this shows that FE is the pullback
of a universal line bundle over a projective space.

(d) Suppose that f,g : M — CP" are two (smoothly) homotopic maps. Denote by E; (resp. Ej)
the pullbacks of the universal line bundle U,, via f (resp. g). Show that Ef = E,.
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Remark 1.1.3. For every smooth manifold M denote by Pic®™ (M) the space of isomorphism classes
of smooth complex line bundles over M and by [M, CP"]., the set of (smooth) homotopy classes of
smooth maps M — C™. This is an inductive family

[M,CP']o — [M,CP?|o — - --

and we denote by [M,CP*]. its inductive limit. The above exercise shows that if M is compact
we have a bijection
Pic® (M) & [M, CP%)..

The tensor product of line bundles induces a structure of Abelian group on Pic®(M). Since the
inductive limit CP* of the CP"’s is a K(Z,2)-space we can conclude that we have an isomorphism
of groups

%P Pic™ (M) — H*(M, 7).

For any L € Pic™ (M) the element ¢}°”(L) is called the topological first Chern class of L.

One is often led to study families of vector spaces satisfying additional properties such as vector
spaces in which vectors have lengths and pairs of vectors have definite angles (as in Euclidean
geometry). According to Felix Klein’s philosophy, this is the same as looking at the symmetry
group, i.e. the subgroup of linear maps which preserve these additional features. In the above case
this is precisely the orthogonal group. If we want to deal with families of such spaces then we must
impose restrictions on the gluing maps: they must be valued in the given symmetry group. Here is
one way to formalize this discussion. Suppose we are given the following data.

e A Lie group G and a representation

p: G — End(F).

e A smooth manifold X and open cover U,.
o A G-valued gluing cocycle, i.e. a collection of smooth maps

98a : Uap — G
such that goa(z) =1 € G Vz € U, and

Gra(T) = g(7) - gga(T) VI € Upps .

Then the collection
p(9pa) : Uap — End (F)

defines a gluing cocycle for a vector bundle F with standard fiber F' and symmetry group G. The
vector bundle F is said to have a G-structure.

Remark 1.1.4. Differential geometers usually phrase the above construction in terms of principal
G-bundles. Given a gluing G-cocycle as above we can obtain a smooth manifold P as follows. Glue
the product G x U, to G x Ug along U,g using the following prescription: for each x € U,g the
element (g, x) in G x U, is identified with the element (ggo(z) - g, x) in G x Ug. We obtain a smooth
manifold P and a smooth map 7 : P — X whose fibers 7~!(z) are diffeomorphic to the Lie group
G. This is called the principal G-bundle determined by the gluing G-cocycle ggo. The above vector
bundle £ is said to be induced from P via the representation p and we write this as P x, F'. For
more details we refer to vol. 1 of [64].

Exercise 1.1.6. Show that the above manifold P comes with a natural free, right G-action and the
space of orbits can be naturally identified with X.
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Exercise 1.1.7. Regard S?"*! as a real hypersurface in C"*! given by the equation |z|? + |21 | +
-+ |2n|? = 1. The group '
St={e"; te R} cC*

acts on S?"*! by scalar multiplication. The quotient of this action is obviously CP".

(a) Show that S?"*1 — CP" is a principal S'-bundle. (It is known as the Hopf bundle.

(b) Show that the line bundle associated to it via the tautological representation S' — Aut (C!) is
precisely the universal line bundle U,, over CP".

Exercise 1.1.8. Show that any metric on a rank-n real vector bundle naturally defines an O(n)-
structure.

To exist as a subject, differential geometry requires a way to differentiate the objects under
investigation. This is where connections come in. A connection (or covariant derivative) V on a

vector bundle £ ™ M is a map which associates to every section s € I'(E), and any vector field X
on M, a new section Vxs, such that, for every f € C(M)

Vx(fs)=df(X)s+ fVxs.

Vxs is the derivative of s in the direction X. One usually forgets the vector field X in the above
definition and thinks of V as a map

V. :T(E) - D(T"M ® E)

satisfying Leibniz’ rule
Ve(fs) =df(e) ® s+ fVas.
Note the following fact.

Proposition 1.1.5. There exists at least one connection V° on E. Moreover, any other connection
can be obtained from V° by the addition of an End (E)-valued 1-form A € Q'(End (E)) where by
definition, for any vector bundle F — M we set

QF(F) :=T(A*T*M @ F).
In particular, the space A(E) of connections on E is an affine space modeled by Q' (End (E)).

The trivial bundle I’ admits a natural connection © called the trivial connection. To describe it
recall that sections of F' can be regarded as smooth functions s : M — F'. Define

Os=dsec Q' (M)® F.

Any other connection V on F will differ from © by a 1-form A with coefficients endomorphisms of
Fie.
V=0+A4, AcQ(M)®End(F).

If E is obtained by gluing the trivial bundles F, := F; using the cocycle ggo, then any
connection on E is obtained by gluing connections V® on F',. More precisely, if V¢ = © + A, then
on the overlaps Uyg the 1-forms A, and Ag satisfy the compatibility rules

Ap = —dgsagsa + 9saAadse = 9upddas + 9o Aadas- (1.1.1)
Exercise 1.1.9. Prove (1.1.1).

Exercise 1.1.10. Consider a smooth family P : z — P, of projectors of the vector space F
parameterized by the connected smooth manifold X. Show that (id — P)© defines a connection on
the subbundle ker P C Iy
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Imitating the above local description of a connection we can define a notion of connection com-
patible with a G-structure. Thus, let us suppose the vector bundle £ — M has a G-structure defined
by the gluing cocycle

98a : Uga — G

and the representation p : G — Aut (F'). Denote by g the Lie algebra of G. The gluing cocycle
defines a principal G-bundle P — M. A connection on P is a collection of 1-forms

Ay e QUL @ g

satisfying (1.1.1), where ggaAagB_; denotes the adjoint action of ggq(x) on g while —dggaggi =
ggﬁl dgagp is the pullback via gog of the Maurer-Cartan form on G. (This is the g-valued, left invariant
1-form on G whose value at 1 is the tautological map 771G — g.)

Given a connection on the principal bundle we can obtain a genuine connection (i.e. covariant
derivative) on E = P x, F' given by the End (F')-valued 1-forms p,(Aq), where

px : T1G — End (F)

denotes the differential of p at 1 € G.
A gauge transformation of a bundle F with a G-structure is a collection of smooth maps T, :
U, — G subject to the gluing conditions

T = ggaTogsa-

(From a more invariant point of view, a gauge transformation is a special section of the bundle of
endomorphisms of E.) The set of such gauge transformations forms a group which will be denoted
by Sa(E).

To a bundle E with a G-structure one can naturally associate a vector bundle Ad (E) defined
by the same gluing G-cocycle as E but, instead of p, one uses the adjoint representation Ad : G —
End (g).

Proposition 1.1.6. The space Ag(E) of G-compatible connections on a vector bundle E with a
G-structure is an affine space modeled by Q' (Ad (E)). Moreover, the group of gauge transformations
Sc(E) acts on Ag(E) by conjugation

Sa(E) x Ag(E) 3 (7,VA) = AVAy~ 1 € Ag(E).

For more details about principal bundles and connections from a gauge theoretic point of view
we refer to the very elegant presentation in [116].

If E is a complex vector bundle of complex rank r equipped with a Hermitian metric (e, e) then
it is equipped with a natural U(r)-structure. A Hermitian connection V on E is by definition a
connection compatible with this U(r)-structure or, equivalently,

Lx<81,32> = <VX<91,82> + <S1,sz2>, VX € Vect (Z\l)7 81,82 € COO(E)
There is a natural (left) action of G¢(E) on Ag(E) given by
T-V:=TVI "

The covariant method of differentiation has a feature not encountered in traditional calculus in
R™. More precisely, the classical result “partial derivatives commute”
r*f  0*f
dxdy  Oydx
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no longer holds in this more general context because of deep geometric reasons. One is led to quantify
the extent of this noncommutativity and this is usually encoded by the curvature of a connection.

Suppose V is a connection on a vector bundle £ — M. For any vector fields X, Y on M and
any section u € I'(E) define

F(X, Y)u = Fv(X, Y)u = [Vx, Vy}u - V[X,y]u
= (vay — Vva)u — V[Xy]u c F(E)
Note that for all f € C°(M)
F(fX,Y)u=F(X, fY)u=F(X,Y)(fu) = fF(X,Y)u.

Thus the map
ur— F(X,Y)u

is an endomorphism of F for all X, Y. We denote it by F(X,Y). Note that the map
TM ®TM — End (E), X®Y — F(X,Y)

is a skew-symmetric bundle morphism. Thus we can regard the object F(-,-) as a an element of
O%(End (E)), i.e. asection of A2°T*M ®End (E). F(e,e) is called the curvature of V. When Fy = 0
we say F'is flat.

Exercise 1.1.11. Suppose F is a vector bundle equipped with a G-structure and V is a G-compatible
connection. Show that Fy € Q%(Ad(E)). In particular, if E is a Hermitian vector bundle and V
is Hermitian then the curvature of V is a 2-form with coefficients in the bundle of skew-Hermitian
endomorphisms of F.

Exercise 1.1.12. (a) Consider the trivial bundle F',,. Then the trivial connection © is flat.
(b) If A € QY(End (F)) then the curvature of © + A is

Fy=dA+ANA.

Above, A is thought of as a matrix of with entries smooth 1-forms w;;. Then dA is the matrix with
entries the 2-forms dw;; and A A A is a matrix whose (4, j)-entry is the 2-form

E Wik N\ Wi -
k

If E is given by a gluing cocycle gg, and V is given by the collection of 1-forms A, € Q'(End (F,))
then the above exercise shows that F' is locally described by the collection of 2-forms dA, + Ay A Aq.

Example 1.1.7. Suppose L — M is a complex line bundle given by a gluing cocycle zg, : Uag — C*.
Then a connection on L is defined by a collection of complex valued 1-forms w, satisfying

_ dap

w + We-
B 2o a
The curvature is given by the collection of 2-forms dw,,.
If L has a U(1)-structure (i.e. is equipped with a Hermitian metric) then the gluing maps belong
to S
ZBa * Uag — Sl.

The connection is Hermitian (i.e. compatible with the metric) if w, € Q'(U,) ® u(1) = iR. Thus
we can write

Wa = 104, 0, € QN(UL).
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They are related by

d
05— 0 = —i ;": — 27 5(d6)

where df denotes the angular form on S?.

Exercise 1.1.13. Consider a Hermitian line bundle . — M and denote by P — M the correspond-
ing principal S'-bundle. For each p € P denote by i, the injection

Slseltisp.elf e P
Suppose V is a Hermitian connection as in the above example. Show that V naturally defines a
1-form w € Q(P) such that
iyw=df, Vpe P
w is called the global angular form determined by V. Conversely, show that any angular form
uniquely determines a Hermitian connection on L.

Example 1.1.8. Consider the unit sphere S? C R? with its canonical orientation as the boundary
of the unit ball in R3. Define the open cover {U,,Us} by

Us = S?\ {south pole}

and
Us = S%\ {north pole}.

We have a natural orientation preserving identification
Unp = *.

Denote by z the complex coordinate on C*. For each n € Z denote by L,, the complex line bundle
defined by the gluing cocycle
280 1 C* = Uy — C*, 21— 2"

Suppose V is a connection on L defined locally by w,, wg where
z
wp = —n? + Wa-

Denote by F its curvature. It is a complex valued 2-form on S? and thus it can be integrated over the
2-sphere. Denote by Dy the upper/lower hemisphere. D is identified in an orientation preserving
fashion with the unit disk {|z| < 1} € C. We have

/ F = dws + dwg = / (Wa —wg)
52 Dy D_ oDy

dz .
= n/ — = 2min.
dD, #

We arrive at several amazing conclusions.

e The integral of Fy is independent of V !l

e The integral of Fy is an integer multiple of 2xi !!!

e The line bundle L,, with n # 0 cannot admit flat connections so that the noncommutativity of
partial derivatives is present for any covariant method of differentiation !!!

e The line bundle L,, with n # 0 is not isomorphic to the trivial line bundle C which admits a flat
connection !!!

Exercise 1.1.14. Prove that the line bundle L; in the above example is isomorphic to the universal
line bundle over CP' = §2.

The above conclusions do not represent an isolated occurrence. They are manifestations of a
more general construction called Chern-Weil theory. Below we describe a few particular cases of
this construction.
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81.1.2 Chern-Weil theory

Consider a complex vector bundle £ — M and V an arbitrary connection on it. Set n = rank (E).
The curvature F(V) can be viewed either as a 2-form on M whose coefficients are endomorphisms
of E or as a n X n matrix with entries complex valued 2-forms on M. The multiplication of even-
dimensional forms is commutative so we can speak of determinants of such matrices. Then

o(E,V) := det <1E + ;TF(V)>

is a nonhomogeneous element,

o(E,V) € Q"(M) @ C:= P (M) e C.
k>0

The component of degree 2k is denoted by cx(FE, V) and is called the k-th Chern form of E corre-
sponding to the connection V. Note that

i

Cl(E, V) = 27T

tr(F(V)) € Q*(M) ®C,

en(E, V) = <2‘7r>n det(F(V)) € Q2"(M) & C.

Example 1.1.9. Consider again the line bundle L, — S%. The computations in Example 1.1.8

show that
/ C1(Ln,V) =N
S2

for any connection on Ly,.
The above nice accident is a special case of the following theorem.

Theorem 1.1.10. (Chern-Weil) (a) The Chern forms c(E,V) are closed for any k and any
connection V on E.
(b) For any connections V°, V! on E and any k € Zy there exists a (2k — 1)-form T(V*',V°) on
M such that

cx(B, VY — cp(E,V°) = dT(V*, V).

For a proof of this theorem we refer to [105]. Part (a) of this theorem shows that ¢ (F, V) defines
a cohomology class in H2¥(M,R) which by part (b) is independent of V. We denote this class by
¢, (E) and we call it the k-th Chern characteristic class of E. The element

(BE)=1+c1(E)+c3(E) +---

is called the total Chern class of E. Note that if E is trivial then all classes ci(E) vanish. We
can turn this statement around and conclude that if one of the classes ¢ (E) is not trivial then E

is certainly not trivial. Thus these classes provide a measure of nontriviality of a complex vector
bundle.

Remark 1.1.11. The computations in Example 1.1.8 show that

/52 ca(Ly)=-n

so that in particular L,, is nontrivial and ¢;(L,) € H?(S?,Z). One can show that for any smooth
manifold M and any complex vector bundle E — M the characteristic class c;(E) belongs to
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the image of H?¥(M,7Z) inside H?*(M,R). If we denote by ¢ the natural morphism H?(M,Z) —
H?(M,R) then one can show that
er(L) =y (L))

where the topological first Chern class was defined in Remark 1.1.3.

Define the Chern polynomial of E by
c(BE) =) c(E)* € H*(M,R)[t].
k>0
Exercise 1.1.15. Show that
Ct(El D EQ) = Ct(El) . Ct(Eg)

where for simplicity we denoted by “” the A-multiplication in Q¢V¢"(M). Show that if E = @, L,
where L; are complex line bundles then

ck(E):Uk(yla"' 7yn) = Z Yiy " Yiy,
1<i1<-ip<n
where y; = c1(L;).
Exercise 1.1.16. Consider a complex line bundle L over a compact, closed, oriented Riemann

surface 2.
(a) Show that the quantity

degL::/Ecl(L)

is an integer.
Hint: Use the fact that the restriction of L over the complement of a small disk in ¥ is trivial.
(b) Suppose u is a section of L with only nondegenerate zeros, i.e. for any z € u~1(0) the adjunction
map
a1 TpX — Ly, T,X3(— (Veu)|€ Ly

(V some connection on L) is invertible. For each z € u=!(0) set
deg(x) := sign det a.

Show that
deg L := Z deg(z).
zeu~1(0)

Hint: Use the fact that L is trivial outside |J
centered at z.

weu—1(0) D,, where D, denotes a very small disk

Define the Chern character of a vector bundle to be the cohomology class

. . k
ch(FE) :=tr exp(iF(V)) = %tr (QIWF(V)) .
k>0

Again this is a closed form whose cohomology class is independent of V.
Exercise 1.1.17. (a) Show that if L — M is a complex line bundle then
ch (L) = exp(ei(L)).

(b) Show that
Ch(El D EQ) =ch (El) + ch (EQ)

and
ch (E1 (4 Eg) =ch (El) -ch (EQ)
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The construction of the Chern character has a multiplicative counterpart. Suppose that f(T) is

a formal power series
T):=> a,T" € C[[T]]

n>o

such that ap = 1. If E — M is a complex vector bundle then f(F) € H*(M) is the cohomology
class represented by

F(B,V) = det(z an(%F(V))n)

n>0

A special case frequently encountered in geometry is that of

T
— =1 T
1 —exp(-T) + +Z

where the coefficients By, are known as the Bernoulli numbers. Here are a few values of these numbers

lek

td (T) := T%

1 1 1
Bi=—-, Bb=—, By3=—
1 6’ 2 305 3 427
The cohomology class obtained in this manner is called the Todd genus of E and is denoted by

td (E).
Both ch and td decompose into homogeneous parts

ch(E) =) chi(E), td(E) =) td;(E

i>0 i>0

expressible in terms of the Chern classes ¢;. For example

chy(F) = rank (E),

(1.1.2)
Chl(E) = Cl(E), Ch2( ) = %(Cl(E)Q — QCQ(E))
tdo(E) = 1, tdl(E) = %Cl(E), tdQ(E) = %(Cl(E)Q + 2CQ(E)> (113)

So far we have considered only complex vector bundles. There is a real theory as well. Consider
a real vector bundle F — M and V an arbitrary connection on it. We define the total Pontryagin
form associated to E(V) by

p(E, V) = det(1 — %F(V)).

Again one can prove that this is a closed form whose cohomology class is independent of V. This
time a new phenomenon arises.

Lemma 1.1.12. The components of p(E, V) of degree 4k 4+ 2 are exact.
Exercise 1.1.18. Prove the above lemma.
The cohomology class p(F) decomposes as
p(E)=1+pi(E) +p2AE) + - +pp(E) +

where
pe(E) € H*(M,R).

The cohomology classes are called the Pontryagin classes of the real vector bundle E. For example,
p1(E) can be represented by the form

pi(E, V)= fétr (F(V)ANE(V)).
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Exercise 1.1.19. Suppose E — M is a real vector bundle and denote by E€ its complexification
E ® C. Show that
62k+1(EC) =0 and Cgk(Ec) = (—1)kpk(E).

1.2 Basic facts about elliptic equations

Before we begin talking about elliptic equations we must first define the notion of partial differential
operator (p.d.o. for brevity) on a smooth manifold and explain the basic operations one can perform
on such objects. We refer again to [105] for more details.
Consider a smooth, oriented Riemannian manifold (M, g) and E,F — M complex Hermitian
vector bundles over M. We will denote the Hermitian metrics on E (resp. F) by (-,-)g (vesp. {-,*)F).
Denote by Op (E, F') the space of C-linear operators

T :C™(E) — C™(F).

Denote by C*°(M) the space of complex valued smooth functions on M. The spaces C*°(F) and
C*(F) have natural structures of C*°(M)-modules and we will be interested in a subspace of Op

consisting of operators interacting in a nice way with these module structures.
For each f € C*>°(M) and each T € Op (E, F) define ad(f)(T) € Op(E, F') by

(ad(f)T)u =T, flu:=T(fu) — f(Tu), Yu € C*(E).

Note that the maps T — [T, f] and f — [T, f] behave like derivations, i.e. they satisfy the Leibniz
rule

(ST, f1 =[S, AIT + ST, f] and [T, fg] = [T, flg + [T’ 9] (1.2.1)

for all f,g,T,S for which the above operations make sense.
Now define inductively an increasing sequence of subspaces

PDO"(E, F) c PDOY(E,F) C---c PDOW(E,F) C ---

following the prescriptions
PDOY(E, F) := Hom (E, F)

and
PDO* V) (E, F)

- {T € Op (B, F); [T, f] e PDOX)(E, F), Vf ¢ C‘X’(M)}.
The elements of PDO(k)(E, F) will be called partial differential operators of order < k.

Example 1.2.1. (a) Let F = F = C and let X be a smooth vector field on M. Then the Lie
derivative Lx : C*°(M) — C*(M), u — Lxu, is a p.d.o. of order at most 1. Indeed, for any
u, f € C°°(M) we have

[Lx, flu= Lx(fu) = f(Lxu) = (Lxf)u

so that [Lx, f] is the endomorphism (Lx f)e.
(b) Let E = F = A*T*M. Then the exterior derivative

d: Q" (M) — Q"(M)
is a p.d.o. of order at most 1. Indeed, for any f € C°°(M) and any w € Q*(M) we have

[d, flw = d(fw) = fdw) = df Nw.



Notes on Seiberg-Witten Theory 13

Thus [d, f] is the endomorphism df A e of A*T*M.

(c) Consider the Laplacian A = —9% on C*°(R). Then A is a p.d.o. of order at most 2. Indeed, for
any f € C*°(R) we deduce from the Leibniz rule (1.2.1)

[6§,f]0 = 2[a$7f]833 hd +(8§f) ®.

(02f) is the zeroth order operator defined as multiplication by d2f. The computation in part (a)
shows that [0,, f] is the operator of multiplication by 9, f. Hence the commutator [92, f] is the Lie
derivative along the vector field %& which by part (a) is a first order p.d.o.

Suppose L € PDO(k)(E,F) and choose fi, -, fr € C®°(M). Then

AL(fla"'fk) = [[L7f1]7 vfk] eHom(EVF)'

One can prove the following.
o Ar(f1, -+, fx) is symmetric in its arguments.
o If df;(x0) = dgi(xo) for all i =1,--- |k then

Ar(fi, - fi)lwo=AL(g1, - 1 98) |20 -

Thus Ar(f1, -, fx) |z, depends only on the quantities & := df;(xo) and the symmetry property
shows that it is completely determined by

i

or(§) == o

AL(fa e 75)

The quantity oy, (-) is called the (principal) symbol of L. It is a bundle morphism
or(") : miE - miF

where 7, : S*T*M — M denotes the canonical projection of the k-th symmetric power of T*M. A
p.d.o. L € PDO™ is said to have order k if its symbol is not trivial. The set of k-th order operators
will be denoted by PDO¥.

Proposition 1.2.2. If L, € PDOY)(E,, Ey) and Ly, € PDO*2) (Ey, Es) then
Ly o Ly e PDOM+k) (B, | )

and
OLsyoLy (6) = O—Lz(g) © 0L1(€)7 Vo € M, Vf € T;M \ {O}

Example 1.2.3. Suppose V : C*(E) — C*(T*M ® E) is a linear connection. Then setting £ = df
we deduce

Av(©u =V, flu=E@u, YueC=(E).
Thus o,(€) = £ ® . Similarly, for the exterior derivative
d:Q (M) — Q*(M)
the symbol is given by
oa(§) =ENe.
IfA:=—-YN 82:C°RN) - C®(RN) is the (geometers’) Laplacian on RV then

oa() = —lefe = = (D I6f2) o

%
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Definition 1.2.4. A generalized Laplacian on a vector bundle E over a Riemannian manifold (M, g)
is a second order operator L : C*°(E) — C*°(E) such that

or(&) = —l¢f1E.
Definition 1.2.5. If L € PDO(E, F') is a p.d.o. acting between two Hermitian vector bundles then
a formal adjoint is a p.d.o. L* : C*°(F) — C*>°(E) such that

/(Lu,v)pdvg:/ (u, L*v) pdu,
M M

for all compactly supported sections u € C*°(E) and v € C*(F).
For a proof of the following result and examples we refer to [105].

Proposition 1.2.6. Every k-th order operator L admits a unique formal adjoint L* which is a k-th
order operator whose symbol is given by

o1+(€) = (=1) "o (&)
A p.d.o. L is called formally selfadjoint if L = L*.

Example 1.2.7. (a) Suppose E — F is a Hermitian vector bundle over a Riemannian manifold
(M, g) and V is a Hermitian connection on E. Then for every vector field X on M the covariant
derivative Vx is a first order p.d.o. C*°(E) — C*°(E) with formal adjoint

Vi = —Vy — divy(X)
where div,(X) is the scalar defined by
Lxdvy = divg(X) - du,.
(b) If £, V are as above then V*V : C*°(E) — C*°(FE) is a generalized Laplacian called the covariant

Laplacian determined by the connection V.
(¢) The formal adjoint of the exterior derivative
d: QF(M) — Q¥ (M)

is the operator

d* = (=1)"k % ds : QFFH (M) — QF(M)
where n = dim M, v, , = nk +n + 1 and * is the Hodge *-operator.
(d) The operator (d + d*)? = dd* + d*d : Q*(M) — Q*(M) is a generalized Laplacian called the
Hodge Laplacian.

The covariant Laplacian in the above example is in some sense the basic example of generalized
Laplacian. More precisely, we have the following result. We refer to [12] for a different proof.

Proposition 1.2.8. Suppose L : C*°(E) — C*°(FE) is a formally selfadjoint generalized Laplacian.
Then there exists a Hermitian connection on E and a symmetric endomorphism R : E — E such
that

L=V*V+R.

We will refer to such a presentation of a generalized Laplacian as a Weitzenbock presentation. The
endomorphism R is called the Weitzenbock remainder of L.
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Proof Choose an arbitrary Hermitian connection V on E. Then Ly = V*V is a generalized

Laplacian so that L — L is a formally selfadjoint first order operator which can be represented as
L—-—Ly=AoV+B

where
A:C®(T"M ® E) — C*(E)

is a bundle morphism and B is an endomorphism of E. We will regard A as an End (E)-valued
1-form on M. Hence
L=V'V+AoV +B. (1.2.2)

The connection V induces a connection on End(E) which we continue to denote by V:
V:C>®(End (E)) — Q' (End (E)).

We define the divergence of A by
div,(A) = -V*A.

If (e;) is a local synchronous frame at o and if A =", A;e’ then, at zy, we have
div,(A) = Z VA,
Since L — Lg is formally selfadjoint we deduce
A} = —A;, divy(A)=B*—-B.

We seek a Hermitian connection V=V +C , C' € Q'(End (E)) and a symmetric endomorphism R
of E such that o
VV4+R=V*V+A0V +B.

To determine the terms C' and R we work locally, using a synchronous local frame (e;) at 2. Then

€:Z€Z®(VZ+CZ)7 C;:—CZ‘, Vi.

Then, as in [105], Example 9.1.26, we deduce that, at zo,

@*@ = — Z(Vz + C,)(vq + Cz)

==Y V2N VG -2) GVt Y (G

=V*V-200V —div,(C)+ (C)*=V*V+ AoV +B-R.

We deduce immediately that
1 1 . 2 1 * 1 2

The proposition is proved. W

Besides their nice algebraic properties, the generalized Laplacians enjoy many nice analytic fea-
tures. They all derive from the ellipticity of these operators.
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Definition 1.2.9. Let E, F — M be two smooth vector bundles over the smooth manifold M. A
p.do. T € PDO"(E, F) is said to be elliptic if for any 2 € M and any & € T*M \ {0} the linear
map or(§) : B, — F, is an isomorphism.

Clearly, the generalized Laplacians are elliptic second order operators. The operator d + d* of
Example 1.2.7 (d) is elliptic because (d+d*)? is a generalized Laplacian. This feature is so frequently
encountered in geometry that it was given a name.

Definition 1.2.10. A Dirac operator is a first order operator D : C*°(E) — C°(F) such that D?
is a generalized Laplacian.

Frequently, the Dirac operators are obtained from an operator D € PDOl(E , F) such that both
D*D and DD* are generalized Laplacians. Then
~ 0 D o o
D:[D 0 }:C (E®F)—>C*E@F)
is a Dirac operator.

To discuss the basic analytic properties of elliptic operators we need to introduce a suitable
analytical framework. For geometric applications the Sobolev and Holder spaces provide such a
framework.

To define these spaces we need two things: an oriented Riemannian manifold (M, g) and a K-
vector bundle 7 : E — M endowed with a metric A = (-,-) and a connection V = V¥ compatible
with h. The metric g = (+,-) defines two important objects:

(i) the Levi-Civita connection V9 and

(ii) a volume form dvy, = 1. In particular, dv, defines a Borel measure on M. We denote by
LP(M,K) the space of K-valued p-integrable functions on (M, dv,) (modulo the equivalence relation
of equality almost everywhere).

Definition 1.2.11. Let p € [1,00]. An LP-section of E is a Lebesgue measurable map ¢ : M — F
(i.e. ¥»71(U) is Lebesgue measurable for any open subset U C E) such that:

(i) m o Yp(x) = x for almost all 2 € M except possibly a negligible set.

(ii) The function = + |(x)|, belongs to LP(M,R).

The space of LP-sections of E' (modulo equality almost everywhere) is denoted by LP(FE). The

space L} (E) consists of measurable sections u of E such that up € LP(E) for any smooth, compactly

supported function on M.

Proposition 1.2.12. LP(E) is a Banach space with respect to the norm

¥l = { (o ooy (@) if p < oc
», esssup, | (x)| if p=oo

For each m = 1,2, define V™ as the composition
vT*M@E

v c2(E) S e MO E) Y — .. % 0T ME™ @ E)

where we used the symbol V to generically denote the connections in the tensor products T*M®I @ E
induced by V9 and V¥,

The metrics g and A induce metrics in each of the tensor bundles
T*M®™ ® FE, and in particular, we can define the spaces LP(T*M®™ @ E).

Definition 1.2.13. (a) Let u € L}, (E) and v € L}, ,(T*M®™ ® E). We say that V™u = v weakly
if

[ ey = [t (0 gy, e O o m),
M
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(b) Define L™P(E) as the space of sections v € LP(E) such that Vj = 1,...,m there exist v; €
LP(T*M®J @ E) such that Viu = v; weakly. We define the Sobolev norm || - ||, by

P
[ullm,p = tllm,p,e = Z V7|

j=1
Proposition 1.2.14. (LFP(E),| - ||k.p.r) is a Banach space which is reflezive if 1 < p < oo.

Exercise 1.2.1. (Kato’s Inequalities) Suppose E — M is a Hermitian vector bundle over an
oriented Riemannian manifold (M, g). Fix a Hermitian connection V on E.
(a) Show that for every u € L, (E) the function

loc

is in Lll(;i(M ) and moreover
|du(@)|| < [(Vu)(z)]

almost everywhere on M.
(b) Set Ap := V*V and denote by Ay the Laplacian on M. Show that for all u € L>*(E) we have

loc
A (Ju)?) = 2Re(Agu, u) — 2|Vul?

so that
Aplu)® < 2Re{Apu,u)

almost everywhere on M.

The Holder spaces can be defined on manifolds as well. If (M,g) is a Riemannian manifold
then ¢ canonically defines a metric space structure on M and, in particular, we can talk about the
oscillation of a function v : M — K. On the other hand, defining the oscillation of a section of some
bundle over M requires a little more work.

Let (E,h,V) as before. We assume the injectivity radius pyr of M is positive. Set py =
min{l, par}. If 2,y € M are two points such that disty(z,y) < po then they can be joined by
a unique minimal geodesic 7, , starting at  and ending at y. We denote by T, , : B, — E, the
V¥_parallel transport along Vaz,y- For each { € E, and € B, we set by definition

|§ - 77| = If - Tac,y77|w = |77 =T, ,a:§|y
If u: M — FE is a section of E and S C M has diameter < py we define
osc (u; S) = sup{|u(z) —u(y)|; =, y € S}.

Finally set
[u]a, g =sup{r “osc(u; By(z)); 0<r < py, x € M}.
For any k > 0 define the Hélder norm

k

ullk,a,2 = Z IV ullo, 2 + [V ], 1+ mrom ok
=0

and set
CH(E) = {u e C*(E); |lulla < o0}
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Theorem 1.2.15. Let (M, g) be a compact, N-dimensional, oriented Riemannian manifold and E
a vector bundle over M equipped with a metric h and compatible connection V. Then the following
are true.

(a) The Sobolev space L™P(E) and the Hélder spaces C**(E) do not depend on the metrics g, h and
on the connection V. More precisely, if g1 is a different metric on M and V' is another connection
on E compatible with some metric hy then

L™P(E,g,h,V) = L™P(E, g1,h1,V') as sets of sections

and the identity map between these two spaces is a Banach space isomorphism. A similar statement
is true for the Holder spaces.

(b) If 1 < p < oo then C®(E) is dense in LFP(E).

(c) (Sobolev) If (k;yp;) € Zy x [1,00) (1 =0,1) are such that

ko > k1 and on(ko,po) = ko — N/po > ki — N/p1 = on(k1,p1)
then L*oPo(E) embeds continuously in L**P1(E). If moreover
ko > kl and k‘o —N/po > ky — N/p1

then the embedding L¥oPo(E) — LFP1(E) is compact, i.e. any bounded sequence of L¥oPo(E)
admits a subsequence convergent in the L¥V'P'-norm.
(d) (Morrey) If (m,p) € Z4 x [1,00) and (k,a) € Zy x (0,1) and

m—N/p>k+a
then L™P(E) embeds continuously in C**(E). If moreover

m—N/p>k+a
then the embedding is also compact.

The proofs of all the above results can be found in [105].
Suppose now that L : PDO¥ (E, F) is a k-th order elliptic operator over an oriented Riemannian
manifold (M, g). Let v € LY (F). A weak LP-solution of the equation

loc
Lu=wv

is a section u € LY (F) such that for any smooth, compactly supported section ¢ of F the following

loc
holds
/ (v, @) pelv, = / (u, L*0) i,
M M

The following result describes the fundamental property of elliptic operators. For simplicity we state
it only in the special case when M is compact. We refer to [105] and the references therein for proofs
of more general statements.

Theorem 1.2.16. Suppose M s a compact, oriented Riemannian manifold without boundary.
(a) Let p € (1,00) and m € Zy. Then there exists a constant

C=0C(L,m,p,g,E,F) >0
such that if u is a weak LP-solution u of Lu =wv, v € L™P(F) then

u € LM P(R)
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and
[wllm+r,pe < Cllullpe + [[0llm,pF)-

(b) Let o € (0,1) and m € Zy. Then there exists a constant
c=C(L,m,a,g,E,F)>0
such that if u is a weak LP-solution u of Lu = v, v € C™*(F) then
u e C™TR(E)

and

[wllmtk.ccm < Clullo,as + [[0]lm.a:r)-
The above result has a famous corollary.

Corollary 1.2.17. (Weyl’s Lemma) Let L be as above. If
Lu € C*(F)
weakly then u € C*(E).

From the a priori inequalities in the above theorem one can deduce the following important
result.

Theorem 1.2.18. Suppose M is a compact, oriented Riemannian manifold, Ey, E1 are Hermitian
vector bundles over M and
L: COO(E()) — Coo(El)

is a k-th order elliptic operator. We define the analytical realization of L as the unbounded linear
operator
Lo : L}(Ey) — L*(E))

with domain Dom (L) := L*2(Ey) and acting according to
LF%(Ey) > u v Lu € L*(E)).

Then the following hold.

(i) Ly is a closed operator, i.e. its graph is a closed subspace of L?>(Eg) x L*(Ey).

(i) The functional adjoint of L, (i.e. the adjoint as a closed linear operator acting between Hilbert
spaces) coincides with the analytical realization of the formal adjoint L*, i.e.

(La)™ = (L")a-

(iii) The ranges of both L, and (L*), are closed subspaces in L?(Ey), respectively L*(Ey). Moreover
ker L, € C*(Ey), ker L* € C*(E;) and

Range (L,) = (ker L*)*, Range (L}) = (ker Ly)™".

(iv) The kernels of both L, and (L*), are finite dimensional.
(v) Denote by P : L?>(Ey) — L?(Ey) the orthogonal projection onto ker L,. Then for every 1 < p < 0o
and every m € Z, there exists a constant C = C(m,p, L > 0) such that

lu = Pullismp < CllLullmp, Yu€ L*™P(Ey).



20 Liviu I. Nicolaescu

M

Figure 1.1: Riemannian manifold with boundary

The properties (iii) and (iv) in the above theorem are succinctly referred to as the Fredholm
property of elliptic operators on compact manifolds. The quantity

dimg ker L, — dimg ker L}

(F= R, C) is called the F-Fredholm index of L and is denoted by indg L.

The Fredholm index of an elliptic operator L is remarkably stable under deformations. For
example, one can show (see [105]) that it depends only on the symbol of L.

We conclude this section with an exercise which describes the Green formulee for various p.d.o.’s.
These are more sophisticated versions of the usual integration-by-parts trick.

Exercise 1.2.2. Consider a compact Riemannian manifold (M, g) with
boundary M. Denote by 7 the unit outer normal along M (see Figure 1.1). Let E,F — M
be Hermitian vector bundles over M and suppose L € PDO" (E, F). Set go = gloa, Eo = E |ons
and Fy = F'|gp. The Green formula states that there exists a sesquilinear map

By, : C®(B) x C%(F) — C®(0M)

such that

/M<Lu,v>dv(g) = /aM Br(u,v)dv(go) —|—/ (u, L*v)dv(g).

M

Prove the following.
(a) If L is a zeroth order operator (i.e. L is a bundle morphism) then By, = 0.
(b) If Ly e PDO (F,G) and Ly, € PDO (E, F') then

BL1L2 (u7 'U) = BL1 (LQU, U) + BL2 (u7 L’{fv).
()
B« (v,u) = —Bp(u,v).

(d) Suppose V is a Hermitian connection on E and X € Vect (M). Set L =Vx : C*(E) — C*(E).
Then

Br(u,v) = (u,v)g(X, 7).
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() Let L=V :C>®(E) - C*®(T*M ® E). Then
Br(u,v) = (u,izv) g

where 77 denotes the contraction by 7.
(f) Denote by 7 the section of T*M |spr g-dual to 7. Suppose L is a first order p.d.o. and set
J =0 (V). Then

Br(u,v) = (Ju,v)p.

(g) Using (a) — (f) show that for all w € C®(E), v € C*°(F) and any xzy € OM the quantity
By, (u,v)(zo) depends only on the jets of u, v at g of order at most k — 1.

1.3 Clifford algebras and Dirac operators

§1.3.1 Clifford algebras and their representations

Suppose E — M is a smooth, Hermitian vector bundle over a Riemannian manifold (M, g) and
D : C*(E) — C*(E) is a Dirac operator, i.e. D? is a generalized Laplacian. Denote by ¢ the
symbol of D. It has the remarkable property that

c(§)? = _|€|31E$, Vo € M, V¢ € TXM.
If we set V,, := T M then the above identity implies that for every x € M we have a linear map
c:V, — End(E,) (1.3.1)

with the property
{c(u),c(v)} = —2¢g(u,v)1, Vu,v eV (1.3.2)

where {A, B} denotes the anticommutator AB + BA of two elements A, B in an associative algebra.

Now, given a Fuclidean vector space (V, 9), we denote by
CI(V) := CI(V, g) the associative R-algebra with 1 generated by V subject to the relations (1.3.2).
It is not difficult to prove the existence and uniqueness of such an algebra. It will be called the
Clifford algebra associated to the Euclidean space (V, g). We see that the map in (1.3.1) extends to
a representation

c:Cl(V) — End (V)
of the Clifford algebra called the Clifford multiplication. The maps in (1.3.1) can be assembled
together to form a bundle morphism
c:T*M — End (E)
such that
{c(a),c(B)} = —2¢(a, B)1g, Ya,B € QH(M).

A map c as above will be called a Clifford structure on the bundle E. Thus the existence of a Dirac
operator implies the existence of a Clifford structure. Conversely, if V is any connection on a bundle
E equipped with a Clifford structure ¢ then the composition

C®(E) % C™(T*M @ E) < C™(E)
is a Dirac operator. Thus the existence of a Dirac operator is equivalent to an algebraic-topological

problem, that of the existence of Clifford structures. We will be interested in a structure finer than
Clifford.
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Definition 1.3.1. Suppose (M, g) is a Riemannian manifold. A Dirac structure on M is a quadruple
(E,c,VE VM) where E is a Hermitian vector bundle, ¢ : T*M — End (E) is a selfadjoint Clifford
structure, i.e.

cla)* = —c(a), Ya € QY (M), (1.3.3)

VM is a connection on T*M compatible with the Riemannian metric and V¥ is a Hermitian con-
nection on F compatible with the Clifford multiplication, i.e.

VE(c(a)u) = c(VHa)u + cla)VEu, (1.3.4)

Yu € C*®(E), a € QY(M), X € Vect (M).

When V¥ is the Levi-Civita connection we say that (E,c, V¥) is a geometric Dirac structure on
M. The Dirac operator associated to a geometric Dirac structure will be called a geometric Dirac
operator.

Proposition 1.3.2. (Weitzenbdck formula for geometric Dirac operators) If D is a geo-
metric Dirac operator associated to the geometric Dirac structure (E,c,VE) then D = D* and

D? = (VE)Y*VE 4 c(F(VF)).

The last term should be understood as follows. The curvature F(VE) is an End (E)-valued 2-form.
Locally it is a C°°(M)-linear combination of terms of the form w@T, w € Q*(M) and T € End (E).
Then c(w ®T) is the endomorphism c(w) - T.

Exercise 1.3.1. Prove the above proposition.

To describe the Dirac structures on a given manifold M we need a better understanding of the
representation theory of the Clifford algebra associated to a Euclidean space (V,g). If dimV =n
and {e1, -+ ,e,} is an orthonormal basis of V' then the monomials

€€y 1< <o <9 <m,epi=1

form a basis of CI(V). Thus dim Cl(V) = 29mV " Since the only invariant of a Euclidean space
is its dimension we will often use the notation Cl,, to denote the Clifford algebra associated to an
n-dimensional Euclidean space.

Note first there is a natural representation

T:Cl(V) = EndA*V
induced by the correspondence
Vv T, :=e(v) — iy

where e(v) denotes the (left) exterior multiplication by v while i,~ denotes the contraction by the
co-vector v* € V*, the metric dual of v. The Cartan identity

{e(v),ive} = [0]?

shows that the above correspondence does indeed extend to a representation of the Clifford algebra.
The symbol map
o:Cl(V)— AV

is defined by
ow):=T,-1, YVwe A*V.

For example, if {ej,--- ,e,} is an orthonormal basis of V' then

oe;, - ei,) =€y N Neg,.
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We see that the symbol map is a bijection. Its inverse is called the quantization map and is denoted
by q. Set
Cl:t(V) — q(Aeven/oddv).

The splitting CI(V) = CIT(V) @ CI7 (V) makes CI(V) a superalgebra, i.e.
CEW)-CEWV) c At (V), CEW)-AF (V)= (V).

Given z € CI(V) we denote by x its even (odd) components, © = x4 + z_.
To understand the complex representations of Cl(V') we need to distinguish two cases.

A. dimV is even, dimV = 2n.

FUNDAMENTAL FACT There exist a Za-graded complex vector space S(V) = Sa,, = S5, &S5,
and a C-linear isomorphism

¢:Cl(V)®C — End (Sz2,)
with the following properties.
(a) dimc S5, = dimc S5, = 2" 1.
(b)
c(CIT(V)® C) = End (S3,) @ End (S3,).
¢(CI (V) ® C) = Hom (8§,,.55,) & Hom (S5,,,53,).
The above pair (San,c) is unique up to isomorphism and is called the complex spinor representation
of CI(V).

Sketch of proof We will produce an explicit realization of the pair (S, c) using an additional
structure on V.
Fix a complex structure on V' compatible with the metric. This is a linear map J : V' — V such
that
JP=—1, J =—J

Then V ® C splits as
VeC=v"eVvo!

where V19 = ker(i — J) and VO! =ker(i + J). Set
S(V) := AV = A*VEO,

Note that the Euclidean metric on V' induces Hermitian metrics on AP*?V and thus a Hermitian
metric on S(V).

A morphism CI(V) — End (S(V)) is uniquely defined by its action on V% and V%!, For v € V1.0
define c(v) := v/2e(v), i.e.

c(0)(ur A Aug) = V20 Aug A Ay
Any v € V%! can be identified (via the metric g) as a complex linear functional on V?. Define
c(v) = —V/2i(0), i.e.
k

c(®)(ug A=+ Aug) = \@Z(*l)jgc(um@)m Ao N A A g

Above, g.(-, ) denotes the extension by complex bilinearity of g to V®C. Now choose an orthonormal
basis (e1, f1;--- ;en, fn) of V such that f; = Je;, Vj and then set

= e =), & = (e +1)).
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Then (g;) is a unitary basis of V10, (£;) is a unitary basis of V®! and (e;,&;) = d;;. We deduce
c(ej) = ele;) —i(&;), c(fi) =ile(ex) +i(r)).
One can now check that ¢ induces a map with all the required properties. In this case
SHV) = Aven 0y, §7(V) = A°4O), m

Example 1.3.3. Suppose that V is the four-dimensional Euclidean space R* with coordinates
(2t yt, 22, 9y?). Set e; = % and f; = 6%_ and define J by Je; = fi. Set 27 = 27 +iyJ. We identify
i j

V1O with (V*)%1 so that
1

1 ,
g = —=dz", & dz".
V2 V2
Then
Sy AV 2Ca APV g A2V
and

ST CeaA”?V*, Sy xAMV™

Define w = dz' A dy' + dz? A dy? and orient V* using w A w. Denote by * the Hodge * operator on
V* defined by the metric g and the above orientation. Note that

«(AV*) C A2V*
and *2 = 1 on A?2V*. Thus we have a splitting
NV = AV e A2V
where A7 = ker(1F ). The above choice of basis defines a nice orthonormal basis of A%, {9, 71,72}
where
1 i
= ——wW = —=
Mo \/5 9 ﬂ

1
(da' Ada? — dy* Ady?) = —=(dz" A dZ% + d2t A d2?),

2V2

1 i
= (dz' Ndy? + dy* Nda?) = ———
72 \/Q( Y Yy ) Wi

We see that 19, dz' A dz? and dz' A dz? form a complex basis of AiV* ® C.
The metric isomorphism V' 2 V* defines an action of A*V*® C on S(V) = A%*(V) generated by

(dz* A dzt + d2? A dZ?),

m=

Sl

(dzt A dz? — dz* A dz2?).

c(dz?) = —V/2i(d27), c(dz) = V2e(dZ?)
where i(dz7)(dz*) = 28;1. Since dz! and dz? are orthogonal we deduce
c(dz' A dZ?) = c(dzt)c(dz?) = 2e(dz")e(dz?)

and
c(dzt A dz?) = 2i(dzt)i(dz?).

To determine the action of 1y we use the real description

clm) = 5 {elda"eldy') +efde)ela?)
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f{ (c(a=") + e(d=") ) (e(dz") — e(az"))
#

(dz? + c(dz )) (c(dzz) — c(dz2)> }

— 2\15{ (e(dzl) - i(dzl)) (e(dzl) + i(dzl))

+(e(d22) - i(df)) (e(dz2) + z‘(dz2)) }
Now it is not difficult to see that c(n;)dz’ = 0, Vi = 0,1,2 so that
¢(A%ZV*) C End (ST(V)).

With respect to the unitary basis 1, €1 A eg = %dil A dz2 of S*(V) we have the following matrix
descriptions:

) =Vacm) =2 | o 7.

)

c(er Neg) = %c(dél Adz%) = e(dz")e(dz?) = 2 { 8 } ,
- A= 1 1 2 S1 4 722\ 0 -1
6(81/\82)=§C(d2 ANdz?) = —c(dz" N dz7) 22{0 0 ]

Note that for any real form ¢ € A%_V* the Clifford multiplication ¢(y) is a traceless, skew-symmetric
endomorphism of ST (V).
There is a quadratic map ¢ : S§ — End (S]) defined by

_ 1 .
q(¥) =9 ¢ - ;|¢f*d
ie. q() : p— (&, V) — %WJPQS. (The Hermitian metric is complex linear in the first argument and

complex antilinear in the second.) Using the bra-ket notation of quantum mechanics in which we
think of the spinors in S} as bra-vectors then

a((wl) = )]~ S (Wl
We can decompose 1 € ST(V) as
Yp=a®b, acA0V* geA"2V*.
With respect to the basis {1,e; Aea} of ST(V) the endomorphism ¢(¢)) has the matrix description

[ (el = 182) of
W)= " ap L(182 = |af?)

We see that ¢(v) is traceless and symmetric. We will often identify ¢(¢) with a 2-form via the
Clifford multiplication ¢ : A>V* ® C — End (S4). More precisely

q(y) ~ i(|oz|2 181w + = (aﬁ —af) €iNiV* C A’V @ C. (1.3.5)
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Exercise 1.3.2. Using the notation in the previous example show that

2

> (@, em))e(n)-

=0

q(¢) =

=

Exercise 1.3.3. Using the notation in Example 1.3.3 show that for every w € A2V* we have
c(w) = c(*w)
as endomorphisms of ST (V).

Since Cly, ® C is isomorphic with an algebra of matrices End (Ss,) we can invoke Wedderburn’s
theorem ([122]) to conclude that any complex Cla,-module V has the form Sy, ® V.
The odd dimensional situation follows from the even one using the following fact.

Lemma 1.3.4. Let V be a Euclidean space and u € V' such that |u| = 1. Set Vo = (u)*. Then there
is an isomorphism of algebras

¢ : Cl(Vy) — CIT (V)

defined by
o x— T4 +ur_.

Exercise 1.3.4. Prove the above lemma.

We deduce from the above result and the Fundamental Fact that
Cly,—1 ® C = End (S3,) ® End (S3,,).

Thus the complex representation theory of Clg,_1 is generated by two, nonisomorphic, irreducible
modules.

81.3.2 The Spin and Spin® groups
To produce a Dirac bundle on an n-dimensional Riemannian manifold we need several things.

(a) A bundle of Clifford algebras, i.e. a bundle C — M of associative algebras and an injection
1: T*"M — C such that for all z € M and all u,v € T; M

{a(w),2(v)} = =2g(u, )1

and the induced map 1, : Cl(T; M) — C, is an isomorphism.
(b) A bundle of complex Clifford modules, i.e. a complex vector bundle £ — M and a morphism
¢:C— End ().

We want all these bundles to be associated to a common principal G-bundle. G is a Lie group
with several special properties.
Denote by (V, g) the standard fiber of 7*M and denote by Auty the subgroup of algebra auto-
morphisms ¢ of CI(V') such that
(V) CcV(c Cl(V)).

First we require that there exists a Lie group morphism
p: G — Auty.
With such a p fixed we notice that it tautologically induces a representation

p: G — Aut (V).
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Denote by E the standard fiber of £. We require there exists a representation u : G — End (F) such
that the diagram below is commutative for all g € G and all v € V.

E

QJ
E
This commutativity can be given an invariant theoretic interpretation as follows. View the Clifford
multiplication ¢ : V' — End (E) as an element ¢ € V* ® E* ® E. The group G acts on this tensor
product and the above commutativity simply means that ¢ is invariant under this action.

To produce a Dirac bundle all we now need is a principal G-bundle P — M such that the
associated bundle P X, V' is isomorphic to T*M. (This may not be always feasible due to possible
topological obstructions.) Any connection V on P induces by association metric connections V* on
T*M and V¥ on the bundle of Clifford modules £ = P x x E. (In practice one often requires a little
more, namely that V is precisely the Levi-Civita connection on T*M. This leads to significant

simplifications in many instances.) With respect to these connections the Clifford multiplication is
covariant constant, i.e.

c(v) B

(1.3.6)

g
c(gv) I

VE(c(a)u) = «(VMa) + c(a)VFu, Va e Q' (M), uec C(E).
This follows from the following elementary invariant theoretic result.

Lemma 1.3.5. Let G be a Lie group and p : G — Aut (E) a linear representation of G. Assume
there exists eg € E such that p(g)eq = eo, Vg € G. Consider an arbitrary principal G-bundle P — X
and an arbitrary connection V on P. Then eg canonically determines a section ug on P x, E which
is covariant constant with respect to the induced connection V¥ = p,(V), i.e.

VEUO =0.

Exercise 1.3.5. Prove the above lemma.

Apparently the chances that a Lie group G with the above properties exists are very slim. The
very pleasant surprise is that all these things (and even more) happen in most of the geometrically
interesting situations.

Example 1.3.6. Let (V,g) be an oriented Euclidean space. Using the universality property of
Clifford algebras we deduce that each g € SO(V) induces an automorphism of CI(V) preserving
V — CI(V). Moreover, it defines an orthogonal representation on the canonical Clifford module

c: ClI(V) = End (A*V)

such that
elg-0)(w) = g- (c(w)(g™" -w)) Vg€ SOV),veV,we AV,

i.e. SO(V) satisfies the equivariance property (1.3.6).

If (M, g) is an oriented Riemannian manifold we can now build our bundle of Clifford modules
starting from the principal SO bundle of its oriented orthonormal coframes. As connections we can
now pick the Levi-Civita connection and its associates. The corresponding Dirac operator is the
Hodge-deRham operator.
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The Spin and Spin® groups provide two fundamental examples of groups with the properties
listed above. Here are their descriptions.
Let (V,g) be a Euclidean vector space. Define

Spin(V) :={z € CI" ; x =vy - vap, v; €V, |vy| =1}

Equip it with the induced topology as a closed subset of CIT. First note there exists a group
morphism

p: Spin(V) — SO(V), z— p, € SO(V)
pz(v) = zvr~!. We must first verify that p is correctly defined, i.e. p, is an orthogonal map of
determinant 1. To see this note that for every u € V, |u| = 1 the map

R,:V =V, vie —uwvu!

satisfies R, (V) C V and more precisely, R, is the orthogonal reflection in the orthogonal complement
of (u) := span (u). We see that for every z = vy - - - vo, € Spin(V') we have

pw:vao"'onzk

is the product of an even number of orthogonal reflections so that p, € SO(V'). Since any T' € SO(V)
can be written as the product of an even number of reflections we conclude that the map p is actually
onto. We leave it to the reader to prove the following elementary fact.

Exercise 1.3.6. Show that ker p = {£1}.

This implies that p is a covering map. If dimV > 3 one can show that Spin(V) is simply
connected (because the unit sphere in V' is so) and thus

p: Spin(V) — SO(V)

is the universal cover of SO(V'). In particular, this shows that w1 (SO(V)) = Z,. By pullback one
obtains a smooth structure on Spin(V'). Hence Spin(V') is a compact, simply connected Lie group.
Its Lie algebra is isomorphic to the Lie algebra so(V') of SO(V). We want to present a more useful
description of the Lie algebra of Spin(V). To do this we need to assume the following not so obvious
fact.

Exercise 1.3.7. Show that Spin(V) with the smooth structure induced from SO(V) is a smooth
submanifold of CI(V).

The Lie algebra of Spin(V) can be identified with a closed subspace of CI* (V). More precisely,
spin(V) = p2 1 (s0(V)

where p, denotes the differential at 1 € Spin(V) of the covering map Spin(V) — SO(V). A basis
of spin(V) can be obtained from a basis of so(V). Choose an orthonormal basis e, - , e, of V.
For each i < j we have a path v;; : (—¢,¢) — Spin(V') given by

t Lt t Lt .
vi; (t) = —(e; cos B + e;sin 5)((% cos 5 — e; sin 5) = cost + (sint)e;e;.
The orthogonal transformation p,, ) € SO(V) acts trivially on the orthogonal complement of
Vi; = span (e;, €;), while on V;;, oriented by e; Aej, it acts as the counterclockwise rotation of angle
2t.
Now denote by J;; the element of so(V') given by

€t €5 — —€4, €t €, /{3757/,]
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The family (J;;)i<; is a basis of so(V). We deduce

d
2 |t=0 Pris () = 2di5-

Hence 1d .
Pt (Jig) = 3 g =0 i () = geie;.

In particular if A € so(V') has the matrix description
Aej = Za;'»ei, aé = —ag =a;; =a"
i

then (notice the crucial negative sign!!!)
A=— Z aijJij
i<j
and 1 1
piH(A) = —§Zaijeiej = fZZaijeiej. (1.3.7)
1<J 2y
Example 1.3.7. Spin(3) = SU(2).

To see this, regard SU(2) as the group of unit quaternions (so that, in particular, SU(2) is
diffeomorphic to S?). There is a map

SU(2) — SO(3), ¢ T,

where T}, acts on R3 =2 Im H by

x = Tgx = qrq L.

It is not difficult to see that ¢ — T, is a double cover.
Example 1.3.8. Spin(4) = SU(2)xSU(2). Again identify SU(2) with the group of unit quaternions

and define
T:5U(2) x SU(2) — SO4), (p,q)— Tpq

where T, , acts on R* = H by

Tpqx = prq L.

Again one checks (p,q) — T} 4 is a double cover.

There is a natural embedding Spin(3) «— Spin(4) which can be described as the diagonal em-
bedding
SU(2) = SU(2) x SU((2), q+ (¢,9)-

This embedding is compatible with the natural embedding SO(3) — SO(4) in the sense that the
diagram below is commutative.

Spin(3) «—— Spin(4)

NN

SO(3) —— SO(4)

Suppose now that (V) g) is a 2n-dimensional Euclidean space. Fix a compatible complex structure
J. This defines an isomorphism of Z,-graded algebras

p: Cly, ® C — End (S;n DS5,)-
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Since Spin(2n) C ClJ,, we obtain two complex representations
pt : Spin(2n) — Aut (S3)).

These are irreducible and not isomorphic (as Spin(2n)-representations). These are called the
even/odd complex spinor representations of Spin(2n). The complex Spin(2n)-module SI @ S5,
is denoted by So,,.

When (V, g) is a Euclidean space of odd dimension 2n + 1 then

Spin(2n + 1) C Cl3,,.; = Cla,.
Thus Spin(2n 4 1) acts naturally on Sy,,. This action
p:Spin(2n + 1) — Aut (S2,)
is called the fundamental spinor representation and the corresponding
Spin(2n + 1)-module will be denoted by Soy11.
Exercise 1.3.8. Using the isomorphism

Cl3,, = Cly, 4

constructed in the previous subsection show that the induced representations of Spin(2n—1) on Sétn
are both isomorphic to So,_1.

Example 1.3.9. Using the isomorphism Spin(4) = SU(2) x SU(2) we can describe the complex
spinor representations as follows.

p+ : SU(2) — SU(2) — Aut (C?),
pi(pq): CP°=2Hov—p-vcH=C?
(where H is equipped with the complex structure induced by the right multiplication by i € H)
p—(pq): CP=2H3v—v-¢ ' € H=C?
(where H is equipped with the complex structure induced by the left multiplication by i € H).
Define the group Spin¢(V) by
Spin®(V) = (Spin(V) x S*)/Z,
where Zs denotes the subgroup {(1,1), (=1, —1)} of Spin(V)xS!. Assume for simplicity dim V = 2n.
We obtain two representations
s+ Spin(V) — Aut (S%,)
by
pL(92) = 2p+(9)
where p1 denote the complex spinor representations of Spin(V).
Exercise 1.3.9. Show that Spin©(3) = U(2).

Exactly as in the case of the spin-groups we have a commutative diagram

Spin(3) ——— Spin°(4)

T

SO(3) —— SO(4)

There is an intimate relationship between the group Spin¢(V') and almost complex structures on
V. Suppose J is an almost complex structure compatible with the metric g and denote by U(V, J)
the group of unitary automorphisms, i.e. orthogonal transformations of V' which commute with J.
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Proposition 1.3.10. There exists a canonical group morphism & = &5 : U(V,J) — Spin®(V') such
that the diagram below is commutative.

UV, J) —s Spin(V)
SO(V)

The wvertical arrow is the composition Spin(V') — Spin(V) — SO(V).

Idea of Proof Letw € U(V) and consider a path v : [0,1] — U(V') connecting 1 to w. Viewed as
a path in SO(V'), v admits a unique lift 5 : [0,1] — Spin(V'), 4(0) = 1. Using the double cover

St— 8t 2 22

we can produce a unique lift §(¢) of the path det~(t) € S*. Now define &(w) := (7(1),8(1)). We let
the reader verify that ¢ is a well defined morphism U (V') — Spin°(V). R

Next, we need to explain how to use these groups to produce Dirac structures on a manifold.
This requires a topological interlude, to discuss the notion of spin and spin® structures.

81.3.3 Spin and spin® structures

Consider an oriented n-dimensional Riemannian manifold (M, g). The tangent bundle TM can be
described via a gluing cocycle g : Uyg — SO(n) supported by a good cover, that is, an open cover
(Uy) of M where all the multiple intersections U,g..., can be assumed to be contractible (or even
better, geodesically convex). A spin structure is a collection of lifts

Jap : Uap — Spin(n)
of g.p satisfying the cocycle condition

gaﬂgﬂ'ygﬂ/a =1.

A manifold admitting spin structures is called spinnable. Spin structures may or may not exist.
Let’s see what can go wrong. Clearly, each map gog : Usg — SO(n) admits at least one lift (in fact
precisely two of them)

Gap : Uap — Spin(n).

Since g, satisfies the cocycle condition we deduce
WaBy = JapJpydra € Lo = ker(Spin(n) — SO(n)).
The collection wqg, satisfies the cocycle condition
WBys — Warys + Wags — Wagy = 0 € Zo

for all «, 3,7, such that Usgys # 0. In other words, the collection w... is a Za-valued Cech 2-
cocycle. By choosing different lifts g, we only change w... within its Cech cohomology class. Hence,
this cohomology class is a topological invariant of the smooth manifold M. It is called the second
Stiefel-Whitney class and will be denoted by wg(M). It lives in H?(M,Zs). The above discussion
shows that if wy(M) # 0 then M does not admit spin structures. The converse is also true. More
precisely, we have the following result.
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Proposition 1.3.11. The oriented manifold M is spinnable if and only if wo(M) = 0. If this is the
case there is a bijection between the set of isomorphism classes of spin structures and HY (X, Zs).

Remark 1.3.12. The definition of isomorphism of spin-structures is rather subtle (see [92]). More
precisely, two spin structures defined by the cocycles Gee and hee are isomorphic if there exists a
collection €, € Zo C Spin(n) such that the diagram below is commutative for all x € Uyp

Spin(n) —=— Spin(n)

‘éﬁa(f) Jﬁﬁa(z)

Spin(n) SN Spin(n)

The group H'(M,Zs) acts on Spin(M) as follows. Take an element e € H' (M, Zs) represented by a
Cech cocycle, i.e. a collection of continuous maps €ap| : Uap — Zo C Spin(n) satisfying the cocycle
condition

€aB " €@y " Exya = 1.
Then the collection cqe - Joo is & Spin(n) gluing cocycle defining a spin structure we denote by ¢ - o.
It is easy to check that the isomorphism class of ¢ - ¢ is independent of the various choice, i.e Cech
representatives for € and o. Clearly the correspondence

HY(M,Z3) x Spin(M) > (g,0) + ¢ - o € Spin(M)
defines a left action of H'(M, Zs) on Spin(M). This action is transitive and free.
Exercise 1.3.10. Prove the above proposition and the statement in the above remark.
Exercise 1.3.11. Describe the only two spin structures on S*.

There is a very efficient topological machinery which can be used to decide whether wy (M) = 0.
We refer to [93] for details. We only want to mention a few examples.

Example 1.3.13. A compact, simply connected 4-manifold admits spin structures if and only if its
intersection form is even. A compact, simply connected manifold M of dimension > 5 admits spin
structures if and only if every compact oriented surface S embedded in M has trivial normal bundle.

Let (M™,g) be an oriented, n-dimensional Riemannian manifold. As above, we can regard the
tangent bundle as associated to the principal bundle Pso (s of oriented orthonormal frames. Assume
Pso(nry is defined by a good open cover i = (U,) and transition maps

gap : Uag — SO(n).

The manifold M is said to possess a spin® structure if there exist smooth maps g : Uag — Spin®(n),
satisfying the cocycle condition such that

pc(gaﬁ) = Gag-

As for spin structures, there are obstructions to spin® structures as well which clearly are less
restrictive. Let us try to understand what can go wrong. We stick to the assumption that all the
overlaps U,g..., are contractible.
Since Spin¢(n) = (Spin(n) x S1)/Zs, lifting the SO(n)-structure (g,z) reduces to finding smooth
maps
hag : Uag — Spin(n)
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and
2ot Uag — St
such that
plhag) = gap
and
(€apy Capy) = (haphpahae s zapzyzya) € {(—1,—1), (1,1)}. (1.3.8)

If we set Aag = 225 : Uap — S we deduce from (1.3.8) that the collection (Ass) should satisfy
the cocycle condition. In particular, it defines a principal S'-bundle over M or, equivalently, a
complex line bundle £. This line bundle should be considered as part of the data defining a spin®
structure. The collection (eng,) is an old acquaintance: it is a Cech 2-cocycle representing the
second Stiefel-Whitney class.

We can represent the cocycle A,z as

)\ag = exp(i@ag), 9(15 : Uag — R.
The collection ]
Napy = 5 (0ap + 0y + 0ya)

defines a 2-cocycle of the constant sheaf Z which represents the topological first Chern class of L.
The condition (1.3.8) shows that
Nagy = €apgy (mo0d 2).

To summarize, we see that the existence of a spin® structure implies the existence of a complex line
bundle £ such that
AP (L) = wo(M) (mod 2).

It is not difficult to prove that the above condition is also sufficient. In fact one can be more precise.

Denote by Spin¢(M) the collection of isomorphism classes of spin® structures on the manifold
M. Any o € Spin®(M) is defined by a lift (hag,zag) as above. We denote by det(o) the complex
line bundle defined by the gluing data (z,g). We have seen that

A% (det(a)) = wo(M) (mod 2).

Denote by Ly C H?(M,Z) the “affine” subspace consisting of those cohomology classes satisfying
the above congruence modulo 2. Such elements are called characteristic (not to be confused with
the characteristic classes of Chern and Pontryagin). We thus have a map

Spin¢(M) — Lys, o+ P (det(a)).
Proposition 1.3.14. The above map is a surjection.

Exercise 1.3.12. Show that if H?(M,Z) has no 2-torsion (e.g. M is simply connected) then the
above map Spin®(M) — L is one-to-one.

Exercise 1.3.13. Complete the proof of the above proposition.
The smooth Picard group Pic™ (M) acts on Spin®(M) by
Spin®(M) x Pic™*(M) > (o,L) — o ® L.
More precisely, if o € Spin¢(M) is given by the cocycle

0 = [hap, 2ap] : Uap — Spin (n) x S*/ ~
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and L is given by the S! cocycle

Cozﬁ : Uag — Sl
then o ® L is given by the cocycle
[hap; ZapCasl-
Note that
det(c ® L) = det(o) ® L?
so that

(o ® L) =& (o) + 26 (L).
Proposition 1.3.15. The above action of Pic®™ (M) on Spin®(M) is free and transitive.

Proof Consider two spin® structures o' and o2 defined by the good cover (U,) and the gluing
cocycle ‘ ‘
G, 20, i=1,2.

Since pc(hsﬁ)) = pc(hfg) = gop We can assume (possibly modifying the maps hfjg by a sign) that
1) _ 12
hos = hejp-

This implies that
2),,1)
CO&B = Zozﬁ /Zaﬁ

is an S'-cocycle defining a complex line bundle L. Obviously 02 = ¢! ® L. This shows the action
of Pic™ (M) is transitive. We leave the reader verify this action is indeed free. The proposition is
proved. B

The group of orientation preserving diffeomorphisms of M acts in a natural manner on Spin®(M)
by pullback.

Given two spin® structures o and os we can define their “difference” o9/0; as the unique line
bundle L such that o3 = 01 ®L. This shows that the collection of spin® structures is (noncanonically)
isomorphic with H?(X,Z) = Pic™. It is a sort of affine space modeled on H?(X,Z) in the sense that
the “difference” between two spin® structures is an element in H?(X, Z) but there is no distinguished
origin of this space. A structure as above is usually called an H?(M, Z)-torsor.

We will list below (without proofs) some examples of spin® manifolds.

Example 1.3.16. (a) Any spin manifold admits a spin® structure.

(b) Any almost complex manifold has a natural spin® structure.

(¢) (Hirzebruch-Hopf, [55]; see also [98]) Any oriented manifold of dimension < 4 admits a spin®
structure.

Let us analyze the first two examples above. If M is a spin manifold then the lift
Jap : Uap — Spin(n)
of the SO-structure to a spin structure canonically defines a spin® structure via the trivial morphism
Spin(n) — Spin(n) xz, S*, g+ (g,1) mod the Zy—action.

We see that in this case the associated complex line bundle is the trivial bundle. This is called the
canonical spin® structure of a spin manifold. Thus on a spin manifold the torsor of spin®-structures
does in fact possess a “canonical origin” so in this case there is a canonical identification

Spin®(M) = Pic™ = H*(M, 7).
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To any complex line bundle L defined by the S'-cocycle (z,5) we can associate the spin® structure
defined by the gluing data

{(gaﬁ7 Zaﬁ)}'
Clearly, the line bundle associated to this structure is L? = L®2. In particular, this shows that a

spin structure on a manifold M canonically determines a square root det(o)'/? of det(c), for any
o € Spin®(M) .
Exercise 1.3.14. Show that any two spin structures on a manifold M such that H?(M,Z) has no

2-torsion are isomorphic as spin® structures.

Exercise 1.3.15. Suppose N is a closed, oriented, Riemannian 3-manifold. Denote by Fry the
bundle of oriented, orthogonal frames of TN. Fry — N is a principla SO(3)-bundle. Denote by
Sn the set of cohomology classes ¢ € H?(Fry,Z) such that their restriction to any fiber coincides
with the generator of H2(SO(3),7Z) = Zy. Prove that there exists a natural bijection

Spin®(N) — Sn.

The commutative diagram (O¢) shows that given a spin®-structure o on a closed, oriented 3-
manifold N canonically induces a spin® structure 6 on R x N. We will often use the notations

6:=Rxo, 0:=0|n.

Conversely, the SO(4)-structure on T(R x N) naturally reduces to a SO(3)-structure (split the
longitudinal tangent vector d;), and invoking the diagram (0¢) again we deduce that any spin®
structure & on R induces a spin® structure on N or, more precisely, the map

Spin®(N) — Spin“(Rx N), o =R x o

is an isomorphism.

In the conclusion of this subsection we would like to explain in some detail why an almost complex
manifold (necessarily of even dimension n = 2k) admits a canonical spin® structure. Recall that the
natural morphism U(k) — SO(2k) factors through a morphism

£:U(k) — Spin®(2k).
The U (k)-structure of TM, defined by the gluing data
hap : Uag — U(k)

induces a spin® structure defined by the gluing data £(hqg). Its associated line bundle is given by
the S'-cocycle
detc(hap) : Uag — S*

and it is precisely the determinant line bundle
detcTH M = AFOT M.

The dual of this line bundle, detc(T*M)'? = A*OT* M plays a special role in algebraic geometry. It
usually denoted by Kj; and it is called the canonical line bundle. Thus the line bundle associated

to this spin® structure is K;,' def K3,
Exercise 1.3.16. Show that an almost complex manifold M admits a spin structure if and only if
the canonical line bundle Kj; admits a square root, i.e. there exists a complex line bundle L such

that L®? = K),. (Traditionally such a line bundle is denoted by Kif, although the square root
may not be unique.)
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81.3.4 Dirac operators associated to spin and spin® structures

Suppose (M, g) is an oriented Riemannian manifold of dimension n equipped with a spin structure.
To describe it we assume the tangent bundle T M is defined by the open cover (U,) and transition
maps

Gap : Uag — SO(n).

These define a principal SO(n)-bundle Pgo(,) — M. The spin structure is given by the lifts
Jap : Uap — Spin(n)
which define a principal Spin(n)-bundle Pg,;y ) — M. Using the representation
T : Spin(n) — Aut (S,,)

we can construct the associated vector bundle Pgp(n) X+ S, with structure group Spin(n) and fiber
S, given by the gluing cocycle
T(Gap) : Uap — Aut (S,).

It is called the bundle of complex spinors associated to the given spin structure and will be denoted
by SO = So(M)

Exercise 1.3.17. As indicated in the Exercise 1.3.11, there are two spin structures on S, e and
o. Denote by Se and S, the associated bundles of complex spinors. These are complex line bundles
over S' and as such they must be isomorphic. What bit of information do the spin structures add
to these bundles which will allow us to distinguish them?

Exercise 1.3.18. The bundle Sy has a natural selfadjoint Clifford structure ¢ : T*M — End (Syy).

The Levi-Civita connection VM on T*M is induced by a connection on Pso(ny- This is given
by a collection of so(n)-valued 1-forms w, € Q'(U,) ® so(n) satisfying the transition rules (1.1.1).
Using the double covering map p : Spin(n) — SO(n) we obtain a Spin(n)-connection given by the
collection
Sa = pi (wa) € 0 (Ua) ® spin(n).

Then the collection of End (Sp)-valued 1-forms 7, (@) defines a connection VM on Sy, compatible
with the Spin(n)-structure. The proof of the following result is left to the reader as an exercise.

Proposition 1.3.17. (Sg,c, @M) is a geometric Dirac bundle.

The geometric Dirac operator associated to the above Dirac structure is called the spin Dirac
operator associated to the given spin-structure on M. We will denote it by D .

It is useful to have a local description of this Dirac operator. Suppose (e;) is a local, oriented,
orthonormal frame of TM over U, and denote by (e) the dual coframe. Then the Levi-Civita
connection on T'M is given by

1
Vej = E Wijei, Wij € Q (Ua)7 Wij = —Wijj
7

and on T*M by

Vel = Zwijei = Z f® wkijei.
i kyi
Using (1.3.7) we obtain

. 1 o 1 , ,
VM =g - 1 Zwijc(ez)c(e]) =d- I Z e* @ wyije(ee(el).
i,J .5,k
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We deduce .
Dar =D e(€")de, — 7 D wrije(e’)e(ee(e). (1.3.9)

k i4.k
The curvature of the connection VM can be obtained as follows. The Riemannian curvature R

of M (or equivalently, the curvature of the Levi-Civita connection on T'M) is given by the collection
of so(n)-valued 2-forms

R, = dw, + wa/\wa Ze /\eZRu
k<t
where Ry : U, — so(n) is given by
Ryee; = ;‘klei = Rijree;.
Then the curvature of the connection (&,) on PSpm(n) is given by
R:p*_l Ze Nefps (ng = —726 /\GZZRJMGZ e;.

k<t k<t i<j
The curvature of VM is then

. 1 ,

M koA 0
)= ~1 Ze Ne ZR}kéc(ei) -c(ej).
k<t i<j

Using Proposition 1.3.2 and the above expression one can prove the following important result.

Theorem 1.3.18. (Lichnerowicz) Dy, is a formally selfadjoint operator and
D2, = (VM) VM +Z (1.3.10)
where s denotes the scalar curvature of the Riemannian manifold M.

Remark 1.3.19. Suppose VM is a metric connection on T*M, not necessarily the Levi-Civita
connection. Choosing an orthonormal coframe (e’) as above we can represent

VMel = Z Qkue ® e’

Using again the isomorphism 7 we obtain a connection VM = 7%V on Sy, locally described by
~ 1 . )
VM =d— 1 e @ Qrije(el)e(e?).
i,5,k
It satisfies the following compatibility relation:
V¥c(a) = c(VHa), VX € Vect (M), € QL(M).

Then (So, ¢, VM, vM ) is a Dirac structure called the Dirac structure induced by the connection V.
As explained in Sec. 1.3.1, this Dirac structure determines a Dirac operator we will call the Dirac
operator induced by the connection V.

Exercise 1.3.19. Suppose (M, g) is a Riemannian spin-manifold and VM is a metric connection.
The trace of its torsion is the 1-form tr (T") locally defined by

z) = Zg(eva(ekv 62))
k

where (e;) is a local orthonormal frame. Show that the induced Dirac operator is formally selfadjoint
if and only if the torsion of VM is traceless, tr (T') = 0.
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The above construction can be generalized as follows. Given a Hermitian vector bundle £ — M
and a Hermitian connection V¥ we can define a geometric Dirac structure

(SM ® FE,cg, V)

on M where L
e (M) S End (Syr) “F End (S ® E)

and V is the connection on Sy; ® E induced by the connection VM on Sy, and the connection V£
on E. We denote by D/ g the associated geometric Dirac operator. We say that © /g is obtained
from Dy, by twisting with the pair (E, VF).

Exercise 1.3.20. Prove that the above triple (S); ® E, cg, V) is indeed a geometric Dirac structure
on M.

The curvature of V is 5
F(V)=F(V")®1p +1g,, @ F(VF).

From the Weitzenbdck formula we deduce

D2, =V'V+ Z + c(F(VEY). (1.3.11)

The endomorphism R = £ + ¢(F(V¥)) is the Weitzenbock remainder of the generalized Laplacian
Dk
At this point we want to discuss some features of the above formula when dim M is even. In this
case Sy is Zo-graded
Sm =St @Sy,

and in particular we obtain a splitting
SM®E=S},® E®S,; ® E.
With respect to the above grading the operator © s g has the block decomposition

o [ 0 D
ME Dk 0

where @y, p : C®(S}; ® E) — C*(Sy; ® E). Then

D2 { :}Z’*M,E@M,E 0 } )

ME 0 Py ePur

We conclude that the Weitzenbock remainder R of ’D?M’ g has the block decomposition

[ Ry 0
e[ R ]

When dim M = 4 we can be more specific. Using the computation in the Example 1.3.3 we deduce

PyvePue=V'V+ Z +c(FH(VP), (1.3.12)

DarsPisp = V'V + ] +e(F (V) (1.313)

where F*(VF) denotes the self/antiself-dual part of the curvature of V.
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Assume now that (M, g) is an oriented, n-dimensional Riemannian manifold equipped with a
spin® structure o € Spin®(M). Denote by (gas) a collection of gluing data defining the SO structure
Psonry on M with respect to some good open cover (U, ). Moreover, we assume ¢ is defined by the
data

hag : Uag — Spin(n).
Denote by p¢ the fundamental complex spinorial representation
p¢ : Spinf(n) — Aut (S,).

We obtain a complex bundle
SO-(M) = PSpinC ch Sn

which has a natural Clifford structure. This is called the bundle of complex spinors associated to o.
We want to point out that if M is equipped with a spin structure then

Se 2 So ® det(0)'/2.

We will construct a family of geometric Dirac operators on S, (M).
Consider for warm-up the special case when T'M is trivial. Then we can assume g,g = 1 and

hap = (1,20p) : Uap — Spin(n) x S* — Spin®(n).

The S'-cocycle (225) defines the line bundle det(c). In this case something more happens. The
collection (z4p) is also an S'-cocycle defining the complex Hermitian line bundle L = det(a)/2.
Now observe that

SM,O’ =Sy ® det(o)l/g.

We can now twist the Dirac operator @), with a pair (det(c)'/2, A), where A is a Hermitian
connection on det(c)*/? and obtain a Dirac operator on S M,o- Notice that if the collection

{Wa cu(l)® Ql(Ua)}

defines a connection on det(o), i.e.

dz?
wg = 20‘5 +wq over Uyg
Z58
then the collection
) 1
Wo = iwa

1/2

defines a Hermitian connection on L = det(c)'/2. Moreover if F denotes the curvature of (we) then

the curvature of (&) is given by

A1

F= §F (1.3.14)
Hence any connection on det(o) defines in a unique way connection on S, (M).

Assume now that TM is not necessarily trivial. We can however cover M by open sets (U, ) such
that each TU, is trivial. If we pick from the start a connection on det(c) this induces a Clifford
connection on each Sy, ». These can be glued back to a Clifford connection on Sys,, using partitions
of unity. We let the reader check the connection obtained in this way is independent of the various
choices.
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Exercise 1.3.21.  Suppose (M, g) is an oriented Riemannian manifold
equipped with a spin® structure o and A is a Hermitian connection on det(c). Denote by vA
the connection on S, induced by A. Given a smooth map v: M — U(1) C C* we can construct a
new connection W@Av_l. Show that this connection is induced by the connection A — 2(dy)y~! on
det(o). In particular, the assignment

(7, A) — A—2(dy)y!

defines a smooth left action of the gauge group Gy (1)(det(c)) on the space of Hermitian connection
on det(o).

Let A be a connection on det(s). Denote by V4 the Clifford connection it induces on Sy,
and by D4 := D)4 the geometric Dirac operator associated to the geometric Dirac structure
(Sm.osc, VA). The Weitzenbéck remainder of @%LA is a local object so in order to determine its

form we can work on U, where Sy, , = Sy, ® det(o) \[1]/5 Using the equalities (1.3.11) and (1.3.14)
we deduce 1 1
D2 4= (VHVA+ 15+ 50(Fa) (1.3.15)
where F4 denotes the curvature of the connection A on det(o). If M is four-dimensional then we
have a splitting
Sao = Sire © S o
and
* * S
PaPa=(VH)VA+ 1
Exercise 1.3.22. Suppose M is a Riemannian manifold equipped with a spin¢ structure o and A
is a Hermitian connection on det(c). Show that for any imaginary 1-form ia € iQ!(M) we have

+ %C(F:{). (1.3.16)

1
Datia =Da+ §C(ia).

The space Spinc(M) of spin® structures on M is equipped with a natural involution o — &. It
can be described as follows. Suppose o is a spin® structure given by a cocycle (hag, zo3). Then & is
the spinc-structure defined by the cocycle (hag, Zag). We let the reader verify that the isomorphism
class of & depends only on the isomorphism class of ¢. This involution enjoys several nice features.

Exercise 1.3.23. (a) For every o € Spin®(M) there exists a natural isomorphism of complex line
bundles.

det(d) = det(o)
(b)* If dim M = 4 then there exist natural isomorphisms of complex vector bundles
9:SF—SH 9:S; —S; (1.3.17)
such that for every 1-form o on M we have the equality
9 (co(@)d) = e (a)d(4)

where ¢, denotes the Clifford multiplication on the bundle S,. Moreover, for every 1 € C*°(S}) we
have the equality

q(0(¥)) = —q(¥) (1.3.18)

where g(¢) denotes the endomorphism ¢ — (¢, )¢ — $|1)|*¢. (The Hermitian metric is assumed to
be complex linear in the first variable.)
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(c) Show that for every Hermitian connection A on det(c) and for every ¢ € C*°(S}) we have the
identity )
PFDath) =P a-0(0) (1.3.19)

where A* denotes the connection induced by A on detd 2 (deto)*.

Hint for (b). If p1 : Spin(4) — SO(S]) denotes the even/odd spinor representation then there
exists a complex linear isomorphism Cy : Sff — gj such that C'y o p. = p1. More precisely, if we
identify Spin(4) with SU(2) x SU(2) and SU(2) with the group of unit quaternions then S} is the
space of quaternions H equipped with the complex structure given by Rj;, the right multiplication
by i. For (g4, q-) € Spin(4) the map p(q+,q—) € SO(H) is described by L, , the left multiplication
by g+. The morphism C4 is then given by Rj;, the right multiplication by j. The description of C_
is obtained from the above by making the changes

left < right and py(q4,q-) = Lg, < p—(q4,9-) = R 1.

Suppose now that M is a closed, compact, oriented 4-manifold equipped with a spin® structure
0. Upon choosing a connection A on the associated line bundle det o we obtain a Dirac operator

Pa:C7(S5) — C(S;).
This is an elliptic operator which has a finite index
ind¢(®@ 4) = dime ker@ 4, — dimc ker @%,.

According to the celebrated Atiyah-Singer index theorem this index can be expressed in purely
topological terms. More precisely, we have the following equality:

inde® , = é ( /M c1(det o) A ci(det o) — T(M)) (1.3.20)

where 7(M) denotes the signature of the manifold M.

1.4 Complex differential geometry

We present here a very brief survey of some basic differential geometric facts about complex manifolds
in general, and complex surfaces in particular. We will return to this subject later on, in Section
3.1. This is an immense research area and our selection certainly does not do it justice. For more
details and examples we refer to [9, 10, 49, 54, 63] and the sources therein.

§1.4.1 Elementary complex differential geometry

An almost complex structure on a manifold X is an endomorphism J of the tangent bundle T'X
such that J2 = —1. Note in particular that such a structure can exist only on orientable even-
dimensional manifolds. By duality we get a similar endomorphism of the cotangent bundle T*X
which we continue to denote by J.

The operator J extends by complex linearity to an endomorphism of the complexified tangent
TX ® C. It defines two eigenbundles corresponding to the eigenvalues +i and thus it produces a
splitting of complex bundles

TX ®C=(TX)"* e (TX)"°

where the (1,0) superscript indicates the i-eigenbundle while the (0,1)-superscript indicates the
—i-eigenbundle. Note that (TX,.J) is isomorphic to (TX)"? as complez vector bundles. Denote by
PLO (resp. P1Y) the projection onto (T X)'0 (resp. (TX)%!) corresponding to the above splitting.
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For any vector field X on M define X, := PM0X = 1(X —iJX) and X, := PY'X = (X +iJX).
By duality, these induce projectors of T*X ® C and thus we get a similar splitting

T*X®C=(T"X)"* ¢ (177 X)%! (1.4.1)
which leads to a decomposition
MT*XeC= @ AT*X (1.4.2)
pt+a=k

where
APAT*X =2 AP(T*X)H0 @ AY(T* X)L,

The sections of AP4T* X are called (p,q)-forms on X. For example, if « € Q'(M)®C then a extends
to a C*°(M, C)-linear map
Vect (M) ® C — C*(M,C)

and
o= a0 4 g0t

where a!?(X) = a(P"X) and a®!(Y) := a(P*'Y).

Example 1.4.1. Consider the manifold C" with coordinates z; = x; +iy;, 7 = 1,--- ,n. It is
equipped with a natural almost complex structure defined by

7] 0 0
—_— — > ——
amj 8yj 8l‘j
The complex bundle (TC™)*? (resp (T*C™)%!) admits a global trivialization defined by

919 0,
82]‘ o 2 é%cj 8yj

and respectively
dz; = dx; +idy;.

Similarly (TC™)%! (resp. (T*C™)%!) is globally trivialized by

010 0
82j T2 al'j 81/]'

and respectively
d?j = (dl‘] - ldyj>

A (p,q)-form on C™ has the form
a = Za]JdZI ® Az
I.J
where the summation is carried over all ordered multi-indices
I 1< < <ip<n, J: 1<51 < <jGg<n

and ayy is a complex valued function on C".
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The exterior derivative extends by complex linearity to an operator
d: C®(A'T*X ® C) — C=(A"'T*X & C).
It is not difficult to check that
d(AP9) APT20-1 ¢ AP+La o APaHL oy AP—1,042
Accordingly, we get a decomposition of d
d = d2,—1 +d1,0 + dO,l +d_1’2.
Traditionally one uses the notation
0 :=d"°, 0:=d".
The almost complex structure is said to be integrable if >~ = 0 and d—12 = 0.

Proposition 1.4.2. Consider an almost complexr manifold (M, J).The following conditions are
equivalent.

(a) The almost complex structure is integrable.

(b) d>la=d12a =0 for alla € Q'(M)® C.

(c) 0?f =0=0%f,Vf € C®(M).

(d) The Nijenhuis tensor N € Q?(TM) defined by

N(X,Y) = i([JX, JY] = [X,Y] = JIX,JY] - J[JX,Y]),

VX,Y € Vect (M), is identically zero.

Proof Clearly (a) = (b). Using a partition of unity it is not difficult to prove the converse, (b)
= (a).

Clearly (b) = (c). Using partitions of unity we can replace the condition “Ya € Q'(M)” in
(b) by the condition “Va = fdg, f,g € C°°(M)”. This weaker, equivalent version of (b) is clearly
implied by (c). To establish the remaining equivalences we need to establish several identities of
independent interest.

Let f € C*°(M). Then

82f(X07Yc) = daf(XmYc) = Xcaf(yc) - Ycaf(Xc) - af([Xm}/c])

= Xcdf(yc) - chf(Xc) - df([Xc,}/;]c)

We compute cach of the terms separately.
Xodf (Y,) = i{ Xdf(Y) — JXdf(JY) — i(Xdf(JY) + JXdF(Y)) }
Yodf(X.) = i{ Ydf(X) — JYdF(JY) — i(Ydf(JX) + JYdf(X)) }
([Xer Vo)) = 5l (Ko, Y — VX, Vo)
- %df([X XY —iJY]) - %df(J[X —iJX,Y —iJY])

= édf([X, Y] = [JX,JY] —i[JX,Y] —i[X, JY])
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—édf(J[X, Y] = J[JX,JY] —iJ[JX,Y] - iJ[X, JY])
= édf([X, Y] = [JX,JY] - J[JX,Y] - J[X,JY])

f%df(J[X, Y] - JJX,JY] + [JX, Y]+ [X, JY]).
At this point we use the equality d?f = 0 which implies
Udf(V) — Vdf (V) = df ([U,V]), YU,V € Vect (M).
We deduce )
Xedf (Vo) = Yedf (Vo) = 7{df(IX.Y]) = df (17X, IY]) }
fi{df([X, JY] + df ([JX, Y])}.

Putting together all of the above we deduce

D*F(X,Y) =0 f(X,,Y,) = édf([X, Y] - [JX,JY]|+ J[JX, Y]+ J[X,JY])

+édf(J[X, Y] = JIJX,JY] + J[JX, Y]+ J[X,JY])

— —df(N(X,Y),) = —0f(N(X,Y)).

Similarly
PF(X,Y) = —0f (N).

It is now clear that (c) <= (d). H

It is very easy to show that if M is a complex manifold (i.e. admits local coordinates U — C™
with holomorphic transition maps) then the induced almost complex structure is integrable. The
converse is also true but it is highly nontrivial. It is known as the Newlander-Nirenberg theorem.

Suppose now that M is an almost Hermitian manifold, i.e. T M is equipped with a Riemannian
metric g and a compatible almost complex structure J, i.e. J* = —J. Extend J to an almost
complex structure J° on T*X via the metric duality so that

(J'a)(X) = —a(JX).
We obtain an eigenbundle decomposition
T*X ®C=ker(i— J) @ker(i+ J°) = (T X)) @ (77 X)%!
which coincides with the splitting in (1.4.1). Now define w € Q?(M) by
w(X,Y)=g9(JX,)Y), VXY € Vect (M).
Note that w € QY1 (M). We can now define a Hermitian metric on the complex bundle (TX, J) by
hX,)Y)=¢g(X,Y) —iw(X,Y).

It is often very useful to have local descriptions of the various notions. Pick a local orthonormal
frame of T'M

{el?fl;"' ;enafn}y fk; = Jek.



Notes on Seiberg-Witten Theory 45

Then ¢; = %(ej —1if;) form a local, complex, unitary frame of TH? while &; = %(ei +if;) form a

local, complex, unitary frame of T%!. If we denote by (e’, f7) the dual basis of (e;, f;) then

el = —(ed +if?)

Sl

is a local unitary frame of (T*X)%? and

= Lk _ifh)

is a local unitary frame of (7*X)%!. Then
w = iz eI N,
J
If D denotes the Levi-Civita connection then we have the following identity (see [64, IX, §4, vol.2]):

(Dxw)(Y, Z) = g((DxJ)Y, Z)

= f%dw(X, JY,JZ) + %dw(X, Y, Z)+29(N(Y,Z2),JX). (1.4.3)
Exercise 1.4.1. Prove the identity (1.4.3).
Suppose now that dw = 0. The identity (1.4.3) simplifies dramatically to
(Dxw)(Y, 2) = g((Dx J)Y, Z) = 20(N(Y, 7), JX). (1.4.4)

Definition 1.4.3. An almost Hermitian manifold (M, g, J) is said to be almost Kdahler if the form w
is closed. An almost Kéhler manifold (M, g, J) is said to be Kahler if the almost complex structure
J is integrable.

Exercise 1.4.2. Suppose (M?", w) is a symplectic manifold , i.e w is a closed 2-form amd w" is a
volume form on M. Show that there exist almost Kéhler structures (g, J) on M such that

w(X,Y)=g9(JX,Y), VX,Y € Vect (M).

In this case both g are said to be adapted to w. Moreover, show that when n = 2 the symplectic
form w is self-dual with respect to any adapted metric.

Using the metric duality we can regard any tensor B € Q%(TM) as a T* M-valued 2-form
(B(X,Y),Z):=9(B(X,Y),Z), VX,Y,Z € Vect (M)
where (-, ) denotes the duality between T*M and TM. Now define the Bianchi projector
bB(X,Y,Z)=(B(X,Y),Z)+(B(Z,X),Y)+ (B(Y,Z),X).
Then bN is a 3-form. If dw = 0 then using the elementary identity
N(JY,JZ)=—-N(Y,Z)

we deduce
Dxw(Y,Z)=—-29(N(JY,JZ),JX)

so that VXY, Z € Vect (M)
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1 1
bN(JX,JY,JZ) = —5(bDw)(X.Y, Z) = —5dw(X.Y, Z) = 0 (1.4.5)

where at the second step we have use the following identity (see Exercise 1.4.4 for a more general
situation)
dn(X, Y, Z) = o(Di)(X, Y, Z), ‘W € Q3(M), X,Y, Z € Vect (M),

Consider now an almost Hermitian manifold (M, g, J). A connection V on T'X is said to be Hermitian
if Vg =0 and VJ = 0.
If V is such a connection then its torsion is the T M-valued 2-form T' € Q*(TM) defined by

T(X,Y)=VxY - VyX — [X,Y], VX,Y € Vect (M).

Proposition 1.4.4. Suppose V is a Hermitian connection on an almost Hermitian manifold (M, g, J)
and denote by T its torsion. Then VX,Y € Vect (M)

(a)
AN(X,Y)=T(X,Y)+ JT(JX,Y) + JT(X,JY) - T(JX,JY)

= N(X,Y)+ JN(JX,Y) + JN(X,JY) = N(JX, JY). (1.4.6)

(b) If (M, g,J) is almost Kihler then there exists a unique Hermitian connection V on TM such
that
Tv = N.

Proof (a) We prove only the first equality in (1.4.6). It all begins with the identity
[X,Y]=VxY - VyX - T(X,Y).
Then
[JX,JY]=V;x(JY)=V,v(JX)-T(JX,JY)
=J(VyxY -V X)-TX,JY).
JX,JY]|=J(Vx(JY)-V,yX -T(X,JY))
= —VxY — IV X — JT(X,JY).
JUIX,Y]|=J(V;xY - Vy(JX)-T(JX,Y))
= JV,xY + Vy X — JT(JX,Y).

We deduce
ANX,V)=T(X, )+ JT(JX,Y)+ JT(X,JY)-T(JX,JY).

(b) We first need to prove an auxiliary result.

Lemma 1.4.5. For any T M -valued 2-form T there exists a unique connection on T'M compatible
with the metric whose torsion is precisely T .

Proof of the lemma Denote by D the Levi-Civita connection on M. Then any other metric
connection has the form
V=D+A, AecQ'End_(TM))

where End_ (T'M) denotes the bundle of skew-symmetric endomorphisms of TM. Since D has no
torsion we deduce that the torsion of V is

Tv(X, Y) =AxY — Ay X, VX,Y € Vect (M)
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where Ax denotes the contraction of A with X. We can regard A as a T*M-valued 2-form using
the identification
(A(X,)Y), Z) :=g(AzX,Y).

Thus we deduce
(T(X,Y),Z)=(A(Y, Z), X)) + (A(Z,X),Y). (1.4.7)

A cyclic summation leads to the identity
bl = 2bA.
We can now rewrite (1.4.7) as follows:

<T(XaY)aZ> = (bA)(X7Y7Z) - <A(X7Y)7Z>

= JHT(X.Y,2) ~ (A(X,Y), Z).

Hence )
A=-T+ §bT.

The lemma is proved. B

According to Lemma 1.4.5 there exists a unique metric connection V on T'M such that T = N.
It is explicitly defined by

V=D-N+ %bN .
We have to show that when (M, g, J) is almost Kéhler this connection is also Hermitian, i.e.
VJ=0.
Note first that in this case, according to (1.4.5), we have
V=D-N,

that is,
9(VxY,Z) = g(DxY.Z) - g(N(Y, Z),X), ¥X.Y,Z € Vect (M).

We have to show that
9(DxJY,Z) = g(N(JY, Z), X) = —g(DxY, JZ) + g(N(Y, ] Z), X)
or equivalently
9(DxJY,Z)+ g(DxY,JZ) = g(N(JY,Z), X))+ g(N(Y,JZ), X). (1.4.8)

Note that
N(JY,Z)y=N(Y,JZ)=—-JN(Y, Z)

and
9(DxJY,Z) + g(DxY,JZ) = g(DxJ)Y, Z)

so that (1.4.8) is equivalent to
9((DxJ)Y. Z) = 29(N(Y. Z), JX)

which is precisely (1.4.4). The proposition is proved. B



48 Liviu I. Nicolaescu

Remark 1.4.6. (a) If J is integrable (so that M is Kéhler) then N = 0 so that the connection
constructed in the above proposition is precisely the Levi-Civita connection.

(b) One can show (see [64]) that on any almost complex manifold there exist many connections
compatible with the almost complex structure and torsion N. We refer to the survey [46] for
additional facts on Hermitian connections.

Definition 1.4.7. The Chern connection of an almost Kahler manifold (M,g,J) is the unique
Hermitian connection with torsion N.

Exercise 1.4.3. Suppose that (M, g,J) is an almost Kéhler manifold and D is the Levi-Civita

connection of g. Show that the Chern connection V associated to the almost Kéahler structure can
be described as

1
Vx=Dx — §J(DxJ), VX € Vect (M)

Exercise 1.4.4. Suppose (M, g) is a Riemannian manifold and V is a connection on TM compatible
with the metric g with torsion T'. Define tr (T') € Q(M) by

X)=> gle;T(e;, X)), VX € Vect (X)

where e; denotes a local orthonormal frame on M. Show that for any n € QP (M) we have

P
dn(X07"'7 Z VX77 X07 7Xj7"'7Xp)
7=0
D (C1IE(T(XG, Xe), Koy, Xy Xy X, (1.4.9)
i<k
dim M
d*n<X1a cee 7Xp—l) = - Z (Vein)(ehxh T aXp—l)
=1
+n((tr T)°, X1, ., Xp1) (1.4.10)
p—1
(19X, T), (e e, X Ky X))
j=1

where (e;) is a local orthonormal frame, tr (7')* denotes the vector field dual to tr (7'), g(X;,T)
denotes the 2-form (X,Y) — ¢(X;,T(X,Y) and the pairing (e, ) refers to the inner product of two
forms. (Observe that the above identities extend by complex linearity to complex valued forms and
vectors.)

Exercise 1.4.5. Suppose (M, g,J) is an almost Kéahler manifold and V is the associated Chern
connection.

(a) Show that tr (N) = 0.

(b) Show that if X,Y € C®°(T%'M) then N(X,Y) € C=(T*°M).

(c) Denote by g. the extension of g by complex bilinearity to TM ® C. Show that for every
X € C°(T% M) the 2-form wy defined by

wx(Y,Z) = g.(X,N(Y, Z))
has type (0,2), i.e

wx(JY,Z) =wx(Y,JZ) = —iwx (Y, Z), VY, Z € Vect (M).
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(d) Show that for any n € QUP(M) and any Zo, -+, Z, € C>®(T*' M) we have the identities

p

M(Zos .. Zy) =Y (1) (Vz0)(Zo, -+ Zj, -+, Zp), (1.4.11)
j=1
B dim M
002y, Zp1) == > (Ve)ei 21, Zp1) (1.4.12)
i=1

where e; denotes a local, orthonormal frame of TM. (For a generalization of these identities we refer
to [46].)

Hint: Use that fact that for any Zy,---,Z, € C°(T%"* M) and n € Q®P(M) we have
(67])(Z0’ T ’Zp) = dn(ZO’ T ’Zp)
and

(5*7])(Z17 e 7Zp—1) = d*n(Zl, s aZp—l)'

In the remainder of this section we will assume (M, g, J) is an almost K&hler manifold. Denote
by w the associated symplectic form

w(X,Y)=g(JX,Y), VX,Y € Vect (M).

Set 2n = dim M. We orient M using the nowhere vanishing 2n-form w™. Note that

1
dvy = —w".
n!

Using the metric g and the above orientation we obtain a Hodge operator
%1 QP(M) — Q*"~P(M)
which we extend by complex anti-linearity to an operator
% : QP(M) ® C — Q2" "P(M).
Exercise 1.4.6. Let p € ”9(M). Prove that
ke € QUTPNTI(M)

and
p A xp = |l du,
where | e | denotes the Hermitian metric induced by (g, J) on AP9T*M.

Exterior multiplication by w defines a bundle morphism
L:QP9(M) — QPFLat ().
Its adjoint, L* = A : QPTLaTL (M) — QP9(M), is called the contraction by the symplectic form.

Exercise 1.4.7. Suppose (M, g, J) is an almost Kéhler manifold and (e;, f;) is a local orthonormal
frame such that f; = Jf; for all 4. Its dual coframe will be denoted by (ef, f*) and, as usual, set

g =2""2(e; —if;), & =2""7(e; +1ify),
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e =272 v iff), & =271 —ifY).

For k =1,2,--- ,n we denote by 1, and 7 the (locally defined) odd derivations of Q**(M) uniquely
determined by

e = 5,1 =€, e =1’ =0

where § denotes the Kronecker symbol. Show that locally

A= —iz@klk.
k

Denote by IT?+? the natural projection Q*(M) ® C — QP2(M) and set

M=> 7 : Q" (M) ®C — Q (M) ®C,

p,q

H=> (n—p—qu.

p.q

Observe that II is bijective and II* = II7'. Now define d.,d} : Q*(M) ® C — Q*(M) ® C by
d. = II71dII and d; = T~ 1dIL

Example 1.4.8. Consider the space cr (with coordinates
2t ... 2™) equipped with the canonical Kihler structure

wo =3 Zdzz ANdZ*.
i
Set ¢! = %dzi and & = %dii. For every pair of ordered multi-indices

I:(i1<"'<ik), J:(j1<"'<j7n)

we set

I

el =g Ao ngl, &/

=t N NETm,

Denote by I¢ the ordered multi-index complementary to I, i.e. as unordered sets, we have the
equality I¢ = {1,--- ,n}\I. Also denote by o the signature of the permutation obtained by writing
the multi-indices I and ¢ one after the other.

We can rewrite
wo = i E e ne
i

so that

|2 — —
—wp =1" YA AETAEY AN E
n!

Observe that )
ket = — (xda’ —ixdy")

>

1 — , _
= ﬁ(dzl Adyt Y A= A(dzt Adyt) A A (da™ Ady™) A (dy' + idat)

(hat «— missing term)

= DL ynigl A A G A AET A A AT
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Using the above exercise we deduce

and, more generally,
2 c c
w(el Nel)y = (—)I=DI 6o el A gl

The operators we have introduced above satisfy a series of important identities. For a proof of
the following proposition we refer to [146].

Proposition 1.4.9. Suppose (M, g,J) is an almost Kdhler manifold. Then
2 = 2 = 3 (=1)rhomes,
P.q
A=x"1Lx, d* = — *dx,
[L,A] = H,
[L.d] = [A,d"] = [L,dc] = [A,dZ] = 0,
[L,d*] =d., [A,d]=-d, [L,di]=—d, [Ad]=4d".

When M is Kéhler the above list of identities can be considerably enriched. For a proof of the
following important identities we refer to [49].

Proposition 1.4.10. Suppose (M, g,J) is a Kéhler manifold. Then
O =—%0%, 0" =—x%0%, d*=0"+0",
[L,0] = [L,0) =[A,0%] = [A, 0] =0,
[L,0%] =10, [L,0%] = -i0,
[A, 0] =i0*, [A,0] = —i0*,
00" = —0*0 = —10*LO* = —i0A0
00" = —0%0 = —i0*LO* = i0AOD.
If we set Ay = dd* + d*d, Ag = 00* + 0*0 and Az = 0*0 + 00* then

We include here for later use some simple consequences of these identities.

Corollary 1.4.11. Suppose (M,g,J) is a Kdihler manifold. Then we have the following identities.
iA(0a) = —0%a, Ya € Q%'(M), (1.4.13)
iNOB = 0% 3, VB € QYO(M), (1.4.14)

iA(0Of) = —%d*df Ve Q%0(M). (1.4.15)
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Proof To prove (1.4.13) we use the commutator identity
[A, 0] =i0*.
We deduce - -
Ada = OAa + 10" a = 10"«
since Ao = 0 because a € QU!(M). The first identity is proved. The same method proves the
second identity as well. The third identity follows from the first and the equality Az = %Ad. |

The identities in Proposition 1.4.10 do not hold for almost K&hler manifolds but surprisingly
the identities in Corollary 1.4.11 continue to hold on an arbitrary almost Kéhler manifold. We will
spend the remainder of this subsection proving this fact.

Proposition 1.4.12. The identities (1.4.13) — (1.4.15) continue to hold for arbitrary almost Kdhler
manifolds.

Proof  We prove only (1.4.13) and
1 _
5d*df =0*0f, Vf e Q¥ M). (1.4.16)

The identity (1.4.14) follows from (1.4.13) by complex conjugation while (1.4.15) follows from (1.4.13)
and (1.4.16).

Denote by V the Chern connection of the almost Kahler structure and choose a local orthonormal
frame (e;, f;) as in Exercise 1.4.7. To prove (1.4.13) we use the identity da = (da)!, that is,

80&(&},&3) = (da)(ei,éjL Vi, j.

At this point we want to use the fact that the torsion of the Chern connection is N and the identity
(1.4.9)
(da)(ei,€5) = (Ve,0)(&5) — (Ve a)(e0) + a(N(ei, &5))-
= (Veia)(éj) + Oé( N(&i, gj) )

because Vg a € QU1 (M).
To compute Ada we use the local description of A in Exercise 1.4.7. We deduce

1000 = 3 (00) (e, 5) = 3 ((Vero) (E) + a(N(er, &) ).
k k

We need to analyze in greater detail the terms in the above sums. We will use the fact that for any
B € Q%L(M) we have
B(JX) = —-ip(X), VX € Vect (M) ® C.

This implies that
Blex) =iB(fr), Vk. (1.4.17)
Then )
(Ve,a)(Ex) = §(Vek. —iVy, )aler +ify)
= %(Veka(ek) + kaa(fk)) + %(—i(v‘fka)(ek) + i(Veka)(fk))
(use the fact that V., o, Vs o € Q01 (M) and (1.4.17))

= (Vera)(er) + (V) (f)-
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Using the identity (1.4.12) we deduce

> (Ve,a)(Er) = —0%a.

k

To conclude the proof of (1.4.13) it suffices to show that

N(ex,&x) =0, Vk. (1.4.18)
We have 1
Ner,er) = 5N(ex = ifw, ex +1fx) = iN(ex, fr) = iN(er, Jer)
= —iJN(ex, ex) = 0.
The identity (1.4.13) is  proved. Combining the above arguments with

(1.4.11) one can easily obtain (1.4.17). The details are left to the reader. B

81.4.2 Cauchy-Riemann operators

Suppose (M, J) is an almost complex manifold and £ — M is a complex Hermitian vector bundle
over M. We denote by QF4(E) the space of smooth sections of the complex bundle AP1T*M @ E
so that we have a decomposition

oFE)= @ or(E).

p+q=k
A Cauchy-Riemann operator (CR-operator for brevity) on E is a first order p.d.o.
L:Q%(E) - QYY(E)

such that
L(fu) = (0f) @ u+ fLu, Yf € C®(M), uec Q"(E).

Let us remark that the above condition is simply a statement about the symbol of L. We denote by
CR(E) the space of CR-operators on E and by Ay (E) the affine space of Hermitian connections on
E. Denote by P10 and P%! the projectors associated to the decomposition

Ql(E) — QI,O(E) o) Qo’l(E).
Given a connection A € Ay (E) with covariant derivative
VA Q%E) - QY(E)

we obtain an operator

da =P o VA : Q%(E) - Q"N (E).
We let the reader check that 04 is a CR-operator. We thus obtain a map
Ds : A, — CR(E), Ars 0a.
Proposition 1.4.13. The map 0, is a bijection.

Proof = We first show that 0, is injective. Suppose A, B are two Hermitian connections such that
04 = 0. Then
6=B-A

is a 1-form valued in the bundle of skew-Hermitian endomorphisms of E such that

591 = 0.
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Note that

SONX) = %(5(){) +i6(J X)), VX € Vect (M)

where 0(X) is a skew-Hermitian endomorphism and i6(JX) is Hermitian. This implies 6(X) =
§(JX) = 0 since any complex endomorphism decomposes uniquely as a sum of a skew-Hermitian
and a Hermitian operator.

To prove the surjectivity we will construct a right inverse

V* : CR(E) — Ay (E).

Fix a Hermitian connection Ay on F and denote by Lg the associated CR-operator 0a,. If L €
CR(E) then
B=1L-Loec Q" (End(E)).

We have to construct a 1-form ¢ valued in the bundle of skew-Hermitian endomorphisms of E such
that

5 =B
In other words, ¢ satisfies the functional equation
I(X)+1i5(JX) =28(X), VX € Vect (M).
We deduce from the above equality that §(X) is the skew-Hermitian part of the endomorphism
23(X) so that
Now set
v'LoJrﬁ — VAO +6() = B()*.

The map
Lo+ (3 — viots

is a right inverse for 0,. W
Suppose L € CR.(E). Then L induces first order p.d.o.’s
L:QPYE) — QPit(E)
uniquely determined by
Lla®u)=0a®@u+ (—1)PTa A Lu, Va € QPI(M), ue C®(E).
If A is Hermitian connection on E we denote by the same symbol all the CR-operators
04 : QPUE) — Qp’q+1(E).
Then for every u € C*°(FE) we have
Piu=FY*u — (Qau)o N (1.4.19)
where N denotes the Nijenhuis tensor of the almost complex structure on N.

Exercise 1.4.8. Use the arguments in the proof of Proposition 1.4.2 to prove the identity (1.4.19).
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In the remaining part of this subsection we will assume the almost complex structure on M is
integrable. This means the manifold M can be covered by (contractible) coordinate charts U, — C”
such that the transition maps are holomorphic. A holomorphic structure on the rank-r complex
vector bundle E is a collection of holomorphic local trivializations, i.e. a collection of local trivial-
izations

\Ifa ) |Ua—> Q;]a

such that the transition maps
9sa = ¥5(p) 0 V3 (p) : Uap — GL(r,C) C C
are holomorphic. A holomorphic vector bundle is a pair
(vector bundle, holomorphic structure).

Two holomorphic structures ¥ = (U, 950 = Ygo U 1) and & = (P, hge = P50 P,1) are
isomorphic if there exist holomorphic maps

Ty : Uy — GL(r,C)
such that
hﬂa = nggaT(;l.

We denote by Hol (E) the set of isomorphism classes of holomorphic structures on E. (To be com-
pletely rigorous, one has to include in the definition of equivalence the gluing cocycles subordinated
to different covers.)

Exercise 1.4.9. Prove that any holomorphic structure on E induces an integrable complex structure
on the total space of the bundle such that the canonical projection £ — M is a holomorphic
map. Moreover, two equivalent isomorphic holomorphic structures induce biholomorphic complex
structures on the total space.

Fix a holomorphic structure on E given by the local holomorphic trivialization ¥,. There is a
canonically associated sheaf of holomorphic sections. If V' is an open subset of M and V, =V NU,
then a section ¥ of E over V is called holomorphic if the functions

Yo 1= \I/aow‘Va:Vag’Cr

are holomorphic. We denote by Op;(E) the sheaf of holomorphic local sections of E. The manifold
M is equipped with a fundamental sheaf Oy, the sheaf of local holomorphic functions on M. Then
Onm(E) is a sheaf of Op-modules. It is a locally free sheaf, i.e. it is locally isomorphic to the sheaf
oy,

Exercise 1.4.10. Prove that two holomorphic structures on E are isomorphic iff the associated
sheaves of holomorphic sections are isomorphic as sheaves of Ojy;-modules.

Denote by e; the canonical spanning sections of the trivial vector bundle Cy; and define
U le) =uf, -, U e,) = u® € On(E,Uy).

These sections span the fibers of E,. Any section u € C*°(E,) can be uniquely written as

w=>_fug, fieC®Us)aC.

Define 9,, € CR(E,) by
Dottt = Z(gfi) ® uf.
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Since the identifications E, = Eg over U,g are given by holomorphic maps we deduce
0o = 05 over Uyg.

Thus the operators 0, glue together to form a CR-operator on E. It depends on the choice of the
trivializations ¥,. We will denote it by Oy .

Exercise 1.4.11. Show that - -
(9\1; o 8‘1, =0.

Definition 1.4.14. A CR-operator L on a complex vector bundle E over a complex manifold M is
called integrable if L? = 0. We will denote by CR,;(E) the space of complex integrable CR-operators.

Suppose (\Il = (\I/a)> and (\i/ = (\ila)) define two isomorphic holomorphic structures on E.

Thus, there exist holomorphic maps
Yo : Uy — GL(r,C)
such that
Upo0W e = 15050 0,0
Define

Observe that
Ppod t =Wz0W L.

Thus, the collections (\I' = (\I/a)) and (CD = ((Pa)) lead to the same holomorphic gluing cocycle.
Moreover, since the maps -, are holomorphic we have

8y = do.
The collections ¥ and ® are cohomologous, i.e. there exist smooth maps
Ty : Uy — GL(r,C)

such that
v, =1T,0®,.

Clearly
Ts = gsaTagas

so that T defines a complex automorphism of the bundle E. Thus, two collections of local trivial-
izations which lead to the same (holomorphic) gluing cocycle differ by an automorphism of E.
Suppose now that T' € G(F) is a complex (not necessarily holomorphic) automorphism of F.
Using the trivializations ¥,, it can be described as a collection of smooth maps T, : Uy, — GL(r,C)
satisfying the gluing rules
Tﬁ = gBaTocg;olé — Tﬁ_lgﬁaTa = 9Ba-

It defines new trivializations
b, :Fy —C", &, =T, 00,.
Notice that
Cpo @t =T Wl T, = Tj ' gpaTa = gpa

so that @, are compatible with the gluing cocycle gg,. We will denote & = WoT. We obtain a new
CR-operator Jg.
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If s is a section of F, then we can write
S—Zsz (e;) and TS—ZSZ\I’ T (es).

Note that - ~
OpT's = Z(asi)\lf TZ (0s;) = TOys.
In other words - -
Ovor = Taq;Til.

The group G(F) of complex automorphisms of F acts on CR,;(FE) as above, by conjugation. We
thus have a well defined map
Hol (F) — CR,(E)/S(F)

which associates to each holomorphic structure ¥ on E the §(E)-orbit in CR;(E) of the CR-operator
Oy. Observe that the sheaf O (E, ) of local sections of E holomorphic with respect ¥ coincides
precisely with the sheaf of local solutions of the partial differential equation

Opu = 0, u local smooth section of F.

If ¥, and ¥4 are two holomorphic structures such that the associated CR-operators lie in the same
orbit of G(F) then clearly the associated sheaves of holomorphic sections are isomorphic as sheaves
of Ops-modules and, according to Exercise 1.4.10, the two holomorphic structures are isomorphic.
This means that the map

Hol (E) — CR,(FE)
is one-to-one. This map is also surjective and we refer to [29, Chap. 2] or [63, Chap. I] for a proof

of this nontrivial fact. The following results summarizes the above observations.

Proposition 1.4.15. The map Hol (E) — CR;(E)/G(E), (E,¥) — Oy described above is a bijec-
tion.

In view of this proposition, we can reconsider the manner in which we regard holomorphic
bundles. In the sequel, by a holomorphic bundle over a complex manifold we will understand a pair
(E, L) where FE is a complex bundle and L is an integrable CR-operator.

Suppose now that F is equipped with a Hermitian metric h. As we have seen we have a bijection

O : Ap(E) — CR(E), A— 4.

Set -
At =01 (CRy(E)).
Lemma 1.4.16. The space A,ll’l(E) consists of Hermitian connections A such that Fj’o = Fg’Q =0.

Proof Suppose A € A,ll’l(E). Then using (1.4.19) we deduce Fz,z = 0% = 0. On the other hand,
since the connection A is compatible with the metric h, the curvature F4 is skew-Hermitian so that
F'=—(F20,)t=0.1

There is an action of §(E) on Aj(E) induced by the isomorphism A} (E) = CR;(E). More
precisely, given T' € G(E) and A € A;L’l(E) we define T' - A by the equality

5T-A = TéATil.

We have thus proved the following result.
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Proposition 1.4.17. Any Hermitian metric h on a complex vector bundle E over a complex man-
ifold defines a bijection
Hol(E) = A, (E)/S(E).

Moreover, any integrable CR-operator 57011 E induces a unique holomorphic structure ¥ on E and
a unique Hermitian connection A such 04 = 0 = Oy.

Remark 1.4.18. The above identification has profound consequences. For example, in [58] it is
shown that, modulo some topological identifications, it contains as a special case the classical Abel-
Jacobi theorem.

Example 1.4.19. Suppose L — M is a complex line bundle over a complex manifold M equipped
with a Hermitian metric h. The group G(L) can be identified with the group of smooth maps

f:M—C*.

Suppose we are given an integrable CR-operator d on L. This induces a holomorphic structure on
L and a Hermitian connection A such that

Oa =0 and Fa € QYY(M).

To find an explicit local description of A we choose a local trivializing patch U and a nowhere
vanishing holomorphic section s of L over U. Set

p = h(s,s) = |sl3.
The connection A is locally described by a (1, 0)-form 6 determined by the conditions
VAs = s,
dp = 0h(s,s) + Oh(s,s) = p(0 +0)

from which we deduce 5
g="2L_ dlog p.
P

The curvature of A is given by the 2-form
df = 99 log p.
Suppose now that f € G(L). We get a new CR-operator 0 on L:

5 01
/

defining the same holomorphic structure on L as 0. Its associated Chern connection, denoted by
Ay, can be determined as in the proof of Proposition 1.4.13 using the equality

Op = fof~"' =

This formula describes the action of G(L) on A, (L).
Suppose that instead of the metric h we work with the metric

hy = exp(2u)h
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where u is a smooth real valued function on M. Denote by A, the Chern connection associated to
the CR~operator 0 and the metric h,. Then

da,5 =0us, 0, =0logl|sl; =0+20u

so that A, — A = 20u. -
FAu =Fs+200u. B

=~ Pl

Example 1.4.20. Supppose L; — S? is a complex line bundle of degree £ € Z over S? =2
Observe that any CR-operator on L, is automatically integrable since Q%2(P!) = 0.
Thus, for any Hermitian metric A on L we have

An(L) = AN(L)
and we have a bijection ~
Ap(L) — CR;(L) =CR(L), Ar 0a.

Fix a CR-operator 9 : Q%°(L) — Q%1(L). Then, for every metric h on L denote by A; the Chern
connection determined by ¥ and h. If we change h — h, := €>h, u : S — R then, using the
computations the previous example, the curvature of Aj; changes according to

FA;, — FAh + 200u.

Suppose additionally that S? := P! is equipped with a Kihler metric go. (All Riemannian metrics
on a Riemann surface are automatically Kéhler.) Denote by wq the Kéhler form. Then, using the
Ké&hler-Hodge identities in Corollary 1.4.11 we deduce

200u = 2A(00u)wy = (—iAgu)wo.

Let

_ 2mdeg(L)
volg, (S?)

/ (icwg — FAh) =0.
SZ

Thus, the 2-form icwg — Fla, is ezact, and there exists a smooth function u : S — R, unique up to
an additive constant, such that

so that

200u = icwy — Fa, .
The curvature of Ay, is the harmonic 2-form

~ 2mdeg(L)
volg, (52)

Fy,, = iwp.

The metric h,, is determined by (¥, go), uniquely up to a positive multiplicative constant. B

Suppose (M, g,J) is a Kdhler manifold and £ — M is a holomorphic, Hermitian line bundle.
Denote by A the associated Chern connection and by 04 the family of operators

04 : QPYE) — QP1TY(E).

There is a Hodge *-operator
xg: QPI(E) — QPP E") (1.4.20)
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defined as the the tensor product (over C) of the complex conjugate-linear bundle morphisms
s APITEM — APPTITEM

and the metric duality
Dp:E— E~E*".

We have the following generalization of Proposition 1.4.10. For a proof we refer to [49].

Proposition 1.4.21. Let E — M and A be as above. Then
831 = 5124 =0, aAéA + 5A8A = e(FA)

where e(F4) denotes the exterior multiplication by Fa € QUL (M). Additionally, the Hodge identities
continue to hold:

0% = — *p Oaxp, 04 = —*0ax,
[L,A] =
04, L] = [0a, L] = [0, A] = (04, A] = 0,
[L,0%] = ida, [L,0%] = —ida,
[A,04] = i0%, [A,04] = —i0%.

We conclude with a Weitzenbdck type identity we will need in §3.3.4.

Proposition 1.4.22. Suppose (M, g,J) is an almost Kahler manifold and E is a Hermitian line
bundle equipped with a Hermitian connection A. Then for every smooth section s of E we have the
equality

204045 = (VA)*'VAs — i(AF4)s.

Proof Fix a local orthonormal frame (e;, f;) as in Exercise 1.4.7. Then

aA_ngAvA = Lk i) A (VA +iVE)

k

1 A k i k A k A
= 3D AVE +FAVE) + 5 D AVE — fFAVE)
k k

loa k A k A
=5V +§zk:(e AVE = fEAVA).
For s € Q%%(E) we have 0%045 = (VA)*éA so that
04048 = (VA) * Z e’ A Vf FAVE)s.
k
For any vector field X on M we denote by ¢(X) the contraction by X. Then

(VA" = Z( (Ve ) iles) + (V£ i(f5))-
Since

((VE)"iles) + (VE) () )" AVE = FFAVE)s
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= 07 ((VA)'VE, —(V£) 'V )s
we deduce o ) .
D40as = 5 (V) Vs + 25> ((VE)'VE, = (V5) Vo )s
k
Using the identities
(Va)y =-ve —div(er), (VA) =-V2 —div(er)

and
_[vfk’v?k] = —Faler, ) — vék;fk]

we deduce

o 1 i
04045 = i(VA)*VAS —5 ;FA(%, fi)s

i : :
3 2 (it + divien) V4, — div(fi)V4 )s
k

_ !

. . i . .
5 ( (VAY*VA — iA(Fy4) )s ~5 Z(Véhﬂc] + dlv(ek)V?k - dlv(fk)ka)s
k

Hence, to conclude the proof of the proposition it suffices to prove the following identity:

> e, £l =Y _(div(fi)ex — div(ex) fr). (1.4.21)

k k

The proof of this identity relies on the following elementary facts:

w= Zek/\fk, w" =nldvy, dw =0.
k

Let us now supply the details. First note that (1.4.21) is equivalent to

§€j([€k7fk]) = div(f;) and Zk:fj([emfk]) = —div(ey). (1.4.22)

Next, observe that
div(e;) = sdx e = n_l 5 A e
— oy AT = s @ A e i e )
and, similarly,
div(fj) = *d* fI = — = i o (de? Aw™ V) (er, f1, s en, fu)-

Thus (1.4.22) is equivalent to

(ni 1)!(dfj AW (e, fiy o en, fa) = = Xk:fj([ek,fk]) (1.4.23)

T (de? AW VY (er, fiy- e, fn) = — Xk: ¢’ ([ex, fxl)- (1.4.24)
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Now introduce the operators
Ck = Z(fk)z(ek)v k= 1; N2
They enjoy some nice elementary properties.

C: =0 and [Cy,C;] =0, Vk,i. (1.4.25)

Cr(n A\ Crp) = Crn A Crp, Vn,p € Q(M), VEk. (1.4.26)
Define P := [[, Ck, P :=[]; 4, Cj and S := 3, Ci. Observe that

n—1 n
= —Sw".
(n— 1)!w P et

Thus

(n— 1)!(dfj /\w”—l)(el,fl,. e ens fn) = P(dfj A

— P(df? A Sw™)

(use the identities (1.4.25), (1.4.26))

— :sz:Pk(Ck(dfj) A Crw™) = ilzkj o (df7) Pw™ chdfﬂ

—deﬂ exs fi) = Zf’ lens fx])-

This proves the equality (1.4.23). (1.4.24) is proved similarly. The proof of Proposition 1.4.22 is
complete. W

Exercise 1.4.12. Suppose (M, g,J) is an almost Kahler 4-manifold and E — M is a Hermitian
line bundle equipped with a Hermitian connection. Denote by A the Hermitian connection induced
on the line bundle A%2T*M by the Chern connection. Show that for every section 3 € Q%%(E) we
have the following Weitzenbock type identity:

IpgB = 7( (VARB)*vAOB LiN(Fy + Fp)).

81.4.3 Dirac operators on almost Kahler manifolds

Suppose (M, g,J) is an almost Kéahler manifold of dimension 2n. We denote by D the Levi-Civita
connection of g and by V the Chern connection of this almost Kéhler structure. Recall that if M is
Kahler then D = V.

The almost complex structure defines a canonical spin® structure oy on M. We have seen that
the line bundle associated to this structure is KA_; = A®"T*M. The Fundamental Fact in §1.3.1
shows that the associated bundle of spinors is

Sc o~ AO,*T*M’ S;I: ~ AO,even/oddT*M.

The Chern connection induces Hermitian connections on A®PT* M, Vp and in particular, a Hermitian
. -1 . . . .
connection on K, . In this manner we obtain a geometric Dirac operator

@c . AO,evenT*M _ AO’OddT*M.
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We say that @, is the canonical Hermitian Dirac operator associated to the almost Kéhler structure.
On the other hand, the Chern connection induces CR-operators

Q: APUT* M — APaT!
and we can form the first order p.d.o.
9+ 9%+ Nvevenx pp _, AO.oddpx
Proposition 1.4.23. Let (M,g,J) be as above. Then

D.=V2(0+ ).

Proof Choose a local orthonorrpal frame (e, f;) of TM such that f; = Je;. Set e;y,, = f; and
define €;, & as usual. Denote by D the connection on S, induced by the Levi-Civita connection on
TM and the Chern connection on K;j. Then

D= > cle)De+ 3 &) D

To proceed further we need to use the explicit description of the Clifford multiplication explained
in the proof of the Fundamental Fact. We have to be careful about conventions because the
description S, = A%*T* M uses the isomorphism TMY0 = T* MO given by

g; —— &

We deduce ‘ 4

(&) = V2e(&), c(eF) = —V2i(&).
If we continue to denote by V the connection on A®*T*M induced by the Chern connection then,
using Exercise 1.4.5, we deduce

V20 +9%) = Z c(e"Ve, + Z c(")Vs,.
3 (2

Next, note that since all the computations are local we can assume that, topologically, M is the

open ball in R?". It has a spin structure and we denote by Sy the associated bundle of complex

spinors. This spin structure also defines a square root K'/2 of the canonical line bundle and we

can write S, & Sp ® K~1/2. As in Remark 1.3.19 the Chern connection induces a Dirac structure

(So, c, Vv, V), where the connection V on Sy satisfies

Vxc(a) = c(Vxa), VX € Vect (M),Ya € Q' (M). (1.4.27)

Using the Chern connection on K;/[l we obtain by twisting, as in §1.3.4, a connection on S., which
we continue to denote by V, satisfying the same compatibility relation (1.4.27). We can now define
a new Dirac operator

@h = ZC(EZ‘)@& + Zc(gb)ﬁél

We have thus obtained three first order p.d.o.’s @, @},, V2(0 + 9*) which have the same symbol.
The proposition will be proved once we show these three operators actually coincide. The proof of
this more refined statement will be carried out in two steps.
Step 1

@c = @h'
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Set S =V — D e Q'(End (S,)). Then

P =P =D cle)S(e) = 3 e(e)S(e) + D e(&)S(E).
Thus we have to show that . .
Z c(e")S(g;) + 4 c(8)8(z;) = 0. (1.4.28)

Using Proposition 1.4.4 we deduc
Viej = Die; — Z kek7 Vi,j=1,---,2n

and
2n

Viel = Died =Y Niek, Vij=1,---,2n

where N = El k=1 N;kei ®el @e” denotes the Nijenhuis tensor. We will regard N as a T* M-valued
2-form using the metric duality

N(X,Y,Z) = g(X,N(Y, Z)), VX,Y, Z € Vect (M).

Thus N € C®(T*M®3) and is skew symmetric in the last two variables. We can extend it by
complex multilinearity to an element of C>°(T*M®3) @ C. Using Exercise 1.4.5 (b), (¢) we deduce
that

N € COO((T*MLO)®3) P COO((T*MO’l)(XB).

From Remark 1.3.19 we deduce

pM»—'

Z el,ej,ek)c(ej)c(ek)
gk=1

, , 1 < .
'@ N(eigjer)e()eleh) + 5 D & @ N(E, &, 8)0()e(e")

i\j k=1 ivj k=1
and therefore

Zc(ei) €;) —i Z N(ei,e5,ex)c(e)e(e)e(er)

i=1 i,j,k=1

(c(e')e(e?) = —c(f)e(e"), c(e')? = 0, Vi, j)

1 ) .
=5 >0 (N(eiesen) + Niewsigs) + Nlej enzi))ele el e(e")
1<i<j<k<n
1 . . 4.
=5 Y Mg el eEe) "2 0.
1<i<j<k<n

Similarly, one proves that
n
> e(@)S(e
i=1

The equality (1.4.28) is proved.
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Step 2 o
Pn = V200 + ).
Set S =V —V € Q'(End(S,.)). Note that both connections V and V satisfy the compatibility
condition (1.4.27), so that
[S(X),c(a)] =0, VX € Vect (M), a € Q*(M).

This means that Yo € M the operator S(X), commutes with every element in CI(T;M) @ C =
Endc (S, |z). Using Schur’s lemma we deduce that S(X), is a multiple of the identity. In other
words, there exists a purely imaginary 1-form a such that

S =a®id.

We want to prove a = 0. Note that the constant function 1 can be viewed as a section of A®°T*M —
Sc so that
a=(V-V)1=V1

so that it suffices to show V1 = 0.
Locally we have

2n
Vej = Z Qfgjei

ik=1

and

2n
J_ i i
Vel = E ;e

ik=1

Using the metric duality we can regard the End (T'M)-valued 1-form €2 as a T* M-valued 2-form
Qer, ei,ej) = g(Viej, €;).

We can extend it by complex linearity to an element of C*°(T*M®3) ® C. Note that since V is
compatible with the complex structure it preserves the splitting TM ® C = TM'° @ TM%!. This
implies that VX € Vect (M) the 2-form Q(X, -, ) has type (1,1), i.e

Q(X,Eui?j) = Q(X,fj,gj) = 0, Vl7j = ].7 ,n
Moreover, VX € Vect (M)

Vxe; = ZQ (X,&i,¢5)e5, Vx&; = ZQ (X, €i,€5)E

The connection V° induced by V on Sy has the local description

" 1 . .
V0=d- 1 Z eF ® Qfex, e, ej)c(e’)c(e’)
1,5,k

—d— i > eF @ Qen, e, 85)e(e)e(E) — i Y F @ Qen, &, e)e(@)e(e)

1,5,k 1,5,k
1 ) ) 1 ) )
-1 > @ Qe i 85)e(e)e(E) — i > @ Qe g, e)e(@)e(e),
1,5,k 1,5,k

Now define § € Q' (M) by
VE' A NE) =0 N NE
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The connection V on S, induced by V is
o 1
V=V"4 -4
2
Since ¢(¢")1 = 0 we deduce

) 1 TN
Ve 1l= -1 ;Q(€k7€i,5j)C(€ )e(87) + 55(%)

(c(e)e(d)1 = —26%) ) 1
=5 ;mgk,gi,a) + 50(ek).

On the other hand, if we denote by g¢. the complexification of the metric g (by complex linearity)
we deduce

(Ve,&)(8:) = —& (Ve &) = —gelej, Ve, &)
== gc(ej, Qen, e, 8)E0) = = 3 ;e €0,8) = — ek, 65,85)
¢ ¢

so that
ngéj = _ZQ(Ek75j7§i)§l~
i

This implies immediately that

(S(Ek) = — ZQ(E]“EZ',@)

so that V., 1 = a(e;,) = 0. Similarly we have a(&) = 0 which shows that a = 0 and completes the
proof of the proposition. B

Remark 1.4.24. For an alternate proof of Proposition 1.4.23 we refer to [119].
The following result now follows immediately from the above. Its proof is left to the reader.

Proposition 1.4.25. Supose (M,g,J) is an almost Kdhler manifold of dimension 2n, L — M
is a Hermitian line bundle and B is a Hermitian connection on L. L defines a spin® structure
or = 0. ® L, where o, is the spin® structure induced by J. Moreover, det(or) = K]T/[l ® L2. Using
the Chern connection Ao on M and the connection B on L we obtain a connection A = Ay @ B®?
on det(or) and thus a geometric Dirac operator @ 4 on S,, = QY*(L). Then

1.5 Fredholm theory

When defining the Seiberg-Witten invariants one relies essentially on the fact that the various
operators involved are Fredholm. In this section we discuss some important topological features of
Fredholm operators.
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81.5.1 Continuous families of elliptic operators

Suppose (M, g) is a smooth, closed, compact, oriented Riemannian manifold and E°, E' — M are
real vector bundles equipped with a metric (-,-) and @, : C°(E?) — C>°(E") is a first order elliptic
operator. Suppose X is a smooth, compact, connected manifold. Using the natural projection
X x M — M we obtain by pullback a bundle Ex — X x M. Now consider a section T of
Hom (E%, EL).

We can regard T as a smooth family (7)cx of morphisms of EY — E'. We can now form the

family of elliptic operators
D, : C%(E") — C%(E)

described by

These operators have symbols independent of x € X and define closed, unbounded, Fredholm linear
operators L?(E%) — L?(E") with common domain L!?(E). Moreover the map

ind(®,): X - Z, z+— ind(D,)

is constant since X is connected.
Suppose dimker®, is independent of . Then dimker®; = dimker®, — ind (@) is also inde-
pendent of z. We then get two smooth vector bundles ker® and ker @* and a real line bundle

det(®) = detker® ® (det ker®*)*

called the determinant line bundle of the family 3. Remarkably, one can still define such a line
bundle even if the dimension of the kernels of @, jumps. To explain the construction we first recall
a couple of facts proven in [105], Sec. 9.4.1. First, set for simplicity H; = L*(E*), i = 0, 1. For every
closed subspace V' C H;j define the unbounded operator

@V,q;:HO@VHHl
with domain L2(E°) @ v acting according to
Dy (hdv) =P,h+v, Yue LY (E%), veV.

A stabilizer of the family (9,).cx is a finite-dimensional subspace V' C H; such that By, is
surjective for all z € X. We will denote by S(@) the set of stabilizers.

Example 1.5.1. The cokernel of a single operator &, = ker ®@”, is a stabilizer for the one-member
family P so that S(P) # 0. In fact, any finite dimensional subspace of H; containing the cokernel
will be a stabilizer. Observe that if we denote Vy = ker®* then

kerPy, ={u®0; uckerP}
so that there is a natural isomorphism ker® = ker@y, .

If Ve S(@) then for every x € X we have a natural short exact sequence of Hilbert spaces
0 — ker@y, , — Ho® V% H; — 0.
It admits a canonical splitting in the form of the bounded, right inverse
Ry, : Hy — (kerQ)v,x)L CHyoV
where Ry hy = hg ® v if and only if
(v @ ho) € (ker®y,), Dho+v = hy.
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Remark 1.5.2. For any stabilizer V of a family @ we could define Py, by the equality
Dy (v+ ho) = —v+ ho.
This operator is onto and it has a right inverse Ry, defined by the conditions
Ryhi =v®ho < (v ho) € (ker@y)", Dho —v = hy.
In this book we will consistently work with the first convention, ¥y, and Ry .

The following results can be deduced immediately from the considerations in [105, §9.4.1].

Fact 1 S(®) # 0. Moreover, if V € S(®) and W 2O V then W € S(®).

Fact 2 For any V € S(®) the bounded linear operators Ry, depend smoothly upon z and the
family z +— ker®,,, defines a smooth vector bundle ker®,, over X.

Suppose V,W € S(®), V C W. The short exact sequence
0—-V->W->W/V -0 (1.5.1)

admits a natural metric induced splitting by identifying W/V with the orthogonal complement in
W. We also have a natural dual split exact sequence

0—-V"->W*— (W/V)" - 0. (1.5.2)
Then there is a natural exact sequence
0 — ker@y—ker@y, — W/V -0 (1.5.3)

where the first arrow is induced by the inclusion V' <— W and the second arrow is given by orthogonal
projection. This sequence admits a natural splitting

swyv i WV = ker®y,, w/v— (—Ry(w/v)) ® (w/v).

Taking the direct sum of the split exact sequences (1.5.3) and (1.5.2) (in this order) we obtain the
split exact sequence

0—ker®y, @V mker@y @ W* - W/ Vg (W/V)*—0 (1.5.4)
which leads to an isomorphism
ker@y, @V @ (W/V)d (W/V)" — ker@y, & W,
By passing to determinants we obtain a natural isomorphism
Iy )y : detker @y, @ det V* — det ker Py, @ det W™

defined by the commutative diagram below.
detker @, @ det V* —= 5 det ker@, ® det V* @ det(W/V) @ det(W/V)*

Iw,v

R

det ker Py, @ det W*

Set Ly := detker®, ® det V* so that I,y is a line bundle isomorphism Ly — Ly. Thus, the
isomorphism class of the real line bundle Ly is independent of V' € S(®).
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Definition 1.5.3. The isomorphism class of the line bundles Ly is called the determinant line
bundle of the family ¥ and will be denoted by det3.

The above construction has a built-in coherence, explicitly described in the next result.

Proposition 1.5.4. If V) C Vo C V3 are stabilizers of the family 3, then

Ly, vy = vy v, © Ly v -

Proof We begin by making a few useful conventions. For any ordered basis b of a vector space E
we will denote by b* the dual ordered basis of E*, by det(b) the element it defines in det E and by
det(b)* the corresponding element in det E*.

If b; and by are ordered bases in E; and Fs we denote by by Uby the ordered basis in the ordered
direct sum F; @ F5. Observe that

det (b U b}) = det(by U by)*.

There is a natural isomorphism
R — det(F @ E*)

defined by 1 — det(b U b*), where b is an arbitrary ordered basis of E. It is easy to see that this
isomorphism is independent of b.
For 1 < i < j < 3 denote by s;; : V;/Vi — keri‘})vj the natural splitting sy, /v, of the exact
sequence
(Sij) 0 — ker®y, — ker®,, — V;/Vi — 0.

Fix an ordered basis by of V1, an ordered basis 3; of ker®y, and ordered bases ba /b1, bs/ba of Vo/V3
and ‘/3/‘/2 We get bases bg = b1 U (bg/bl) of ‘/2 and bg = b2 U bg/bg of ‘/3 Set bg/bl = bg/bl Ubg/bg
so that bg = b1 U bg/bl.

Using the split sequence (S12) we obtain an ordered basis

B2 = (1 U s12(b2/b1)
of ker®y, and similarly, from (S23), an ordered basis
B3 = (2 U s23(b3/b2) = B1 U s12(ba/b1) U s23(b3/b2).
From the explicit description of s;; we deduce immediately that
$13(ba/b1 Ubs/ba) = s12(ba/b1) U s23(b3/b2).
This implies
B3 = B1 U s13(b3/b1).
The above identities can be written succinctly as
B = Bi U sij(bj/bi).
The isomorphism I;; can now be described as follows:
det(B; UD;) + det(B; Ub; U (b;/b;) U (b /b;)") —
— det(8; U s;5(bj/b;) U (b;)" U (b /bi)")
= det(8; Ub; U (bj/b;)") = det(B; UD]).

The proposition is now obvious. B



70 Liviu I. Nicolaescu

Exercise 1.5.1. Suppose ¥ is a family such that dimker®,, is independent of x € X. Show that
det®@, = detker®, @ (det ker@)*.

Suppose now that we have two families (Tp), (T7) of morphisms parameterized by X. They are

said to be homotopic if there exists a morphism 7 : E[% xx = E[lO 1]x x such that
Tlyxx="Ti, i=0,1.

Proposition 1.5.5. Two homotopic families (T;), i = 0,1, have isomorphic determinant line bun-
dles
det®, = det P, .

Proof We denote by @ the family of operators parameterized by [0,1] x X generated by the
homotopy (7). Fix U € S(®). Then U € S(@") N S(®"). To prove the proposition it suffices to
construct an isomorphism
ker @Y, — ker @y

To do this, consider the bundle keri}fﬁU — [0,1] x X, fix a connection on it and denote by 7, the
parallel transport from ker @y o ) to ker@y (; .y along the path [0,1] 5 ¢ — (t,z) € [0,1] x X. Then
T induces the corresponding isomorphism. Observe that the homotopy class of the isomorphism is
independent of the choice of the connection on ker@,,. W

Definition 1.5.6. (a) The family (D, ).cx is called orientable if det® is trivial.

(b) An orientation on a real line bundle L — X is a homotopy class of isomorphisms ¢ : L — R. Two
oriented line bundles ¢; : L; — R, i = 1,2, are said to be equivalent if there exists an isomorphism
0 : L1 — Lo such that ¢ 0§ and ¢ are homotopic through isomorphisms.

From Proposition 1.5.5 we deduce immediately the following consequence.

Corollary 1.5.7. Suppose (T;), i = 0,1, are two homotopic families. Then det®° is orientable
iff det@l is orientable. Moreover, any orientation on det ’)Z)O canonically induces an orientation on

det@*.
In practice one is often led to ask the following question.
How can one construct orientations on a given oriented family P ?

We will address two aspects of this issue.

Step 1 Describe special cases when there is a canonical way of assigning orientations.

Step 2 Describe how to transport orientations via homotopies.

Step 1 To construct an orientation on det# it suffices to construct coherent orientations on the line
bundles Ly . The coherence means that the natural isomorphisms Iy are orientation preserving.
We describe below several situations when such an approach is successful.

Suppose the family (@), is nice, i.e. satisfies the following two conditions:
(i) dimker®, is independent of z.
(ii) The real vector bundles ker® and ker®™ are equipped with orientations.

For example, if ind (®,) = 0 and all the operators @, are one-to-one (and hence also onto) then
both the above conditions are satisfied. If @, is a family of complex operators satisfying (i) then
the condition (ii) is automatically satisfied since the bundles in question are equipped with complex
structures and thus canonical orientations.

To proceed further we need the following elementary fact.
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Exercise 1.5.2. There exists a finite-dimensional subspace V' C H; such that ker®™ is a subbundle
of the trivial bundle V.

We denote by S (@) the set of oriented finite-dimensional subspaces of H; such that the bundle
Vo :=ker®”* is a subbundle of V.

To proceed further we will need to make an orientation convention.

Convention Consider a split exact sequence of finite-dimensional vector spaces
0—>E0—>E1—>E2—>0.

If any of the two spaces above is oriented then the third space is given the orientation determined by
the splitting induced isomorphism
Ey® FEy =2 Fy.

More precisely

or(Ey) Aor(Ey) = or(Ey).

Now let V € & (®). Denote by V the orthogonal complement of the bundle Vj := ker®, inside
the trivial bundle V. To orient Ly = ker@,, ® det V* we equip ker®,, with a compatible orientation.
This is done as follows.

Orientation Recipe

o Orient V := V/Vy using the canonical split exact sequence of Hilbert spaces
0—-Vy—-V — V — 0.

where the second arrow denotes the orthogonal projection. Observe that ker®y, is canonically iso-
morphic to ker®.

o Equip ker @, with the orientation induced by split exact sequence (1.5.3)

0 — ker®y, — ker®y — V/Vy = V —0.

The orientation on V' and the above orientation on ker®, induce an orientation on Ly. Now
observe that we have the following sequence of isomorphisms of oriented line bundles:
I
Iy := detker® ® (detker®*)* = det ker @y, ® det V" = Ly, MACYNS
Exactly as in the proof of Proposition 1.5.4 we see that for any oriented stabilizers V- C W we

deduce that Iy = Iy o Iy which shows that Iy v is orientation preserving. This coherence allows
us to equip det® with an orientation.

Proposition 1.5.8. Suppose (D, )zcx is a nice family. Then det® admits a natural orientation
which can be concretely described as follows.

o PickV e S(®).

o Fquip the bundle ker®,, with the compatible orientation.

e Orient detV* ® det® = det®,, using the orientation on V. and the compatible orientation on

ker®.,.

There is another situation when one can canonically assign orientations. Suppose the vector
bundles E? and E' are equipped with complex structures and the operators @, and T, are complex.
Then the stabilizers can be chosen to be complex subspaces so that the bundles ker®;,; are complez,
hence equipped with canonical orientations. Arguing exactly as above we can deduce that the
orientations thus obtained on the determinant line bundles are independent of the choice of complex
stabilizers. We summarize the results proved so far in the following proposition.
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Proposition 1.5.9. If the family (D,) is the direct sum of a nice family and a complex one then
its determinant line bundle can be given a canonical orientation.

Remark 1.5.10. (a) The above observations extend to more general situations. Suppose that
H°, H' — X are two, smooth, real Hilbert vector bundles over a compact smooth manifold X and
® : H° — H' is a Fredholm morphism. This means @ is a smooth morphism of Hilbert bundles
such that for every # € X the induced map @, : H? — HL is Fredholm. To such a morphism one
can attach a determinant line bundle. Moreover, Proposition 1.5.9 continues to hold in this more
general context.

(b) The construction in this section which associates to each continuous family of elliptic operators
a line bundle on the parameter space has its origins in K-theory. Each continuous family of Fredholm
operators parameterized by a compact CW-complex X defines an element in K (X), a certain abelian
group naturally associated to X, which is a homotopy invariant of X. We recommend [3] for a
beautiful introduction to this subject.

Exercise 1.5.3. Prove the claims in the above remark. (Hint: Consult [3].)

Step 2  Suppose we have two homotopic nice families, (9°),ex and (L).ex. Using the canonical
orientation on det @0 and the connecting homotopy we can produce another orientation on det@l.
Naturally, one wonders what is the relationship between this transported orientation and the canon-
ical orientation on det®'. It is natural to expect that the comparison between these orientations
depends on the given homotopy.

We will consider only one situation, which suffices for most applications in Seiberg-Witten theory.
Suppose X consists of one point and (V¢,T;), i = 0,1, are two pairs (connection on FE, morphism
E° — E'). We get two Dirac operators

D, C’OO(EO) — C®(E").

Fix orientations on ker®, and ker®;. Clearly the two families (V*,T;) satisfy the conditions (i) and
(ii) and we thus get two oriented lines

¢; det®, - R, i=0,1.
Each homotopy h(s) =@, determines a homotopy class of isomorphisms

Y :detPy — det®D,

and we obtain an induced orientation on det3; defined by the composition

-1
¥y :det®, > det @, 2

We thus obtain a linear isomorphism

—1
drodrl R det®, &

whose homotopy class is determined by a number m € {—1,1}. This real number is called the
orientation transport along the given homotopy. We will denote it by (@, h,D,). We want to
emphasize that this number depends on the chosen orientations on ker®, and ker®; and on the
chosen homotopy h(s).

Example 1.5.11. To understand the subtleties of the above construction we present in detail the

following simple example. Consider the map

k
L:R" =R v Z<’U,6i>€i

=1
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where n > k, (e;) denotes the canonical basis of R™ and (e, ) denotes the usual inner product. The
kernel of L is precisely the subspace spanned by eg1,- - ,e,. We choose this ordered basis to orient
ker L. Observe two things.

1. coker (L) = 0 so that an orientation of the line det L uniquely defines an orientation of ker L.

2. The map L is homotopic to the trivial map R” — R whose kernel and cokernel are naturally
oriented. This homotopy induces another orientation on det L. The difference between these two
orientations is precisely the orientation transport along the path tL, ¢ € [0,1] defined above. We
want to describe this explicitly since it is very similar to the situation we will encounter in Seiberg-
Witten theory.

Consider the family L; : R® — RF v tLv, t € [0, 1], and set
V :=span(ep,- - ,er) C R™

V' is a stabilizer for the family L;.

For t = 0 we have V = ker L§ and the compatible orientation of V' given by the rules above is
the natural one, determined by the oriented basis ey, --- ,e. ker Ly is oriented using the natural
isomorphism

kerLo @V = ker Ly, (kerLo@® V)3 (u®v) — ud0.

Hence
e1®0, - ,e, B0 (1.5.5)

is an oriented basis of ker Ly g.
Observe that for each ¢ > 0 the collection of vectors in R @ V

v1(t) :==e1 B (—ter), - ,vk(t) = ex B (—teg),
(1.5.6)
Vgt1(t) = epy1 D0, - v, (t) i =€, DO

forms a basis of ker Ly ;. When ¢ = 0 it coincides with the basis (1.5.5). Thus for t = 1 it defines an
oriented basis of ker Ly ;.

The orientation on ker L which induces the above orientation is determined from the natural
split exact sequence

0—kerL —kerLy —V — 0.

This leads to the isomorphism

ker L&V = ker Ly,
(1.5.7)
ker LV 3 (u@v)—udv—Rvd0ekerLy

where R denotes the canonical right inverse of L which in this case is the natural inclusion V' C R™.
The natural basis of

Ck+1 6907 7en@07 0@617"' 3069616
of ker L & V' determines via the isomorphism (1.5.7) the following basis of ker Ly :
€k+1 6907 7677.@07 (_61)69617"' ,(—ek)@Ek.

The orientation defined by this basis differs from the positive orientation defined by the basis (1.5.6)
by (—1)k(»=k)+k Thus ker L is oriented by the element (—1)*™~*+le, 1 A - Ae, of detker L.
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Returning to the general situation, let us additionally assume
ind®, =ind®,; =0. (1.5.8)
The orientation transport has a couple of important properties.

PO Fiz®, and ®,. Then (P, h,P,) depends only on the homotopy class of h.

P1 If along the homotopy the operators P, are invertible then
£(®1,h,Po) =0.

Proof Note that the trivial subspace is a stabilizer for the family .. This property now follows
from the proof of Proposition 1.5.5. B

P2  Suppose hg, resp. hi, is a homotopy connecting @, to ¥, resp. @, to P,. Denote by h the
resulting homotopy connecting @, to @,. Then

5(@27 ha@O) - 5(@27 hlv@l) ’ 5(@17 hOa@O)'

Definition 1.5.12. Suppose h(s) =, is a homotopy connecting two operators @, and @, .
(a) The resonance set of the homotopy is

Z,={s€[0,1]; ker@, = {0} }.
For each s € Z}, we denote by P, the orthogonal projection onto ker(®,)*. _
(b) Set Cs =D, —P,. Cs is a zeroth order p.d.o., i.e. a bundle morphism. Define C, = %CS. The
homotopy is called regular if the resonance set is finite and Vs € [0, 1] the resonance operator
R, ker®, & L2(EY) & ker @?
is a linear isomorphism.

P3([119]) Suppose h is a regular homotopy connecting @° to @*. Set d, = dimker®, = dim ker ®*.
Then

e(P1, h, Do) = sign(R1)sign (Ro) [ (-1)* (1.5.9)

s€[0,1)

where sign(R;) = £1 (¢ = 0,1) according to whether R; : ker®,; — ker @] preserves or reverses the
chosen orientations.

Proof Using the product formula P2 we can reduce the proof of (1.5.9) to two cases.

Case 1 Z;, = {0}. Set
04 = h{%s(@s?h’a@())'

Using P1 and P2 we deduce (@, h,D,) = 0+. We have to show
oy = (—1)%sign (Ry).

Set Vo = ker®@; and fix an oriented basis (f1, -, fn) (n = dg = dimVp) of Vy. Then Vj is a
stabilizer for @ for all sufficiently small s € [0,¢] and

detP, = detPy, ;@ Vy.
For s # 0 the operator @, is invertible and for each f there exists a unique x), € L12(Ep) such that

D+ fr =0. (1.5.10)
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Then @1 @ f1, -+ ,2n, @ fn is a basis of kerPy, ; and we see that the orientation of Vj induces
an orientation on ker®y. .. These orientations on ker®y, . and Vj are compatible (in the sense
described at Step 1) and define according to Proposition 1.5.8 the canonical orientation on the line
det®,, s > 0. For s = 0 we orient det®, using the oriented bases (er,---,e,) of ker®, and

(fi, =+, fn) of Vo.
Denote by @, the orthogonal projection onto ker®y, , C L?(E'). The trivial connection % on

the trivial bundle L2(E") x [0, ] — [0, €] induces a connection Q- on the bundle ker Py, , — [0,¢].
It produces a parallel transport map

Ts kerPy, o — ker @Dy, ..

ker@y, , is oriented by the oriented basis e; ©0, - - - , €, ®0 while ker Py,  is oriented by the oriented
basis 1 @ f1, -+ ,Tn D vy. Set

Y (s) ® vk (s) := Ti(er HO) € ker @y, .

The vectors yy(s) @ vi(s) determine a smoothly varying basis of ker®y,  described by the initial
value problem

Dyr(s) +ve(s) = 0
g’;ggg _ 8’“ (1.5.11)

(0k, 0x) € (kerPy, )*

Observe that o is £1 depending on whether 7, preserves/reverses the above orientations for s very
small. In other words, to decide the sign of o4 we have to compare the orientations defined by the
bases

(zk(s) @ fi) and (yx(s) & vk(s))

of ker@y, ;. We cannot pass to the limit as s ™\, 0 since the vectors zy, (s) “explode” near s = 0.
The next result makes this statement more precise and will provide a way out of this trouble.

Lemma 1.5.13.
|szr(s) + Ry ' frll = O(s) as s\, 0 (1.5.12)

where || - || denotes the L?-norm.

Proof of the lemma First observe that we have an asymptotic expansion
D, =D+ 5Co+O0(s?) ass\,0 (1.5.13)

where O(s?) denotes a morphism E° — E! whose norm as a bounded operator L?(E?) — L?(E")
is < const - 5% as s \, 0. Set
B srr(s) if s#0
Z’f(s){ ~Ry'fy if s=0

We want to prove that

|lz£(s) — z£(0)] = O(s) as s\, 0.
Using the equalities (1.5.10) and (1.5.13) we deduce

(@ +5Co + O(s*)) 2k + sfx =0

so that .
Doz = —Cozk — sfx + O(5%) 2. (1.5.14)

We decompose zj following the orthogonal decomposition

L*(E°%) = ker®, ® (ker®,)* — 21 = 20 + 2.
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Recall that Py denotes the orthogonal projection onto ker @; = Range(®,)1. We can now rewrite

(1.5.14) as
Dozt = (1 — Py)(—sCozi, — sfi + O(s%)z,)
PoCozi, + fr = PyO(s)z.
From the first equation we deduce
lzi || < Cs(llz&ll + 1 £ ll)

so that
Izl < Csllz2l + 1L fell)-

We can now rewrite the second equation in (1.5.15) as
Roz} = PoCoz = RoO(s) (2 + 2iv) — fio — PoClozi

so that .
zp = 2(0) + Ry 'O(s) (2} + 21) — Ry ' PoCozjy

and using (1.5.16) we deduce
122 = 2 (0)]| < Cs([|z2] + 1).

The equality (1.5.12) is now obvious. B

(1.5.15)

(1.5.16)

Notice that the bases zx(s) © sfy and z(s) @ fi define the same orientations on ker®y, ., for all
s > 0 sufficiently small. Thus, in order to find the sign of o we have to compare the orientations
determined by the bases z;(s) @ fr and yr(s) ® vr as s \, 0. The advantage now is that we can
pass to the limit in both bases. Thus we need to compare the orientations determined by the bases
(=R fx) © 0 and ), © 0. They differ exactly by (—1)"sign (Ro) where n = dimker®, = dy.

Case 2 Zj, = {1}. Set o_ = lim; » (P, h,P,). We have to show

o_ =sign (Ry).

The proof is identical to the one in Case 1. The equality (1.5.12) has to be replaced with

lsai(1 = 5) = Ry fill = O(s), as s\, 0
because instead of (1.5.13) we have

D_ =9, — sCh + O(s%) as s\, 0

(1.5.17)

In the end we have to compare the bases Rflfk and e;. Property P3 is proved. B

Remark 1.5.14. For a different proof of P3 we refer to [119].

In Section 2.3 we will need the following technical result.

Proposition 1.5.15. Suppose @,, t € [0,1], is a continuous family of real first order elliptic oper-

ators
D, : LY*(E%) c Hy := L*(E°) — H, := L*(E")

with the following properties.
(a) ind®, = 0.
(b) D, is invertible for t close to 0 and 1.
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(¢) There exists a smooth family of continuous linear maps Ly : R — Hy such that
(c0) Ly =0 fort=0,1.
(c1) The map Sy := Ly +®,: Hh®R — Hy, ho ® u — Ly +D,ho is onto.
(c2) The real line bundle L :=ker(S,) — [0,1] is oriented.
Observe that the fibers of L over i = 0,1 can be identified with R via the natural isomorphisms

wi :R—= Ly pw—(0,p). (1.5.18)

On the other hand, the orientation of L defines orientations ¢; : L; — R, i = 0,1. The homotopy
class of the isomorphism ¢;w; : R — R is uniquely determined by a sign &; € {£1}.
Then the orientation transport along the path D, is €o/e1.

Proof Recall how one computes the parallel transport. Fix an arbitrary oriented stabilizer V' for
the family ®,. We get a vector bundle

ker®y,, — [0,1].
Once we fix a connection V on this bundle we get a parallel transport
T =Ty : kerPyo — kerDy;. (1.5.19)
Using condition (b) we obtain isomorphisms ker®,;, =0® V, i = 0,1, defined explicitly by
7:00V®E 3 (0,v) — (—D; 'v,0) € ker @y ;. (1.5.20)

Via these isomorphisms we can regard 1" as a map 7 01T o 7 1.V — V. The orientation transport
is then the sign of its determinant. For ¢ € [0,1] define U, : Hy®V ® R — H; by

ho ©v @ p— Si(ho @ p) +v = Lip+Dy(ho ®v) = Lip+ v +D,ho.
There exist natural isomorphisms
I = ker@ut OR — ker U,

defined by
It = ker@‘ﬂt ®R> (h()?Ua/j/) = <h07’l),/1/) - RV,t(Lt:u’) & 0.

On the other hand, we have isomorphisms
J: VoL — kerUt1

defined by
Ve L:t > ('Ua hOa :u') = (hov v, :u) - (h’é(v)v Oa :u't(v))

where (hf(v), u*(v)) is the element in Hy & R uniquely determined by
(B (), 1t (1)) € (Ker S, Luptt(v) + Byl (v) = v.
Using (c0) we deduce that for t = 0,1 ker S; = R @ 0 and we can be more explicit, namely
ph(v) =0, hy(v) =P; v,

Thus, for t = 0,1 we have
J7 N (hyv, p) = (v,0, ).

We thus get isomorphisms
I oy : Ve Ly — kerPy, ®R
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depending smoothly upon ¢. Now look at the following diagram.

VOR ——— V@R > VOR ——— VOR

7o T1

ker@y o, ® R 18T, ker@y, &R

Jy o Jitn
o it O
-1
£
\ o b1 /
VoR ——— VoR

The maps 7; are defined by (1.5.20) and T denotes the parallel transport defined in (1.5.19). The
dashed arrows are defined tautologically, to make the diagram commutative. We are interested
in the sign of the determinant of the 7-arrow. The maps ¢; are determined by the orientation
(trivialization) of the fibers £; induced by the orientation (a.k.a. trivialization) of L.

The connection V induces via J; 1, a connection V' on V & £ with parallel transport 7”. The
(IM-arrow is precisely 7.

On the other hand, the orientation (trivialization) of £; defines a canonical connection V° on
V &L with parallel transport T9. Since V/ and V° are homotopic we deduce T is homotopic to T” so
that in the above diagram the (!!!)-arrow is also equivalent to T°. With respect to the trivializations
¢; the map TY is the identity, thus explaining the bottom arrow.

The isomorphism a; : V®R — V@R is the identity. To see this observe that (for ¢ = 0) we have

ag(v ® p) = wy ' Jy oo (v @ p) = wy g (D5 Mv) © v @ p)

=wy Wy (Do) @vdp) =w (vEp®0) = v u
The proposition is now obvious from the diagram and the above explicit description of the maps a;.
|

Exercise 1.5.4. Formulate and prove a generalization of the above proposition where instead of
maps L; : R — H; we have linear maps L; : E — H; in which F is a finite-dimensional oriented
space.

81.5.2 Genericity results
Suppose X, Y and A are Hilbert manifolds and

F:AxX =Y, (Mz)—y=F(\z)

is a smooth map. Fix yy € Y. We are interested in studying the dependence upon the parameter A
of the solution sets
Sy={rxeX; FI\z)=1yo}.

More precisely, we are interested whether there exist values of the parameter A for which the solution
sets Sy are smooth submanifolds. According to the implicit function theorem this will happen
provided yg is a reqular value of the map

F:X->Y, z— F(\z),



Notes on Seiberg-Witten Theory 79

that is, for every xg € Sy the differential

OF)
% . TIOX — ﬂJOY
is a bounded linear surjection. We will say that A is a good parameter if yq is a regular value of F).

In this subsection we will address the following question.
Is it possible that “most” parameters are good?

A result providing a positive answer to this question is usually known as a genericity result.

Note first of all that if we expect genericity results it is natural to assume the parameter space A
is “sufficiently large”. More precisely, we will assume that yg is a regular value of F'. To understand
why this is a statement about the size of A introduce the “master space”

S={(\zx)e AxX; F(\x)=1yo}
Since gy is a regular value of F' this means that for all (A, z) € S the differential
DF: T()\,x)A x X — TyOY

is a bounded linear surjection. In particular, S is a smooth Hilbert manifold. We see that if A is
“too small” the above operator may not be surjective.
Denote by 7 the natural projection A x X — A. We obtain a smooth map

T:S—=AxX—A

and the solution sets Sy can be identified with the fibers 771(\) of 7. We see that any regular
value of 7 is necessarily a good parameter. Thus, if “most” parameters are regular values of 7 then
“most” of them must be good and we have a genericity result. This looks more and more like Sard’s
theorem but there is one aspect we have quietly avoided so far: the manifolds X, Y, A may be infinite
dimensional and thus out of the range of the standard Sard theorem. Fortunately, S. Smale [124]
has shown that under certain conditions, the Sard theorem continues to hold in infinite dimensions
as well. To formulate his result we need to introduce the notion of nonlinear Fredholm maps.

Definition 1.5.16. A smooth map F : M — N between Hilbert manifolds is said to be Fredholm
if for every m € M the differential

DmF : TmM — TF(m)N

is a bounded, linear Fredholm operator. If M is connected, the indices of the operators D,,F are
independent of M and their common value is called the indez of F' and is denoted by ind (F').

A subset in a topological space is said to be generic if it contains the intersection of an at most
countable family of dense, open sets. Baire’s theorem states that the generic sets in complete metric
spaces or locally compact spaces are necessarily dense. The expression “most x satisfy the property

.7 will mean that the set of x satisfying that property is generic.

Theorem 1.5.17. (Sard-Smale) Suppose F : M — N is a smooth Fredholm map between para-
compact Hilbert manifolds, where M is assumed connected.

(a) If ind (F) < 0 then F~Y(n) = 0 for most n.

(b) If ind (F) > 0 then most n € N are reqular values of F' and for these n the fibers F~1(n) are
finite dimensional (possibly empty) smooth manifolds of dimension ind (F).

Let us now return to the original problem. We want to apply the Sard-Smale theorem to the
map 7 : S — A, so that we have to assume it is Fredholm. The following result describes a condition
on F' which guarantees that 7 is Fredholm.
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Lemma 1.5.18. Suppose that both A and X are connected, yg is a regular value of F' and for each
A€ A the map Fy : X — Y is Fredholm. Then w:S8 — A is Fredholm and

ind (7) = ind (Fy), YA€ A.

Exercise 1.5.5. Prove the above lemma.
The final result of this subsection summarizes the above considerations.

Theorem 1.5.19. Consider smooth, paracompact, connected Hilbert manifolds X,Y, A, a smooth
map F: A x X =Y and a point yo € Y satisfying the following conditions.

(i) yo is a regular value of F.

(ii) The maps Fy : X — Y are Fredholm for all X € A.

Then the following hold.

(a) If ind (F)\) < 0 then Sx =0 for most A.

(b) If ind (F) > 0 then Sy is a smooth (possible empty) manifold of dimension ind (Fy) for most
AeA



Chapter 2

The Seiberg-Witten invariants

2.1 Seiberg-Witten monopoles
Get your facts first, and then distort them as much as you please.

Mark Twain

This section finally introduces the reader to the central objects of these notes, namely, the Seiberg-
Witten monopoles. They are solutions of a nonlinear system of partial differential equations called
the Seiberg-Witten equations. We will discuss several basic features of these objects.

§2.1.1 The Seiberg-Witten equations

First we need to introduce the geometric background. It consists of a connected, oriented, Rieman-
nian four dimensional manifold (M, g) equipped with a spin® structure o. There are two bundles
naturally associated to this datum.

e The bundle of complex spinors S, = ST & S ;
e The associated line bundle det(c) which is equipped with an U(1)-structure.

Fiz a Hermitian metric on det(o) inducing this U(1)-bundle and denote by A, = A, (M) the space of
Hermitian connections on det(o). Also, denote by ¢, the first Chern class of det(o), ¢, = ¢1(det(0)).

We can now define the configuration space
Co = Co(M) = C=(S}) x A,.

Observe that this is an affine space. We will denote its elements by the symbol C = (¢, A) and
by So = G, (M) the group of smooth maps M — S*. Given A € A, we obtain a geometric Dirac
structure (Sy,c, VA, V), where V denotes the Levi-Civita connection while V4 is the connection
induced by A on S, which is compatible with the Clifford multiplication, the Levi-Civita connection
and the splitting ST & S, . As usual, we will denote by @ 4 the Dirac operator I'(S}) — I'(S;)
induced by this geometric Dirac structure.

We can now conjugate V4 with any element v € G, and, as shown in Exercise 1.3.21, the
connection yV4~y~1 is induced by the connection A — 2(dy)y~! € A,, that is,

,yvA,y—l — VA—Qd’y/’y.
We can regard the correspondence

So %X Co 2 (71310, A) = (v, A —2dvy/v) € C;

81
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as a left action of G, on C,, (7,C) — 7 - C. For each C € €, we denote by Stab(C) the stabilizer of
C with respect to the above action

Stab(C) := {'y €G,;v-C= C}.
Definition 2.1.1. A configuration C is said to be irreducible if
Stab(C) = {1}.

Otherwise, it is said to be reducible. We will denote by €, ;- the set of irreducible configurations
and by C, rcq the set of reducible ones.

Proposition 2.1.2.
eo,red = {C = (MA) 5 ¢ = O}

Moreover, if C = (¢, A) is a reducible configuration, then Stab(C) is isomorphic to the subgroup
St C G, consisting of constant maps.

Exercise 2.1.1. Prove the above proposition.

The quadratic map ¢ introduced in Example 1.3.3 defines a map
_ 1 .
41 0%(87) — Endo(S3), a(¥) =6 ® ¢ - 3lvfid

Endy(S}) denotes the space of traceless, symmetric endomorphisms of ST. More precisely,

c=s5)3 6 " (0,010 - SluPo e O,

We want to emphasize one working convention.
We will always assume that a Hermitian metric (o, ) on a complex vector space is complex linear

in the first variable and complex conjugate-linear in the second variable.

Definition 2.1.3. Fix a closed, real 2-form 1 € Q?(M). Then a (o, n)-monopole is a configuration
C = (¢, A) satisfying the Seiberg- Witten equations

e { g 28

0 (2.1.1)
2

q(¥)

where the superscript “+” denotes the self-dual part of a 2-form and ¢ denotes the Clifford multipli-
cation by a form. The 0-monopoles will be called simply monopoles. The closed 2-form 7 is called
the perturbation parameter.

A few comments are in order.

e Note first that the Seiberg-Witten equations (2.1.1) depend on the metric g in several ways: the
symbol of the Dirac operator depends on the metric, the connection V4 depends on the Levi-Civita
connection of the metric and the splitting Q?(M) = Q3 (M) & Q2 (M) is also dependent on the
metric.

e Notice also that the second equation in (2.1.1) is consistent with the isomorphism iQ2 (M)
Endy(S}) induced by the Clifford multiplication c.

~

We denote by Z, = Z,(g,n) the set of solutions of the Seiberg-Witten equations and set

Zo’,ir'r = Zo’ N ea,ir'f~
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Observe next that if C € Z, and v € G, then v-C € Z,. Thus, Z, is a G,-invariant subset of C,.
We set
M, =Ms(9,m) = 26/
and
My irr = Zoirr/Go-

M, is known as the Seiberg- Witten moduli space.

Besides the huge G-symmetry, the Seiberg-Witten equations are equipped with another special
type of symmetry. The involution ¢ — & on Spin®(M) defines a bijection 9 : €, ,, — C5,_, induced
by the isomorphisms

9 :SF — ST, det() = det(o) = det(o)*.

More precisely, J(, A) = (9(¢), A*) where for any connection A on det(c) we have denoted by
A* the connection it induces on det(o)*. The results in Exercise 1.3.23 coupled with the equality
Fy+ = —F4 show that if C is a (o, 7)-monopole then 9J(C) is a (7, —n)-monopole. Also observe that
9o = G5 = G and, for all v € G, we have

I(y-C)=~"1-9(C). (2.1.2)

This shows that we have a bijection
0= My (g.1) — Me (g, —1)- (2.1.3)
In the remainder of this chapter M will be assumed to be compact, connected, oriented and

without boundary.

The Seiberg-Witten equations are first order equations and thus cannot be the Euler-Lagrange
equations of any action functional. However, the monopoles do have a variational nature.

Proposition 2.1.4. Define €, : C, — R by
S 1,1 . 2 .
€, (1, A) =/ (V462 + 210 + 5150() = elin™)|* + [Fa + 2in*|? ) dv,
M 4 2'2

where s denotes the scalar curvature of the metric g and for any endomorphism T : ST — ST we
have denoted |T|? := tr(TT*). Then

&0 A) = [ (1940P + 5lelFi +in7) = a0 )do,

+4/ |77+|2dvg—47r2/ 2
M M

where ¢, = c1(det(0)). In particular, we deduce that

¢, (¥, A) > 4/ |n+|2dvg—47r2/ 2
M M

with equality if and only if (1, A) is an n-monopole.
Proof The proof relies on the following elementary identities.

Lemma 2.1.5. Let a € iQ3 (M), ¢ € C®(S¥) and T € Endy(SF). Then we have the following
pointwise identities:

(@) = te(a()?) = 1ol

le(@)* = 4]af?,
def

(T, q(4)) = tx(Tq(¥)) = (TP, ).
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Proof of the lemma  All the computations are pointwise so it suffices to prove they hold at a
given arbitrary point x € M. Set V = T, M. We now use the notations and the computations in

Example 1.3.3. Then
- Lal? =182 af ]
) ‘“(F as A8~ laP?)

= 2 (lal? = |8PY? + 2lal?l 5

1 1
= S(lal +181) = Slul.

The second equality follows from the identities

s 2
(O apmw)? = =20 _27)id, tr(id) =2.
k=0

k=0

To prove the third identity we observe it is linear in 7T and since any
T € Endo(S} |) can be written as T = ZZ:O tre(ing), tr € R, it suffices to prove it for T = c(iny).
The computations in Exercise 1.3.2 show that

tr(a() - eling)) = — 1 . elme)) - tr(elin)?)
= L0 elin)e) - elm)? = (b, clim)e), k=0,1,2.
The lemma is proved. B

We can now continue the proof of the proposition. First, an integration by parts coupled with
the Weitzenbock formula (1.3.16) gives

/ D 42, = / (D50 40, Vv,
M M

= [ (U400 + P + 5 (e(EDw0)) do,

M
(use Lemma 2.1.5)

= [ (19402 + S0+ el atw) ) v,

M
Next observe that 1
[ 16T +in) = Saw)Pds,
M
= [ (1t + 130000 — clin®)? o, =2 [ (e(FD) 50(6) - linas,
M M

Hence ) )

[ (vl + e+ = S0l o,

M

(use Lemma 2.1.5)

S 11 . .
= [ (1940 + 210l + J13000) — el + 2AFEP + U i) ) oy
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The last two terms can be rewritten as

2 [ (1E4P+ 2t o) v,
M

1 . 1

= 2/ (FA|2 + 2(Fa,in™) + |F1)? - |FA|2>dvg
a\ 2 2
1 . 1 _
=2 [ (GIFa+ 20 = 2 SUPEE - F ) v,

:/ (|FA—|—2i77+|2—477+|2>dvg—/ FaAFa
M M

:/ <|FA+2in+|22|77+|2>d11g+47r2/ c1(A) Aer(A).
M M
Thus ) )

[ (vl + lets + 1) = Sa() )

M

s 1.1 . .
= [ (194 21082 + J13000) — el + Fa -+ 27 )

+/ (47r20(2,f4|77+|2)>.
M

Proposition 2.1.4 is now obvious. B

82.1.2 The functional set-up

So far we have worked exclusively in the smooth category. To define the Seiberg-Witten invariants

we have to introduce additional structures on the moduli space M, (g,n) and, in particular, we need

to topologize it. The best functional framework for such purposes is supplied by the Sobolev spaces.
Pick a nonnegative integer m and a real number p € (1, 00) such that

4
m+2—->0.
p

This condition guarantees that the Sobolev spaces L™*2? embed continuously in some Holder space.
Now fix a smooth Hermitian connection Ag on det(o) and denote by AT the space of L™T1?
connections on det(o). More precisely,

Agte = {A= Ag+ias a € L"), AR = A2,

emtl .= LFFL2(ST) x Am T,

Next, define
YmP = yYymr = [MP(S]) @ L™P(IAL T M), Yr=yh2

where AiT*M denotes the bundle of self-dual 2-forms. We want to emphasize that the Sobolev
norms on the spaces of spinors are defined using the fixed reference connection Ag. Finally, define

§u+2r = {3 € L2 (M,0); [y(a)| = 1, v € M},

k42 ._ ck+2,2
G =G0
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We see that since any v € L™+ 2P(M,C) is continuous, the expression |y(m)| is well defined every-
where.

Using the isomorphism ¢ : iA2T*M — Endo(S}) we are free to identify ¢(¢)) € Endo(S/}) with
the self-dual 2-form ¢~!(g(¢0)). When no confusion is possible we will freely switch between the two
interpretations of q(v) writing q(¢) instead of ¢~ (q(¢)).

Lemma 2.1.6. For every k > 1 the correspondence v — q(¢) defines a C*°-map

q: LFY2(SE) — L2 (1A% T M).

Sketch of proof  We consider only the case & = 1 and we begin by showing that q(¢) € L2,
Vi € L2,

Since ¢ € L?? it follows from the Sobolev embedding that ¢ € L for all p € (1,00) so that,
using Lemma 2.1.5, we deduce

1
[ tatPas, = [ ot < o

Next observe that there exists a constant C' > 0 such that
| IVatoPas, <c [ [viupiopas,
M M

Since ¥ € L*? we deduce from the Sobolev inequality that V4o¢) € L9 for some ¢ > 2 restricted
only by the inequality
0=2-4/2>1-4/q.

The Holder inequality now implies

/ V() 2dv,
M

) q/2 (¢—2)/q
<C (/ |VA01/J|advg> (/ |¢|2q/<q—2>dug> < .
M M

The stated regularity follows from the identity

q(tbo + ) = q(vho) + % © 1o + o © 9 — Re(tho, $)id + q(1)) (2.1.4)
for all ¥, v € L*2. The details are left to the reader. W

Suppose now that n € L¥2(A2T*M) is a fixed closed form (i.e. satisfies dn = 0 weakly). Arguing
similarly we deduce the following result.

Proposition 2.1.7. For every k > 1 the correspondence

(¥, A) = DAY @ (Fi +in" —q(v))
induces a C*°-map SW,, : Gkl yk,
Exercise 2.1.2. Prove the above proposition.
The group G%*2 also has a nice structure.

Proposition 2.1.8. For every k > 1 the group G52 is a Hilbert-Lie group modeled by L**22(M,iR).
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Proof  Again we consider only the case k = 1. Observe first that G32 € C°(M, S1). The space of
continuous maps M — S!, topologized with the compact-open topology, is an Abelian topological
group. Since the target S* is a K(Z,1)-space we deduce that the group of components of C°(M, S*)
is isomorphic to H*(M,Z). For any v € C°(M, S') we denote by [y] € H'(X,Z) the component
containing 7. The identity component ([y] = 0) consists of those maps  which can be written as
~v = exp(if) for some continuous map f: M — R.

Define

G, = {7 €8¥% [y = 0} = {exp(if); feL*?*(M, R)}'

It is clear that it suffices to show that Qg is a Hilbert-Lie group. This will be achieved in several
steps.
e Observe first that

G, C L¥2(M,C).

e Equip G, with the topology as a subset in the space of L>2-maps M — C.
e We now construct coordinate charts. . The coordinate chart at the origin is given by the Cayley
transform

T:U; =G, \ {~1} — L>?(M,iR),
. iry  l—exp(if)  —2isin(f)
R) = 1) = Tpi) ~ T+ oGNP

Observe that T is a bijection onto L*>?(M,iR) since T'=T71, i.e.

if_ 11— T[eif].
1+ Telf]

For an arbitrary v € G, define
T, :U, ==~ Uy — L**(M,iR)

by
Ty(¢) =T(v o).
To show that this is a smooth structure it suffices to show that the transition maps T% o T}y ! are
smooth maps L3?(M,iR) — L3?(M,iR). This follows immediately from the identity T'= T~! so
that
T, o T3 (if) = T(v- 871 - TGf)).
We leave the details to the reader. H.

Exercise 2.1.3. Finish the proof of the above proposition.
The tangent space of G52 at 1 is LK+22(M,iR). The exponential map
exp : T1GF2 — GE+2 if o €lf

is a local diffeomorphism, just as in the finite-dimensional case. Often, we will refer to the elements
in this tangent space as infinitesimal gauge transformations.
Now observe that G¥+2 acts on CX*1 and Y* by

ChHL 5 (4, A) ¥ (v - b, A — 2dy/7) € €L,

Yo = LM(S;) @ LP2(ALT M) 3 (6,0) 2 (7 6,w) € Y.

The following result should be obvious.
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Proposition 2.1.9. The above actions of G2 on €5+ and Y~ are smooth and, moreover, the map
SW,, : Ck+1 — Yk s GE+2_cquivariant, i.e.

SW,(y-C) =7-SW,(C), VCe€ il e ght2
The above proposition shows that every C € C5*! defines a smooth map
Get? - et vy C
Its differential at 1 € G¥*2 is a linear map
Lc: TGk — TcCEH!

explicitly described by
Sc: TIGE 5 if s (ify, —2idf)

where C = (1, A). We will often refer to £¢ as the infinitesimal action at C.
As in the smooth case the stabilizer of a configuration C = (b, A) € CEF! is either trivial

Stab(C) = {1} <= ¥ #0

or
Stab(C) = S' <= ¢ =0.
Set
ehtl = {c € Ck+1; Stab(C) = {1} }
and

ertl {c € CH+1; Stab(C) # {1} }

o,red —
Observe that
T,Stab(C) = ker £¢.

We have thus proved the following result.
Proposition 2.1.10. The following statements are equivalent.
(i) C= (¢, A) € CEFL s reducible.
(i) ¥ = 0.
(iii) Stab(C) = S*.
(iv) ker £¢ # {0}.

Define

25" (g,m) = SW,1(0), Mgt = mEt (g.m), = 251 /951
2ot (gom) = 25 (g N €L ML (g.m) = 20750, /92

o,irT o,irr)? o,irT Tirr

Proposition 2.1.11. Suppose n € L¥2(A2T*M), k > 1. Then for every C € 2Z2(g,n) there exists
v € 632 such that - C € CETL. In particular, if n is smooth we deduce

M2(g,n) = ME(g,n), Vk > 2,

i.e. any L?2-solution (1, A) of the Seiberg- Witten equations is gauge equivalent to a smooth solution.
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Proof The proof is a typical application of the elliptic bootstrap technique. Suppose C = (¢, B) €
€22 satisfies the Seiberg-Witten equations SW,,(C) = 0. By definition ib = B — Ay € L**(T*M).
Using the Hodge decomposition of Q'(M) we can write
b=byo+df +d*p

where by denotes the harmonic part of b, f € L3?(M), 8 € L>2(A*T*M). We now define

vi=exp(f) (1, A) =7 C= (exp(5£), Ao +ibo +id"B).

Set a = by + d*3. The main point of this gauge transformation is that d*a = 0. Using Exercise
1.3.22 we can rewrite the Seiberg-Witten equations for (¢, A) as

Db = —le(ia)
idta = 3q()—int — Ff

We can use the first equation to “boost” the regularity of 1. Note that since a, € L?? we deduce

from the Sobolev embedding that a,v € LP for all p € (1,00). This implies ¢(ia)y in LP for all

p € (1,00). Thus @, , € LP, Vp € (1,00) so that, by elliptic regularity ¢ € L' ¥p < co. In

particular 1 is Holder continuous. As in the proof of the Lemma 2.1.6 we deduce ¢(v)) € L'?, Vp.
To proceed further we need to use the following elementary fact.

Exercise 2.1.4. The operator d* + d* : Q' (M) — Q% (M) & Q°(M) is elliptic.
We can now combine the second equation and the condition d*a = 0 to obtain
(dT +d*)a+int € L*'P, V¥p < cc.
Now observe that L*? embeds continuously in L*~14, V& > 1. Hence nT € L'P, ¥p < oo and thus
(d+d*)a € L*?, ¥p < .

Invoking the elliptic regularity results for the operator d* + d* we deduce a € L*%. This implies
immediately that ¢(ia)y € L1P for all p < co and using this information back in the first equation
we deduce 1) € L?P, Vp < co. This information improves the regularity of the right-hand side of the
second equation and, arguing as above, we gradually deduce the conclusion of the proposition. l

The last result shows that by looking for monopoles (modulo gauge equivalence) in the larger
class of Sobolev objects, we do not get anything new. However, the Sobolev setting is indispensable
when dealing with structural issues.

2.2 The structure of the Seiberg-Witten moduli spaces

So far we have defined the moduli spaces as abstract sets of orbits of §,. In this section we show
that these spaces, equipped with some natural Hausdorff topologies, are smooth, compact, oriented
finite-dimensional manifolds.

§2.2.1 The topology of the moduli spaces

Fix a closed form
ne LM (T*M), k>1.

The moduli space MET1(g, ) is a subset of the set of orbits

k+1 . ek+1/gk+2
BiT=CiT/GaTe.
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If G52 were a compact Lie group then this quotient would have a natural Hausdorff topology. In
our situation G¥*2 is obviously noncompact. We cannot a priori exclude the possibility that two
orbits of G¥*2 on C**! may have arbitrarily close points and thus the quotient topology on BE*!
may not be Hausdorff.

In this subsection we will prove that a natural topology of BE*! is Hausdorff and 95+ (g, 7) is
in fact a compact subset of BF+1.

For any point C € €+ we denote by Oc the orbit of G2 containing C, that is,

Oc = {’y~C certl v e 95*2}.

Now define
5(9¢,,O0c,) = inf{||y1 - C1 — 2 - Call; 71,72 € G2}

where for any configurations C; = (¢;, 4;) € €&*+1 i = 1,2, we set

1€ Call = [ (1o =l + A — Ao )iy
M

Note that
[v-Ci—7-Cof = [|C: — Co

for all Cy,Cy € G5! and v € GE*2 50 that we can alternatively define
3(0c,, Oc,) = inf{[|C; —7- Caf); v € G572}

Clearly § defines a map § : BE+t! x BAL R, .

Proposition 2.2.1. For k > 1 the pair (BET1,8) is a metric space.

Proof Again, we consider only the case kK = 1. We only have to prove
5(OC1, OC2) =0 = Ocl = OCQ.

Suppose §(Oc,,Oc,) = 0. Then there exists a sequence v, € §>? such that

/ <|’Yn(A1 — Ag) + 2dn |* + |th2 — - ¢2|2)dvg =o0(1) as n — oo. (2.2.1)
M

In particular, this implies
/ |dyn|?dv, < const - / |A; — As|?dv, +0(1) as n — . (2.2.2)
M M

Since the sequence 7, is obviously bounded in L? we deduce from the above inequality that the
sequence 7, is bounded in LY?(M, C). We can now use the Sobolev embedding theorem to deduce
that a subsequence of +,, (which we continue to denote by ,,) converges weakly in L2 and strongly
in LP, 1 < p < 4, to amap v € L2, Clearly |y| = 1 almost everywhere on M.

Using the Sobolev embedding again we deduce that ¢o € L? for all ¢ < oo so that v, - P9
converges strongly in L? to «y - ¢». By passing to the limit in the inequality

/M |1 — Y - 2|*dvg = 0(1) as n — oo

we deduce 1 =y - Ys.
On the other hand, since A; — As € L4 for all ¢ < oo the functional

F:LY2(M,C) 5 f o / F(Ar — Ag) + 2df Pdv, € R
M
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is obviously convex and strongly continuous so that it is weakly lower semicontinuous (see [19, Chap.
1,3]) which implies
(2.2.1)

0 <F(v) <liminf F(y,) ="0.
n
Hence v is a weak solution of the partial differential equation

2dy = (A2 — Ay), v € LY (A°T*M @ C). (2.2.3)

Since the operator d + d* is elliptic and the right-hand side of the above equation is in any L9,
g < 0o, we deduce v € L% for all ¢ < co. Using the Sobolev embedding L?? — L'* we can now
deduce y(A; — Ap) € LY%. Plug this in (2.2.3) to deduce v € L?%. Sobolev inequalities again imply
v(A; — Ay) € L*? and putting this back in (2.2.3) we deduce v € L*?. Thus we have produced a
v e 9%2 such that

Al = A2 _Qd’Y/% /(/)1 :7'1/}27
that is, C; = - C2 and O¢, = Oc,. The proposition is proved. B

Clearly the canonical projection 7 : &1 — (BE+1 §) C— Oc is continuous since
6(0c¢,,0c,) < [|G1 — Caf|.

The moduli space M5+ (g,n) is a subset in the metric space BE+!1 and thus it is equipped with a
metric space structure as well. The induced topology has other remarkable features.

Proposition 2.2.2. Fiz the closed formn € L™?(A*T*M), m = max(k,4), k > 1. Then the metric
space (METL(g,n),8) is compact.

Proof For simplicity we consider only the case k = 1. We have to show that given any sequence
C, € 2727’2 there exist a sequence 7,, € G2 and C € 272772 such that

72 Cr, = C|| = 0(1) on a subsequence nj — co.

To simplify the presentation we will denote the extracted subsequences by the same symbols as the
original ones. Using Proposition 2.1.11 we see that modulo some gauge changes we can assume
Cn = (¢, Ay,) € €3, In particular, this means v, and A,, are twice continuously differentiable.

Our next result presents the key estimate responsible for the compactness property of the moduli
space.

Lemma 2.2.3. (Key Estimate) Suppose C = (¢, A) € Z2(g,m). Then

19[13 < 2max(0, — min s(z) + 47" [|c)-

Proof of the lemma Using the Kato inequality (see Exercise 1.2.1) we deduce that Vo € M
Ap[pf*(x) < 20V VA, 9)a
(use the Weitzenbock identity)

= DD v ¥ — 2 p()|? — (elFE I )

(use P49 =0, e(FF) = Lq(¢) —ic(n™) and Lemma 2.1.5)
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< =@y - L@+ 2 @)

Set u(z) = |1 (z)|?>. Thus u is a nonnegative C2-function satisfying the differential inequality

1 — 47T [
AMU+7U2+ s ||77 ||

<0.
1 2 4=

If 2 is a maximum point of u then Ayru(xzo) > 0 so that

U0) (L (o) + s(ao) — ) <0

so that
u(rg) < max(0, —2min s(z) + 8][n™|o0)-

The lemma is proved. B

To proceed further we need to introduce some notation.
e H*(M, g) := the space of harmonic k-forms on (M, g).
e H*(M,Z) := the lattice in H*(M, g) defined by the morphism

H*(M,7) — H*(M,R).

Define
plg) = supinf{ Ju — vll2/ u € H'(M, g), v e H'(M,Z) }.

In other words, p(g) measures how far away from the vertices of the lattice H' (M, Z) one can place
a point in HY(M, g). Tt is a finite quantity, bounded above by the diameter of the fundamental
parallelepiped of the lattice.

We leave the reader to check the following consequence of Hodge theory.

Exercise 2.2.1.
ker( (d* +d) : QL M) — (22 & QO)(M)) = H'(M, g).

Now write A,, = Ag + ia, and then use the Hodge decomposition
an = hy + 2dfy, +d* By,
where h,, € HY(M, g), fn ® B, € L52((A° @ A?)T*M). Now pick x,, € 4rH'(M,Z) such that
Ixn = Ballz = inf{ I = hnl2s x € 47H' (M, Z) } < 4mp(g).
Such a choice is possible since 4mH! (M, Z) is a lattice in H'(M, g).
Lemma 2.2.4. There exists v, € C(M,S) such that
ixn = 2dvn/Yn-
Proof of the lemma Denote by X, the pullback of ., to the universal cover M of M. Fix mo € M

and for any m € M set
fn(m) = /f(n
c
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where ¢ denotes an arbitrary smooth path connecting mg to m. Because the integrals of x,, along
the closed paths in M belong to 47Z the map

Y = exp(ifn/2) : M — S*
descends to a map v, : M — S'. Since 2d7¥, /7, = iX, we deduce ix, = 2dv,/v,. B

Denote by P : L?(T*M) — L?(T*M) the orthogonal projection onto H*(M, g). Replace the
configurations C,, with

C;~L = eifn’YnCn = (1%, AO + i(hn - Xn) + id*ﬁn)
These satisfy the additional conditions
d*a, =0, ||Pal |2 <4np(g), Yn.

Since we are interested in gauge equivalence classes of configurations we could have assumed from
the very beginning that C,, = C/,. The Seiberg-Witten equations for C,, and the above additional
conditions can be rewritten as

@A&/’n = —%C(ian)l/fn
i(dt +d%)an, = Fq(n) —int — F} (2.2.4)
[Panlz < 4mp(g)
Using the Key Estimate we deduce that
I(dT + d*)an]|eo = O(1) as n — oo.
Since (dT + d*) is elliptic and ker(d* + d*) = H*(M, g) we deduce from Theorem 1.2.18 (v) that

Vp<oo: |an — Payl1,p,=0(1) as n — oo.

The space H'(M, g) is finite dimensional so that all the Sobolev norms on it are equivalent. The
third condition in (2.2.4) implies

VmeZy, p<oo: ||[Pay|mp=0(1) (2.2.5)

so that

Vp<oo: [anlli, = O(1). (2.2.6)

Coupling the Sobolev embedding theorem with the Key Estimate and (2.2.6) we deduce
[e(ian)¥n s = O(1).
Using this in the first equation of (2.2.4) we deduce from the elliptic estimates
Vp <00 : [[¢hnll1p = O(1).

This implies
Vp <oo: |leian)¥nll1p, = O(1)

and using again the elliptic estimates for the first equation in (2.2.4) we deduce
Vp <oo: |[¢nll2,, = O(1). (2.2.7)
Using this in the second equation of (2.2.4) we deduce

Vp<oo: ||(dF+ d*)an|l1p = O(1).
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Finally we invoke Theorem 1.2.18 and (2.2.5) to conclude
Vp <oo: |anl2,, =O(1). (2.2.8)

The inequalities (2.2.7), (2.2.8) and the Sobolev embedding theorem imply that a subsequence of
C,, converges weakly in L?? and strongly in L to a configuration C € €22, Clearly C is a solution
of the Seiberg-Witten equations. The proposition is proved. B

Remark 2.2.5. We could have continued the above proof a step further to conclude that the
convergence C,, — C also takes place in the strong topology of LF¥12. We leave the reader to fill in
the missing details.

The Key Estimate has an important immediate consequence.

Corollary 2.2.6. Suppose the scalar curvature of M is nonnegative, s > 0. If the closed 2-form
n € L*2(A%T*M) is such that

1
+ < = :
HU loo < 4 :?éll\r/}s(x)

then any n-monopole is reducible.

82.2.2 The local structure of the moduli spaces

The space BE*! is the quotient of an infinite-dimensional affine space C5¥*! modulo the smooth
action of 9§+2. Moreover, the action of 9’;“ on C*1 i free so it is natural to expect that the

a,irr
quotient BAEL .= @FF1 /Gk+2 is 4 Hilbert manifold.

o,irr o,irT

To discuss the local structure of BX*! we need to introduce a stronger topology on B+, Define
0k+1(0c¢,, Oc,) = inf{H%Q —72Ca|lk+1,2; V1,72 € 95—”}'

Since § < i1 we deduce that d; 1 is indeed a metric on BXT!. Remark 2.2.5 shows that 951 (g, n)
is compact in this topology as well.

Suppose now that C = (¢, A) € C2. We can regard the infinitesimal action £¢ as a real unbounded
operator L?(M,iR) — L*(S}®iT* M) with domain L2(M,iR). Its L?-adjoint is the real unbounded
operator

L& LA(ST @iT* M) — L*(M,iR)

with domain L12(S} @ iT* M), uniquely determined by
(cif)doia) | = (if, L0 @ia)s,

Vif € L*(M,iR), ) & ia € LY*(ST & iT* M).
More explicitly,
(sclindoia) = [ fReli.d) - 2d7.a) dv,
L M

_ _/ f(1m<w7¢> +2d*a) dv, :/ Re(if, (—2id*a — iIm(1), 1)) )dv,.
M M
On the other hand,
0. 20 @ 0)1e 1= [ Relif, Ce() & i),

Hence _ '
Le(h ®ia) = —2id a — iIm (i, ). (2.2.9)
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Now define the local slice at C as

Sc =8k = {C € TeC?; £:C = o}

= {(ia) e I"2(8, @iT*M); £2(d @ia) = 0},
Observe that if C is reducible then
Sc={d@iae "% da=o}.
In this case Stab(C) = S! acts on Sc by complex multiplication on the spinorial part
e (Y ®ia) = (') @ ia.

The slice has a simple geometric interpretation. It consists of the vectors in TcC2? which are L2-
orthogonal to the orbit Oc.
Define an action of Stab(C) on G52 x Sc by

h(v,C) = (vh™', hC).

This action commutes with the obvious left action of 9§+2 on 9§+2 X Sc so that the quotient
(G5+2 % Sc)/Stab(C)

is equipped with a left G&*2-action.

Proposition 2.2.7. Let C = (1, A) € CkT2 k> 1. Then there exists a smooth map F : G¥+2x Sc —
C2 with the following properties.

(i) ¥(1,0) = C.

(ii) F is G+2 equivariant.

(i1i) F is Stab(C)-invariant.

(iv) There exists a Stab(C)-invariant neighborhood of 0 € S¢ such that the induced map

F: (G2 x U)/Stab(C) — C2
is a diffeomorphism onto a G¥+2-invariant open neighborhood of C in C2.

Proof Again, for simplicity, we consider only the case k = 1. The general case involves no new
ideas. Define

F:83 xS — (2,

(7,9 @ 1ia) — (v + v, A+ ia — 2dv /7).

Clearly J is a smooth map. The conditions (i) — (iii) are obvious. To prove (iv) we will rely on the
following result.

Lemma 2.2.8. There erists a Stab(C)-invariant neighborhood W of (1,0) € G2 x Sc with the
following properties.

o P1 The restriction of F to W is a submersion. In particular, F(W) is an open neighborhood of
Cec2.

e P2 Fach fiber of the map F : W — F(W) consists of a single Stab(C)-orbit.
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Proof of the lemma We will use the implicit function theorem. The differential of F at (1,0) €
Gh+2 x Sc (k = 1) is the map

D1,0)F : T(1,0)(G2 x Sc) = L**(IN°T*M) x Sc — L**(S} & iA'T* M)

given by . ' '
(if, Y @ia) — (ify +¢) @ (ia — 2idf) = Lc(if) + ¢ @ ia.

We will prove several facts.

Fact 1 The kernel of D; ¢)J is isomorphic to the kernel of £c.

Fact 2 D )J is surjective.

These two facts are elementary when C = (¢, A) is reducible, ¢» = 0 and in this case they are left
to the reader as an exercise.

Exercise 2.2.2. Prove Fact 1 and Fact 2 when C is reducible.

When v # 0 these facts require an additional analytical input.
Fact 3 If ¢ # 0 then the correspondence

[ ANf [l
defines a continuous bijection L3?(M) — LY2(M).

We now prove Fact 1 and Fact 2 when v # 0 assuming Fact 3 which will be proved later on.

Proof of Fact 1 =~ We have to show that D )J is injective, that is, the equation

ifp+¢ = 0
ia—2idf = 0
L @ia) = 0

has only the trivial solution f =0, y =0, @ = 0. The first equation implies

m(y, 1) = [¢[*f.
Using the second and the third equations we deduce
0= 2d"a+Im(ip, ) = AAf + || f.

Fact 3 now implies that f = 0 and using this in the first and second equations we deduce y =0
and a = 0.

Proof of Fact 2 Let ¢ @ ib € TcC2 = L>%(SF @ iA!T*M). Then the equality
Do (if. ¢ ©id) = p@ib, (if;1).ia) € TS5 x Sc

is equivalent to . .
ifv+¢y = ¢
ia —2idf = 1ib . (2.2.10)
Leoia) = 0
Using the Hodge decomposition of Q'(M) we can write @ = du + ¢ where u € L>?(M) and ¢ €
L?2(T*M) is co-closed. The second equality implies that ¢ equals the co-closed part in the Hodge
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decomposition of b. The exact part du is uniquely determined by Au which, according to the second
equation, is given by 2Af 4 d*b. Thus it suffices to determine f and . We claim that f is the
unique L?2-solution of the equation

ANF + [P f = —Tm(s, @) — 2d*b (2.2.11)

and . .
Y=¢—ify. (2.2.12)

Fact 3 guarantees that (2.2.11) has a unique solution. We see that with the above choices the first
equation in (2.2.10) is automatically satisfied. The second equation is satisfied as soon as we choose

u as a solution of the equation .
Au = 2Af + 2d*b.

This equation has a solution v € L32?(M) because the right-hand side has zero average, i.e. it is
L?-orthogonal to the kernel of the selfadjoint Fredholm operator A. We only need to show that the
third equation is satisfied as well, i.e.

2d*a + Im(1p, ) = 0. (2.2.13)
To show this, note that, according to the second equation in (2.2.10), we have

20 i = 4Af + 2d°b T EY 2 1, ).

Im(s), 6) — | f
Fact 2 is proved.

Proof of Fact 3 Arguing as in the proof of Lemma 2.1.6 we deduce that there exists a constant
C > 0 such that
[4AF + [P flli2 < Cllflls2, Vf € L>*(M)

so that T does indeed define a bounded linear operator L32 — L2, Note also that if
ANf+ [P f=0

then, multiplying both sides by f and integrating by parts, we deduce

4/ |df|2dvg+/ 1|2 f2dv, = 0
M M

which shows that df = 0 and f|i| = 0. Since 1 # 0 we conclude that f = 0 showing that T is
injective.

Now define Ty : L3?(M) — LY2(M), f — 4Af. T, is a Fredholm operator with index 0 since
it is determined by a formally selfadjoint elliptic operator. The difference T" — Tj is the operator
f + ||?f which, in view of Sobolev embedding theorems, is compact. Thus T is Fredholm, injective
and has index 0. Hence it must be surjective as well.

We now return to the proof of Lemma 2.2.8. Using the implicit function theorem we can find a
Stab(C)-invariant open neighborhood of (1,0) € G3 x Sc such that F(W) is open. We are left to
check P2. We distinguish two cases.

A. C is irreducible. In this case ker D(; g)F = ker £c = {0} and the assertion P2 follows from the
implicit function theorem.

B. C is reducible, C = (0, A). Denote by h the length of the shortest non-zero vector in the lattice
H'(M,4riZ). Now fix W small enough so that |[iafs < 2 for all (v, @ ia) € W.
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Suppose (fyj,@[)j @1ia;) € W (j =1,2) are such that
F(y1,91 @ iar) = F(v2, 92 ® ia)
and if we set v = v2/v1 we deduce
1 = yiby and iday — ias = —2dv/7.
The left-hand side of the second equality is co-closed while the right-hand side is closed. Thus,

the right hand side represents a harmonic form, more precisely, an element in H'(M, 47iZ). Since

[[id, — iaz|| < % we conclude that dy/y = 0 so that ia; = iao and there exists t € R such that

v = €', that is, 75 = e'’y;. The lemma is proved. B

Let us now prove (iv). Fix Wy as in the statement of the lemma. The G3-invariant open set
G3 - Wy can be written as a product G2 x Uy where Uy is a Stab(C)-invariant neighborhood of 0 in
Sc. Denote by A the L?-length of the shortest nonzero vector in the lattice H! (M, 47iZ).

Now pick V,. C Uy such that for all 1/) @ ia € V,. we have

[all22 + [[dll22 <7 < 5. (2.2.14)

Clearly F(G3 x V;.) is an open set because it coincides with G2 - F(V,.), which is open. We will show
that if r is sufficiently small the fibers of

F . SZ’ xV, — Cg
are Stab(C)-orbits. Consider (¢); @ ia;) € V;., j = 1,2, and v € G5*2 such that
F(y, v @ 1) = F(1, 9z @ iaig),
This means _ _
U+t =y +¢1) and i =iay — 2dy/y.
Denote by w the harmonic part of the closed form dv/7v, so that
dy/y =w+idf, feL¥(M).

Then
2

P> liaa — a3 = 4w + 43
From the definition of / we deduce that w = 0, so that v = e/ and
Go = a1 — 2df. (2.2.15)
The conditions £&(¢); @ ia;) = 0 imply
2d*aj + Im (i, ;) = 0.

If C is reducible (¢p = 0) then the above equality shows that f = const. and the condition (iv) is
proved. Suppose ¥ # 0 and set

vi= |9l
Denote by f the L2-orthogonal projection of f onto the kernel of Ajz, more precisely

= .t
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Since f is defined only mod 27Z we can assume

fel0,2m].
The equality (2.2.15) yields
1, .. .
ldfllz,2 < 5 (laxllz,2 + llazlz,2)-

Using Theorem 1.2.18 we deduce that there is a constant C' > 0, depending only on the geometry
of M, such that

If = flls2 < Cr.

Using the Sobolev embedding theorem we deduce
If = flloo < Cr (2.2.16)

where we use the same letter to denote the constants depending only on the geometric background.
On the other hand, from the equality (1 — eif)y = elf4); — )5 we deduce

(2.2.14) L . o
Cr > /M |e‘fw1 — 1/}2|dvg = /M (1 - e‘f)z/)|dvg = /M |e_‘fz/J — e‘(f_f)z/J|dvg
> [ = exp(=i)]- ldu, — [ (1= expli(f = ) vlde,

M M
— 11— exp(~if)| /M [ldu, — /M (1= exp(i(f — /) ) - ldv,

(2.2.16) .
> |1 —exp(—if)lv — Crv

so that o
1 —exp(—if)] < (2"
v
We conclude that
(C+v)r

1fll3,2 <
Suppose we fix r at the very beginning such that (elf, Y ® ia) € Wy as soon as

C+v)r . ..
2 s EE il + i

11

22 <1

This means . '
(171/)1 @ial)v (elfva@iaQ) €W
and ) )
F(L 4 @ ian) = F(e', b @ ian).
Then Lemma 2.2.8 (with ¢ # 0) implies that ¢/ = 1. Proposition 2.2.7 is proved. W

Consider C = (¢, A) € C2 and a neighborhood of 0 € Sc as in Proposition 2.2.7. Then the map
U — (BEF, 6)41) given by .
¥ &ia = Ocy (g ia)
is continuous, maps open sets to open sets and its fibers are the orbits of the Stab(C)-action. Hence
it induces a homeomorphism ® of U/Stab(C) onto a neighborhood of Oc in BE*1.
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Exercise 2.2.3. Show that ® is a bi-Lipschitzian map, i.e. there exists C' > 0 such that
6”(1/}1 —2) @ (a1 — a2)||k+1,2 < 01 (P(Yr B id), P(12 B i) )
< C||(1 — 2) & (a1 — 42)les1.25
Vih; @ ia; € U/Stab(C).

From Proposition 2.2.7 we deduce the following important consequence. For any C € C2 we
denote by [C] the image of C in BX+1L.

Corollary 2.2.9. The topological space (ij#r,dkﬂ), k > 2, has a natural structure of smooth
k+1

o,irT

manifold. For every irreducible C € C2, the tangent space to B at [C] can be naturally identified

with Sc.

Now fix the perturbation parameter n € L™?(A*T*M), m = max(4, k) and an n-monopole
C = (¢, A). Modulo a gauge change, we can assume C € €3 so that C is at least twice continuously
differentiable. According to Proposition 2.2.7, to study the structure of a neighborhood of [C] €
IME+L(g,n) it suffices to understand the structure of a neighborhood of C in ZX*1(g,7) N Sc. First,
observe that the techniques in the proof of Proposition 2.1.11 imply the following result.

Exercise 2.2.4. Any C' € Sc N 2F*1(g,n) has better regularity than LF¥*%2 namely, C' € Cm+1.

We have to understand the L*+1:2-small solutions C := (¢),ia) of the equation

. , (2.2.17)

SW,(C+C) = 0
geC = 0

We follow the well traveled path of perturbation theory and linearize this equation

{DCSWW(C) =0
£c(C) = 0

At this point it helps to be more explicit. For ¢, € L*¥*12(ST) define

o d (2.14) - .
q(,9) 1:%|t=0 g +t) "= Yy +yY @Y —Re, ).
More precisely, ¢(v, 1/1) is the traceless, selfadjoint endomorphism of S, given by

b= G(1h,1)d = (¢, V)0 + (¢, )Y) — (Re (), ).

We will identify it with a purely imaginary 2-form via the isomorphism induced by the Clifford
multiplication. Then

Doy SW, (0 0) = (D00 + yeliae) o ((atia - a0 ).
Thus, the linearized equations (2.2.17) define a bounded linear operator
T : LF2(ST @iT* M) — LF(S; @ iALT*M @ iA°T* M)
described by

01z P40 + Se(ia)y
{ ] =S | dtia—Lq(v,y) |- (2.2.18)

—2id*a — iIm(x, ¥)

Observe that 7c = SW + £¢&, where the underline signifies linearization.

ia
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Lemma 2.2.10. The operator Ic is Fredholm. Its real index is

(o) = 7(& ~ (2x +37))

where x denotes the Euler characteristic of M, T := bl — by denotes the signature of M and

2 .
c, .—/ Co N Cqy.
M

Proof Set Cy := (0, Ag) where Ay is the fixed, smooth reference connection on det(c). The Sobolev
embedding theorem shows that the difference 7c — 7c, is a compact operator L*+1:2 — L*:2 because
it is a zeroth order p.d.o. Thus 7¢ is Fredholm if and only if 7¢, is Fredholm and both operators
have the same index. On the other hand,

s @A[ﬂb
7c, [ ‘il.ﬁ } = | d*ia
“ —2id*a

which shows that 7¢, is defined by the direct sum of two first order elliptic operators with smooth
coefficients

Da, 1 T(S5) = T(S;)
and
dt —2d* 110 (M) — i(Q3 & Q°)(M).

Thus 7c, is Fredholm. We deduce
indr7c = indefCo = 2indc@Ao + iIldR(dJr — Qd*)

(use the Atiyah-Singer index theorem)

—_

l b — ) = L2 AT 2(by +by) — 3(by — by)

4 4

N

(x = 2(bo — by) + b2)

1 1
= Z(ci — (4bg — 4by + 2by + 37) ) = Z(ci —(2x+37)). 1

It is reasonable to hope we could extract information about the local structure of 9%+ (g, 1)
near [C] using the implicit function theorem. This would require the surjectivity of 7¢ and would
imply that near [C] the moduli space is a smooth manifold of dimension d(c). Moreover, in this
case, the tangent space at [C] could be identified with ker Zc.

It is thus natural to investigate the surjectivity of 7¢ and, in case this surjectivity is not there
for us, to see how much of the implicit function argument we can salvage.

Consider the following sequence of operators:

sSW
(Kc): 0—TyGE+2 25 Tec2 == Yk — 0.
Because SW,, is §52-equivariant and SW,)(C) = 0 we deduce
d itf
% |t:O SWn(e . C) = 07

that is, SW, o £¢ = 0. Thus the sequence (Kc¢) is a cochain complex called the deformation complex
at C. Its cohomology will be denoted by H.
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Lemma 2.2.11. The deformation complex K¢ is Fredholm, that is, the co-boundary maps have
closed ranges and the cohomology spaces are finite dimensional. Moreover

HE = ker £¢, H¢ = ker Tc

and
coker 7c = H @ HE.

In particular,
d(o) = indr(7c) = —xr(HE).

Proof Clearly HQ = ker £c. Moreover, Hodge theory shows that the range of £¢ is closed in
TcC2. We now regard £¢ as an unbounded operator L?(—) — L?(—) with domain LY?(iAYT*M).
Its range is closed in TcC% = L*(S, & iAT* M) and we have an L?-orthogonal decomposition

L*(Sy @ iA'T* M) = Range (£¢) @ ker £¢.
Thus we have the isomorphism

HE = {C € ker £¢; SWn(C) = 0} = ker 7c.

Since 7c is Fredholm it maps TcC2 onto a closed subspace of Y*. Since Range(7¢c) = Range(SW, ) ©®
Range(£¢) we deduce that the range of SW, is L¥2_closed. Moreover

coker 7c = coker SW, & cokerf¢ = HE @ ker L.

This completes the proof of the lemma. W

Corollary 2.2.12. 7Tc is surjective if and only if HE = HE = 0. In particular, Tc can be surjective
only if C is irreducible (<= HE =0).

Definition 2.2.13. An n-monopole C is said to be regular if HZ = 0.

Exercise 2.2.5. Suppose C = (0, 4) is a reducible n-monopole. Then C is regular iff the operator
D4 LFFL2(ST) — LF2(S;) is surjective and b3 = 0.

Corollary 2.2.14. If C € C2 is a reqular, irreducible n-monopole then a small neighborhood of [C]
in MEFL(g,m) can be given the structure of a smooth manifold of dimension d(c). The tangent space
at [C] is naturally isomorphic to H.

Definition 2.2.15. The integer d(o) is called the virtual dimension of the moduli space M5+ (g, 7).

We can provide some information about the structure of 9%+ (g, ) near irregular solutions as
well. For simplicity set U := Hé and denote by V the L?-orthogonal complement of U in Sc. We
need to understand the small solutions C of the equation

SW,(C+C) =0, Ce Sc. (2.2.19)

Denote by P the L?-orthogonal projection onto U and by Q the'LQ—orthogonal projection onto the
L?-closure of Range(SW, ). We rewrite the equation SW, (C+ C) =0 as

{ QSW,(C+C) = 0

(1-Q)SW,(C+C) = 0
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Since QSW,, : Sc — Range (SW,) is onto and SW,, is Stab(C)-equivariant we deduce from
the implicit function theorem that there exists a small Stab(C)-invariant neighborhood A of 0 in
U = kerSW, |s. and a Stab(C)-equivariant smooth map

N>V
so that the set
{C; QSW,(C+C) =0, [|Cllpsrz is smau}
can be described as the graph of f. More precisely, this means that
QSW, (C+udv)=0, ueN, veV,

if and only if v = f(u). The small solutions of (2.2.19) can be all obtained from the finite-dimensional
equation

k(u) =0, uel,
where x : V' — (Range SW, )+ = HE,

— (1-Q)SW,(C+ud f(u)).

The map k is clearly Stab(C)-equivariant. It is called the Kuranishi map at C. If C is regular then
the Kuranishi map is identically zero. We have thus proved the following result.

Proposition 2.2.16. There exist a small Stab(C)-invariant neighborhood N of 0 € H¢ and a
Stab(C)-equivariant smooth map

kN — 'H%
such that a neighborhood of C on METL(g,n) is homeomorphic to the quotient

x~1(0)/Stab(C).

For more information on how to piece these local descriptions to a global picture we refer to the
nice discussion in [29, Sec. 4.2.5] concerning the similar problem for Yang-Mills equations.

82.2.3 Generic smoothness
The considerations in the previous subsection lead naturally to the following question:

Is it possible to choose the perturbation parameter n € L™? (m = max(4,k)) so that for any
n-monopole C we have HE = HE =07

If this question had an affirmative answer then for such n’s the moduli space MM**+1(g,n) would
be a compact smooth manifold of dimension d(o).

The vanishing of H is easier to understand because H¢ = 0 if and only if C is reducible. To
formulate our next result we need to introduce some notation. For every form o on M we denote
by [a] its harmonic part in its Hodge decomposition.

Proposition 2.2.17. The following conditions are equivalent.
(i) All n-monopoles are irreducible.

(ii) 2o )™ # [n]*.
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Proof (ii) = (i) We argue by contradiction. Suppose there exists a reducible monopole C = (0, 4).
Then Ff +in* = 0 so that 27[c,]™ = i[F4]* = [n]*. This contradicts (ii).

(i) = (ii) We argue again by contradiction. Suppose 27[c,|" = [n]*. Since 7 is closed we can write

n=[n+da, ac L™2(ATM).

Hence 1 1
7 = I + (o + #da) = [1]* + L (doc— wdx (x0))
1
="+ i(da +d* (xa)).
Similarly we have Fq = [Fa] + dB where [F4] = —27i[c,] so that
1
Fi = =2mieo]" + S (dB + d" ().
Since 27[c,]t = [n]T we deduce [Fa]T = —i[n]*. Now pick a connection A € A¥*! such that

Fy = [F4] —ida. Then FJ +int = 0 so that (0, 4) is a reducible n-monopole. B

Define
NE=NE, = {ne LR W M) dy =0, o] # 2nfes]* }.

Observe that N* = ) if b = 0 while if b] > 0, N'¥ is an open set in the space ker d N L*¥2(A2T* M).
We deduce the following consequence.

Corollary 2.2.18. (a) If b = 0 then for any perturbation parameter n € kerd N L*2(A2T*M)
there exist reducible n-monopoles.
(b) If b3 > 0 then N* # 0 and for any n € N there are no reducible n-monopoles.

In the sequel, if b2+ > 0 the perturbation parameter will be assumed to belong to some A* where
k > 4. The original question is then equivalent to the following

Fiz k > 4. Can we find n € N¥ such that HZ = 0 for any n-monopole C?

This is where the genericity results come in. We will need to use them in a context slightly more
general that the one in §1.5.2. We begin by presenting this context.
Note first that it suffices to look at the restriction of SW,, to ek*l  The map

o,irr”

SW, ez, —Yy*

T,irT
can be regarded as a section of the trivial vector bundle

Ut Yyt ez, — e

a,irr oirr:

This bundle is equipped with a G¥*2-action covering the G¥*2-action on the base. More precisely,
for every v € G¥*2 and (y,C) € U* we have

7 (Y, 0O =(vy,7 0.
Observe that SW,, is a 9(’;*2—equivariant section of this bundle. Thus SW, descends to a section

[SW, ]| of
[u]k = uk/9k+2 N Bk:+1

oarr:”

On the other hand, the trivial bundle is equipped with a G**2-invariant connection V so that

VeSW, Jc= (SW,)(C), VC e €2 C e Tce?

o,irr o,irr*
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Now observe that for every v € 9§+2 we have

7S¢ = Syc 2T B!

o,arT

where v, denotes the differential of v : €2, = — @2

oarT oarT”
Bk+1

o.irr and its action can

The above observation show that V descends to a connection V on T

be read off from the action of V on Sc. For every C € TcC2 we will denote by [C] the L2-orthogonal
projection onto the L2-closure of ker £c. A priori [C] is only an L?-object but in fact we have the
following result.

Exercise 2.2.6. Prove that if C € Tc€2 then [C] € SE'  that is,
[C] € LF12(ST @ iAT* M),

The moduli space M~E*1(g,n) is precisely the zero set of the section [SW,,] of [U]*. We leave it
to the reader to prove the following fact.

Exercise 2.2.7. (a) Suppose that for all [C] € [SW,]7*(0) the adjunction map

ac : TigByL, = Vi, [Cl = Vig[SW,]

o,arT

is surjective. Then [SW,]7*(0) is a smooth submanifold of B!

(b) Let SW, (C) = 0. Then the adjunction map ac is surjectfve if and only if the map DcSW,, :
TcC2 — Yk is surjective, i.e. HZ = 0.

Definition 2.2.19. The parameter n € N is said to be good if the adjunction map of every
n-monopole is surjective.

We can rephrase the initial question as follows:

Can we find good parameters?

We follow the approach sketched in §1.5.2. In that case the bundle [U]* was trivial. We can

regard the family of sections [SW,] as a section of the bundle

E:[WF x NF — BFFL S NEL(Cn) — SW,(C).

oirr

The connection V on [U]* induces by pullback a connection on € which we continue to denote by
V. Set

z = {(Clm) € BEEL, x NE; SW,(C) =0},
The space Z plays the same role as the “master space” introduced in §1.5.2. We will prove two
things.

Fact 1 For all ([C],n) € Z the map

Ty BEL x NE > ([C, 1) — Vg [SWyl + Vi [SWy] € Ecp,n)

o,ArT
is surjective, so that Z is a smooth Banach manifold.

Fact 2 The natural projection
T Z = NF, (Cn) =

is a Fredholm map with index d(o).

As shown in Lemma 1.5.18, Fact 2 is implied by Fact 1. In particular, the regular values of «
are all good parameters. Thus we only need to prove Fact 1.
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Proof of Fact 1 Let ([C],n) € Z. Fix a representative C = (¢, A) € €2 of C. Notice that since
SW,, is GkE+2_equivariant we have

SW, (C) = SW, ([C]) = Vi SWillig
because the vector C — [C] is tangent to the orbit of G¥+2 through C. Thus, to establish Fact 1 it
suffices to show that the map
S TicpC2 x N¥ 5 (C,5) = DcSW,,(C) + D,SW, (1)

is onto. More explicitly,

M .. 87
’ dria+int — 34, ) iA2T* M

Since the linear map DcSW,, : T cC2 — Y* has closed range we deduce immediately that S has closed
range as well. To establish the surjectivity it suffices to show that if ¢ @ iw € Y* is L?-orthogonal
to the range of S then ¢ =0 and w = 0. Consider such a (¢ @ iw). This means

/ @D A+ %c(id)z/), B)dv, +/ Re(dtia +in™ — %q(w,z/}), iw)dv, =0 (2.2.20)
M M

for all ¢ € L*12(S}), a € L*V2(A'T*M) and 7 € kerd N L*2(A2T*M). Set @ = 0 and ¢ = 0 in
the above equation. We conclude that

/ (T, w)dv, =0, Vi € kerd N LM2(A*T*M).
M

On the other hand, there exists 1 € kerd N L¥2(A2T*M) such that n* = w (as in the proof of
Proposition 2.2.17). This shows w = 0. Now set ¢ = 0 in (2.2.20) so that

0= / D, D), = / (W D B)du,, Vo € IHI2(SE).
M M

This implies
D5p = 0. (2.2.21)
We can now conclude from (2.2.20) that

/ (c(ia)h, p)dv, = 0, Va € LFTH2(AYT*M). (2.2.22)
M

Above, by density, we can assume the equality holds for all L?-forms &. Fix a point mg € M
such that 1 (mg) # 0. Since 9 is at least C? we deduce that 1 stays away from zero on an entire
neighborhood of mg. Using the explicit description of the Clifford multiplication given in §1.3.1 we
deduce that the map

ATEM > av c(a)p(mg) €S |m

is a bijection for any m in a small neighborhood U of mg. We can use this map to produce a
continuous 1-form & supported on U such that

c(ia(m))p(m) = $(m), ¥ € U.
Using this equality in (2.2.22) we deduce

| retma, = o.

Thus ¢ = 0 on U and by unique continuation (see [16]) we deduce ¢ =0 on M. Fact 1 is proved.

Using the genericity theorem, Theorem 1.5.19, we now obtain the following important result.
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Theorem 2.2.20. Suppose b;‘ >0 and fir k > 4.

(a) If d(o) < O then MEFL(g,n) = O for generic .

(b) If d(c) > 0 then the set of good parameters n € N'* is generic. For such a parameter the moduli
space MEHL(g,m) is either a compact, smooth manifold of dimension d(c) or it is empty.

The last result raises a natural question. Can the moduli spaces be empty if their virtual
dimension is > 07 We will show that this is a frequent occurrence and in fact it happens for most
spin® structures except possibly finitely many of them.

Proposition 2.2.21. Fix k > 4 and Cy > 0. Then there exists a finite set F' C Spin(M),
depending on the metric g and the constant Cy, such that for any o € Spin°(M) \ F and any
perturbation parameter n such that

[nllx,2 < Co

the moduli space MET1(g,n) is empty.

Proof Suppose o € Spin®(M) is such that d(o) > 0 and 7 is a perturbation parameter such that
[Inllk,2 < Co. In the sequel we will use the same letter C' to denote constants depending only on Cy
and the geometry of M. The condition d(¢) > 0 implies

2 > 2x +37. (2.2.23)
If C = (¢, A) € €2 is an 7- monopole then using the Key Estimate in Lemma 2.2.3 we deduce
[¥]lec < C. (2.2.24)

Since C is a minimum of the energy functional &, we deduce from Proposition 2.1.4 that

) 5 o (2:2.23)
€y (v, A) = 4|ln"|l3 —4x%c; < C.

Using the description of &, we deduce

o 1 ) (2.2.24)
IFa+ 2 B0 [ Is-loPds, < C.

This implies
[[Fall2 <C

where we recall that [a] denotes the harmonic part of the form «. Thus the cohomology class ¢,
sits in a ball of radius C > 0 and in the lattice H?(M, 27iZ). Thus ¢, belongs to a finite set. Since
only finitely many spin® structures o determine the same class ¢, € H?(M, 27wiZ) the proposition is
proved. W

The bijection 9 introduced in (2.1.3) interacts nicely with the additional structures on the moduli
spaces. Observe that if C € €, is a (o, n)-monopole then we have an induced isomorphism between
deformation complexes

2c SW

0 Tlga TCGO' - yo 0
—id 9 Bk (2.2.25)
0 T1G5 T5.c\Ca - 0
19 a0 () sw_, K

In particular, this proves the following.
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Proposition 2.2.22. Ifn is a good parameter for the spin® structure then —n is a good parameter
for the spin® structure & and the map

9 My(g,m) — M5(g, —n)

is a diffeomorphism.

§2.2.4 Orientability

Suppose now that b > 0 and n € N¥, k > 4, is a good parameter. For brevity, when no confusion
is possible, we will write 9, (n) instead of ME+1(n), etc. Then, if nonempty, the moduli space
M, (n) is a compact smooth manifold of dimension d(o). It is very natural to inquire whether it is
orientable.

To understand what such a problem entails, observe that the family of finite-dimensional vector
spaces

ker T := {ker‘Tc; Ce Za(n)}

defines a smooth vector bundle over the infinite-dimensional Banach manifold Z,(n) and more pre-
cisely, it is the pullback via the natural projection 7 : Z,(n) — 9, (n) of the tangent bundle TN, (n)
. If we could prove that ker T admits an orientation preserved by the action of G, then the orientabil-
ity of M, (n) would be clear. Note first that the bundle det ker T can be formally identified with the
determinant line bundle det T because the elliptic operators T¢ are surjective for C € Z,(n). This
is only a formal identification because the base Z,(n) is an infinite-dimensional manifold and deter-
minant line bundles were defined only in a compact context. Fortunately Remark 1.5.10 provides a
way out of this trouble.

Consider the space My, of smooth maps
2kt () — LMY2(Hom (ST @ iT*M |, S; @ iA2T*M @ iA°T*M)).
We leave it to the reader to verify the following fact.
Lemma 2.2.23. Fach ® = (Oc) € My, defines a morphism of Hilbert vector bundles
VE — Wk
where V¥ denotes the Hilbert vector bundle

(LE12(5F @ in T M) x 251 = 2EH (1)) = TebH |,

while W* denotes the vector bundle
(¥* @ LM2(GA°T*M)) x Zg* (n) — 25+ ().
Moreover, for every C € Zk+1(n) the linear operator
P VE - WE
18 compact.

The group G52 acts on W¥, trivially on the factor L*2(iA°T*M). We denote by M, the
subspace of My, consisting of §,-equivariant maps. For example the map P = Pc, C = (¢, 4),
defined by

. %c(id)w.
[ v } o | i) (2.2.26)
—i Im<w7 1/)>

1a
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belongs to M.

The bundles V* and W* descend to Hilbert vector bundles over 9, (n) which we denote by [V]*
and [W]*. The family T¢ descends to a morphism Tjc] of these bundles over 9, (n). Moreover, for
every [C] € M, (n) the induced linear operator Tic : [V]f“c — [W]kc] is Fredholm. We can now use
Remark 1.5.10 to deduce that there is a determinant line Lundle et T[] satisfying

det T, (n) = det(‘J'[q).

To assign an orientation to M, (n) (if any) we have to describe a trivialization of det(Tc)).
Now define T2 := Tc — Pc. More precisely

. D 41
T2 { . ] = | dtia
1 —2id*a

Because of equivariance we deduce that T2 descends to a morphism from [V]* — [W]*. Now set
‘J'[tc] = ‘J’FC] +tP(c), t € [0,1]. Note that for all [C] € M, (n) and ¢ € [0,1] the operator

T[tq : qu - [W]Fq
is Fredholm and ‘J'[lq = T1¢}- The morphism (‘TPC]) can be written as a direct sum

(P.) @ (dF —2d7).

The first summand is complex and thus it is equipped with a natural orientation. The second
summand is independent of [C] € M, (n) and thus an orientation is determined by fixing orientations
on ker(d™ — 2d*) and coker (dt — 2d*). Observe that

ker(d™ — 2d*) = H' (M, g)

and
coker(d™ —2d*) 2 H? (M, g) ® H°(M, g).

Observe that H°(M, g) is canonically isomorphic to R. Thus, we can fix an orientation on det(d* —
2d*) by fixing orientations on H2(M,R), H'(M,R) and then agreeing to equip coker (d* — 2d*)
with the orientation induced by ordered direct sum decomposition

coker (d* — 2d*) 2 H*(M) ® H? (M).

With these conventions in place, we obtain an orientation on det(‘J'[Oq) and, via the homotopy T%,
an orientation on T9,(n).

Definition 2.2.24. If M is a compact, closed, oriented smooth 4-manifold then a homology orien-
tation on M is a choice of orientations on H*(M,R) & H3 (M, R).

We have thus proved the following result.

Proposition 2.2.25. There is a canonical procedure to assign to each homology orientation € on
M an orientation o = o(g) on My (n).

Let us trace the effect of the involution ¥ on the orientations. For each C = (¢, A) € M, it
induces maps
ker T2 — ker ‘Tg(c) and coker J¢ — coker 719(0'
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These act as  complex  conjugation on  kerd, and  coker®,  while on
ker(d™ — 2d*) and coker(dt — 2d*) they act as multiplication by (—1). Thus the induced map
det T2 — det 'J'g(c) changes the orientation by a factor (—1)¥7,

Ve = indc®, + ind(d™ — 2d*) = d, — indcD,.
We have thus proved the following result.

Proposition 2.2.26. The involution U induces an orientation preserving diffeomorphism

D: My — (—1)""M;.

2.3 The structure of the Seiberg-Witten invariants

82.3.1 The universal line bundle

We have seen that if b > 0 then, for generic 7 € N*, the moduli space M, (n) is a smooth, compact,
oriented submanifold of B, ;. of dimension d(c). The Banach manifold B, ;- is cohomologically
nontrivial. More precisely we have the following result.

Proposition 2.3.1. There exists an isomorphism of Z-graded commutative rings with 1
H*(By v, Z) = Z[u] & A*H* (M, Z)
where degu := 2.

Proof Observe that C, ;- is a contractible space since it is the complement of an affine subspace
of infinite codimension. Thus B, ;» is homotopically equivalent to the classifying space of the gauge
group §G,. Its topology is described in [4, Sect. 2]. More precisely BS, is homotopically equivalent
to one connected component of the space Map (M, BS'). Since

BS' = CP* = K(Z,2),

we deduce from a result of R. Thom that we have the homotopy equivalence

2
Map(M, K (Z,2)) = [ [ K(H9(M,Z);2 — q)
q=0

~ H?(M,Z) x K(Z°,1) x K(Z,2).

The components of this space are parameterized by the first Chern class ¢; € H2(M,Z) and are all
homotopic to
K(Z" 1) x K(Z,2)

The proposition is now obvious. l

We will construct several integral cohomology classes on B, ;r» which upon integration along the
moduli space M, (n) will lead to the Seiberg-Witten invariants.
First, recall that if X and Y are two metric spaces there is a natural operation

/: HY(X xY,Z) x H,(X,Z) — H" *(Y,Z), (c,a) a/c
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called the slant product, defined dually by the equality
(a/e,d) = {a,e x d), Ya € H (X xY,Z), (¢,d) € H.(X,Z) x H.(Y,Z).

(Our definition differs by a sign, (—1)*("=*) to be precise, from the definition in [29, Chap. 5] or
[126, Chap. 6]. We prefer this choice since it agrees with the “fiber-first” convention in [105, §3.4.5]
which has certain mnemonic advantages.)

Now consider the trivial line bundle C over M X Cy ;. It is equipped with a natural free G,
action. More precisely, for any (m,C) € M X Cyrr an element v € G, defines a linear map

1

Y :Clmce)y = Clmnecyy 2 7(m) ™ 2.

This G,-equivariant line bundle defines a complex line bundle on the quotient M x By ;r.. We call
this the universal Seiberg- Witten bundle and we denote it by U,.
We can now use the slant product to define the p-map

wi Hy(M % By ivr, Z) — H* 1 (Byipr, Z), a+ p(a) = c1(U,)/a.

Set Q, == u(1) € H*(By.irr)-
There are more intuitive ways of viewing these cohomology classes.

1st interpretation Fix mg € M. Then U, defines by restriction a line bundle U, (mg) over
{mo} X By irr- This bundle can be alternatively described as follows.
Consider the short exact sequence of Abelian groups

1< Go(mg) — Gy 5° S' -1

where ev,,, is the evaluation map
So 27— y(mo) € S

and G, (mg) is the kernel of ev,,,. Then the quotient

Bo,irr (mO) = Ba,irr/go(mo)

is equipped with a residual free S* 2 G, /G, (mg)-action so that the projection Bmi”(mo) — Boirr
defines a principal S!-bundle. The bundle U, (mg) is associated to this principal bundle via the
tautological representation S — Aut(C). Then €, is the first Chern class of U, (mq).

2nd interpretation The second interpretation adopts a dual point of view. In other words,
we want to regard c¢;(U,) as the “Poincaré dual” of the zero locus of a generic section of U,. The
Poincaré duality in this infinite-dimensional context should be understood as follows. A codimension
2 submanifold Z of M x B, ;r will be called a Poincaré dual of ¢1 (U, ) if, for every finite-dimensional,
compact, oriented smooth submanifold X — M x B, ;- which intersects Z transversally, the restric-
tion ¢1 (U, ) | x is the Poincaré dual of Y := XNZ with respect to the duality on the finite-dimensional
manifold X.

Clearly, to produce Poincaré duals to ¢;(U,) is suffices to indicate a procedure for constructing
large quantities of sections of U,. The zero loci of these sections when smooth will be the sought
for Poincaré duals.

To construct sections of U, it suffices to produce G,-equivariant sections of

Q — M x Co’,irr~
These will be smooth functions s : M x Cs,irr — C such that

s(m,v-C) = 'y(m)_1 -s(m,C), Vy € G,, (m,C) € M X Coirr.



112 Liviu I. Nicolaescu

There exists a very cheap way of constructing such functions. For every ¢ € C™(S,) define s, :
M x Ca,ir'r’ - (C by
(m; 4, A) = (p(m), ¥ (m))m.

It clearly satisfies the required equivariance properties since we agreed that a Hermitian metric will
always be conjugate linear in the second variable.

Suppose there exists my € M such that sqjl(O) intersects a moduli space {mg} x M, ,, transver-
sally along a codimension-two submanifold Yy ,,,. We now see that the restriction of Q, to the
moduli space is the Poincaré dual of Yy .

Exercise 2.3.1. Suppose by > 0 and fix an integer & > 5. Show that for a generic choice of m € M,
¢ € LFt12(St) and n € N, the set

Yom =s,"(0) ML+ ()
is either empty or a submanifold of dimension d(o) — 2.
The involution ¥ : C, — C5 reverses the S'-action and we thus deduce

0*Qs = —0Q,. (2.3.1)

§2.3.2 The case by > 1

Suppose now that (M, g) is a compact, oriented Riemannian 4-manifold such that b3 > 1. A spin®
structure o is said to be feasible if d(o) > 0. If o is not feasible we define the Seiberg-Witten invariant
of the pair (M, o) by the equality

swys(o) :=0.

If o is feasible then the definition of this invariant requires additional work and we need to distinguish
two cases.

Case 1 d(0) = 0. We want to mention here that this condition already imposes restrictions on the
topological type of M. More precisely, this implies that the equation 2? = 2y + 37 has a solution
x € H?*(M,Z) and, according to [55], this implies that the tangent bundle of M can be equipped with
an almost complex structure. In fact, all the spin® structures ¢ such that d(o) = 0 are the spin®-
structures determined by almost complex structures on T'M. With this topological aside behind us,
let us choose a generic n € N, so that M, (g,n) is a finite collection of irreducible solutions. We will
show that a choice of orientations on H'(M) and H2 (M) canonically determines a map

€: My(g,m) — {£1}.

Here are the details.

For [C] = [(v, A)] € M, (g,n) the operator 7¢ is Fredholm, of index zero, with trivial kernel. Thus
det 7¢ is equipped with a canonical orientation O.q,(C). Now, as in Sec. 2.2.4, set 70 := Tc — Pc.
Then

ker 70 2 ker® , & H' (M) and coker 70 = @% @ H (M) @ HY(M).

Since ker® , and ker @7 are complex spaces they are equipped with natural orientations. The space
H(M) is canonically isomorphic to R. Once we have fized orientations on H* (M) and H% (M) we
deduce that det TCO is equipped with a natural orientation.

We want to remind the reader (see §2.2.4) that the space H3 (M) ® H°(M) is oriented by the
ordered direct sum
H°(M) & H? (M).

We will consistently use this ordering throughout the book.
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We now transport this orientation on det 7° using the deformation
7—(? = ,TC +5PC7 s € [07 1];

to an orientation 0;,4(C) on det Zc. The two orientations O.q,(C) and O;,4(C) differ by a sign +1
which we denote by €(C). Observe that in the notation of §1.5.1 we have

e(C) = e(Tc, Ic + sP, T0). (2.3.2)

Now define
SWM(Ja g, 77) = Z E(C)

C
Remark 2.3.2. We want to point out an equivalent definition of ¢(C). First observe that
b Dat
70 [ . } — dTia
—2id*a

where C = (1, A) and

—ilm(y, ¢)

Both 70 and Pc are defined irrespective of whether C is a monopole or not. If we now pick an
arbitrary configuration C’ = (¢, A’) then the orientation transport along the affine path

. Le(ia)y
:| . 2

(1—-t)78 + 172

is always positive because the only fashion in which the kernels of these operators change is through
the path of Dirac operators @ ; _;) 4s444 which are complex and thus with no effect on the orientation
issue. Thus we can define ¢(C) as the orientation transport along an arbitrary path connecting an
operator ’TCO, to the operator 7c.

Case 2 d(o) > 0. Again we choose a generic n € N, so that 9M,(g,n) is a smooth, compact
orientable manifold of dimension d(c). We can fix an orientation on the moduli space by choosing
orientations on H2 (M) and H'(M). Now define

swar(0,9,m) = <(1 -Q2,)7 [ima(g,n)]>
where (e, o) denotes the Kronecker pairing between cohomology and homology while (1 — ,)7!
stands for the formal series
1=Q) ' =14+Q, +Q2 4.

We see that swy (o, g,m) = 0 if d(o) is odd while if d(c) = 2k then

SWM(Uvgan) :/ chi
Mo (g,m)

In the remainder of this subsection we will show that the quantity swys(o,g,7n) is in fact in-
dependent of the additional data g and 7 provided that b;(M ) > 1. Ultimately we will have to
distinguish between the two cases d(o) = 0 and d(c) > 0 but we will begin by describing a general
set-up, which applies to both situations.
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Figure 2.1: A 2-dimensional cobordism

Suppose we have two sets of parameters (g;,7;), ¢ = 0,1, which are good with respect to the
fixed spin® structure o. Choose a smooth path of metrics g(s) on M such that

g(s)=g; for [t—i|<h, i=0,1,
where 7 is a fixed very small number. Fix the integer £ > 4. We can organize the family
{Nf,g(s)v s € [07 1]}

as a bundle

N —[0,1]

whose fibers are connected when b;“ > 1. In particular, the total space N is connected. A smooth
path s — 1y € Nfg(s) can be viewed as a smooth section of the bundle /. Given such a section we
get a family of moduli spaces

M = Mo (g(s),ms)

which can be thought of as defining a deformation of 9, (go,n0) to Ms(g1,71). Clearly, some of
the spaces s = M, (g(s),n(s)) may not be smooth but the whole family may be organized as a
smooth manifold with boundary 9t UM (see Figure 2.1). More rigorously, we hope the family 91
forms a cobordism from 9, to MWy inside B;... We will show that we can choose the path n, wisely
so that the family M does indeed form a cobordism. In fact, this cobordism will be oriented and we
will have an orientation preserving diffeomorphism

oM = M, U —M,.

The existence of such a good path will be achieved using again the Sard-Smale transversality theorem.
First we need to define an appropriate set of paths. We think of 75 as an object over I x M. More
precisely it will be a L*T12- section of W*AiT*M. Since k + 1 > 5 we deduce from the Sobolev
embedding theorem that such a section will be of class at least C? so that its restrictions 7, to
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{s} x M are well defined and C? (in fact they are at least L*2 on M according to the trace theorems
of [79]). We will denote by P the subspace of such objects which additionally satisfy

ns =m; for |s—i| <h, i=0,1,

and
Ns € Ngk(s)’cﬂ vVt € [0, ].]

P is a Banach manifold modeled by the Banach space of LF+12-sections of 7*A%T*M which are
identically zero on the closed set ([0,/] U [1 —£,1]) x M.

Consider now the new configuration space éfﬁ“ :=[0,1] x Ck¥*+1. Each path 7j € P defines a new
map SW = SW; : C¥H1 — Yk given by

SW(s,C) = SWy(y).i(5) ().

The gauge group continues to act on ég in an obvious fashion and the map SW is §,-equivariant.
The desired cobordism 2 can be alternatively described as

M=SW  (0)/S,.

The structure problem for M is very similar to that of 9t. It is in great measure determined by the
deformation complexes at configurations C = (s, C) satisfying SW(C) = 0. More explicitly, these
are

(Ke): 0—TiS, =, TeCo =y, -0 (2.3.3)

where the linearization SW is given by
. d .
SW(s5,C) = T lt=0 SW g(s+t3),i(s4t5) (C + 1C).

This deformation complex is Fredholm because for every (s,C) € M we have an obvious short exact
sequence of complexes B
0—Kc—Kisey—R—0

where the residual complex R is finite dimensional and has index 1. The space M is a smooth

manifold if H¢*"(K¢) = 0 for all C € 9. Since 7i(s) € Ny(s),0 we deduce H(Ksc) = H(Kc) =0
so we only need to worry about H?2. To deal with this issue we use the same approach as in §2.2.3,
based on the Sard-Smale transversality theorem.
Define _ o
Z .= {(ﬁ,Q €P xCpi SW;(C) = o}.

Again, it suffices to prove that the map
P xCy 2 (7,C) — SW;(C) € Y,
is a submersion at the points in Z. Then the induced map
7:2/Gy — P

will be Fredholm of index indR(l@(&c)) = indr(Kc) +1=d(o) + 1.
To establish the submersion condition we have to show that if

SW (s),i(s)(C) =0
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then the linear map

Tii.s.0) (P x I xCqp) 2 (7, 5,C) —
d , (2.3.4)
~ dt =0 SW9(5+t$),(ﬁ+tﬁ)(s+té)(C +1tC) € TvY,

is onto. Arguing exactly as in the proof of Fact 1 in §2.2.3 one can show that a stronger statement
is true, namely the map

Lo d .
Tiii,s,0)(P xCs) 2 (7,C) pr li=0 SW(a). (1) () (C + 1C) € ToYs (2.3.5)

is onto. Observe that (2.3.5) is obtained by setting § = 0 in (2.3.4).

Remark 2.3.3. The map in (2.3.5) has a major computational advantage over the map in (2.3.4).
More precisely, the map in (2.3.4) requires an explicit understanding of how a Dirac operator and the
Hodge operator vary with the metric. While these variations are known (see [18, 37]) their concrete
descriptions are by no means pleasant. By setting § = 0 we have eliminated this computational
nightmare and, remarkably, this restricted differential continues to be onto.

We conclude that for a generic choice of 7 € P the parameterized moduli space 95?,,(77) is a
smooth manifold with boundary

M, (7) = M, (90, 70) U My (g1,71)-

To study the orientability of this parameterized moduli space we need to understand the family of
~ — -1
Fredholm operators7, c), (s,C) € SW; (0) described by

T(S7C) (I X CU,g(s)) e (Sa C) = ,st,C) (Sa C)

=SW(s5,C) @ £2(C) € ToY, ® T1 G,
More explicitly, if C = (¢, A) and C= (1/1, ia) then

) @A,g(s)’l/} + %CQ(S) (la)w
S
T | & | = | dYeia— 34 @,d) |+
ia
—2id*s)a — 1 Tm (e, ) 5(s)
(2.3.6)
(% lt=0 D 4,9(s+6))¥ + %% lt=0 Cq(s+t)(id)

51 304 =0 *g(stt)) Fa + (5 li=o e+ (5 + 1)) — 2(& |10 qg(sst)) (1)
0

where a sub/superscript g(s) attached to an object signifies that object is constructed in terms of
the metric g(s). The second term in the right-hand side of the above formula can be computed quite
explicitly (see [18, 37]) but its exact expression is quite nasty. On the other hand, we will only use a
few facts about this term. First of all, observe that this term vanishes for |s —i| < f, i = 0,1, since
for such s the metric g(s) is independent of s. Second, this term involves no derivatives of ia and
1b so that, as far as Fredholm properties are concerned, it is irrelevant. In fact, we will deform it to
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zero by considering the family ’f(: ) 0 <7 <1, described by

@A,g(s)w

R %Cg(s) (ia)¢
bl = | dtewia | 4T , N+
i’(f}'l _.%Qg(s) (¢7 w)
—id*e() —1 Im<¢7w>g(s)
(% li=0 @A,g(s-&-t))w + %% lt=0 Cq(s+t)(id)
75 | 5(G hi=0 %g(s0) Fa + (5 =0 T2+ (s +1)) + 3(F l=0 do(s0)(¥) |- (2.3.7)

0

For s fixed, the operator 7’2 o) Testricted to the subspace $ = 0, coincides with the operator ’TCO
considered in §2.2.4. More accurately, if we set

Ho(s) := L*(Sy g(s) ®1T*M, g(s)) (“ = "TcCq) (2.3.8)

and

Hi(s) = L*(S, 4(s) @AY, T*M, g(s)) © L2(AA°T* M, g(s)) (2.3.9)

then 70 is an unbounded Fredholm operator Hy(s) — H;(s) while 'Zi(gyc) is an unbounded Fredholm
operator R & Hy(s) — Hi(s). Moreover, we have the block decomposition

T0=1[0 7° : R® Hy(s) — Hy(s). (2.3.10)

Observe that if |s — | < K, i =0, 1, then for every 7 € [0, 1] we have a similar block decomposition

T7=[0 T7] : R&® Hy(s) — Hi(s). (2.3.11)

We have seen that the family det 7° is orientable and we can specify an orientation by choosing an
orientation in H'(M)® H?(M). Since ker 70 = R ker 7” we deduce that det 70 is also orientable.
The component R is naturally oriented and the positive orientation is given by the tangent vector
%. Thus, by fixing an orientation on H'(M) @ H2 (M) we induce an orientation on det 7 which
induces an orientation on det 7, via the homotopy 7. This last orientation induces an orientation
on M, (7). At this point we have to discuss separately the two situations d(o) = 0 and d(c) > 0.

e d(o) > 0. The above considerations show that if we equip d9,(7) with the induced orientation
(outer-normal-first convention) then M, (7)) = My (n1) LU —My(no) as oriented manifolds. This
follows from the fact that % coincides at s = 1 with the outer normal along 90, while at s = 0 this
vector field is the inner normal.

Now we can regard 9, (1) as an oriented cobordism inside B, ;- between M, (1) and M ().
From Stokes’ theorem we deduce

(1= M, () = (1= Q)7 M (m0)) = (1= 2) ™", M)

(d = exterior derivative)

= [ d1-9Q,)" ' =0
/

m

This shows that sw (o, go,10) = swar(o, g1,71)-
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1§=l

2! =1

Figure 2.2: A one-dimensional oriented cobordism

e d(c) = 0. In this case M is a compact, oriented one-dimensional manifold with boundary so that it
consists of a finite family of embeddings (see
Figure 2.2)

pj =p;t):[0,1] — gg,irr ={(5,C); s€[0,1], C€Cpirr(g(s))/S},
j=1,---,v, such that
5;(0),5;(1) € {0,1}, Vj=1,---,v.

Above, s; denotes the composition
[0,1] % By iy = [0,1].

The integer (—1)%(D+5i(1) € {£1} is called the parity of the path p; and will be denoted by 7;. The
path p; is called even/odd if m; = +/—.
The end points of the path p; are irreducible monopoles C?, C} and, as such, they come with

signs attached €) = ¢(CY), €j = €(C}) € {£1}.

Lemma 2.3.4. For every j =1, -+ ,v we have (see Figure 2.2)

0.1 _
€j€; + 7 =0.

Assume for the moment Lemma 2.3.4. Set sw; := sw(M,0,g;,7;), i = 0,1. Then (see Figure
2.2)

v

SW( — SW; = Z( (1)@l 4 (—1)Mel)

j=1

= Z(—l)si(o)e}( 626} +m;)=0.
j=1
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Proof of Lemma 2.3.4 Fix j =1,---,v. Lift p; to a path p;(t) = (s;(t),C;(t)). C;(t) € Cy is
a (g(s;(t)),n(s;(t)))-monopole. Denote by 7; the operator

55 (1)
=SW(s;6)).¢5 (1) ~‘3c )

described by (2.2.18) in §2.2. Denote by 7,° the restriction of the operator ’f;:(:t? ) (described in

(2.3.7) with 7 = 0) to the subspace § = 0. Clearly, the two families 7; and 7,° are homotopic. The
proof of the lemma will be carried out in two steps.

Step 1

el = (T, T, Ty)

where on the right hand side we have the transport along the path 7; defined as in §1.5.1.

Step 2
E(lflvﬂa%) = -

Proof of Step 1 For ¢ € [0, 1] 79 set P, =T, — T,°. Then according to (2.3.2) we have
=e(T;, T2 +uP;, T2,0 <u < 1), i=0,1.

Denote by h the path of Fredholm operators which starts at 7, goes along 7, to 7, and then to
T, following the path 7;" + uP;. Then

(’Tlvh TO) - 6 (710770 TO)
The path h is homotopic to the path A which starts at 7, goes along 7 + uPy to 7o and then to
T, along 7;:

TO
T —— T

[e; (2.3.12)

We have (see (2.3.12))
(T, 0, 1) = (TN TY) = (T3, T2, To) -

Hence
S = (T, T, To) - (T TV, TY).

Now observe that each operator 7, is the direct sum of the anti-self-duality operator of the metric
g(s;j(t)) and a complex spin® Dirac operator. The anti-self-duality operators have oriented kernel and
cokernel of constant dimensions so they have no contribution to the orientation transport. The Dirac
components also have no contribution since we can use complex stabilizers for this family so that
the parallel transport will be a complez map, thus preserving orientations. Hence ¢(7;°,7,°, 7)) = 1
establishing Step 1.

Proof of Step 2 We will use Proposition 1.5.15 of §1.5.1. First, for ¢ € [0, 1] define the operators
StREBHo(t)—)Hl(t), LtRﬁHl(t)
described by (s = s;(¢))

o ) 5Cq(s) (1)1
1 )
W — dte=ia + _%Qg(s) (1/%1/)) +
ia

—9id*9() ¢, —1i Im<¢7¢>g(8)
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(dii |Z:0 @A,g(s+z))7/} =+ %diz ‘ZZO Cq(s+2) (ia)
12 %(dlz ‘z:O *g(s+z))FA + i(% |Z:0 ﬁ+g(s+z)(8 + Z)) - %(% |Z:0 q9(3+2))(’(/}) (2313)

0

and
R pm Li(p) =

(diz |z:0 @A,g(s+z))¢ + %d% ‘Z:O cg(erz)(ia)

%(diz ‘ZZO *g(s+z))FA + i(% |Z:0 77+g(s+z)(5 + Z)) - %(% |z:0 Qg(s-&-z))(w)

0

Observe several things.

o Sy = T, ¢, (1)(defined in (2.3.6) ).

[ ] St == Lt + 7;

e [, =0 for ¢t near 0 and 1.

e The operators S; have index 1 and the bundle £ = ker S, is oriented as the tangent bundle of the
oriented path p;(t).

The above observations show that we are precisely in the conditions of Proposition 1.5.15. We
need to understand the orientations w; and ¢; in this special case.

Observe that kerS; = R® 0 C T¢,(0)Cy so that ker S; is tautologically isomorphic to R. The
orientation w; is the tautological one, given by the vector 1 € R. The orientation ¢; is the orientation
induced from the orientation of ker S, as tangent bundle of the oriented path p;(t) and thus is given
by the vector

de
S
Thus the parallel transport along the path 7; is

. de dS]‘
Slgn(ﬁ |t=0 T lt=1)-
This number is clearly equal to —m;. B

The following theorem summarizes the results established so far.

Theorem 2.3.5. Suppose M is a compact, closed, oriented and homology oriented smooth 4-
manifold such that by (M) > 1. Then the correspondence

Spin®(M) 3 o swy(o,9,m) = swy (o) €Z

is independent of the metric g and the perturbation n and is a diffeomorphism invariant of M. More
precisely, for every orientation preserving diffeomorphism f we have

sw (o) = e(f)swu(f*0)
where (f) = £1 depending on whether f preserves/reverses the homology orientation of M.
If M is as in the above theorem then the Seiberg-Witten invariant is the map
swyy @ Spin®(M) — Z.

Denote by By, the support of sw. The elements of B, are called basic classes . Observe that By,
is finite since, according to Proposition 2.2.21, for all but finitely many o € Spin®(M) the moduli
space M, is empty.
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Definition 2.3.6. A smooth manifold M with b; > 1 is said to be of SW-simple type if for every
o € By we have d(o) = 0.

All known examples of smooth 4-manifolds with b;“ > 1 are of SW-simple type. This prompted
E. Witten ([149]) to state the following

Conjecture. All smooth 4-manifolds with b;‘ > 1 are of SW-simple type.

Presently (January 2000) the validity of this conjecture has been established for very large families
of 4-manifolds but a general argument is yet to be discovered.

Denote by I'j; the set of path components of the diffeomorphism group of M. T"j; is itself a group.
It acts on Spinc(M) and |sw| is T'p/-invariant. (sw may change signs under the action of I'j; which
can affect the chosen orientations of H'(M) or H?.) In particular, we deduce that By, is a finite
I'ps-invariant set. Note that By, is also invariant under the natural involution ¢ +— &. Moreover,
using Proposition 2.2.26 of §2.2.4 and (2.3.1) of §2.3.1 we deduce after some simple manipulations

sw(7) = (1)U 2 Ve sw (o) = (—1) swar (o) (2.3.14)
where £k = kp == 3(b3 +1—by).

Remark 2.3.7. For many smooth manifolds M (with b; > 1) the group Iy, is infinite and thus one
expects that many of the orbits of I'y; on Spin®(M) are infinite. The above observations show that
only the finite ones are potentially relevant in Seiberg-Witten theory. Observe that if o belongs to
a finite orbit of T'ps then the stabilizers of o in I'j; must be very large (infinite) and thus we deduce
that the basic classes live amongst very symmetric spin® structures.

Using Corollary 2.2.6 in §2.2.1 we deduce the following remarkable consequence.

Corollary 2.3.8. Suppose M is a smooth 4-manifold with b;‘ > 1 which admits a metric gy with
positive scalar curvature. Then By = 0, i.e. swps(o) =0 for all o € Spin®(M).

Proof To compute the Seiberg-Witten invariants we can use the metric gy and a small 5 such that
there are no reducible (go,n)-monopoles. According to Corollary 2.2.6 if 7 is sufficiently small there
are no irreducible ones as well. B

The above corollary shows that in dimension four the Seiberg-Witten invariant is an obstruction
to the existence of positive scalar curvature metrics. It is known (see [50], [130]) that in dimensions
> 5 the existence of such a metric is essentially a homotopy theoretic problem. As we will see later,
the Seiberg-Witten invariant is a smooth invariant, i.e. there exist (many) homeomorphic smooth
four-manifolds with distinct Seiberg-Witten invariants (thus nondiffeomorphic). The corollary shows
another “pathology” of the 4-dimensional world: the existence of a positive scalar curvature metric
is decided not just by the homotopy type of the manifold but it depends in mysterious ways on the
smooth structure.

§2.3.3 The case b =1

Suppose now that M is a compact smooth
4-manifold with b2+ = 1. In this case Nf’g is not connected. Its connected components are easy
to describe. Recall (see §2.2.3) that

Ny = {ne LR T" M) dn=0, [nlf # 2xlea) }

where [o], denotes the g-harmonic part of a differential form. When b3 = 1 the space H2 (M, g) of
harmonic, self-dual 2-forms is one-dimensional. Fix an orthonormal basis w of this space. Then

[y = (nww
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where

(n, w) ::/ (n,w)gdvg:/ 77/\*w:/ nAw.
M M M

Thus the condition [n]} = 27[c,]] is equivalent to

(n,w) = 2m(cq,w).

The above equation describes a hyperplane in the linear space of closed 2-forms and its complement
is precisely N f g We see that it consists of two connected components called chambers. The above
hyperplane is called the separating g-wall and we will denote it by W, 4.

Fix a spin® structure o on M and a Riemannian metric g. We can still pick a generic n € N, ,
such that M, (g,n) is a smooth, compact, oriented manifold of dimension d(o) and define as usual

swar(o,9,m) = (1= Q)" M (g,m)])

(or a signed count if d(c) = 0). When trying to imitate the argument in §2.3.2 establishing the
independence of this number on (g,7n) we encounter an obstacle. The correspondence

Ny.g D1 g € Met(M) = the space of Riemannian metrics on M

defines a fibration 3
NE = U N g — Met(M).

gEMet(M)

Since the fibers Na,g are not connected the total space /\70 is not connected. It consists of two
components separated by the wall
Wo=|J Woy
geMet(M)

This means that if we pick (g;,7:) € Ny (i = 0,1) in different connected components then any
smooth path
[0,1] >t — (g¢,m:) € (Metrics on M) x {n € Q*(M); dn =0}

connecting the (g;,n;) will, at certain instants 7, cross the wall W,. This means there are reducible
(0, gr,nr)-monopoles and by putting together all the (o, g¢, :)-monopoles for ¢ € [0, 1], as we did in
the previous section, we can never get a smooth cobordism. The reducibles are at fault. To salvage
something we need to understand how the wall crossing affects the cobordism. We will do this in
a special yet quite general situation. More precisely, in the remaining part of this subsection
we will assume M is simply connected.

To define the Seiberg-Witten invariants we had to fix an orientation on (H* @ H2)(M). In
this case this is equivalent to fixing an orientation on the one-dimensional space Hi(M ,g). This
orientation canonically determines an orthonormal basis.

Remark 2.3.9. Suppose (M,w) is a symplectic 4-manifold satisfying b;‘ = 1, and ¢ is a metric
adapted to w (see Exercise 1.4.2 of §1.4.1). Then w is g-self-dual and since it is also closed it is
harmonic. In particular, it defines an orientation on Hi(M ,g). In the symplectic case we will
exclusively work with this orientation.

Suppose we have fixed an orientation of H? (M). For any metric g we denote by w, the oriented
orthonormal basis of H% (M, g). The two components of N, 4 are

./\/’;%g ={ne LF2(A*T*M); dnp=0, £(n— 2mcy,wg) > 0}.
We will refer to them as the positive/negative chambers. We get a corresponding decomposition

N, =NSUN;.
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The above discussion shows that the map
Ny 3 (g:1) = sw(o,9,) € Z

is continuous and thus it is constant on each of the two chambers. We will denote by swﬁ(a, g,1m)
the value on the £+ chamber.

Before we enter into the details of wall crossing let us first observe that we can make certain
simplifying assumptions. Suppose (gi,7;), @ = 0,1, are in different chambers of NV,. To study what
happens when crossing a wall we can assume gy = g1 because we can find 7jp such that the pairs
(90,70) and (g1,m1) live in the same chamber so that the corresponding Seiberg-Witten invariants
are equal, as proved in the previous sections.

Let us now take 741 € Ngfg. We will consider paths (1(s))|sj<1 such that n(£1) = 7+, crossing
the wall W, only once and we will study the singular cobordism

ghj,to = U &na(g7 77(5))

from M, (g,m—1) to M, (g,71). We can assume that 71, are good perturbations so that M, (g, n+1)
are compact, smooth oriented manifolds of dimension d(c) > 0. In this case we have

X=bo+ba+bs=3+b;, T=1-0;

so that 1 1
d(o) = 1(03 —(2x+37)) = Z(C(Qf —9+0by).
Observe also that the index of a Dirac operator associated to the spin® structure o is
. 1, 1, _
indg @, = E(C” —7)= Z(CJ —1+by)=d(o)+2. (2.3.15)

The local structure of the parameterized moduli space M, at C = (s,C), C € M, (g,7(s)) is again
described by the deformation complex (2.3.3)

(Ke):  0—TiG, -5 1:C, 25y, — 0.

Arguing exactly as in §§2.3.2 we can slightly perturb the path 7(s) (keeping its endpoints fixed) such
that for every C € M, (n(s)) the second cohomology group of this complex vanishes, that is,

HQ(EC) =0, vCe iﬁta(g’n(s))' (2'3'16)

The perturbation of 7(s) (which we will continue to call n(s) can be chosen so that it crosses the
wall W, at a single point as well. Suppose for simplicity that this happens at s = 0. Since the path
n(s) goes from the negative chamber to the positive chamber we deduce

4
ds
At this point it is wise to break the flow of the argument to point out a significant fact. The
above condition H? = 0 is equivalent to

s=0 (n(s),wq) > 0. (2.3.17)

coker T¢ L coker (SW & £e) = HO(IEC)

where 7T is defined as in (2.3.6) with g(s) independent of s, more precisely
$ Pt + e(ia)y

Tooy: | 0 |~ | dria—Lqw,9)
ia —2id*a — iIm(1), )
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0
+5 | i(Emo)nt(s+1t) |- (2.3.18)

0
At a configuration (s, C) with C reducible, C = (0, A) this has the form

) 0
3 $ D a1
Tis0) P | — dtia + 5 —l—i(% lt=0)nT (s + 1)
ia —2id*a

We see that HQ(I%(S’QA)) = 0 if and only if @, is surjective and the harmonic part of (3 [1=o
7t (s +t)) is a nonzero multiple of the generator w, of H2 (M, g). This contrasts with the similar,
unparametrized situation described in Exercise 2.2.5 of §2.2.2. That exercise shows that when b = 1
no reducible can be regular. However the reducibles can be regular in the parameterized moduli
spacelll Observe that (2.3.17) can be improved to

di ls=0 (n(s),wq) > 0. (2.3.19)
S
If (5,C) € M, and s # 0 then Cis a (g, 7(s))-monopole and, since 7(s) € N, 4, it must be irreducible.
This implies the 0-th cohomology of the complex IE(S,C) is trivial and thus (s, C) is a smooth point
of the parameterized moduli space.

The configurations (0,C) € M, arising when the wall is crossed require special considerations. If
C is irreducible then, again, (0, C) is a smooth point of the parameterized space. If C is reducible then
using the Kuranishi local description as in Proposition 2.2.16 of §2.2.2 we deduce that a neighborhood
of (0,C) in M, is homeomorphic to the quotient B/S!, where B is a small ball centered at the
origin of H 1(16(0)@) and S! is the stabilizer of C. The “cobordism” 9, has singularities, one for
each reducible (0, C). Figure 2.3 illustrates such a singular cobordism.

To proceed further we need to know some more about the structure of the singularities of the
“cobordism” M,. Observe first that there exists a unique reducible point (0,C) = (0; (0, A)) € M.
Indeed C = (0, A) is a (g,7(0))-monopole iff

Fi+in(0)t =o0. (2.3.20)

Since M is simply connected the group G, is connected and thus every v € G, can be written as
exp(if), f : M — R. This means that, up to gauge equivalence, there exists a unique connection Ay
such that Fs, = —27i[c,],. Arguing as in the proof of Proposition 2.2.17 of §2.2.3 we deduce that
any connection satisfying (2.3.20) has the form

A:Ao—ia

where « is any 1-form such that 7(0) = [1(0)]; + da. Again, since M is simply connected A is
uniquely determined up to a gauge transformation.
The singularity of 9, at the unique reducible point (0,C) = (05 (0, A)) is now easy to describe.
Observe first that B ~
Hl(IC(O’C)) =kerTgc) =V :=kerP,.

It is a complex vector space of dimension

315 1
inde® , O Sdo) +1.
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Reducible The link

near a reducible

Figure 2.3: A singular cobordism

The stabilizer S' C C acts on this complex vector space tautologically, by complex multiplication.
If B is a small ball in V centered at the origin then B/S! is a cone on the projective space CPU)/ 2

where CP° %/ {pt.}. The boundary L of B/S" is called the link of the singularity (see Figure 2.3).

Denote by X  the manifold 9, with a small neighborhood N  of
the reducible point removed, X = m, \ B/S The orientation on
(H' @ H2)(M) = H%(M) induces an orientation on X. As in the previous subsection, the in-
duced orientation on the boundary component M, (g,n+1) of X is £ the orientation as a moduli
space. Understanding the induced orientation on the link X is a considerably more delicate issue.
We have to distinguish two cases.

e d(o) > 0. Let us first point out the source of complications when unraveling the orientation of
the link. Denote by (0,Cp) the unique reducible point along the cobordism. As we have already
indicated ker ’]NE07CO) is a complex space of dimension d(c)/2 + 1 and the cokernel is the oriented
one-dimensional space H°(M, g). Thus

Lo := det ’j'(o’co)

is naturally oriented. We will refer to this orientation as the tautological orientation. On the other
hand, this line is a fiber of the line bundle

{E(S,c) = det 'j'(s,cﬁ (s,C) € Efﬂg}

and, as indicated in the previous subsection, this line bundle is equipped with a natural orientation,
induced by an orientation on (H' @ H2)(M). In turn, this induces an orientation on £y which we
will call the Seiberg- Witten orientation. We will denote by Lo the line bundle equipped with the
tautological orientation and by £§" the line bundle £y equipped with the Seiberg-Witten orientation.
These two orientations differ by a sign € € {£1}.

Similarly, the neighborhood N = B/S* of (0,Cp) has two orientations: the Seiberg- Witten ori-
entation, Oy, as a subset of the moduli space, and the tautological orientation, (?J, as a quotient
of a complex vector space modulo the action of S*. (To orient such quotients we use the fiber-
first convention: orientation of total space = orientation orbit A orientation quotient.) These two
orientations differ exactly by the same sign e.
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Observe that the induced orientation on L = 9(N, (5) is precisely the opposite orientation of
CP9)/2 a5 a complex manifold. (This follows after a little soul-searching using the fiber-first and
outer normal-first orientation conventions.) Thus, the orientation of L as a boundary component of
(X, 0sy) is €x { the canonical orientation on CP¥?)/2} . To compute € we have to recall in detail
the constructions of L5 and L.

e Constructing £3". Consider the one-parameter family of Fredholm operators

TT:RaT(SE @ T*M) - I(S; ® A2 & A°T*M), e [0,1]

given by
_ 0
$ D4, ¥
b |- | dta |+7s| 9t (2.3.21)
a —2d*a
0
where 7 = % ls=0 n(s), and Cop = (0, Ap). Notice that, up to an obvious factor of i, we have
T = T(0,co)-

To obtain the Seiberg-Witten orientation on £y we proceed as follows.

1. Orient ker 70 = ker® 4, and coker 70 = ker®%, & (H3 @ H?)(M, g) to obtain an orientation on

det 7°. The spinor components are canonically oriented as complex vector spaces while Hi ®HC is
oriented by the ordered basis 1 A w, € det(HZ @ HO).

2. Transport the above orientation along the path 77 to obtain the Seiberg-Witten orientation on
[:0 = det Tl.

The orientation transport at Step 2 above is performed concretely as in Example 1.5.11 in §1.5.1.
To begin with, observe the following fact.

ker7° =R & ker® , , ker T = ker® 4, V7€ (0,1]
(the component R corresponds to $) and
coker 79 = ker®%, & H*(M) & H (M),

coker 77 = ker®%, @ HO(M), vr € (0,1].

Since the components ker® 4, and ker®’, = are even-dimensional, oriented and stay unchanged along
the deformation, they have no effect on the orientation transport so we can neglect them. To simplify
the presentation we redefine 77 to denote the operator

T7:Ra QM) — Q2 (M) @ QUM), (5,4)— (dTa+rsnt, —2d%a).
With this new convention we have
ker 70 =R, ker7™ = {0}, 7€ (0,1],
coker 7° = H2 (M) ®H(M), coker 77 =H(M), 7€ (0,1].
We can now perform the orientation transport.

2a. Choose an oriented stabilizer V for the family 77. In this case V = H° & Hi, with orientation
1 Awy, will do the trick.
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2b. Determine the compatible orientation on ker ’f‘(} by describing an ordered basis. We follow the
prescriptions in §1.5.1. In the notations of that section we have

Vo=coker7° =H @ H?2 =V
and V —the orthogonal complement of Vj in V— is trivial. We have a natural isomorphism
ker 79 2 ker .0, v +— (v,0).
More precisely, the one-dimensional space ker 7 is oriented by the vector
up = (1,0) e R@ Q!

so that the one-dimensional space ker ’j"% is oriented by the vector

iip = (1,0,0,0) e R Q' (M) & H* @ H.
2c. We now parallel transport the orientation on ker ’f‘9 to an orientation on det 7;}. Observe that

77 R QYM)aV — Q2 (M) @ Q°(M)

is given by
(8, a,v,uwy) — (dTa+ 70T + uwgy, v).
To determine the kernel of ’fVT observe that the harmonic part of 7™ is a scalar multiple of wy:

4]

(17 ]y = pwg.

According to (2.3.19) we have pu > 0. Denote by g the unique 1-form such that
dtag =—n" —[0"]y), d*ao=0. (2.3.22)
We can now describe
Ly :=ker T} = {(3,75a0,0,uw,) € R®QYM) o H G HZ; 7us+u =0}
The orthogonal projections of these lines to the plane R & H%r can be visualized as a family of lines
in the plane (u, $) described by the equations
Tus+u =20

as in Figure 2.4. The line L,—_ projects to the horizontal axis and the projection of the vector g
induces the canonical positive orientation. The projection of the line L,_; has negative slope —pu
and the parallel transport equips it with the “downhill” orientation.

e Constructing ﬁo. Recall that ﬁo is the line det 7! equipped with the natural orientation induced
by the canonical orientations on ker 7' = ker® , and coker 7! = ker®% & H°(M). To compare
it with £§" we need to describe the canonical orientation in terms of the stabilizer V' used above.
Again we can neglect the spinor components in the definition of 7' and we will think of 71 as an
operator ~

THReQY(M) — Q3 (M) e Q°(M).

We use the notation and orientation construction in §1.5.1. In this case Vj := coker 7' = H? and
its orthogonal complement in V = H® & H? is V = H?(M). We see that the orientation on V
compatible with 1 A wg determined by the split exact sequence

0—>V0—>V—>V—>O
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Figure 2.4: Orientation transport

is the orientation defined by the basis wy. Denote by

Ry, : Q2 (M) & Q°(M) — (ker T3 )" C R Q' (M) & H°

Liviu I. Nicolaescu

the canonical right inverse of the surjective operator ’f"}g The compatible orientation on ker ’f‘} is

determined from the split exact sequence

0—ker Tyt — Tif — (V/Vo) =V — 0.

More explicitly, it is given by the basis

(08 0&0) ®wy — Ry, (wy) &0 € (R Q' (M) @ H) @ HS.

To determine Ry,w, observe that

T Ro Q' (M) H® — Q% (M) ® Q°(M)

is given by

(8,a,v) — (dTa+ ént, —2d*a +v).

A simple computation shows that

11
Ry,wy = (;, ;ao,()) ER® O (M) @ H

where aq is defined by (2.3.22). Thus, the oriented basis of ker 75} is

1

1
vi= (_77_;67/0707"‘{(]) € R@QI(M) @HO @Hi

I

By looking again at the projection onto the plane R & Hﬁ_ we see that the canonical orientation
of L,—1, defined by the above vector, is the opposite of the Seiberg-Witten orientation discussed
before. (The projection of v is the “uphill” vector in Figure 2.4.) This shows e = —1.
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Using Stokes’ theorem we deduce

0= / 402 — / Q)2
X oX

_ / Qilo)/2 _ / Qie)/2 4 ¢ / (@) /2
Mo (g,m1) Mo (g,1-1) Cp()/2

= swar(o,g,m) — swar(o, g,no) + (QL)/2 CPH)/2),

To compute the last integral observe that the restriction of U, to the link L is the tautological line
bundle over CP““)/2. We conclude that

swi;(0) —swy(0) = swar(o,g.m) —swar(o,9,m0) = (—1)%772.

e d(o) = 0. We make the simplifying assumption that ny; are very close to the wall so that we have
the approximation
n(s) = (0(0) + 57) k2 < s*[9(0)|lx,2, Vs € [1,1]. (2.3.23)

The above inequality is a very fancy way of saying that, modulo negligible errors, we can assume
the path 7(s) is affine, very very short and crosses the wall transversely only once, at s = 0, coming
from the negative chamber and going to the positive one.

In this case, the singular cobordism M, is a finite union of smooth oriented arcs in B,

b5 - [_1’ 1] - [_17 1] X BU? t— (S](t)’cj(t)) J = 07 13 Ny
where
Cj(t) € Mo(g,m(s;(1)))-
Again there is a unique reducible point (0, Cy) and a neighborhood N is homeomorphic to C/S' (see

Figure 2.5).
Suppose that the path is py so that po(1) = Cy. As in the previous subsection we set

e =€(Ci(£1)), j=1,...,n,

and
€0 = E(Co(—l))
We have

n

swar(o,9,m) —swu (o, 9,1m-1) = Z(Sj(—l)ﬁf +s5(1)e)) + s0(—1)eo.

The arguments in the previous subsection show that the first sum, corresponding to the smooth part
of the cobordism, is zero. We claim that

6080(—1) =1. (2324)

The proof of this equality requires a refined perturbation analysis. Suppose so(—1) = —1 (the case
so(—1) =1 is analyzed in a similar fashion).Since

(s0(t),Co(t)) — (0,Co) as t —1
then, modulo gauge transformations, we can write
(s0(1 = h), Co(1 = h)) = (0,Co) + h(3,Co) + h*(5,Co) + O(h?)
= (0,Co) + h(3,%,ia) + h*(3,4,ia) + O(h®)
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Figure 2.5: A singular one-dimensional cobordism
where Co, Co are vectors in the local slice at Cy and §, § are scalars. Moreover, we can assume
(8,Cp) # 0. Differentiating twice with the respect to h (at h = 0) the equality
SWn(s(l—h))(CO(l - h)) =0

we deduce )
Da, =0, id a+ " =0, (2.3.25)

.1 . i 1 . .
P, + gelia) =0, i+ 10" + 23%4(0)" — Sa(d,¢) =0 (2.3.26)
Since CO and CO belong to the local slice at Cy we deduce

d*a = d*i = 0. (2.3.27)

Recall that P 4, has index 1 and is onto. % is a vector in its one-dimensional kernel. On the other
hand, since [7]™ # 0 the second equality in (2.3.25) is possible iff § = 0 and ¢ = 0. (In drawing this
conclusion we have used the fact that a is co-closed and by (M) = 0.) Thus 1) must be a nontrivial
vector in ker® 4 . The equalities in (2.3.26) further simplify to

D40 =0, c(idta+isnt(0)) - %q(WL) =0. (2.3.28)

In particular, taking the inner product with c(iwy) we deduce

M

i = [ (eliwy) atoii) oy = [ (eli)di)do, %

where we recall that the positive number ;1 was determined by the equality [7(0)]1 = jw,.
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Observe that since we assumed the wall crossing takes place coming from the negative chamber
and going towards the positive one, and since the oriented path so(t) ends at the reducible we
conclude so(t) < 0 for ¢ < 1. This implies § < 0. Using this in the last equality we conclude

| (et iy, <o
M

since p > 0.
At this point we need the following generic nondegeneracy result whose proof will be given later
on.

Lemma 2.3.10. In the very beginning we could have chosen the path n(s) so that besides the
conditions (2.53.16), n(0) € Wo 4, (2.8.19) and (2.3.23) it also satisfies

/ (c(iwg)h, ¢ )dvy < 0 (2.3.29)
M

where (s = 0;9 = 0, Ag) is the unique reducible on M, (1(s)) and 3 € ker® 4, \ {0}.

From the lemma we deduce
—1 =sp(—1) = signs. (2.3.30)

Now consider the path of configurations
C(t) = Co(—t), te[-1,1].
Denote by 7; the linearization of SW () at C(t), i.e.
Te = SW s (1)) ® Leqo)-
The explicit form of 7; is
DAt + ze(ia)y

id*a — 34(4,9)

N
[RS8
I

—9id*q — iTm(1), )
where ¢ € I'(S}), a € I(A'T*M) and

C(t) = (v, 4) = (¥(1), A(t)) == ((s0(—1)), A(s0(—1)))-

Observe that with the above notation

. d .. d?
Co= 2 li=—1 C(t), Co= -5 le=m1 C(t)
so that
b= L), da= L A =0
= t=—1 , 1la = dt t=—1 = U
We set
Y
g P
ia
and we define p
TCi=S |1 TiC
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Observe that )
zeia)y + ze(ia)y

TQZ _%Q(d)vg)

Let us now point out several things.
e The assumption that ny; are very close to the wall so that (2.3.23) holds implies that the zero

index operators 7; are actually nondegenerate (i.e. invertible) for ¢ # —1.
e According to Remark 2.3.2 the sign ¢ is exactly the parallel transport e(77,7;,7_1).

Using the above remarks and (1.5.9) of §1.5.1 we now deduce that
co = (—1)%ign R
where d = dimg ker 7_; and if we denote by P the orthogonal projection onto coker 7_; then
R:ker7_, — coker7_,, C— PT li=—1 C.

Recall that sign (R) = 1 depending on whether R preserves/reverses orientations. _ .

Now observe that ker7_; = ker® 4 and an oriented real basis is given by e; := 1, ez = i.
Moreover, coker 7_; = H° @ Hi and an oriented basis is given by fo =1i-1, fo 1= iw,.

Using (v') we deduce

Rey = —8piwg
and o '
Rey = —iIm(y, i) = i[[[|*.

Since § < 0 we deduce sign (R) = —1. On the other hand, d = 2 so that ¢y = 1. Using the equality

s0(—1) = —1 we reach the desired conclusion that epso(—1) = 1.
We can now formulate the main result of this section.

Theorem 2.3.11. (Wall crossing formula) Suppose M is a compact, oriented smooth 4-manifold
such that by =0 and by = 1. Then for every o € Spin®(M) such that d(c) € 27 we have

swi,(0) —swy (o) = (—1)4@)/2,

Sketch of proof of Lemma 2.3.10 We will use the Sard-Smale theorem. Consider the smooth
map
P = 15) x By B0 ) = (D [ (el v )
M
Now set
Z=F"0,-1).

Arguing as in §2.2.3 we deduce that for all (1), A) € Z the differential
D(w,A)F : Tw7AC§+1 — T(()’,l)Lk’z(S;) x R

is onto, so that Z is a smooth manifold. Denote by 7 the natural projection C¥*1 — Ak+1. Tts
restriction
T Z — AT



Notes on Seiberg-Witten Theory 133

is Fredholm and has the same real index as the map

LF2(8,) 36 @40, [ (el v)dvy) € L4¥(S,) x R

The above map has real index 1. Thus by Sard-Smale for “most” A € A, the map 7 is a Fredholm
submersion along the fiber ¥4 := 771(A) N Z. In particular, this shows that the fiber U4 is a
smooth one-dimensional manifold. If (¢, A) € U4 then dimc®@ 4, = indc P 4 = 1 so that P 4 is onto.
Moreover, ¥4 can be identified with the circle

{pern, [ e, = -1f.

Now pick (¢, A) as above and let g € W, , be defined by FX +ind = 0.
We will find the path 7(s) by looking amongst the paths
n= 77(5) : (_575) - nga
at least C? in s, such that
n(s) e NF, if £5>0,

77(0) =To
and

/Mﬁ(o) ANwg >0

where 0 is a fixed small positive constant. The path is detected using the Sard-Smale theorem,
where as space of parameters we take the space of paths n(s) with the properties listed above. B

Remark 2.3.12. There is a wall crossing formula in the case by (M) > 0 as well. However, both the
formulation and its proof are much more involved. For more details we refer to [23, 76, 112, 119].

§2.3.4 Some examples

We interrupt in this subsection the flow of general theoretical results to illustrate on two simple but
revealing examples the power and the limitations of the wall crossing formula. The importance of
these examples is not just purely academic.

Example 2.3.13. (Seiberg-Witten invariants of (CIP’z) The complex projective plane CP? is
a complex manifold, so that its tangent bundle is naturally equipped with an integrable almost
complex structure. In particular, this canonically defines a spin® structure oy whose associated line
bundle det(og) is isomorphic to K~' = K* — the dual of the canonical line bundle of CP?. Any
other spin® structure o on CP? has the form

oc=09® L
where L is a complex line bundle. Moreover
det(o) =2L - K
where we use additive notation for the tensor product operation on line bundles and where —K :=

K~! = K*. In this case
Pic™(CP?) = H?(CP?,Z) 2 7Z
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so that Spin®(CP?) is a Z-torsor. To determine the chamber structure we need to understand the
cohomology class ¢;(K). Since we will need it later and it requires no additional effort, we will solve
this problem for all projective spaces CP". We will follow the approach in [17].

We will freely use Poincaré duality to identify

H?*(CP",Z) = Hy,_o(CP", 7).

The positive generator of H2(CP",Z) is represented by the homology class carried by a hyperplane
in CP" and we will denote it by H. Denote by 7 the tautological line bundle over CP". Since any
hyperplane can be represented as the zero set of a holomorphic section of 7% we deduce

ci(t)=—H.
To follow the tradition of algebraic geometry we will denote 7* by H when no confusion is possible.
(This amounts to identifying 7* with ciOp (7*) = H.) Observe that we have the following exact
sequence of complex vector bundles:
0— C — H®+) _ 7CP" — 0. (2.3.31)
To see this, consider the exact Fuler sequence

0—7—-C""' - Q:=C""/r —0. (2.3.32)

The tangent space to CP"™ at £ € CP" consists of infinitesimal deformations of the line ¢ ¢ C**+1,
which can be described as linear maps £ — C"*!/¢. Thus

TCP" 2 Hom(7,Q) 27" ®Q =H®Q.
Thus, by tensoring (2.3.32) with H we obtain (2.3.31). This implies
c(HEMFDY = ¢,(C)ey (TCP™) = ¢, (TCP")
where ¢;(E) denotes the Chern polynomial 1 + ¢1(E)t + co(E)t? + - - -. Hence
ct(TCP™) = (c;(H))" ™' = (1 + HH)" ™, H" ™ =0. (2.3.33)

Hence
c1(K) = c1(—detcTCP") = —¢1 (TCP") = —(n + 1)H. (2.3.34)

In particular, we deduce
1 9 1
A(o0) = 7 (clov)? — (2 +37) = (9~ (6+3) =0.

Now consider CP? with the Fubini-Study metric go. This metric has positive scalar curvature and
moreover, up to a positive constant, the symplectic form wy associated to the Kéhler structure on
CP? is harmonic and carries the cohomology class of H.

Thus

Weg.00 = {n € Noy ; / (n — 2mc(og)) Awo = 0}
CP2

and since ¢(o¢) = —K = 3H we deduce

00,90

NE ={neN,, i/ nAwy > £6m}.
cp2
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In particular n = 0 belongs to the negative chamber. Since gy has positive scalar curvature the
(g0,m = 0) monopoles must be reducible and since 7 = 0 belongs to the negative chamber there are
no such monopoles. Hence M, (go,n = 0) = @ so that

sw_(09) = sw(00,g0,n = 0) = 0.
Using the wall crossing formula we deduce
swy(0g) = 1.
If L,, denotes the line bundle with ¢1(L,) =nH (n € Z) and o, = 09 ® L,, then
c(on) = c(detoy,) = (2n+ 3)H

and
d(o,) =n?*+3n € 2Z.

We have to exclude the cases n = —1,—2 which lead to negative virtual dimensions and thus to
trivial invariants.
Next observe that

Wo, .90 = {n €N, ; / nAH = 2(2n+3)7r/ HAH}
CP2 M

Thus

B NS if n>-1
’706{/\/;” if n<-—1
Arguing as before we deduce

B 0 if n<-1
SW+(JT7«) - (_1)n(n+1)/2 if n>—1

Example 2.3.14. (Seiberg-Witten invariants of CPQ#k@Q) The smooth manifold
PRpp—
M = CP“#kCP

is a smooth realization of the algebraic construction known as the blow-up at k points (see the next
chapter). It is simply connected and by = k + 1. If we denote by H the generator of Hy(CP?,Z) =

H? ((CIE”Z, Z) and by E; the generator of Hy of the i-th copy of TP in M then the collection
{HE i= 1k}
is a Z-basis of H?(M,Z). Observe that
H-H=1, H---E; =0, E;-E; = -6

so that the intersection form has signature (1, k). The intersection form defines a cone C in H?(M, R)
consisting of real cohomology classes of non-negative self-intersection. The space C \ {0} has two
connected components. An orientation on H2 (M, R) is equivalent to declaring one of the components
as the positive cone, C'y. In this case we denote by C the connected components containing the
class H.

A metric g on M produces two things on H?(M,R). First, it equips it with a Euclidean metric
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Figure 2.6: The cone of vectors of nonnegative self-intersection in H?(M,R)

via the isomorphism with H?(M,g). Second, it selects a linear subspace H% (M, g) C H?*(M,g).
The form wy is defined as the unique vector of length 1 in H2 (M) N C. (see Figure 2.6).

In contrast to CP?, there is no natural, unique way of defining a metric on M but there are a
few metric choices which we would like to discuss because of their future relevance.

e The 1st choice. Think of CP? and each copy of TP as equipped with the Fubini-Study metric.
Now delete a small ball from each copy of TP’ and k small balls from CP? and connect the resulting
holed manifolds by short, thin tubes (see Figure 2.7, k = 2). As explained in [50], this construction
leads to a metric g1 of positive scalar curvature.

Denote by w; the unique self-dual harmonic form of length 1 in C. If we let the sizes of the
connecting necks go to zero then in the limit w; will converge to self-dual harmonic forms on the
summands of M. Since @2 does not support such forms we see that the part of w; on the summands
@2 is very small. Hence we can approximate w; with the restriction to H on CP? which is the
symplectic form supported on CP? induced by the Fubini-Study metric. Hence in cohomology we
have

wy ~ H. (2.3.35)

The manifold M is equipped with a complex structure (which is by no means compatible with
the above metric). Again this defines a spin® structure oy with det(og) = —Kjys, where again — K,
denotes the dual of the canonical line bundle on M. One can show that (see Exercise 3.1.1)

Ky =-3H+Y E;

Since xpy =3k +3, 7;y =1 —k and Ky - Ky =9 — k we deduce
d(O‘o):O.

Using (2.3.35) we deduce

/ c(cro)/\wlz(3H—ZEi)-H:3>0
M i
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Figure 2.7: (C]P’2#2@2

which shows that n =0 € N

00,91+ Arguing as in the previous example we deduce

sw_(og) =0, swi(ogg)=0. (2.3.36)

e 2nd choice ([71]). Let us assume k is a perfect square k = d? and d > 3. Consider first a smooth
embedded curve
2 — CP?

such that [¥] = dH in Hy(CP?,Z). Hence
Y- =d"=k

Now blow-up CP? in %k points. The surface ¥ sits in M. Bach of the homology classes —FE; is
represented by an embedded 2-sphere which we continue to denote by —FE;. Denote by ¥ the surface
obtained by connecting ¥ with each of the —FE; by very thin tubes carrying no homology so that in
Hy(M,Z) we have the equality

S =dH - Y E;.
In particular we deduce o
»-X=0
so there exists a small tubular neighborhood U of & < M diffeomorphic to D? x 3 where D? denotes

the unit disk in R%. Hence R
N:=9U =S x ¥,

Now choose a metric g7, on M (L > 1) so that a tubular neighborhood of N < M is isometric with
[~L,L] x 8* x (2, h)

where h is a constant curvature metric on 3. Denote by wy, the unique gz-harmonic self-dual form

in C such that

wr - H = wi\NH=1.
M
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Figure 2.8: Stretching the neck

Observe that
lwrllrz(gr) < 1.

Indeed, if we pick an orthonormal basis wgy, w1, - -+ ,wr with wg self-dual, of norm 1 and in C then

wr, = Towo, H = howy + Zhiwi, Zo, ho, h; € R.

Then
wL~H:x0hO:1

so that ||lwr|| = 2o = 1/hg. On the other hand, 1 = H - H = h3 — 3", h? so that ho > 1.
We want to figure out the sign of

e(L) ::/ wr, A ¢(09)
M
for L — oo. First observe that

c(og) =3H - E;=%-(d—3)H.

The hypersurface N divides M into two parts My as in Figure 2.8 where M_ is the part containing
the surface ¥ (hence M_ = U). Denote by w4 (L) the restriction of wy, to My. As L — oo, since
lwrllzzeg,) < 1, the form w_(L) converges to a L*-harmonic, self-dual form w_(co) on M, with a
half-infinite cylinder attached. According to the results of [6] (see also Section 4.1), the cohomology
class carried by w_(0c0) belongs to the image of the morphism

H*(U,0U;R) — H?*(U,R).

This image is trivial since H 2(U,0U;R) = R is generated by the Thom class of the trivial line bundle
C x ¥ — 3. In particular, wy(c0) = 0 and

fim - (5] = [ w-(o0) =0,

— 00
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We conclude that

lim ¢(op)wr, = lim ([¥] -wr, — (d—3)H -wr) = —(d —3) <0.

—00 L—oo

Hence, for large L, the trivial closed 2-form lives in the positive chamber N, 4, because

1
(0— me,Qﬂ'C(O'O» > 0.

Since sw (0g) # 0 the above conclusion implies that for all large L there exist (gz,,0)-monopoles.

2.4 Applications

The theory developed so far is powerful enough to produce nontrivial topological and geometric
applications. The goal of this section is to present some of them. More precisely we will present
Kronheimer and Mrowka’s proof of the Thom conjecture [71] for the projective plane and a proof of
Donaldson’s Theorem A on smooth, negative definite 4-manifolds [28, 29]. Because of its relevance
in this section and later on as well, we have also included a separate technical subsection describing
a few properties of the Seiberg-Witten equations on cylinders.

82.4.1 The Seiberg-Witten equations on cylinders

Suppose (N, g) is a compact, oriented, Riemannian 3-manifold. We want to describe a few particular
features of the Seiberg-Witten equations on the 4-manifold N = [a,b] X N equipped with the product
metric.

Some conventions are in order for this subsection. We will denote by ¢ the longitudinal coordinate
on N and we will identify N with the slice {b} x N of the cylinder N. To distinguish objects of
similar nature on N and N we will use a hat “"” to denote the objects on the 4-manifold. Thus d
will denote the exterior derivative on N while

d=dtNO; +d

will denote the exterior derivative on N. The metric on N will be denoted by § and the corresponding
Hodge operator by *. Denote by _I; the contraction by the tangent vector ;.
Any differential form w on N can be uniquely written as

w=dtANf+a, f:=_lhw, a:=w—dtAf.

Above, f and a are paths of forms on N. Observe that

d(dt A fO +a') =dt A (@' — df°) + da’ (2.4.1)
and
fw? = #(dt A f1 4 a®) = dt A xa® 4+« f! (2.4.2)
where the dot stands for ¢-differentiation. Then
~ 1 - o
dy(dtA O +a) = 5 (d+#d)(dt A fO+ah)
1 -1 0 o Lo 0 1
:idt/\(a —df° + *da )—|—§*(a —df° +da’)

and
d*(dt A O+ a') = —idi(dt A fO +at) = —(f° — d*at).
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Fix a spin® structure on N. It induces by pullback a spin® structure ¢ on N with associated bundle
of complex spinors A R A
Se =St @S;.
Denote by ¢ the Clifford multiplication on S,. We set J := ¢&(dt) : S} — S;. Observe that .J
produces an isomorphism between the restrictions of ST to N. We set
Sg = S:|Ng S; |N .
The bundle S, is equipped with a Clifford structure given by the Clifford multiplication

c(a) = Jé(a) : S iv—SF|n .

S, is precisely the bundle of complex spinors associated to the spin® structure on the odd-dimensional
manifold N. R
For any 2-form & on N we have é(& — *&) = 0 on S so that, using (2.4.2), we deduce

c(a) = c(*xa), Ya € Q*(N) (2.4.3)

and
c(dv(g)) = —1. (2.4.4)

Set det(o) = det S, = det(¢) |y and fix a smooth Hermitian connection Ag on det(o). It induces
by pullback a Hermitian connection on det(5) which we denote by Ag. A Hermitian connection A
on det(0) is called temporal if

that is, . R
A= Ay +ia(t)

where a(t) is a path of 1-forms on N. We set A(t) = Ay + ia(t) so that A can be regarded as a path
of Hermitian connections on det(c). Using the identities (2.4.1) and (2.4.2) we deduce

Fi=idt Na+ Faq (2.4.5)
and
2F7 = dt A (10 + *Faqr)) + *(ia + +Faq)). (2.4.6)
Lemma 2.4.1. If A is a smooth Hermitian connection on det(6) then there exists a smooth map
f N =R
such that the connection exp(if) A=A —2idf is temporal.

Proof We write R A
A=Ay +idt Ag(t) +1ia(t)

where g(t) @ a(t) is a path of sections of (A? @ AV)T*N. Any function f : N — R can be viewed as
a path f(t) of O-forms on N. The condition

Ji(exp(if)(A— Ap)) =0
is equivalent to _
i(g(t) — 2/(1)) = 0.
We can define .
ft,z) = %/ g(s,x)ds, Vte€[a,bl, zeN. R
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Suppose now that C = (z/?,/l) is a g-monopole on N. Modulo a §;T—change we can assume A
is temporal so we can identify it with a path A(t) of connections on det(c). The spinor ¢ can be
viewed as a path 1 (t) of sections in S,. The connection V4 induced by A on Ss has the form

VA = dt 9, + vA®

where VA®) is the connection induced by A(t) on S; [N So @ So. If (e;) is a local orthonormal
frame on N and (e') denotes is dual coframe then we have

D1 =eoVA =e(d)o, + > e(e)viD =g <at -3 c(ei)vg“))
=J (0 = Daw)
where D 4(;) denotes the geometric Dirac operator induced by the connection A(t). Using the above

identity, (2.4.3) and (2.4.6) we deduce that C = (¢(t), A(t) = Ay + ia(t)) satisfies the “evolution”
equations

& = Dapv(t)
(2.4.7)
ia = 1 (q(t)) — *Faq
To proceed further we imitate the four-dimensional situation and consider
Co =T(Ss) X Ax
where A, denotes the affine space of Hermitian connections on det(o). Now define
&, :Chr — R,
by
1 1
&0l A) =5 [ (A= A0) A (Fat Fay) + 5 [ Re(@av.v)ds, (24.8)
N N

We claim that the gradient of this functional (with respect to the L2-metric on C,) is given by
precisely the right-hand side of (2.4.7).
The proof of this claim relies on the following technical result.

Exercise 2.4.1. Prove that for any real 1-form « on N we have

2la(x)]? = 2| * a(z)|* = |e(a(x))|? := —tr (c(a(x))?), Vo € N.

(Note the factor of 2 and compare to the analogous identity in Lemma 2.1.5 in §§2.1.1 concerning
self-dual forms.)

To verify this claim set ia := A — Ay € iQ!(N) (so that D4 = D4, + 3c(ia)) and write &, (¢, a)
instead of &, (v, A). We have

d . . 1
ot li=0 Ex (¥ + tih,a + ta) = 5/

1
iaA(ida+2FA0)+f/ ia A dia
N 2 N

2 2

(use Stokes’ theorem in the second integral)

+1/N(1<c(ia)¢,¢> +2Re (’D;x%@)dvg

1 1
:f/ id/\(ida—l—QFAO)—i—f/ ia Aida
2 /N 2 /N



142 Liviu I. Nicolaescu
; 1 ..
+/NRe<@A¢a¢>dUg+Z/N<C(1a)1/%¢>dvg
(use (c(ia)i, v) = Re tr (c(ia)q(v)) := (q(¥), c(ia))
.. : 1 ..
— [ianEat [ Re®av s, + g [ (eliaatw)in,

3 - 1
_ /N (36, % Fa)dv, + /N Re(® 4t d)dv, + /N (c(ia), g(1))dv,

(* denotes the complex linear Hodge operator, and we use Exercise 2.4.1 in the last integral above)
A .
= [ i je aw) ~ <Falduy + [ Re(@a.d)du,
N N
The functional &, is not §, = Map (N, S1)-invariant. In fact Vy € G, and C € C, we have

50(7~C):60((:)—/Nd$A(FA+FAO)

_ e [ LAy, b
_50(C) 47 L 27 /\27T(FA+FAO)
=&,(C) — 8%2/ deg~y A c1(det(o)) (2.4.9)
N

where degy € H'(N,Z) is the cohomology class v*(5=df). In particular, we deduce that &, is
Go-invariant if and only if ¢;(det o) is a torsion class.

Definition 2.4.2. The critical points of the functional &, are called g-monopoles on N corresponding
to the spin® structure o.

Remark 2.4.3. We want to point out a curious and somewhat confusing fact. More precisely,
observe that the energy functional &, is orientation sensitive. By changing the orientation of N
respecting the normalization (2.4.4) the energy function changes to —&,.

Inspired by the results in §2.1.1 we define the energy of a configuration C= (¢, A) on N by
. SN S - 1 - N
PO = [ (VA0P -+ J10F + Sl + Fado(a)

where § denotes the scalar curvature of j. If A is temporal, A = A(t) = Ao +ia(t) then using (2.4.5)
and the identity |g(¢)|? = 3|¢[* we deduce

b
B, A) = / dt /N (9P + al?)dv(o)

b
s 1
+ [ [A9AO0@F + 3R + Tl + [Paw P)iets)
where s denotes the scalar curvature of g. (Observe that on the cylinder N we have s = s.)

Lemma 2.4.4. (Main energy identity) Suppose C= (1/;, /1) is a monopole on N such that A is

temporal, A = A(t) = Ay + ia(t). Then

[ [ (o + )i
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b
_ AB 2 1 512 1 Ll >
[t [ (94068 + S0+ ol + [ Pao ) dote)

= SB(, A).

Proof For brevity, we will write A instead of A(t) and v instead of ¢(t). Using the first equation

n (2.4.7) we deduce
| Wdvte) = [ 10avPan)

(use the Weitzenbock formula for © 4 and integration by parts )
S 1
— [ (19 + S0P + 5 Re(e(Ea.w) )doto).
N

Using the second equation in (2.4.7) and Exercise 2.4.1 we deduce

2 [ JaPavie) = [ let@)Pavta) = [ 15at0) - e(Fa)Pinto)

= / ( |%Q(7/))\2 +|e(Fa)|? —Re(q(v),c(Fa)) )dv(g)
N

(use Exercise 2.4.1 again )

1
= [ (gl 21BaP = (P, 0) Jav(o).
N
The energy identity is now obvious. W

Remark 2.4.5. We want to point out a nice feature of the main energy identity. Its right-hand
side is manifesly gauge independent while the left-hand side is apparently gauge dependent since the
configuration (1, A) was chosen so that A is temporal.

The functional &, has nice variational properties, reminiscent of the Palais-Smale condition.

Proposition 2.4.6. Suppose C,, = (¥, Ay,) is a sequence of smooth configurations such that
”wnHoo = 0(1)7 as n — oo (2410)

and
IVES(Cr)llrz = o(1), as n — oo. (2.4.11)

Then there exists a sequence vy, € G, such that v, - C,, converges in any Sobolev norm to a critical
point Coo of E,
V&s(Cs) =0.

Proof The condition (2.4.11) implies

D4, ¥nll2 = o(1) (2.4.12)

and )
1Fa,ll2 = 159(%n) 2 + o(1). (2.4.13)



144 Liviu I. Nicolaescu

Using the sup-bound on v, in the last inequality we deduce
[1Fa, [l = O().

Modulo changes of gauge, which can be used to reduce the size of the harmonic part of Fl4, below a
fixed, geometrically determined constant, the last inequality leads to L':2-bounds for ia,, := A,, — Ay.
Throw this information back in (2.4.12) to obtain

D A, tn = —c(ian), + o(1).

The elliptic estimates coupled with the sup-bound on v, and the L'2-bound on a, lead to L%2-
bounds on 1,. Bootstrap to obtain bounds on (a,,,) in arbitrary norms. These coupled with
compact Sobolev embeddings allows us now to conclude that a subsequence of C,, converges in any
Sobolev norm to some smooth Co, € C,. The conclusion in the proposition now follows using (2.4.11)
once again. Wl

The last proposition has an important consequence.

Corollary 2.4.7. Suppose C= (@,A) is a smooth finite energy monopole on Ny := R x N such
that A is temporal and

[Pl < 00

Then there exists a sequence t,, — oo such that, modulo G, the configurations (¥ (t,), A(t,)) converge
in any Sobolev norm to a critical point of &,.

Proof Using the main energy identity we deduce

/_Z d'f/N(ll/}(t)l2 + |a(t)|2)dv(g) < 0o

so that there exists a sequence t,, — oo such that

2

|we. (i), At

= [ (W + a(e Yot = o)

L2

The desired conclusion now follows from Proposition 2.4.6. B

82.4.2 The Thom conjecture

To put the Thom conjecture in the proper context we begin by recalling a classical algebraic-geometry
result. We will denote the tensor multiplication of line bundles additively, by +.

Proposition 2.4.8. (Adjunction formula) Suppose (X,J) is an almost complex manifold of
dimension 2n and 'Y C X is a submanifold of dimension 2(n — 1) such that the natural inclusion

TY - TX |y
is a morphism of complex bundles. Then
Ky = Kx |y +Ny

where Ny denotes the complex normal line bundle, Ny :=TX |y /TY determined by the embedding
Y — X, and K denotes the canonical line bundle, Ky = det(T*M)10 = det(T%1 M).
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Proof Along Y — X we have the isomorphism of complez vector bundles
TXYW|y=TY'0 @ Ny
By passing to determinants we deduce

—Kx ‘y: —Ky +Ny. R

Suppose now that (X, w) is a Kdhler manifold of complex dimension two and ¥ — X is a smooth
complex curve on X , i.e. a compact, connected, complex submanifold of X. Using the adjunction
formula we deduce

Ky, = Kx|s +Ns.

Again we identify the complex line bundles with their first Chern class c’i"p . Integrating (=Kronecker
pairing) the above equality over ¥ we deduce

(Kg,%) = (Kx,5) + 3%

since, according to the Gauss-Bonnet theorem, the pairing (Ny, X) is the self-intersection of ¥ — X.
Using Gauss-Bonnet again we deduce

(K, %) =2¢(%) -2

where g(X) is the genus of the Riemannian surface 3. This yields the genus formula
1
g(Z):1+§(KX-Z+E-Z). (2.4.14)

We specialize further and we assume X = CP? and ¥ — CP? is a smooth complex curve of
degree d, i.e.
[¥X] = dH, in Hy(CP? Z).
Using the equality Kcp2 = —3H established in §2.3.4 we deduce
d(d—3
g(£) =1+ % (2.4.15)
Kervaire and Milnor (see [56, 62]) have shown that if the homology class dH € Hy(CP? Z) is
characteristic for the intersection form (i.e. d is odd) and can be represented by an embedded sphere
then
1=7(CP*) =d*> mod 16.
In particular this shows that the class 3H cannot be represented by an embedded sphere.
To connect this fact with the genus formula (2.4.15) we introduce

Gmin : Ho(CP?,Z) — 7.

where gin(dH) denotes the minimum of the genera of smoothly embedded Riemann surfaces ¥ —
CP? carrying the homology class dH. The above result of Kervaire and Milnor implies

The equality is optimal for d = 3 since according to (2.4.15) the curves of degree 3 on CP? have
genus 1. In particular this shows that

d(d —3)
2

A famous conjecture, usually attributed to R. Thom, states that the above equality holds for all

d > 0. Using the genus formula we can rephrase this by saying that the complex curves are genus

minimizing amongst the smoothly embedded surfaces within a given homology class. The methods

developed so far are powerful enough to offer a solution to this conjecture.

gmin(dH) =1+ ., d=1,2,3.
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Theorem 2.4.9. For every d > 0 we have the equality

d(d —3)

Proof We follow closely the ideas of Kronheimer and Mrowka [71]. The above observations show
that it suffices to consider only the case d > 3.
Suppose ¥ < CP? is a smoothly embedded surface such that [¥] = dH, d > 3. Then

Y- Y =ki=d
We blow up CP? k times CP? --» CPQ#k‘@z and denote by 7 the natural projection
M := CP*#kCP  — CP2.

As in Example 2.3.36 denote by Fj, i = 1,---,k the homology classes carried by the exceptional
divisors. Consider the proper transform 3 in the blow-up in the sense of algebraic geometry. Topo-
logically this means ¥ is the connected sum with the k spheres representing the classes —F;. Thus

».3=0.

We now follow closely the geometric situation in Example 2.3.14. Denote by U a small tubular
neighborhood of ¥ — M diffeomorphic to D? x . and set N = U =2 S x 3. Equip ¥ with a metric
go of constant scalar curvature sg. The Gauss-Bonnet theorem implies

i /i s0dv(go) = 2 —29(2) =2 — 29(%)

so that 8
s
so= —=—(1—-9g(X%)). (2.4.16)
VOlgo (E)

When no confusion is possible we will continue to denote by go the product metric on N = ! x 3.
Now consider again the metric g,, n > 1, of Example 2.3.14 so that a tubular neighborhood
of N < M is isometric to the metric dt? + df? + go on [-n,n] x S' x . Set N,, := [-n,n] x N.
Again denote by 6y the spin® structure induced by the natural complex structure on M so that
det(69) = =Ky = 3H — ), E;. Denote by o the restriction of 6o to N. We saw in that example

that there exist (smooth) (&9, gn,0)-monopoles C, = (¢, A,,) for all n. > 1.
Lemma 2.4.10. There exists a constant C > 0, such that ¥Yn > 1 we have
4ol e ar) < C (2.4.17)

and .
E(C,

5.) <C. (2.4.18)

Proof Denote by s,(x) the scalar curvature of the metric g,. Along the long neck s,(x) is
comparable to sy while away from the neck it is bounded above by a constant independent of n since
the metric g,, varies very little in that region. The inequality (2.4.17) is thus a consequence of the
Key Estimate in §2.2.1.

To prove the second inequality denote by R the complement of the neck in M and let E,, denote
the energy of C,, on M. Since C,, is a (00, gn,0)-monopole we deduce from Proposition 2.1.4 that

[ef0]

E, = —2x° /M 2 = —2r?K3, =21%(k — 9).
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We deduce

B(Culs,) = Bn = B(Cl) < By — [ 2 100(0)Pdo(an).

Since s, (z) and |, (2)| are bounded independent of n and R has finite volume, independent of n,
we deduce that the right-hand side of the above inequality is bounded from above by a constant
independent of n. This concludes the proof of the lemma. B

Modulo a gauge transformation we can assume Cn = (’(/AJn, jln) is temporal so that we can write

Un |, = Yn(t) and A, = Ay +iay(t).

Since
E(C, |1\7n) <C
there exists |k, | < n such that
E(Chlign kp+11x ) < C/2n.

Using the main energy identity we deduce

ko1 .
[ e [ 1n®F + an®Fdotan) < O/
kn N
Thus there exists t,, € [kn, k, + 1] such that

[ 1) + i 02) Pl an) < C . (2.4.19)

Set R

Lemma 2.4.10 and (2.4.19) show that the sequence C,, satisfies all the assumptions in Proposition
2.4.6. This leads to the conclusion that

o there exist gg-monopoles on N = St x ) corresponding to the spin® structure og = ¢ |N-

To conclude the proof of Theorem 2.4.9 we will show that the existence of monopoles on N

imposes restrictions on g(X). 3 3
Observe first that any spin® structure ¢ on ¥ induces by pullback viap : N — ¥ a spin® structure
p*o on N. Next observe that

o0 = 0o |N=p"60ls
so that
det(0g) = p*(det(d05)) = p* (=K |s)-

The surface X can be naturally viewed as a submanifold in NV which is the total space of a trivial
Sl-bundle over . The above equality implies

k k
/ Cop=—Kpy-S=BH - E;)-(dH - E;)=3d—k=d(3—d). (2.4.20)
z i=1 i=1

If C = (¢, A) is a go-monopole on N

{@szo
1
2

C(Fy) — (2.4.21)
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then arguing exactly as in the proof of the Key Estimate in §2.2.1 we deduce

612 < ~2min so(z)

where 50(z) denotes the scalar curvature of the metric go on N. Now observe that since N = Ixy
is equipped with the product metric the scalar curvature 5q at (6,2) € S x X is equal to so(z) and

using (2.4.16) we conclude
912, < —T=((2) - 1) (2422
< o, ®) 0 1 +

Using Exercise 2.4.1 and (2.4.22) in the second equation of (2.4.21) we deduce

VBIFA| = leteFR) = 5lat0) = St < St -1

so that 4
T
Fal < ——(g(2) —1). 2.4.23
Fal < o0 - (2.4.23)

Using (2.4.20) and the assumption d > 3 we deduce

d(d—3)=‘/icgu

This is exactly the content of Theorem 2.4.9. B

1 (2.4.23)
< 5 [ IPaldolon) < 29(2) - 1),
TJs

Remark 2.4.11. (a) Presently the validity of the genus minimizing conjecture of Thom has been
established in its full generality in the more general context of symplectic manifolds; see [97, 114] or
the discussion at the end of §§4.6.2. In this case the genus minimizing surfaces in a given homology
class are precisely the symplectically embedded ones.

(b) In [97, 101] one can find a detailed and explicit description of the monopoles on S* x ¥. For
the more general case of circle bundles over a Riemann surface we refer to [106].

82.4.3 Negative definite smooth 4-manifolds

To help the reader better enjoy the beauty and the depth of the main result of this subsection we
begin by surveying some topological facts. For more details we refer to [29, Chap. 1], [51, 87].

The world of topological 4-manifolds is very unruly and currently there is no best way to organize
it, and not for lack of trying.

The fundamental group, which does wonders in dimension two and is sufficiently powerful in
dimension three, is less effective in dimension four for a simple reason: every finitely presented
group is the fundamental group of a smooth manifold (even symplectic, according to [51]). This
shows that the algorithmic classification of 4-manifolds is more complicated than that of finitely
presented groups, which is impossible. It is thus reasonable to try to understand first the simply
connected 4-manifolds and in this dimension we have to be very specific whether we talk about
topological or smooth ones.

The intersection form of simply connected topological 4-manifolds is a powerful invariant: it
classifies them up to homotopy equivalence (according to J.H.C. Whitehead [147]) and almost up
to a homeomorphism according to the award winning results of M. Freedman [38]. Recall that the
intersection form of a closed 4-manifold is a symmetric, unimodular, bilinear map

q:7" x 1" — 7.

Unimodularity in this case means that the matrix describing ¢ with respect to some integral basis
of Z™ has determinant 1.
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To each intersection form one can associate three invariants: its rank, n in this case, its signature
and its type. The signature, 7(q), is defined as the difference between the number of positive
eigenvalues and the number of negative eigenvalues of the symmetric matrix representing ¢ with
respect to some basis of Z™. The intersection forms are of two types: even, if

g(x,z) =0 mod 2, Vx €Z

and odd, if it’s not even. Observe that ¢ is even if and only if the matrix representing ¢ with respect
to an arbitrary basis of Z™ has even diagonal entries. A quadratic form ¢ is called positive/negative
if 7(¢) = £rank ¢ and indefinite otherwise.
Two integral quadratic forms ¢, g2 of the same rank n are isomorphic if there exists T € GL(n,Z)
such that
¢1(Tz, Tx) = go(z,x), Yo € Z".

The quadratic forms over Q or R are completely classified up to isomorphism by their rank and
signature. The situation is considerably more complicated in the integral case.

Example 2.4.12. The diagonal definite form of rank n is the quadratic form ¢ = (1),, whose matrix
with respect to the canonical basis of Z" is the identity matrix. More generally, a quadratic form is
said to be diagonal(izable) if it is isomorphic to the direct sum (1),, @ (=1),,. The form Ejg is the
positive definite quadratic form of rank 8 given by the symmetric matrix

21000000
12100000
01210000
00121000

E=1l0o001 2101 (24.24)
00001210
00000T1 21
00001012

A more efficient and very much used way of describing this matrix is through its Dynkin diagram
(see Figure 2.9). The o’s describe a basis vy, -+ ,vg of Z8. The 2’s indicate that g(v;,v;) = 2 and

2 2 2 2 2 2 2

2

Figure 2.9: The Dynkin diagram of Eg

the edges indicate that ¢(v;,v;) = 1 if and only if v; and v; are connected by an edge. Eg is even
and positive definite. Ejg is not diagonalizable over Z. We also want to point out that often FEg is
described by a matrix very similar to the one in (2.4.24) where the 1’s are replaced by —1’s. The
two descriptions are equivalent and correspond to the change of basis v; — (—1)%v;.

Another important example of quadratic form is the hyperbolic form H given by the matrix

0 1
H= ( 0! ) |
It is even, indefinite, has zero signature and it is not diagonalizable.

The examples presented above generate a large chunk of the set of isomorphism classes of integral,
unimodular, quadratic forms. More precisely, we have the following result, whose proof can be found
in [121].
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Theorem 2.4.13. (a) Any odd, indefinite quadratic form is diagonalizable.
(b) Suppose q is an even form. Then

7(¢g) =0 mod 8.
(¢) If q is even, indefinite and 7(q) > 0 then

q=2aFEs®bH = (Es®--- O FE)®(HD---®H)
a b

where 7(q) = 8a and 8a + 2b = rank (¢q). (When 7(q) < 0 use —q instead.)

The classification of definite forms is a very complicated problem. It is known that the number
of nonisomorphic definite quadratic, unimodular forms of rank n goes very rapidly to co as n — oo
(see [121]). The diagonal one however plays a special role. To describe one of its special features we
need to introduce a new concept.
Suppose ¢ is a quadratic unimodular form of rank n. A vector xg € Z™ is called a characteristic
vector of q if
q(x0,y) = q(y,y) mod 2, VyeZ"

If we represent ¢ by a symmetric matrix S using a basis of Z" then a vector x is characteristic if its
coordinates (z;) with respect to the chosen basis have the same parity as the diagonal elements of
S, ie.

r;, =58; mod?2, Vi=1,--- n.
We see that ¢ is even if and only if 0 is a characteristic vector.

Example 2.4.14. (Wu’s formula) Suppose M is a closed, compact oriented smooth 4-manifold
with intersection form ¢ps. A special case of Wu'’s formula (see [93]) shows that the mod 2 reduction
of any characteristic vector x of gy is precisely the second Stiefel-Whitney class wo(M). In par-
ticular, this implies that any smooth 4-manifold admits spin® structures (since any such structure
corresponds to an integral lift of ws(M)) and moreover,

(we (M), ) = qu(a, ) mod 2, Ya € Hy(M,Z).

As explained in [51, Sec. 1.4], the last identity should be regarded as a mod 2 version of the
adjunction formula.

The congruence (b) in Theorem 2.4.13 admits the following generalization (see [121]).

Proposition 2.4.15. If q is an integral, unimodular, quadratic form and X is a characteristic vector
of q then
q(x,x) =7(¢) mod 8.

Following [32] we introduce the Elkies invariant ©(q) of a negative definite quadratic form ¢ as
©(q) := rank (¢) + max{q(x,x); x a characteristic vector}.

Observe that since ¢ is negative definite ©(q) < rank (¢) = —7(g) with equality if and only if ¢ is
even. Moreover, by Proposition 2.4.15 we have ©(q) € 8Z. We have the following nontrivial result.

Theorem 2.4.16. (Elkies, [32]) For any negative definite quadratic form q we have
©(q) =0

with equality if and only if q is diagonal.
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Roughly speaking, this theorem says that if g is not diagonal then the positive form —q has short
characteristic vectors.

We now return to topology. Michael Freedman’s classification theorem states that given any even
quadratic form there exists a unique, up to homeomorphism, simply connected (s.c.) topological
4-manifold with this intersection form. Moreover he showed that given any odd quadratic form there
exist exactly two nonhomeomorphic topological s.c. 4-manifolds with this intersection form and at
most one of them is smoothable (that is it admits smooth structures). We deduce the following
remarkable consequence.

Corollary 2.4.17. Two simply connected smooth 4-manifolds are homeomorphic if and only if they
have isomorphic intersection forms.

In the early 50’s, Vladimir Rohlin ([118]) has showed that if the even form ¢ is the intersection
form of a smooth s.c. 4-manifold then

7(¢) =0 mod 16.

According to Michael Freedman’s classification, there exists a unique s.c. topological 4-manifold
with intersection form Fg. The signature of Eg is 8 = rank (Eg). This topological 4-manifold cannot
support smooth structures!!!

In the early 80’s, Simon Donaldson ([28]) showed that this surprising fact is not singular.

Theorem 2.4.18. (Donaldson, [28, 29]) If M is a smooth, compact, oriented 4-manifold with
negative definite intersection form qpr then qpr is diagonal.

This theorem shows that of the infinitely many negative definite quadratic forms only the diagonal
ones can be the intersection forms of some smooth 4-manifold. Thus any negative definite topological
4-manifold with nondiagonalizable intersection form does not admit smooth structures !!!

Proof of Theorem 2.4.18  We will argue by contradiction. Assume ¢p; is not diagonal. We
distinguish two cases.

e Assume first that by (M) = dim H'(M,R) = 0. Then y(M) = 2 + by, 7(M) = —bs so that for all
o € Spin®(M) we have

d(o) = i(ci +be—4)= i(qM(c,,, ¢o) + rank (qpr)) — 1.
By Wu’s formula ¢, is a characteristic vector. Since qj; is not diagonal we deduce from Elkies’
theorem that ©(gar) > 0 and we can find o € Spin®(M) such that d(c) = 1©(qa) — 1 > 0. Since
O(qar) € 8Z we deduce d(o) € 2Z + 1.

For any closed 2-form 7 on M and any metric g there exist reducible (g,n)-monopoles corre-
sponding to the o. They are determined by the condition

Fi+int =o0. (2.4.25)
As in §2.2.3 we write 7 = [n] + da and fix a connection Ag such that
[Fa,] = —27i[cs].

Any solution of (2.4.25) can be written as A = Ay —ia+if where 3 is a closed 1-form. (Observe that
such an A satisfies Fq = F, — ida. Since M is negative definite it automatically satisfies (2.4.25)
because there are no self-dual harmonic 2-forms.) On the other hand, since b; (M) = 0 any closed
1-form is exact so that 8 = —2df. This shows that all the solutions of (2.4.25) are G, equivalent.
Using the Sard-Smale theorem as in §2.2.3 we can pick 7 so that any (g,7)-monopole C is
regular, i.e. the second cohomology group Hg of the deformation complex at C is trivial. Denote
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by Cop = (0, Ag) the unique (mod G, ) reducible (g, 7n)-monopole. In this case, using the Kuranishi
picture we deduce that away from Cy the moduli space is a smooth manifold while a neighborhood
of Cy in the moduli space M, (g,n) is homeomorphic to

He,/S".

In this case Héo = ker®,,. Since coker@ 4 = H%O = 0 we deduce

. . 1 1 d(o)+1
Qe 4, = inde® s, = £(c2 — (M) = 10(aar) = WL
Thus, if d(o) = 1 near Cy the moduli space is homeomorphic to the segment [0, 1) while if d(o) > 1

d(o)—1
it looks like a cone over =CP~ 2

If we chop out a small neighborhood of Cy in 9, (g,7n) we obtain a smooth, compact, orientable
d(o)—1

manifold X with boundary £CP~ 2.

If d(o) = 1 then X is a smooth, compact oriented one-dimensional manifold with boundary
consisting of only one component. This is plainly impossible.

If d(o) > 1 observe that the restriction of the universal line bundle U, to 90X is = the tautological

d(o)—1

line bundle over +CP~ 2~ and thus is nontrivial. More precisely (Q, = ¢1(Uy))

d(o)—1
Q, 2 ==£1.
oX

The last equality is impossible since U, extends over X and by Stokes’ theorem we have

d(o)—1 d(o)—1
/ Q, 2 :/ dQ, 2 =0.
o0X X

This contradiction completes the proof of Theorem 2.4.18 in the case by (M) = 0.

e b1 (M) > 0. We will reduce this case to the previous situation by a simple topological trick.

Choose a basis ¢y, ,¢, of Hi(M,Z)/Tors and represent each of these cycles by smoothly
embedded S'’s. We can “kill” the homology class carried by each of these cycles by surgery (see
[51]). This operation can be briefly described as follows.

Observe first that a tubular neighborhood N of a smoothly embedded S' < M is diffeomorphic
to D3 x S where D* denotes the unit ball in R*. Fix such a diffeomorphism so that 9N = §2 x S1.
Now remove N to obtain a manifold with boundary S? x S' to which we attach the handlebody
H = 5% x D? (which has 0H = S? x S'). This operation will kill each of the classes ¢; but will not
affect Ho/Tors and the intersection form of M since the classes ¢; are not torsion classes (use the
Poincaré duals of ¢; to see this). In the end we obtain a smooth manifold with the same intersection
form but with b; = 0. This places us in the previous situation. The proof of Theorem 2.4.18 is now
complete. B

Exercise 2.4.2. Prove that the above sequence of surgeries does not affect the intersection form,
as claimed.

Remark 2.4.19. Donaldson’s theorem states that a smooth, simply connected, negative definite
4-manifold X cannot be too complicated arithmetically: its intersection form is the simplest possible.

If we remove the negativity assumption, so that the intersection form ¢x is indefinite, then gx
has a much simpler from. If X is not spin then ¢x is odd and thus diagonal.® If X is spin then gx
is even and thus it has the form

1
gx =abg+bH, a= gT(q)7 8|a| + 2b = rank (g).

1The example mCP? #n@2 shows that any odd form is the intersection form of a smooth, s.c. 4-manifold.
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In this case the integers (a,b), b > 0, represent a measure of the complexity of gx. Rohlin’s theorem
states there are restrictions on (a,b). More precisely, a must be an even integer. The celebrated
11/8-th conjecture states that there are even more drastic restrictions in this case, more precisely

11
11|a| = §|T(q)| <rank (¢x) = 8la| + 2b.
This inequality is optimal because equality is achieved when X is the K3 surface (see the next

chapter). Using Seiberg-Witten theory M. Furuta has proved a 10/8-th theorem (see [45], or the
simpler approach in [22]). More precisely, he showed that

10ja] + 1 < rank (q) = 8|a| + 2b.



Chapter 3

Seiberg-Witten equations on
complex surfaces

Anybody who is not shocked by this subject has failed to understand it.

Niels Bohr

The Seiberg-Witten equations are very sensitive to the background geometry. In this chapter we
study some of the effects a complex structure has on the Seiberg-Witten equations and, in particular,
on the Seiberg-Witten invariants.

We will see that, very often, the complex structure leads to information so detailed about
monopoles that we will be able to explicitly describe all of them and, in particular, count them.

3.1 A short trip in complex geometry

This section surveys some basic facts of complex geometry which are absolutely necessary in our
study of monopoles. This survey is by no means complete or balanced but it is targeted to the
applications we have in mind. It should motivate the reader not familiar with this subject to consult
the references [9, 10, 39, 49, 54, 59] which served as sources of inspiration.

§3.1.1 Basic notions

Suppose M is a, compact complex n-dimensional manifold without boundary and £ — M is a
holomorphic vector bundle as defined in Section 1.4. We denote by Op/(F) the sheaf of local
holomorphic sections of E, by O%, the sheaf of holomorphic local sections of APOT* M ® E and by
H*(M,O%,(E)) the Cech cohomology of the sheaf O}, (E). When p = 0 we will write H(M, E)
instead of H9(M,Op(E)) and when E is the trivial holomorphic line bundle we will drop E from
the notation.

A divisor on M is intuitively a codimension-1 complex subvariety. More rigorously a divisor
is defined by an open cover (U,) of M and nontrivial meromorphic functions f, : U, --+ C (i.e.
holomorphic maps f, : Uy — CP') such that f,/ fa is a nowhere vanishing holomorphic function
on Uap. The loci ord(f,) := f7'({0,00}) patch-up to a codimension-1 subvariety in M called the
support of the divisor and denoted by supp (D).

We consider two descriptions (U, fo) and (V4, g4) to be equivalent if there is a cover (W;) finer
then both covers (U,) and (V,) with the following property. For every ¢, o, a such that W; C U, NV,
there exists a nowhere vanishing holomorphic function h : W; — C so that f, = h - g,. We denote
by Div (M) the space of divisors on M.

154
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The previous definition captures the subtle notion of multiplicity. For example, if the divisor D
is given by the collection (f,) then the collection (f2) defines (in general a different) divisor, denoted
by 2D, which has identical support.

A divisor described by the cover of M by itself and a (nontrivial) meromorphic function f :
M --» C is called principal. We will denote this divisor by (f) and by PDiv (M) the subspace of
principal divisors.

If D is a divisor given by a collection (U, f.) then we can regard the collection of holomorphic
functions

9Ba = f,@/foc : Uaﬁ - C*

as a gluing cocycle for a holomorphic line bundle over M. Two equivalent descriptions of the
divisor D lead to isomorphic line bundles. We will denote this isomorphism class by [D]. With this
interpretation, we can regard the collection (f,) as a meromorphic section fp of [D]. Two equivalent
descriptions lead to meromorphic sections which differ by a nonzero multiplicative constant. We see
that the converse statement is true: any divisor can be viewed as described by a meromorphic section
of a holomorphic line bundle.

We can define an operation on Div (M) as follows. If D;, i = 1,2, are divisors given by the
same cover (U, ) (this can always be arranged by passing to finer covers) and meromorphic functions
fa,i 1 Uy ==» C then D; + D; is the divisor given by the cover U, and functions fq, 1 fa,2. We let the
reader check that (Div (M), +) is an Abelian group.

One can give a more geometric description of the notion of divisor. First define a hypersurface of
M to be a closed subset V locally defined as the zero set of a holomorphic function. A hypersurface
may or may not be a smooth manifold. A point p on a hypersurface V' is called smooth if there exists
a holomorphic function f defined in a neighborhood U of p such df(p) # 0 and U NV = f~1(0).
We denote by V* the set of smooth points of V. V is said to be irreducible if V* is connected (see
Figure 3.1).

Let us point out a subtlety of this definition. The line zo = 0 in C? can be defined by many
equations: zz = 0, 25 = 0 etc. These equations define different divisors. The origin (0,0) is not a
smooth point for the defining equation z5 = 0 but according to the definition it is a smooth point of
this hypersurface since there exists a defining equation, zo = 0, for which the origin is a smooth point.
In modern language, when we think of a hypersurface as a subscheme, we assume it is reduced. In
less rigorous terms, we do not consider defining equations of the type

fr=o.

We will always “reduce” them to f = 0. For more details we refer to [31, 49]. The hypersurfaces
behave in many respects like smooth submanifolds: the compact ones carry nontrivial homology
classes and have finite volume. Moreover, we have the following important fact ([75]) .

Proposition 3.1.1. Suppose V' is a hypersurface in a compact Kdhler manifold M of complex
dimension n. Then V defines a nontrivial homology class in Hap—o(M,Z) which is not torsion and,
moreover,

(W V) = /Vw”_l = (n—1)!vol (V) > 0.

Putting together the (reduced) local equations of V' we obtain a divisor on M which we continue
to denote by V. We have the following result (see [49]).

Proposition 3.1.2. The group Div (M) is isomorphic to the free abelian group generated by the
irreducible hypersurfaces in M .

Thus we can think of a divisor as a collection of irreducible hypersurfaces with attached multiplic-
ities. The divisors on a curve (complex dimension 1) are finite collections of points with multiplicities
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Singular and reducible

&

Singular and irreducible

Figure 3.1: Singular hypersurfaces

while on a surface the divisors are finite collections of curves with multiplicities. (A curve on a surface
is by definition an irreducible hypersurface.)

If f: M --» C is a meromorphic function then the divisor associated to the hypersurface f~1(0)
(resp. f~%(oc0)) is called the zero divisor (resp. the polar divisor) of f and is denoted by (f)o (resp.
(f)oo). The difference (f) := (f)o— (f)wo is called the divisor determined by f. All principal divisors
have the form (f) for some meromorphic function f.

Two divisors Dy and D5 are said to be linearly equivalent, and we write this D1 ~ Do, if the
corresponding holomorphic line bundles [D;] and [D;] are isomorphic. We let the reader check that
this agrees with the classical definition Dy ~ Dy < Dy — Do € PDiv (M).

If we introduce the Picard group Pic (M) of isomorphism classes of holomorphic line bundles over
M we see that we have constructed an injective morphism of Abelian groups

Div (M) /PDiv (M) — Pic (M).
For a proof of the following result we refer to [49].

Proposition 3.1.3. If M is algebraic, i.e. it is a complex submanifold of a projective space CP
then the morphism

Div (M)/PDiv (M) — Pic (M)
is an isomorphism.

The elements of Pic (M) are described by holomorphic gluing cocycles and thus can be identified
with the Cech cohomology group H'(M, O*) where O* denotes the multiplicative sheaf of nowhere
vanishing holomorphic functions. The short exact sequence of sheaves

0—-Z—-0—=0"—=0
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leads to a long exact sequence
- = Pic(M) = HY (M, 0%) > H2(M,Z) — - - - .

For any holomorphic line bundle L the class §(L) is precisely the topological first Chern class ¢;(L).

A divisor D is called effective (and we write this D > 0) if the corresponding section fp of [D] is
holomorphic. Equivalently, this means that D is described by an open cover (U,) and holomorphic
functions fo : Uy — C. Any effective divisor can be written as a sum ), n;V; where n; are
nonnegative integers and V; are divisors associated to irreducible hypersurfaces.

Example 3.1.4. Suppose V is a hypersurface. Continue to denote by V the homology class in
Hyp—2(M,7) determined by V. The divisor V' canonically defines a holomorphic section fy of [V]
satisfying (fy) = (fv)o = V. The Gauss-Bonnet-Chern theorem shows that the homology class
carried by V is the Poincaré dual of ¢;([V]). That is why when no confusion is possible we will
simultaneously denote by V' both the line bundle [V] and the cohomology class ¢ ([V]).

For any divisor D on M we denote by £(D) the space of meromorphic functions f such that
(f)+D > 0. (By definition the identically zero function is included in £(D).) Observe that we have
a map

ip: L(D) — H°(M,[D])(= the space of holomorphic sections of [D])

described by
f=[f-fp.
This map is injective, on account of the unique continuation principle. It is also surjective because

for every holomorphic section s of [D] the ratio s/ fp, defined in the obvious way, is a meromorphic
section of the trivial line bundle (hence a meromorphic function). Now observe that

(s/fp)+ D =(s) = (fp) + D =(s) 2 0.
We denote by |D| the projective space P(L(D)). Equivalently,
|D| =P(H(M,[D])).

|D| is called the complete linear system generated by D. A projective subspace of |D| is called a
linear system. A linear system of dimension 1 is called a pencil. The complete linear system can
be geometrically described as the space of effective divisors linearly equivalent to D. The base locus
of a linear system L C |D| consists of all points p € M which belong to the supports of all divisors
in L. Equivalently, if we think of L as a subspace of P( H°(M,[D]) ) then the base locus is the
intersection of the zero loci of the sections in L. We will denote the base locus by B(L).

Any point p € M \ B(L) defines a hyperplane H,, in L consisting of the divisors containing p,
or equivalently, of the holomorphic sections in L which vanish at p. The correspondence p — H,
defines a holomorphic map

i : M\ B(L) — L* = the dual of the projective space L.

Definition 3.1.5. A divisor D on a complex manifold M is called very ample if B(|D|) = 0 and
the map ip| : M — |D[* is an embedding. D is called ample if kD is very ample for & > 0.

Example 3.1.6. Consider a hyperplane H in CPY. Its associated line bundle [H] is the dual of
the tautological line bundle. For every positive integer d, the holomorphic sections of d[H] can be
viewed as homogeneous complex polynomials of degree d in N + 1 variables. Thus

d+N>

dim H°(M, d[H]) = ( J
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so that

dim |dH| = (‘“;N) Y

We can construct a pencil in |[dH| by choosing two linearly independent homogeneous polynomials
A, B of degree d. The pencil is the projective line L defined by the linear space

{aA+ BB; a,p € C}.
The pair [« : 3] defines projective coordinates on L*. The base locus is the variety
A~Y(0)n B71(0) c CPV.

The map
ir, : CPY \ B(L) — CP*

is described explicitly as follows: i (p) = [a : 5] if and only if aA(p) + SB(p) = 0. We can visualize
the pencil as a “fibration” CP"Y --» CP*.

Suppose V is a codimension-1 submanifold of M. The associated holomorphic section fy of [V]
vanishes in a nondegenerate fashion precisely along V. If V is a connection on [V] then we get an
adjunction map

a: TM‘V—> [V] |V, X — fov

vanishing precisely along the tangent bundle of V' because fy is nondegenerate so that a induces an

isomorphism of real bundles
a: Ny — [V] |V

where Ny denotes the normal bundle to V' — M. Since fy is holomorphic the adjunction map
preserves the complex structures so that we have an isomorphism of holomorphic line bundles

[V]lv= Ny. (3.1.1)
We can now rewrite the adjunction formula of §§2.4.2 as
Ky 2(Ky@[V])|v - (3.1.2)

where K s denotes the canonical line bundle of M, Kj; = A™9T*M.
A large amount of information about the embedding V' < M is contained in the following
structural short exact sequence:

0 — On 22 0p([V]) & Ov([V][v) — 0

where the last arrow is the restriction map. If L is a holomorphic line bundle we can take the tensor
product of the above sequence with the line bundle L ® [—V] and we obtain

0— Om(Le[-V])XE0u@L) L Ov(Lly) —0 (3.1.3)

As in Sec. 1.4 set
QPUE) := C®(APIT*"M ® E).

We can form the Dolbeault complex

)

2N

0 — QPO(E) 22, grl(E) 95, qrr(E) - 0

whose cohomology is denoted by H g’*(M E).
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Theorem 3.1.7. (Dolbeault) There exist natural isomorphisms
HY(M,0%(E)) = Hg’q(M, E), ¢=0,1,--- n.

Fix a Hermitian metric g = gy on T'M and a Hermitian metric h = hg on E. Then we can form
the formal adjoints of the operators

Op : WPU(E) — QPITYE),
The formal adjoint can be explicitly described in terms of the conjugate linear Hodge operator
xp: QPIUE) — Q" PPTIUEY)
defined as in (1.4.20) of §§1.4.2. More precisely we have (see [49])
3t = — g O 55 .

We can form the Laplacian o o
Ag = AgE = 8E6j£‘3 + aEaE
Since 0% = (93)? = 0 we have B B
A5 = (0 + a*E)Q
and a simple integration by parts shows that

Agw =04 pw =0pw =0, we Q" (M).

A differential form satisfying one of the equivalent conditions above is called J-harmonic. We will
denote by H(M, E) the space of 0-harmonic E-valued (p, q)-forms. We want to emphasize that
this space depends on the metrics gy; and gg. However, its dimension depends only on the complex
structure of M! More precisely, we have the following important result.

Theorem 3.1.8. (Hodge) All the spaces Hg’q(M, E) are finite-dimensional and the natural maps
H2(M, E) — H29(M, E)

are isomorphisms. In particular, the space of holomorphic global sections of E is finite-dimensional
. L . 0,0
since it is isomorphic to Hy" (M, E).

We set
hPU(E) = Wi (E) = dime HY(M, E), hP(E) := dim¢ HY? (M, E)

and

Xp(B) =Y _(~1)'h5{(E).
q
When p = 0 we write x(E) instead of xo(E). When FE is the trivial holomorphic line bundle, we
write hAf instead of hE(E) and we set

n

Xnot (M) 1= xo(M,E) = > " (—1)7R} .

q=0

The integer h}; is denoted by ¢(M) and is called the irregularity. The integer (—1)™(xnot(M) — 1)
is called the arithmetic genus and is denoted by p,(M).

The numbers Py, (M) = h%(M, K%,) are called the plurigenera of M. Py(M) is usually denoted
by pg(M) and is called the geometric genus of M. Observe that

pg(M) = h"0(M).
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Theorem 3.1.9. (Riemann-Roch-Hirzebruch)

X(E) = /M td(M) A ch(E)

where td(M) denotes the Todd class of the complex bundle TM while ch(E) denotes the Chern
character of E.

In the above integral only the degree 2n part of the nonhomogeneous form td(A) A ch(E) is
relevant. We present a few examples particularly important in the sequel. We consider only the
case when F is a complex line bundle. We will use additive notation for the tensor products and
the duals of line bundles and we will frequently identify a line bundle with its (topological) Chern
class or its Poincaré dual.

e dimg M = 1. Thus M is a Riemann surface of genus g. Then

td(M) =1+ %Cl(M) =1- %K]\/j, Ch(E) = 1+01(E)

so that

wOLE) = [ a@)+g [ aon,

M

The first integral is an integer called the degree of E and denoted by deg E' and the second integral
is equal to (2 — 2g) by the Gauss-Bonnet theorem. We conclude

Xo(M,E)=degE+1—g. (3.1.4)
e dimc M = 2. In this case

td(M) =1+ %cl(M) + %(cl(M)2 + ca(M)),

ch(E)=1+c¢(E)+ %cl(E)Q.

Identifying ¢;(M) with —K s and ¢;(E) with E we deduce

xo(M,E) := %E(E — Ky + % /M c1(M)? + co(E).

Using the Gauss-Bonnet-Chern formula
/ co(M) = xa (= Euler characteristic of M),
M

the Hirzebruch signature formula

and the universal identity
pl(M) = Cl(M)2 — QCQ(M),

we conclude that
K2, =2xu + 31 (3.1.5)

and )
Xo(M, E) = §E(E — K ) 4 Xnot (M)
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1 1 1 1
= §E(E — K]\/[) + E(KQ +XM) = iE(E — KM) + E(X]M +TM)- (316)

(Above, the multiplication denotes the intersection pairing on the 4-manifold M.)
Observe that there is a natural, complex bilinear pairing

(0,0) : QVI(E) x Q""" I(E*) — C
defined by

N u,w ) :/ (u, )N A w,
M

Yu € C®(E), v € C®(E*), n € Q%(M), we Qu""9(M). The above pairing can be regarded as
a pairing
(0,0) : QV(E) x Q""" YKy ® E*) — C.

Clearly this map induces a bilinear pairing
(o,0) : HY! (M, E) x HY" (M, Ky ® E*) — C (3.1.7)
and thus natural complex linear maps

HYY(M, E) — HY" (M, Ky © E*)*
(3.1.8)
H)" (M, Ky ® E*) — Hy (M, E)*.

Theorem 3.1.10. (Serre duality) The pairing (3.1.7) is a duality, i.e. the natural maps (3.1.8)
are isomorphisms.

Using the natural metric on HZ to identify

H%TL—Q(]\47 KM ® E'*) o H%TL—(](]\47 KM ® E*)*,

H)Y(M, E) = H)(M, E)*

we observe that the maps in (3.1.8) are precisely the complex linear maps induced by *g,

g HYY(M, E) — HY""1(M, Ky @ E*) etc.

Observe that Serre duality implies

WOA(E) = hy YKy @ EY). (3.1.9)
If F is the trivial line bundle the above equality becomes

ROt — RO (K ) = b (3.1.10)
and in particular

Po(M) = By’ = by
Instead of the Cauchy-Riemann operators dg : QP4(E) — QP9+1(E) we can use their conjugates
Op : WPU(E) — QPTL(E),

We can form similar complexes

O
’E, ..

0— QO(E) 225 Qli(E) 2B, Qra(E) — 0.
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Their cohomology spaces are denoted by H}?(M, E). Again, by choosing Hermitian metrics on 7'M
and E we can form the Laplacian

AaE = 8}58% + 626}5 = (8E + 6%)2
whose kernel we denote by HY?(M, E).

In the remainder of this section we will assume the metric on T M is Kdhler unless otherwise
indicated.

Assume F is the trivial line bundle equipped with the trivial Hermitian metric. Using the Kéhler

identities of Sec. 1.4 we deduce
Ag=A5 on QP9I(M)

which implies

HY (M) = H(M) = HEP(00)

so that
r? = hiF, Vp,q. (3.1.11)

If A4 denotes the Hodge-deRham Laplacian on (complex valued) forms on M then
1
“Ag=Aj
2—d T 70
so that any d-harmonic (p, ¢)-form on M is also a d-harmonic form of degree (p + ¢). This implies

Hj (M) C= @ HZY(M). (3.1.12)
p+q=Fk
If b (M) denotes the k-th Betti number of M then the last identity implies
(M) = > hhi. (3.1.13)
p+q=k

The identities (3.1.10) and (3.1.11) lead to the Hodge diamond of a Kahler manifold. We describe
it only in the case dim¢ M = 2.

h070
h0:1 h1,0
Ro2 ... pLl o Ll p20
h2:1 . h1:2
h2,2

The above configuration is symmetric with respect to the two diagonals, vertical and horizontal.
The Kéhler identities discussed in Sec. 1.4 introduce additional, finer structure on the spaces
HY9(M). Instead of discussing the general situation, presented beautifully in [54], we will consider
only the case of interest to us, namely dim¢ M = 2.
Fix a point p € M. Since M is Kihler we can choose normal coordinates (z',y', 22, y?) near p
so that dz’ = dx’ — idy’ form a local holomorphic frame of A071T;M. Denote by w the symplectic
form determined by the Kéahler metric g = gy, i.e.

w(X,Y)=-Im g(X,Y), X,Y € Vect (M).
As shown in Example 1.3.3 the range of the restriction map

H? (M,R)® C — A*T;M @ C
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is contained in the subspace Cw, & A>T M & A*?T* M while the range of the restriction map
H? (M,R) ® C — A*T M

is contained in the orthogonal complement of Cw, in AYYT* M. This orthogonal complement can
be defined as the kernel of the contraction map (the dual of L - the exterior multiplication by w)

Ap : AMTXM — AT M.
The Kahler identities in Sec. 1.4 show that the direct sum

Dy ()

p,q

is an invariant subspace of A so that these pointwise inclusions lead to global ones
1,1 0,0
H’? (M,R) ® C C Hy' (M) :=ker( A : Hy' (M) — Hy (M) )

and
0,0 2,0 0,2
Hi(MJR)@(CCLHé (M)GBH5 (M)GBHé (M)

= Cw e H2 (M) & HY?(M).
From the identity
H?(M,R) ® C = Cw & HS (M) & H2 (M) & HY* (M)

we deduce that the above inclusions are equalities:

H? (M,R) ® C = Cw & H (M) & HY*(M), (3.1.14)
H? (M,R) ® C = HL (M), (3.1.15)

Observing that p, (M) = h?°%(M) = h%2(M) we deduce from (3.1.14) that
by (M) = 2py(M) + 1. (3.1.16)

The identities (3.1.14), (3.1.15) have another important consequence. Observe that the space of
(1,1)-forms is invariant under conjugation and we can speak of real, harmonic (1, 1)-forms.

Corollary 3.1.11. (Hodge index theorem) The restriction of the intersection pairing on the
space of real, harmonic (1,1)-forms on a Kdhler surface has signature (1,b5 ).

In the case of algebraic surfaces the Hodge index theorem can be formulated equivalently in more
geometric terms.

According to the results of §1.4.2, given a Hermitian line bundle L — M, we can describe the
holomorphic structures on L in terms of Hermitian connections A such that F3° = F* = 0. Thus
the first Chern class of a holomorphic line bundle over a Kéhler surface is a real (1,1)-class.

On the other hand, if M is also algebraic then the holomorphic line bundles can also be described
in terms of divisors, so that we have a map

Div (M) — H; (M)r, D c1([D)). (3.1.17)

Suppose now that ¢ € H?(M,Z) is such that its harmonic part lies in Hgl(M ). Then there exists a

Hermitian line bundle L — M such that c’iOp (L) = ¢. Now we can find a Hermitian connection on L
whose curvature is harmonic and thus must be a (1, 1)-class. This shows that the image of the map
(3.1.17) is the lattice Hgl(M) N H?(M,Z). Tts rank, denoted by p, is called the Picard number of

M. Observe that p < h}\}ll.
According to the Hodge index theorem the restriction of the intersection form to this lattice has
signature (1,p — 1). This implies the following.
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Corollary 3.1.12. (Geometric version of the Hodge index theorem) Suppose M is an
algebraic surface. If D, E are divisors on M such that

D?:=D-D>0and D-E=0
then either
E?<0
or E- D' =0 for any divisor D'.

Definition 3.1.13. A divisor D on an algebraic surface is said to be numerically equivalent to 0,
and we write D ~,, 0, if D - E = 0 for any divisor F. Two divisors Dy, Dy are called numerically
equivalent if Dy — Dy ~, 0. We denote by Num (M) the space of numerical equivalence classes of
divisors.

Observe that the principal divisors are numerically equivalent to zero. The Hodge index theorem
shows that the intersection form restricts to a nondegenerate quadratic form on Num (M). Observe
that Num (M) is a free Abelian group. It coincides with Hé’l (M)NH?(M,Z) and thus its rank is the
Picard number of M. The restriction of the intersection form to Num (M) has signature (1,p — 1).

Unraveling the structure of algebraic surfaces requires a good understanding of the “cone”
Num_ (X), consisting of those divisors with positive self-intersection.

Definition 3.1.14. A divisor D on an algebraic surface is called big if D? > 0.
A big divisor is not far from being effective. In fact, we have the following result.

Proposition 3.1.15. If D is a big divisor then there exists a positive integer such that either nD
or —nD is effective.

We present the proof (borrowed from [59]) since it relies on a simple but frequently used argument
in the theory of algebraic surfaces.

Proof For every integer n we have

x(nD) = h’(nD) + h%?(nD) — h**(nD)

= %nD -(nD — K) + i(XM + Tn)-
Since D? > 0 we deduce x(nD) — oo as |n| — oo so that, using Serre duality, we deduce
h®(nD) + h°(Kp — nD) — .
If nD is not effective for any n # 0 we deduce from the above that
hO(Kpr +nD) — oo, as |n| — oo, (3.1.18)

is effective for any n > 0. Choose a nontrivial holomorphic section s,, of Ky — nD. This leads to
an injection
HOO(M, Ky +nD) %% HY(M, 2K )
so that
dimc H*°(K )y +nD) < dim H*°(2K), Vn > 0.

This is clearly impossible in view of (3.1.18). W

We see that there is a built-in positivity in the notion of effectiveness. The reason behind
it is essentially explained in the following simple observation: if the smooth complex curves Cf,
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C5 embedded in an algebraic surface M intersect transversely then they have positive intersection
number
Cy-Cy > 0.

A similar result is true without the smoothness and/or the transversality assumption. More precisely
we have the following result (see [10, 39]).

Proposition 3.1.16. Suppose Dy and Do are two effective divisors on an algebraic surface such
that their supports intersect in finitely many points. Then

Dy-Ds; >0
with equality iff their supports are disjoint.
To proceed further we need to introduce new notions.

Definition 3.1.17. A holomorphic Hermitian line bundle L — M on a complex manifold M is
called positive if there exists a Hermitian metric g on T'M such that

iFp=—-—Img

where F4 denotes the curvature of the Chern connection on L. L is called negative if —L is positive.

Theorem 3.1.18. (Kodaira vanishing theorem) Suppose L is a negative line bundle on a com-
plex manifold M. Then
h%4(L) =0, V0 <q<n.

Theorem 3.1.19. (Kodaira embedding theorem) A complex manifold M admits positive line
bundles if and only if it is algebraic. More precisely, L is a positive line bundle if and only if there
exists an ample divisor D such that L = [D].

It follows from the Kodaira embedding theorem that the self-intersection number of an ample
divisor E on an algebraic surface M is always positive. In fact, given any effective divisor D we have

D-E>0
To see this observe that the divisor nE is very ample for n > 0 and so it defines an embedding

Then f(supp (D)) contains at most finitely many lines in [nE|*. Now pick a hyperplane H C |nE|*
not containing any of these lines but containing a point in f(supp (D)). This hyperplane intersects
f(supp (D)) in finitely many points. This hyperplane corresponds to a nontrivial section s of [nE|
whose zero set intersects D in finitely many points. This implies

(s)-D>0.
Now observe that (s) ~,, nE so that
n(E-D)=nE-D > 0.

This extreme positivity of ample divisors characterizes them. More precisely, we have the fol-
lowing result.

Theorem 3.1.20. (Nakai-Moishezon) A divisor D on an algebraic surface M is ample if and
only if D> >0 and D - E > 0 for any effective divisor E.
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For a proof we refer to [53].

Definition 3.1.21. A divisor D on an algebraic surface M is said to be numerically effective (or
nef) if D - E > 0 for any effective divisor E.

Thus the ample divisors are both big and nef. However not all big and nef divisors are ample.
Algebraic geometers are interested in a rougher classification of complex manifolds, that given
by bimeromorphisms. We present this notion only in the case of interest to us.

Definition 3.1.22. Suppose M; and My are compact complex surfaces. A bimeromorphic map
£ My =55 My

is a surjective holomorphic map
f . M1 — Mg

such that there exist analytic proper subsets S; C M;, i = 1,2, so that
fZMl\Sl —>M2\Sg

is biholomorphic. Two surfaces are called bimeromorphic if there exists a bimeromorphic map
between them. A surface is called rational if it is bimeromorphic to CP?.

Example 3.1.23. (Complex blow-up) Suppose M is a complex surface. Fix a point p € M and
local coordinates (z1, 22) in a neighborhood U of p so that we can identify p with the origin of C?
and U with the unit disk D C C? centered at the origin. We can regard U \ {p} as an open subset
of

U:={(2,0) eU xCP'; ze(}cC?

where C2 is the total space of the tautological line bundle over CP! and U is an open neighborhood
of the zero section. There is a natural holomorphic map

m:U—=U\{p}, (2,0) —z

such that E := 7~ 1(0) coincides with the zero section. Moreover 7 : U\E — U\{p} is biholomorphic.
The blow-up of M at p, denoted by M)y, is the manifold obtained by gluing U \ E to M \ {p} using
the map 7. Observe that 7 extends to a natural surjection

F:MPHM.

This map is bimeromorphic and it is called the blow-down map. Its inverse (defined only on M\ {p})
is called the blow-up map. The zero section F is a smooth rational curve (i.e. a holomorphically
embedded CP' < M,) with self-intersection —1. E is called the exceptional divisor of the blow-up.

If C is a complex curve on M then the closure of 7=(C'\ {p}) is called the proper transform of
C and is denoted by 7*(C). One can show that

™ (C)? = C? — mult, (C).

The nonnegative integer mult,(C') is called the multiplicity of C at p. It is 0 if p ¢ C, it is 1 if C' is
smooth at p and, in general, it is equal to the order of vanishing at p of a defining equation for C'
near p.

The blown-up manifold Mp can itself be blown-up and so on. Iterating this procedure we obtain
an iterated blow-up manifold X and a natural surjection

m: X —->M

called the iterated blow-down map.
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Exercise 3.1.1. Suppose M is a complex manifold and M is the blow-up of M at some point. If
o : M — M denotes the natural projection then

Ky = 0" Ku + [E]
where E C M denotes the exceptional divisor.

In some sense, the above example captures the structure of any bimeromorphic map. More
precisely, we have the following important result (see [10, 49]).

Theorem 3.1.24. (Zariski) If My — Ms is a bimeromorphic map between algebraic surfaces then
there exist an algebraic surface X and surjective holomorphic m; : X — M; with the following
properties.

(i) The diagram below is commutative.

X
v\
f

M14>M2

(i) X is an iterated blow-up of both My and My and both maps w1 and 7w are iterated blow-down
maps.

The above result shows that the blow-up operation plays a special role in the theory of algebraic
surfaces. It is therefore important to know if a given surface is a blow-up of another. Example 3.1.23
shows that for an algebraic surface to be a blow-up it is necessary that there exists a holomorphically
embedded CP' — X with self-intersection —1. The next remarkable result shows that this condition
is also necessary. For a proof we refer to [10, 49].

Theorem 3.1.25. (Castelnuovo-Enriques) Suppose X is an algebraic surface containing a smooth
rational curve with self-intersection —1. Denote by E’ the image of this embedding. Then there exist
an algebraic surface M, a point p € M and holomorphic maps

F:Xﬂ]\Zp7 f:X—->M

such that the following hold.
(i) The diagram below is commutative.

(ii) F is biholomorphic and f~*(p) = E'.
The manifold M is called the blow-down of X.

Definition 3.1.26. A complex surface is called minimal if it contains no smooth rational curves
(i.e. holomorphically embedded CP"’s) with self-intersection (—1).

Thus, an algebraic surface is minimal if it cannot be blown down, i.e. it is not the blow-up of
any surface.

We conclude our short survey in complex geometry with an important topological result due to
S. Lefschetz.
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Theorem 3.1.27. (Lefschetz hypersurface theorem) Suppose M — CPY is an algebraic man-
ifold of (complex) dimension n and F is a hypersurface in CPV intersecting M transversely. Then
the inclusion induced morphisms

H,(MNF,Z)— H,(M,Z), mg(MNF)— my(M)
are isomorphisms for i <n — 1 and surjections for g =n — 1.
For a very nice presentation of this theorem we refer to [73].
Corollary 3.1.28. Any smooth hypersurface in CP", n > 3, is simply connected.

Exercise 3.1.2. Suppose X is Kéahler manifold of dimension n > 3 and L — X is an ample line
bundle. Suppose there exists a holomorphic section u of L with transversal zero set Y = u~1(0).

Show that the inclusion
Y — X

induces isomorphisms Hy(Y,Z) & H(X,Z) and 73 (Y) & m(X) for £ <n — 2.

83.1.2 Examples of complex surfaces

To give the reader a feeling about the general notions discussed in the previous subsection, we will,
for a while, take a side road and present some beautiful algebraic geometric landscapes. In the
sequel we write P for CP".

So far, the only examples of complex surfaces we know are the projective plane P?, its iterated
blow-ups and the products of pairs of Riemann surfaces. There is another unlimited source of
examples: complex surfaces as zero sets of families of homogeneous polynomials.

Example 3.1.29. (Quadrics in P3) The space of quadratic homogeneous polynomials in four
variables has dimension (g) = 10 and each such polynomial can be viewed as a holomorphic section
of the line bundle 2H on P3.

If Q(z0,---,23) is such a polynomial, the implicit function theorem implies that the zero set
Q = 0 is a smooth submanifold of P? if and only if @ is nondegenerate as a quadratic form. On the
other hand, all complex nondegenerate quadratic forms in four variables have the same canonical
(diagonal) form. This implies that all quadrics in P are projectively equivalent, meaning that any
two are related by a projective isomorphism of the ambient space P2. We thus have the freedom of
choosing () in any way we want. Let

Q = zpz3 — 2122.

The zero set S of @ is the image of the Segre embedding
Pl X Pl g ]PB, ([80 : 81], [to : tl]) — [Soto 1 Sty : s1to : Sltl}

which shows that the quadric Q = 0 is biholomorphic to P! x P!. This is a special example of a
ruled surface. Observe that S is spanned by two families of lines: the A-lines

Altry) = P x [to = ], [to : 1] € P,
and the B-lines
B[sozs]] = [SO : 81} X ]Pl, [So : 81} c ]Pl.

These lines have a nice intersection pattern. No two distinct lines of the same type meet while any
A-line intersects any B-line in a unique point.

The quadrics are rational surfaces. To see this consider again the above quadric S C P? and
p=1[1:0:0:0] € S. The projective tangent plane to S at p intersects the quadric S along the lines

Zl = [SO :0: S1 O] == A[1:0]7 [80 : 81] € Pl’
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and
62 = B[l:O] = [to A 0: 0], [to : tl} S ]Pl.

Now project S from p onto a plane H C P3. This means that to each ¢ # p we associate the point
m(q) € H, the intersection of the line pg with H. The map 7 : S\ {p} — H is holomorphic but does
not extend as a holomorphic map S — H. Denote by g; the point where the line ¢; intersects H.

If we blow up S at p the points on the exceptional divisor correspond to the lines through p
tangent to S and each of these lines intersects H in a unique point. This shows that the projection
S\ {p} — H leads to a well defined holomorphic map

ﬁ:gp—>H.

Denote by ?; the proper transform of ¢; in the blow-up. Observe that ¢; are smooth rational curves
of self-intersection —1. The restriction

7:8,\(LUly) » H
is one-to-one while fr(l@) = ¢;. Using the Castelnuovo-Enriques theorem we can blow down the
curves ¢;. Denote by X the resulting surface. 7 descends to a biholomorphism X — H. Thus we
arrived at H = P? by blowing up once and blowing down twice, which shows that S is rational.

Exercise 3.1.3. Show that any line on a quadric is either an A- or a B-line.

Example 3.1.30. (Hirzebruch surfaces) We have seen that a quadric can be viewed as the total
space of a holomorphic family of lines (P!'’s) parameterized by P*. The Hirzebruch surfaces F,,
n > 0, are twisted versions of such families.

Define F := P! x P! and F; = F({) as the graph of the projection from a point py € P? to a
line ¢ C P? not containing py. More precisely

F, = {(z,y) € P? x ¢; x € poy}

where poy denotes the line determined by the points py and y. Observe that F; coincides with the
blow-up of P? at pg. We denote by E — F; the exceptional divisor. There is a natural map

m:Fi(0) P2 — FE~P!

defined as follows. If p € E then set m(p) = p. If p is not on the exceptional divisor then it
corresponds to a unique point on P? not equal to pg; we continue to denote by p this point on P2.
The line pop defines a unique point on E which we denote by 7(p). 7 is holomorphic and its fibers
are all lines, more precisely, the proper transforms of the lines through py. The proper transform
of £ is a line ¢ on F; with self-intersection 1. We will say that E is the O-section of the fibration
7 : Fy — P! and that / is the oo-section.

More generally, for n > 0 consider the line bundle —nH — P'. We denote by F,, the projec-
tivization of the rank-2 vector bundle

E,=C&®(—nH) — P!

meaning the bundle over P; whose fiber over p € P! is the projective line P(E,(p)). By definition,
F,, is equipped with a holomorphic map

7y Fp, — P!

whose fibers are projective lines. The section 1@ 0 of E,, defines a section of F,, called the 0-section
and denoted by Dg. Observe that if s is a section of nH it defines a section of

P((nH) © C) = P(C® (—nH))
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called the oco-section and denoted by D.,. Dy and D, are divisors and we will denote the classes
they determine in Ho(F,,,Z) by the same symbols. Also, we denote by F' the cohomology class
carried by a fiber. Since Dy and D, are sections we have

Dy-F=Dy-F=1.
Clearly
F-F=0.

Since Dy comes from the zero section of —nH which has degree —n we have

The homotopy exact sequence of a fibration shows that F,, is simply connected while Gysin’s exact
sequence shows that H2(F,,,Z) = ZF & ZDy, so that the intersection form of F,, is

10 1
qn = 1 —n |-
The intersection form is even iff n is even, so that F,, is spinnable iff n is even.
From a differentiable point of view the Hirzebruch surfaces are S2-bundles over $? and these
bundles are classified by 71 (SO(3)) = Zg. This shows that F,, is diffeomorphic to F,, if and only if

n and m have the same parity.
It is easy to compute the canonical class K of F,,. It can be written as

K =zF +yDy
so that
K-F=y, K-Dy=2x—ny.
Using the adjunction formula we deduce
1 Yy
O:g(F):1+§F-(F+K):1+§,

1 r—ny—n
0=g(Do) =1+ 5Dy (Do + K) =1+ "2
This shows y = —2 and = n — 2 so that
K=(n-2)F—2D,.

Let us observe that the zero section Dy is the unique smooth irreducible curve on F,, with negative
self-intersection. Indeed, if D were another such curve, D # Dy,

D:aF+bD0

then
0<D-Dyg=a—nb, 0<D-F=5b

and
0> D-D=—nb®+2ab = b(2a — nb).

The above inequalities are clearly impossible. Thus the Hirzebrich surfaces F,, are minimal for
n > 2 and F,, is not biholomorphic to F,, if m # n.
If we now blow up F,, at a point p not situated on Dy we obtain a surface

F, - F,.
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The proper transform of the fiber F' through p is a rational curve F of self-intersection —1 which
can be blown down and we get a new surface F. The pencil of fibers of F,, is transformed into a
pencil of smooth rational curves of self-intersection 0 which cover each point of F exactly once. This
shows that F is also a ruled surface, i.e. a holomorphic fiber bundle over P! with fibers P'. On the
other hand, the curve Dy in F,, is mapped to a smooth rational curve R in F with self-intersection
R? = D2 +1 = —n + 1. This shows that F is biholomorphic to F,,_; and all Hirzebruch surfaces
are bimeromorphic, and thus rational. One can show (see [49]) that any minimal rational surface is
biholomorphic to either P2 or one of the Hirzebruch surfaces F,,, n > 2.

Example 3.1.31. (Cubics) Consider six points p1,--- ,pg in general position in P2, meaning

© no three are collinear and

¢ no five are on the same conic.

The space of homogeneous cubic polynomials in three variables zg, 21, 22 is (g) = 10-dimensional.
The above six points define a four-dimensional subspace V' consisting of polynomials vanishing at
the p;. Each P € V defines a cubic curve {P = 0} C P? containing all these six points.

Any point ¢ € P2\ {p1, -+ ,ps} determines a hyperplane
H,={PeV; P(q)=0}
so we get a holomorphic map
FeP2\{p1,+ pe} > g Hy € P(V7).
This map can be equivalently described as follows. Fix a basis Zg,- -, Z3 of V. Then f is the map

g [Zo(q): - Zs(q)] € P°.

This map has singularities at the points p; but, by blowing up at these points we hope to obtain a
well defined map, o
[P — PR

»Pé

We refer the reader to [10] or [49] where it is shown that this map is well defined, its image is a
smooth degree-3 surface S in P3 and f is a biholomorphic map ]@1211,..-% — §. Conversely, one can
show that any smooth cubic in P? is biholomorphic to the blow-up of P? at six points, not necessarily
in general position. For details we refer to [49].

The surfaces presented so far were all rational and it took some ingenuity to establish that.
Fortunately there is a very general method of deciding the rationality of a surface.

Theorem 3.1.32. (Castelnuovo) If M is an algebraic surface such that (M) := h%1(M) = 0
and pa(M) = h°(2Kys) = 0 then M can be obtained by iterated blow-up from P? or one of the
Hirzebruch surfaces. In particular, M is rational.

For a proof we refer to [10] or [49].

Example 3.1.33. (Hypersurfaces in P3) The homogeneous polynomials of degree d > 1 in the
variables zg, - -+ , z3 form a vector space V; of dimension

d+3) _ (d+3)(d+2)(d+1)
3 ) 6 '

dimc Vd . (

For a generic F' € Vj the zero locus {F = 0} is a smooth hypersurface X = X, of degree 3 in the
projective space P3. According to Lefschetz’ theorem X, is simply connected for each d. Hence

a(X) = S0y (X) = 0.
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To compute the main invariants of X; we will rely on the adjunction formula. Xy can be viewed
as the zero set of a section of the line bundle dH — P3. The adjunction formula holomorphically
identifies (dH) |x, with the normal bundle of X4 — P? from which we deduce

TP |x,=TX @ (dH) |x,
a(P?) [x=c(X) (1 + (dH)t) |x
where ¢; denotes the Chern polynomial. Using the computations in §2.3.4 we deduce

(1+tH) |x= ct(TX)<1 + (dH)t) Ix, H'=0.

By setting Hx := H |x and observing that H% = d (= the number of intersection points of a line
with X) and HY = 0 we obtain

1+ e (TX)E+ eo(TX)2 = (1 + Hyt)? (1 + (dHX)t) B

— (14 HXt)4(1 — (dHx)t + (d2H§<)t2)
= (14 @Hx)E+ (6Hx)2) (1~ (aHx)t+ d*F2)

=14+ (4—d)Hxt+ (d® — 4d* + 6)t>.

Thus
KX = 701(TX) = (d74)HX

and
K% = (d—4)*H% = d(d — 4).

On the other hand, ¢2(TX) is the Euler class of TX and thus
x = d(d* — 4d + 6)

where x denotes the Euler characteristic of X. Using the signature formula

K% =2x+3r
(1 = signature) we deduce
d(4 — d?
7'27( 3 )zb;—bg.

In this case x = b1(X) + b2(X) + bs(X) = 2 + b2(X) so that
bo(X) =d* —4d* +6d —2 =b] +b;.
Hence

(d—1)(d—2)(d—-3)
3

by —1 d—1
Po=" 7=\ 3 )

Observe that Kx = w2(X) mod 2 and since X is simply connected we deduce that the intersection
form of X is even iff d is even. Equivalently, this means X is spinnable iff d is even. Using the
Classification Theorem 2.4.13 of §§2.4.3 we can now describe explicitly the intersection form of X.

+1

1
b; = §(b2+7_) =

and
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Observe that for d > 4 the line bundle Kx is ample so that according to the Kodaira vanishing
theorem .
H'(X,nKx)=0, Vk,j>0.

Thus, using the Riemann-Roch-Hirzebruch formula we deduce
1 1
P,(X)=h"(nKx) = xo(nKx) = 1)+ 5nln - DK%

)2
= Mn(n— 1)+ i(X-FT).

For d < 4 we deduce that Kx = (d — 4)Hx is negative, as the dual of the positive line bundle
(4 —d)H |x. Using the Kodaira vanishing theorem we deduce that the line bundles nKx, n > 0, do
not admit holomorphic sections. Hence ¢(X) and P»(X) = 0. Castelnuovo’s Theorem 3.1.32 once
again shows that the hypersurfaces of degree < 4 in P? are rational.

The case d = 4 deserves special consideration and will be discussed in a more general context in
the next example. Observe only that

Py(X,) =1, Vn>0.

Example 3.1.34. (K3 surfaces) A K3 surface is a compact complex Kéhler surface X such that
b1(X) = 0 and whose canonical line bundle is topologically trivial.
Suppose X is a K3 surface. Then

1
X = — = (.
q(X) 251 0

Also
py = dim HO(Kx) = 1 = h*°(X) = h%*(X)

so that
by =2p, +1=3.

Using the signature formula we deduce
2X +3r =K% =0

so that
2(2+ b3 +by) =3(by —by).

Since b = 3 we deduce b, = 19 so that 7 = —16. The intersection form gx of X is even since
wy(X) = Kx mod 2 so that, according to the Classification Theorem 2.4.13, we deduce that

qx = 3H & —2Fs.

M. Freedman’s theorem shows that all K3 surfaces are homeomorphic to each other.

The smooth quartics (degree 4) in P? are K3 surfaces. The space of degree-4 homogeneous
polynomials in variables zg, - - - , z3 form a space of dimension 35 and thus we get a 34-dimensional
family of K3 surfaces. Not all quartics in this family are different. The group PG L4(C) (which has
dimension 15 = 16 —1) acts by change of variables on this space of polynomials leading to isomorphic
surfaces. If we mod out this action we are left with a 19-dimensional family of K 3-surfaces. We only
want to mention that not all K3 surfaces can be obtained in this manner (they form a 20-dimensional
family).

Remark 3.1.35. All K3 surfaces are diffeormorphic to each other although not biholomorphic. In
particular, all are simply connected. For more details we refer to [9, 59].
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—1)
%G

Vanishing cycle Singular fiber

in a nearby fiber

Figure 3.2: A node singularity

Exercise 3.1.4. Suppose X is a K3 surface. Then Kx is also holomorphically trivial.

Example 3.1.36. (Elliptic surfaces) An elliptic  surface is a triple
(X, f,C) where X is a complex surface, C is a smooth complex curve (i.e. Riemann surface)
and f : X — C is a holomorphic map such that there exists a finite set ' C C' with the following
properties:
of: X\ fYF)— C\F is a submersion.
o For any € C'\ F the fiber f~!(z) is biholomorphic to a smooth elliptic curve (i.e. biholomorphic
to a smooth cubic in P?).

We want to present two fundamental examples of elliptic surfaces. For a detailed presentation
of this important class of complex surfaces we refer to [40].

A. Consider two smooth cubic curves C1,Co C P? intersecting in nine distinct points, pq,- - , po.
Thus C; are described as the zero sets of two homogeneous polynomials P;, i = 1,2, in the variables
(20,21, 22). We get a map

f:IP2\{p17"'ap9}—>]P>17 pH[Pl(p)aPQ(p)]
Observe that f(p) = [A : p] if and only if pP; (p) + AP2(p) = 0. This map induces a well defined map

F:X=P2 =P

whose generic fiber is a smooth elliptic curve (i.e. a biholomorphic to a smooth cubic on P?). The
discriminant locus Ap C P!, i.e. the set of critical values of F, is finite. In fact, the polynomials
Py, P, can be generically chosen so that the critical points of F' are nondegenerate, i.e. near such
a point F' behaves like the function z;2; near 0 € C2. Such singular fibers have a node singularity
and look like Figure 3.2. The Euler characteristic of such a singular fiber is 1 (see Figure 3.3 for a
Mayer-Vietoris based proof). It is an elementary exercise in topology to prove that if F: S — C
is a holomorphic map whose fibers, except for finitely many Fj,--- , F,,, are smooth complex curves
of genus g then

xX(S) = x(C)x(F) + Z(X(Fz‘) —X(F)) (3.1.19)

where F' denotes a generic fiber. In our case x(F) = 0 since the generic fibers are tori, so that
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S

N

Figure 3.3: Chopping the node

where v is the number of singular fibers of the fibration F : X — P!. Thus
v:=x(X)=12.

The canonical class of X is Kx = —3H + Z?:l FE; so that, using the Riemann-Roch theorem, we
deduce

Xhol(X) = %(Kgg +X(X)) =1.

Observe that each of the nine exceptional divisors intersects each of the fibers of I’ in exactly one
point and thus they can be regarded as sections of the fibration F' : X — P!. Notice that the
self-intersection numbers of these sections are all equal to —1. We will denote by E(1) the smooth
4-manifold supporting the complex manifold X.

B. Consider two homogeneous cubic polynomials Ag and A; in the variables (zo, 21, 2z2). The equation
to Ao (20, 21, 22) + 17 A1 (20, 21, 22) = 0

defines a hypersurface V,, in X = P' x P2. For generic Ay, 4; this is a smooth hypersurface. The
natural projection
P' x P? — P!

defines a holomorphic map F}, : V,, — PL. Its fiber over the point [ty : t1] is the cubic
Clo:t) = {201 21 1 22] € P2 0 Ao (20, 21, 22) + t1 A1 (20, 21, 22) = 0}.

Hence V,, is equipped with a structure of elliptic fibration. To compute some of its invariants we will
use the adjunction formula. Denote by H; the hyperplane class in H?(P*,Z), i = 1,2. The classes
define by pullback classes in H?(X,Z) which we continue to denote by H;. The Kiinneth formula
shows that

H*(X,Z) = ZH, © ZH,, H*(X,Z)=ZH, - Hy, ® ZH?

and
H?=0=H3 H, -Hi=1.

We have
ct(TX) = c;(TPY) e (TP?) = (1 4 Hyt)*(1 + Hot)®.

The normal bundle Ny, to V,, — X is (nHy + 3H3) |y, and thus it has Chern polynomial

c(Ny,) = (1 + (nH, + 3H2)t> v, .
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Hence o
Ct(TVn) = (1 + Hlt)2 |Vn (1 + Hgt)g ‘Vn (1 + (nH1 + 3H2)t) |Vn

- (1 n (2H1)t) v, (1 + (3Ha)t + (3H§)t2) v,

% (1~ (nHy + 3Ho)t + (nHy + 3H)8 ) |y,

= (1 + (2H, + 3Hy)t + (6H, Hy + 3H§)t2> v,

X <1 — (nHy + 3Hy)t + (6nH Hy + 9H§)t2> lv,,
=1+ (2-n)H|v, t
+<(6n + 6)H1 - Hy + 12H22 — (2H1 + 3H2)(TLH1 + 3H2)) |Vn t2

=1+ (2—n)Hily, t+ (3nHiHy + 3H3) v, t*.

Thus
co(TV,) = (3nH Hy + 3H2) |v, = (3nH, Hy + 3H3) - (nHy + 3Hs) = 12n.

Moreover
Ky, = (n—2)Hily,
so that
Ky =0.
Observe that the Poincaré dual of the cohomology class Hj |y, € H?(V,,, Z) is precisely the homology
class carried by a fiber of F,, : V;,, — P!. Using the Riemann-Roch formula we deduce

Xhol (Vn) =n.

Let us now notice that V; is precisely the surface we considered in A since the natural projection
V,, — P? has 9 singular fibers F; = P! x {p;}, i =1,---,9, corresponding to the intersection points
of the cubics Ag = 0 and A; = 0 on P2. Each of these fibers has self-intersection —1 (why?) in V,
and thus can be blown down.

Denote by f,, : P! — P! the natural branched cyclic n-cover given by

[to : t1] — [tG : t1)-

The map f, x 1 : Pl x P? — P! x P? induces a holomorphic map
gn Vi — V1 such that the diagram below is commutative

Vi L’ Vi

I[Dl L} ]P)l
Thus, we can regard the fibration F}, : V,, — P! as a pullback of the fibration F; : V; — P!. A simple

argument involving Lefschetz’ hypersurface theorem implies m1(V,,) = 0 (see [40, Sec. 2.2.1] for a
different explanation). In particular, this shows V5 is a K3 surface. Moreover, using the equality

_b

Xhol(vn) =1 +pg(Vn) (q(vn) 2

=0)
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we deduce
pg(Vn)=n—1

so that
by (Vi) = 2p(Vy) +1=2n — 1.

Using any section of F} : Vi — P! we obtain by pullback a section S,, : P! — V,, which defines
a holomorphic embedding of P! in V,,, that is, a smooth rational curve S,, on V,,. Using the genus
formula we deduce

1
0=yg(S,) =1+ §Sn - (Kv, + Sn).

On the other hand, we have Ky, = (n — 2)F where F' denotes the Poincaré dual of the homology
class of a fiber of F,, : V,, — PL. Observe that S,, - F = 1 since S,, is a holomorphic section. Hence

1
0=1+3(n—2+5,-5.)

so that
S, - S, = —n.

In particular, on the K3 surface Vo we have Sy - So = —2. We will denote by F(n) the smooth 4-
manifold V,,. We refer to [51, Chap. 3,7] for different C°°-descriptions of these important examples.

Exercise 3.1.5. Prove the identity (3.1.19).

Exercise 3.1.6. Show that the homology class F' carried by a fiber of F, : V;, — P! is primitive
, l.e. it cannot be written as nF’, n > 1, F' € Hy(E(n),Z). Use this information to describe the
intersection form of E(n) and then to conclude that E(n) is spin if and only if n is even.

Exercise 3.1.7. Prove that V,, is simply connected using Lefschetz’ hypersurface theorem.

Exercise 3.1.8. Suppose X is an algebraic K3 surface which contains a smooth complex curve C
such that C? = 0. Prove the following:

(a) Show that ¢(C) = 0.

(b) Show that dim H°([C]) = 2 and the complete linear system determined by C has no base points.
(c) Conclude that X admits a natural structure of elliptic fibration.

(d) Show that a quartic X C P3 which contains a projective line £ also contains a curve C' as above.
What is the self-intersection number of £ — X7

83.1.3 Kodaira classification of complex surfaces

The Riemann surfaces (i.e. complex curves) naturally split into three categories: rational (genus 0),
elliptic (genus 1) and general type (genus > 2). This classification is natural from many points of
view. From a metric standpoint these three types support different types of Riemannian metrics.
From a complex analytic point of view, the canonical line bundles of these three classes display
different behaviours.

A similar point of view can be adopted for complex surfaces as well. Recall that the plurigenera
P,(X) of X are the dimensions of the spaces of holomorphic sections of the line bundle K $".

It can be shown that for any complex surface X the sequence of integers (P, (X)) displays one
of the following asymptotic behaviors.

—00 P,(X)=0Vn>1.
0  There exists C' > 0 such that P,(X) < C Vn > 1 but P,(X) is not identically zero.
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1 There exists C' > 0 such that

1
Pl < P(X)<Cn, Vn>1.

2 There exists C' > 0 such that
1
5712 < P.(X) < Cn? Vn>>1.

Accordingly, the surface X is said to have Kodaira dimension —o0,0,1 or 2. The Kodaira dimension
is denoted by kod (X). A complex surface of Kodaira dimension 2 is said to be of general type.

The plurigenera are invariant under blow-up, so that they are bimeromorphic invariants of a
complex surface. In particular, the Kodaira dimension of a complex surface is a bimeromorphic
invariant.

Example 3.1.37. (a) kod (P?) = kod (V;) = —o0. Since the Hirzebruch surfaces F,, are rational,
they too have Kodaira dimension —oo.

(b) kod (V3) = 0. More generally, any K3 surface has Kodaira dimension zero.

(¢c) kod (V) =1, ¥n > 3.

(d) Any hypersurface in P? of degree d > 5 has Kodaira dimension 2.

Exercise 3.1.9. Prove the claims (c) and (d) in the above example.

In the remainder of this subsection we will focus our attention on algebraic surfaces. For the
proofs of the following theorems and for more details we refer to [39, 59] and the references therein.

The Kodaira dimension contains a significant amount of information, as witnessed by the follow-
ing result.

Theorem 3.1.38. (a) If the algebraic surface X has Kodaira dimension —oo then it is bimeromor-
phic to P? or a geometrically ruled surface, i.e. a surface biholomorphic to a product P* x C, C
smooth complex curve.

(b) If an algebraic surface has Kodaira dimension 0 then P,(X) € {0,1}, Vn > 1.

(c) An algebraic surface of Kodaira dimension 1 is necessarily an elliptic surface.

According to Theorems 3.1.24 and 3.1.25 each algebraic surface is bimeromorphic to a minimal
one called a minimal model.

A bimeromorphism class of surfaces may contain several, minimal,
nonbiholomorphic models. For example P2, F,,, n > 2 are all minimal models of rational surfaces
which are not biholomorphic.

The above example is in some sense an exception. More precisely, we have the following result.

Theorem 3.1.39. An algebraic surface X has a unique (up to biholomorphism) minimal model if
and only if kod (X) > 0.

There is a simple intersection theoretic way of deciding which minimal surfaces have nonnegative
Kodaira dimension. More precisely, we have the following result.

Theorem 3.1.40. Suppose X is a  minimal  algebraic  surface. Then
kod (X) > 0 if and only if the canonical divisor Kx is nef.

Thus any minimal algebraic surface X with Kx nef can have Kodaira dimension 0,1 or 2. The
exact value of the Kodaira dimension is also decided by the intersection theoretic properties of the
canonical divisor.



Notes on Seiberg-Witten Theory 179

Theorem 3.1.41. Suppose X is a minimal algebraic surface with Kx nef. Then K% > 0 and the
following hold.

(a) kod (X) =0 if and only if Kx is numerically equivalent to zero.

(b) kod (X) = 1 if and only if K% =0 but Kx is not numerically equivalent to zero.

(c) kod (X) = 2 if and only if Kx is big, i.e. K% > 0. In this case

nin—1)

Pn(X): 2

K?( + Xhol(X)'

3.2 Seiberg-Witten invariants of Kahler surfaces

The Seiberg-Witten equations simplify considerably in the presence of a K&hler metric. This section
is devoted to the study of this interaction, Seiberg-Witten equations < Kahler metrics and some of
its remarkable consequences.

83.2.1 Seiberg-Witten equations on Kahler surfaces

Consider a Kéhler surface M and denote by w the associated symplectic form. Observe that the
Kahler structure leads to several canonical choices on M.

e The complex structure on M defines a canonical spin® structure oy with associated line bundle
det(og) = Kz\_41- KI\_/I1 is naturally a holomorphic line bundle equipped with a natural Hermitian
metric. Moreover

S¢ =A"T*M @ A*T*M = C & K,

and
Sy = AT M.

This choice allows us to identify the spin® structures on M with the space of complex line bundles
via the correspondence
L+— og® L.

Observe that
det(og ® L) = K @ L%

Additionally, the associated bundles of complex spinors are

S =LeL®K;, S;=A"T"M®L.
Thus, any even spinor ¢ € I'(S}) canonically splits as

v=a®pB, acl(L), BeT(L®K;"). (3.2.1)
In the new “coordinates” on Spin®(M) the involution o — & has the form

Lw— Ky — L.

e The Kahler structure on M produces a Chern connection on T'M which induces a connection Ag
on K;;' compatible both with the canonical metric and the canonical holomorphic structure.

e The metric and connection Ay on K]\}l canonically define a Dirac operator @, : S§ — S, which,
according to the computations in Sec. 1.4, is none other than the Dolbeault-Hodge operator

\/5(5+5*) . AO,evenT*M N AO’OddT*M,
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Now observe that any Hermitian connection A on det(Sz) can be uniquely written as a tensor
product
A=Ay ® B¥? (3.2.2)

where B is a Hermitian connection on L. Since
Fy=Fu, +2Fp (3.2.3)
we will use the less rigorous but more suggestive notation
A= Ay+2B.
The computations in §1.4.3 show that the Dirac operator induced by A is
Pa = V205 & 0p). (3.2.4)

e Using the symplectic form w we can associate to any complex line bundle L — M a real number
deg,, (L) defined by

i
d L)=— Fan
sll) = 5= [ Fanw
where A is an arbitrary Hermitian connection on L. Observe that the above integral is independent
of L because w is closed and the cohomology class of 5-F4 is independent of A.
e The deRham cohomology space H' (M, R) is naturally equipped with a complex structure.

To describe it recall that by Hodge duality there is a complex conjugate linear isomorphism

HY' (M) — H; (M), ¢~ ¢

Since
~ 071 1,0
H'(M,R) ® C 2= Hy' (M) ® Hy" (M)

there exists an R-linear isometry

T:HY' (M) — iH'(M,R)
defined by

HOL(M) 5 o %w T g) € HN(M).

T induces a natural orientation on H'(M,R).

e The Kahler structure defines a natural orientation on Hf_ (M). More precisely, observe that we
have a natural R-linear isomorphism

iRw & HY? (M) — iH2 (M)
defined by the correspondences
R
V2

The natural orientation on Rw & H%’I(M ) induces via the above isomorphism an orientation on
Let us point out a very confusing fact. Denote by *. the Hodge operator QP4 (M) — Q2~P:2=4(M).
Recall that *. is conjugate linear. A complex valued 2-form Q on M is said to be self-dual if

iw — iw, H%’QBﬁH (B+ B) € iHL(M).

*x.0=0Q
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where the correspondence -
QPUM) > 02— Qe QTP (M)

is given by the Hermitian metric on 7M. For example the 2-form 2 = iw is self-dual but
$¥ Q= —ixw=0=-0Q.
Now observe that any purely imaginary self-dual 2-form ® decomposes as
P = dow + 002 + &0

where
o € Q°(M,iR), %2 € Q%2(M), ®*0 = -2 ¢ OO (M)

and i
by = §A<I>. (3.2.5)

Recall that A is the adjoint of the exterior multiplication by w and Aw = 2 = dim¢ M.
For any complex line bundle L — M and any ¥ = a® € I‘(Sf) we can regard the endomorphism
q() of Sz as a purely imaginary self-dual 2-form, so that it has a decomposition

a(¥) = q(¥)ow + q(¥)*? + q(1)*°
as above. The identity (1.3.5) in Example 1.3.3 of §§1.3.1 shows that

o = (o 5P, (326)

1
af:=za®pfe NL'eLeK,') =0%(M). (3.2.7)

1
q()*? = 3

e The Kéahler form on M also suggests a special family of perturbation parameters n. Fix p €
H%’2 (M) so that & is a holomorphic section of K. For every ¢ € R define

. t _
e = 1e(p) = 1Fag + gw +2(u + ). (3.2.8)

Now fix a spin€ structure on M or, equivalently, a complex Hermitian line bundle L — M. Denote
by Cy, the space of configurations determined by this spin® structure. Using the identifications (3.2.1)
and (3.2.2) we can alternatively describe Cy, as

Cr={(a,3;B) e T(L) x (L ® K;;') x A(L)}

so that
C=(,A) = (a® B Ao+2B).

The n;-perturbed Seiberg-Witten equations for C

%w =0
c(Ff+in') = 3

are equivalent to - -
Opa+0p8 = 0

AFg = L(la?=BPP—t) . (3.2.9)

Fy’+ip = tap
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The first equation in (3.2.9) is clear in view of (3.2.4). Let us explain the remaining two.
Observe first that

Fi+in =2F% + %tw +2i(p + f1)
and
AQ = AQT, VO € Q*(M)®C.
Thus

i
AFT +inf) = 2AFp + i

Using the identity (3.2.6) we deduce
Ka() = 5(af? ~ 19%).
The second equation in (3.2.9) is precisely the equality A(F +in;) = Aq(y).
Next observe that
(Fa+in)"% = FQ? + 2F)° + 2ip + étww = 2F% + 2ip

because w is a (1,1)-form and Fgf = 0 since Ap is the Chern connection defined by a Hermitian

metric and a holomorphic structure on KA_/fl. The last equality in (3.2.9) is now a consequence
of (3.2.7).
The virtual dimension of the moduli space corresponding to the spin® structure L is

d(L) = i{(n — Km)? = (2xamr + 37u0)}

1
= (UL — 4L Ky + K3p) — K3y} = L (L~ K).

Remark 3.2.1. Suppose b (M) = 1 i.e. py(M) = 0. Then pu can only be 0. To decide in which
chamber 7, lies we have to understand the sign of

w

/M(m —2mei(deto @ L) ) A NG

or, equivalently, the sign of
t
f/ wAw+i [ Fay Aw—2rdeg, (K, @ L?).
8 Jm M
Now observe that the second integral is precisely 27 deg,, (K ]\_41) so we have to decide the sign of

1 (M
w —4mdeg,, L.

We deduce that for ¢t > Voll(z&) deg,, (L) the perturbation n; lies in the positive chamber with respect
to the K&hler metric while for ¢ < %(”M) deg,, (L) it lies in the negative chamber.
Definition 3.2.2. A complex line bundle L — M is said to have type (1,1) with respect to the
Kéhler metric if its first Chern class is of type (1,1) with respect to the Hodge decomposition
1,1 0,1 2,0
H*(M,C) =Hy (M) © Hy (M) @ Hy"(M).

Observe that if b5 (M) = 1 then all classes have type (1,1) since p, = dim Hg’O(M) = 0.
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We have the following vanishing result.

Proposition 3.2.3. If L — M is a complex line bundle over M which is not of type (1,1) then the
Seiberg- Witten invariant of M corresponding to the spin® structure determined by L is zero,

SW s (L) =0.

Proof  We consider the equations (3.2.9) corresponding to 4 = 0 and ¢ = 0. Applying Jp to the
first equation we deduce B o
dta+ 0pdpB =0
so that o
F22a + dpdyB = 0.

Take the inner product with 5 and integrate by parts to obtain

| wstamao s [ 3508 =0
M M

Now use the third equation of (3.2.9) in the first integral above. We get

5 160k + [ 1oiplan o

This shows a - 8 = 0 so that ng = (. Since Féo = FgQ we deduce Fp is a (1,1)-class so that L
must be a (1,1)-line bundle. This shows that (3.2.9) has no solution in this case. B

83.2.2 Monopoles, vortices and divisors

As was observed from the very beginning by Edward Witten in [149], the solutions of the equations
(3.2.9) are equivalent to the complex analytic objects called vortices. These can then be described
quite explicitly in terms of divisors on M. In particular, this opens the possibility of completely and
explicitly describing the moduli spaces of monopoles.

Since we are interested only in Seiberg-Witten invariants then, according to Proposition 3.2.3, it
suffices to consider only the case when L has type (1,1). To obtain further information about the
solutions of (3.2.9) we will refine the technique used in the proof of Proposition 3.2.3. We follow
closely the approach in [13].

Observe that since L has type (1,1) it follows from the third equation of (3.2.9) that iu is the
0-harmonic part of the (0, 2)-form 1075 Denote by [@/] the d-harmonic part of @3. Again, applying
0p to the first equation in (3.2.9) we deduce as in the proof of Proposition 3.2.3

(506~ in)a = Dp056 =0
or equivalently
(@0~ [60))a + 9030 = 0.
Taking the inner product with § and integrating by parts we get

5 | (@6 = lasl.as)dv-+ 105613 = .

Since [a] is L2-orthogonal to a3 — [af] we deduce

L Ok
gllas —[aBllz= + 1058]7= = 0.
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Thus -
OB =0, ap = [ap] = 8iu

and )
Fy? = 2(af - [ap)).

Using the equality 953 = 0 in the first equation of (3.2.9) we conclude that
530( =0.
We have thus proved the following result.

Proposition 3.2.4. Any solution (o, 3, B) of (5.2.9) satisfies the conditions

Fy? =0, (3.2.10a)
Opa =053 =0, (3.2.10Db)
af = 8ip, (3.2.10¢)
i
AFp = §(|a|2 — B> —t). (3.2.10d)

Definition 3.2.5. The solutions of the system (3.2.10a) — (3.2.10d) are called (u, t)-vortices. When
1 =0 we will call them simply vortices.

Obviously, any (u, t)-vortex is also an n:-monopole.

The condition (3.2.10a) shows that B induces an integrable complex structure on L. The equal-
ities (3.2.10b) show that « is a holomorphic section of L (with respect to the above holomorphic
structure) and ( is an antiholomorphic section of K];[l ® L =L — K. Hence 3 is a holomorphic
section of Kjr — L. The equality (3.2.10c) can be rewritten as

af = —8ifi. (3.2.11)

In the above new formulation, j is a holomorphic section of Kj;. To proceed further we have to
distinguish two cases.

A. The case p = 0. Thus, a3 = 0. Since both o and 3 are holomorphic sections the unique
continuation principle implies that at least one of them must be identically zero.

Now let us observe that if a holomorphic line bundle E — M admits a nontrivial holomorphic
section s then deg  (E) > 0 because deg,,(E) can be interpreted as the integral of w over the (possibly
singular, possibly empty) complex curve s~1(0) on M. According to Proposition 3.1.1, this integral
is none other than the area of this curve . Thus,

a#0=deg, (L) >0 and S=0

while
B#0=deg,(Ky—L)>0 and o =0.

On the other hand, observe that

i i 1

i 3.2.10d) 1
= 2*/ AFgduy (8:2100) _~_ (18% +t — |a|*)dvay.
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If we fix ¢ such that
167

t%vol(M)

then the above equality shows that at least one of o or 8 must be nontrivial. Moreover, when

t< Voﬁ’;/[) deg,, (L) then a = 0 and (8 # 0 because otherwise we would obtain

deg,, (L)

1 5 tvol (M)
- - <=7
167 /M(t o )dvar < =5

Similarly, when ¢ > v0116(7]‘\—4) deg,, (L) we must have § = 0 and « # 0. Using Remark 3.2.1 we obtain
the following vanishing result.

B=0 and deg,(L)

Proposition 3.2.6. (a) If b5 (M) > 1 and swp(L) # 0 then
0<deg,L <deg, K.
(b) If by (M) =1 and swi,(L) # 0 then
0 <deg,(L)

while if swy;(L) # 0 then
deg,, (L) < deg,, (Kar).

The above discussion also shows that for ¢ > 0 the vortices are found amongst pairs (E, a) where
E' is a holomorphic line bundle topologically isomorphic to L and « is a holomorphic section. The
metric on L imposes an additional condition on « through (3.2.10d) in which g = 0. The pairs

(holomorphic structure on L, holomorphic section of L)

are precisely the effective divisors D on M such that
a([D)) = (L)

Can we reverse this process? More precisely, given an effective divisor [D] such that ¢;([D]) =
c1(L), can we find a solution (o, = 0;B) of (3.2.10a) — (3.2.10d) such that D is the divisor
determined by o, D = a~1(0)? To formulate an answer to this question let us first fix a Hermitian
metric hg on L.

Proposition 3.2.7. Suppose L — M has type (1,1) and deg,,(L) > 0. Fix

167
t> ——+d L). 2.12
> it e D) (32.12)

Given an integrable CR operator ¥ on L and a ¥-holomorphic section o of L,
Ja =0,
there exists a unique function u € C°(M) such that the following hold.

(a) If 9, := e*Pe™™ then o, = e*« is Y, -holomorphic.
(b) If By, denotes the ho-Hermitian connection on L induced by the CR-operator 9, then

AFp, = %(I%I2 —1), (3.2.13)

that is , (o, ® 0; B,,) satisfies (3.2.10a)-(3.2.10d) with p = 0.
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Proof Observe first that, for any v € C*°(M), the CR-operators ¥ and ¢, define the same
holomorphic structure on L and that in fact the condition (a) above is tautological. Denote by By
the Chern connection determined by ¢ and hg. Let u € C°°(M). As shown in Example 1.4.19 of
§1.4.2 the Chern connection B, determined by e“de™" and hg is

B, = By + 0u — Ou.

Its curvature is - -
Fp, = Fp, + 00u — 00u. (3.2.14)

We have to find u so that («,, B,) satisfy (3.2.13), i.e.
i 2
AFg, = —(|ay|* —1).
8
Using (3.2.14) we can rewrite this as an equation in wu:
A 5 3 i 2 2u lt A
(00u — Q0u) — §|0‘|h03 =-3" Fp,. (3.2.15)

On the other hand, according to Corollary 1.4.11 of §1.4.1 we have

AD(Ou) = —i5*Ou = —%Adu
and .
9w = 10" = SAq.
The equation (3.2.15) can now be rewritten as
1 2 2u t :
Agu+ §|04|h0€ = (g —iAFp,) = f. (3.2.16)
This equation was studied in great detail by J. Kazdan and F. Warner in [61] (see also [105] for a

different approach). They proved the following result.

Theorem 3.2.8. (Kazdan-Warner, [61, Thm. 10.5]) Suppose k is a positive real number and
w(x) is a smooth function which is positive outside a set of measure zero in M. Then the equation

Apru + w(z)eP = g € C(M)

has a solution (which is unique) if and only if
/ gduyr > 0.
M

Using the above existence theorem we deduce that the equation (3.2.16) has a solution (and no
more than one) if and only if
/ fdvpyr > 0.
M

In our case this means

tvol (M) > 8/

LAFdeM = 167w deg,, (L)
M 2

iAFBOdU]\/[ = 167T/
M

which is precisely the condition (3.2.12). The proposition is proved. B
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We have the two-way correspondences

t>0
n:(p = 0)-monopoles «— effective divisors D such that ¢1([D]) = e1(L).

t<0
n:(p = 0)-monopoles «— effective divisors D such that

ci([D]) = er (K — L).

Notation The symbol swg\?)(a) will denote swi (o) if by (M) =1 and swyr(o) if by (M) > 1.
From the above correspondences we deduce immediately the following consequences.

Corollary 3.2.9. Suppose M is a Kdhler surface and L is a Hermitian line bundle.
(a) If SWS\}_)(L) # 0 then L admits holomorphic structures with nontrivial holomorphic sections.

(a) If swgv;)(L) # 0 then Kpr—L admits holomorphic structures with nontrivial holomorphic sections.

Corollary 3.2.10. Suppose M is a Kdhler surface and L is a Hermitian line bundle.
(a) If deg,, L =0 and swg\}L)(L) # 0 then L is the (topologically) trivial line bundle.
(b) If deg,, (L) = deg,,(Kyr) and sw(_)(L) # 0 then L is (topologically) isomorphic to K.

Proof We prove only (a). Part (b) follows from (a) using the involution ¢ — & on Spin®(M).

We use the perturbation 7;, with © = 0 and ¢ > 0. The condition swg\}L)(L) = 0 implies that
there exists a holomorphic structure on L admitting holomorphic sections. If such a section does
not vanish anywhere we deduce that L is trivial. If it vanishes somewhere its zero locus defines an
effective divisor D and

deg,,([D]) = deg,,(L) = 0.

This contradicts Proposition 3.1.1, which states that deg,,([D]) is a positive number expressible in
terms of the area of supp (D). The corollary is proved.

Clearly, gauge equivalent monopoles lead to identical divisors, so that the set of gauge equivalence
classes of monopoles can be identified with the above set of divisors. This identification goes deeper.
The set of effective divisors carrying the homology class Poincaré dual to ¢;(L) can be given a
(Hilbert) scheme structure. This structure can be described in terms of the deformation complexes
of the monopoles. If M is algebraic this allows one to cast in an algebraic-geometric context the
entire problem of computing the Seiberg-Witten invariants. We will not follow this approach but
we refer the reader for details to [21, 41, 42].

B. The case ;1 # 0. Suppose (a @ (3, B) is a (u,t)-vortex. Thus « defines an effective divisor D
such that

ci([D)) = (L)

and
D < ()

where (fi) denotes the effective divisor determined by the zeroes holomorphic section . More
precisely, the effective divisor D is the divisor determined by the holomorphic section 3. As in the
case p = 0 we have the following result.
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Proposition 3.2.11. (O. Biquard, [13]) Suppose L is a complex line bundle over M such that
0 <deg, L <deg,(Kny).

Fiz a Hermitian metric hg on L. Suppose there exist an integrable CR operator ¢ on L and holo-
morphic sections o € I'(L) and v € I'(Kpr — L) such that

ay = —8iji.

Then there exists a unique function uw € C*®(M) such that if B, denotes the Chern connection
determined by hg and ¥, = e*de™" then

(auv 6717 Bu) = (eua’ 67”’?; Bu)
is a (u,t)-vortex.

Observe that if 9* is the CR operator induced by ¥ on L* then
(e"PJe )" = e "I%e".
This explains the definition of 3,.

Proof Clearly, for any smooth u the collection (v, 8y, B,) defined as in the statement of the
propositions automatically satisfies the conditions (3.2.10a) — (3.2.10¢) in the definition of a (u, t)-
vortex. Thus, it suffices to find u such that (a, By, By) satisfies (3.2.10d).

Denote by By the Chern connection on L determined by hg and . Arguing exactly as in the
proof of Proposition 3.2.7 we deduce that u must be a solution of the equation

t

1 u 1 —2u
Aqu+ Slalf e = Sl e = f = (3

iAFBO). (3.2.17)

We have to show that the above equation admits a unique smooth solution.

Existence We will use the method of sub/supersolutions. For an approach based on the continuity
method we refer to [13].
The method of sub/super-solutions is based on the following very general result.

Theorem 3.2.12. Suppose F' : M x R — R is a smooth function and there exist two smooth
functions u,U : M — R such that

u<U on M, (3.2.18)
Apyu < F(z,u(z)), Vo € M, (3.2.19)

and
ApU > F(z,U(z)) Yo € M. (3.2.20)

Then there exists a smooth solution v of the partial differential equation
Aypv = F(x,v) (3.2.21)
such that u < v <U.

The function u (resp. U) is said to be a sub-(resp. super)-solution of (3.2.21). An outline of the
proof of this theorem can be found in [105, §9.3.3]. For complete details we refer to [1, 61]. The
proof is based on a very important principle in the theory of second order elliptic p.d.e.’s which will
also play an important role in our existence proof.
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Comparison Principle Suppose g : M x R — R is a smooth function such that for all x outside
a set of measure zero the function
u— g(x,u)

is strictly increasing. Then

Apu+ g(z,u) > Ayv+ g(z,v) = u > v.

Exercise 3.2.1. Prove the comparison principle. (Hint: Consult [105, §9.3.3].)

Using Kazdan-Warner’s Theorem 3.2.8 we deduce that for every s > 0 there exist smooth
functions Ug and v, on M such that

1
Ay Ug + §|Oé|2€2US =f+s,

1
Apvs + §|’Y|262vs =s
where f is the function on the right-hand side of (3.2.17). Set

1
23 b= sup |’7(1’)|27

1
a=g swp fa(z)f’, b= sup

8 zeEM
Observe that if ¢4 is the constant function defined by

2,
ae™® :fmzn+s

then
Apres +|al?e® < fy = AU, + |a)?e?Vs.

Using the comparison principle we deduce
Us >cs — 00 as s — o0. (3.2.22)

In particular, this shows that for s sufficiently large Uy is a super-solution of (3.2.17) because

1 1 b
AyUs + g\a|262US — §|’7|2€_2U‘S >f4+s—be 2 =f+s5— 7fm; s > f
for s > 0. Similarly, if we denote by ds the constant function defined by
be?ds = 5
we deduce )
Adg + 8|’y|262dS < s
so that
vg > ds. (3.2.23)

Set ug := —vg. Then

1 1
Apyugs + §|a|262“5 — §|7\2e_2““ = —s5+ |a|?e?:
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b
<-stac = s+ 2 <
s
for s> 0. Thus us is a sub-solution of (3.2.17). Using (3.2.22) and (3.2.23) we deduce that for
5> 0 we have
Uy < —dg < cg < Us.

Using Theorem 3.2.12 we conclude that (3.2.17) has a smooth solution u such that
us <u < Us

for s > 0.

Uniqueness It follows immediately from the comparison principle in which g(z, u) = &|a(z)|?e?"—
%|’y(m)|26_2“. The proof of Proposition 3.2.11 is now complete. B

The above proposition has an immediate interesting geometric consequence.

Proposition 3.2.13. Suppose M is a Kdhler surface such that pg(M) > 0 and Ky is not holomor-
phically trivial. Fiz p € H;"O(M) \ {0} and denote by (u) the effective divisor determined by this
section. Then for all t € R there exists a bijection between the set of orbits of n:(u)-monopoles and
the set S, (M) of divisors D on M with the following properties.

©0<D < (p).

o c1([D]) = c1(L) in H*(M,Z).

83.2.3 Deformation theory

Now that we have an idea of the nature of monopoles we want to investigate whether the cohomology
of the deformation complex associated to a monopole on a Kéhler surface can be described in complex
analytic terms.

Fix p € H%’Q(M), t € Rand L — M a type-(1,1) Hermitian bundle over M. Suppose (a«® 3, B)
is a (u, t)-vortex corresponding to L.

The corresponding monopole is C = (1, A) where

Y=a® B, A:=Ay+2B.
The tangent space to Cy, at C is
TcCr, =T(Sp @ iAT* M)

where, for simplicity, we omitted the Sobolev labels. We will represent a tangent vector C= (z/J, 1b)

(where ia = 2ib) in complex analytic terms. Thus

ih=—(p+5), @eO(M),
V2

and
h=aape(L)e (L)

Recall that (see §2.2.2)

J Dat) c(ib)y
T [ i ] = | 2d%ib |+ | —3q(v,4)
—4id*b —iIm(1, 1))

We now proceed to express each of the objects in the above expression in terms of ¢, & and 8.
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First, we have

&

D 40 + c(ib)y = V2[0p ) - { 5 } + %[c(iw) c(ip)] - { g }

1

= VEDpi +0) + oelic)a+ —=elig)s

(use the computations in Example 1.3.3 in §1.3.1)
= V2(0pa + 9pB) +ilpAa— ¢ 1)

where @_| denotes the contraction by a (1,0)-form. B
Next observe that the self-dual part of a complex 2-form 6, defined by 07 = .07, is explicitly
given by

1
0" = fow + 092 4 620 = S Aw + %2 4 6*°.

In our case ) -
0 = 2idb = iV2d(p + ) = V20 + D)o + §)
so that .
2d*h = ——A(Dp + 8p)w + iV2(dy + 9P).
V2
Since . .
i _

q() = qla® f) = Z(|Of|2 — 1B*)w + 5(075 —af)

we deduce

6,1) = 5 (Re(a, &) — Re(3, A))w + 5(46 + a6 — 4 — af).

Next observe that ) B _
Ad*b = 2V2(0 + )" (o + @) = 2V2(9*p + 0*p)

and _ )
Im(¢, ¢) = Im(a, &) + Im(B, B).
Thus .
(Oﬁﬂ)@) — (¢aib = %(@ + 4,5) ) S ker’TC
if and only if .
V2(0pa+ 056) +i(pAa— @1 6) =0, (3.2.24a)
A@p + 8p) = 2—\1/§(Re<oz, &) — Relf, B)), (3.2.24D)
i0p = 4\%(@6 + ap), (3.2.24¢)
2V2(0* 0 + 0*@) + Im(av, &) + Im (3, 3) = 0. (3.2.24d)

These equations can be further simplified using the Kéhler-Hodge identities in §1.4.1
Adp =i0%p, AIp = —id*p, Yy € Q¥ (M).

Using these identities in (3.2.24b) we deduce

—_

ilm 0% p = —(0"p — 0" p) = —ﬁ(Re(a, a)y — Re<ﬁ»8>)~

\V]
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The equation (3.2.24d) can be rewritten as

iRe §%p — %(5*30 n a*¢>) — — (m(a,a) + Im(3, 3)).

-5

Thus (3.2.24b) + (3.2.24d) are equivalent to a single equation

e L (T :
0= ﬁ(<a,a> (5,0)). (3.2.25)
Proposition 3.2.14. (o'z,ﬁ, ©) € ker Tc if and only if they satisfy the equations
dp =0, (3.2.26a)
dpa + %cp Ao =0, (3.2.26b)
_ i
OB — —3 18 =0, 3.2.26
aB+aB =0, (3.2.26d)

and (3.2.25).

Proof Clearly, if (&, 3, @) satisfy the equations (3.2.25), (3.2.26a) — (3.2.26d) then they satisfy
(3.2.24a), (3.2.24c) and thus they must lie in the kernel of 7c. To prove the converse statement we
follow the approach in [13].

Rewrite (3.2.24a) as

—(V2058 —ip 1 8) = V20pa +ip A
and observe that the operator —i_| @ on Q**(L) is the adjoint of ipA. We deduce

0> —|[V2058 —ipJ B3, = / (V2056 +ip A a, V2058 + (ipA)* B)dvar
M

= / (V20pd, V2038)dvy + / (ip A a, (i) * B)dons
M M

+ / (V23pa, (ioA)* Bdvar + / (i A o, V235 B)dvns.
M M

The first integral vanishes. This can be seen integrating by parts and using the equality 0% = F 2’2 =
0 which follows from the fact that (a, 3, B) is a vortex. We deduce similarly that the second integral
vanishes because (ipA)% = 0. We conclude that

02/M<i<p/\53d,ﬁ>de+/M<5B(i<p/\a),ﬁ>de

=2 /M@B(np Aé), B)dvoyr + V2 /M«iécp)a, B)dvyr + /M<(i5w)a75>de

-2 /M((i&p)o},ﬁ)de +V2 /M< (i0p)a, B )dvn
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(3.2.24c) 1

Co e 1 L
= Z/M<(Oéﬁ+a/8)aaﬁ>dUM+Z/M<(Oéﬂ+()éﬂ)a,ﬂ>dyzw

= 1/ a8 + af|?dvay.
4 Jm
Hence
af+af=0=v20pa+ipNha=v2053—-ip10
and using (3.2.24c) we deduce
Jdp=0. A

3.3 Applications

The theory developed so far is powerful enough to allow the computation of the Seiberg-Witten
invariants of many and wide classes of Kéahler surfaces. In this section we will present such compu-
tations and some of their surprising topological consequences. We will conclude with a discussion of
the Seiberg-Witten invariants of almost Kéahler manifolds.

§3.3.1 A non-vanishing result

Consider a Kéhler surface M. We want to compute the Seiberg-Witten invariant determined by the
canonical spin® structure og on M. In this case

So :@@KJT/II.

We will use the perturbation 7, introduced in §3.2.1 in which x = 0 and ¢ = A? >> 0 where A > 0.
If b5 (M) = 1 then, according to Remark 3.2.1 the perturbation parameter 7; lies in the positive
chamber defined by the Kéhler metric.

In this case the n-monopoles are t-vortices (a @ 3, B) where
« is a section of C,
[ is a section of K]\j[l and
B is a Hermitian connection on C.

The discussion in §3.2.2 shows that for A2 > 0 we have 3 = 0 and («, B) satisfy

Fy? =0, (3.3.1a)
AFp = %(|a|2 —2), (3.3.1b)
Opa = 0. (3.3.1¢)

Observe that if By denotes the trivial connection on C and «q is the constant section ag = A\ of C
then (ag, Bp) is a solution of (3.3.1a) — (3.3.1c). Notice also that the virtual dimension of the space
of monopoles is 0 in this case.

Proposition 3.3.1. Modulo G, there is a unique n,-monopole which is also nondegenerate.

Proof To prove the uniqueness part we will rely on Proposition 3.2.7. The set of orbits of ;-
monopoles can be identified with the set of effective divisors D such that

a1 ([D]) = er(C) = 0.

There is only one such divisor, namely the trivial divisor since, according to Proposition 3.1.1 a
nontrivial effective divisor carries a nontrivial homology class. This establishes the uniqueness claim
in the proposition. Thus, modulo G,,, the configuration

Co= (Ozo @0, AO‘i‘QBO)
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is the unique 7;-monopole. Observe that in this case we can write 0 instead of 530 Since the virtual
dimension is 0 and Cg is nondegenerate (i.e. Hgo = 0) it suffices to show Héo =0, ie.

ker 7c, = 0.

We will use Proposition 3.2.14. .

Suppose (¢,ib) = (& ® B,i(p + @) € ker7c,. Then (&, 5, ) satisfy the equations (3.2.25) —
(3.2.26d). These further simplify because of the additional assumption (= y) = 0. More precisely,
we have

4V2i0%p = A&, (3.3.2a)
dp =0, (3.3.2b)
V296 +idp = 0, (3.3.2¢)
A3=0, 0*3=0. (3.3.2d)
Applying 5%0 to (3.3.2c) we obtain
0= 20*86 + iv2rd*p C 22 2554 + %Za — Anrd + \2a

Taking the inner product with ¢ and integrating by parts we deduce in standard fashion that & = 0.
The equality (3.3.2c) now implies ¢ = 0. W

The above proposition shows that swys(0¢) = £1 if b > 1 and sw},(00) = £1 if b = 1. To
decide which is the correct sign we will use its definition as an orientation transport. Form as usual

" @Al/.{ C(iZ’W_
| 5| =] || e |-
! —4id*b —iIm (1), )

T E [0, 1}7 A= B0+2A0

Then the sign is given by the orientation transport along the path 77 , e(7c,, 7, ’]?0).

To compute the orientation transport we will rely on (1.5.9) in §§1.5.1.

Arguing exactly as in the proof of Proposition 3.2.14 we deduce that (1, ib) = (a® 3, ¢) € ker 7
if and only if

4V2i0%p = TAG, (3.3.3a)
dp =0, (3.3.3b)
V29é + itAg = 0, (3.3.3¢)
TAB=0, B =0. (3.3.3d)

To see this, replace c(ib) with 7c(ib), ¢ with 7¢ and Im(1/),1/)> with TIm(qp,zL) in the proof of
Proposition 3.2.14 keeping in mind that &« = A and 8 = 0. Arguing exactly as in the proof of
Proposition 3.3.1 we deduce ker 77 = 0 if 7 > 0. Moreover
ker TCOD
=~ {(d,ﬁ,(p) eT(C) x T(K;) x QUL(M); 8a=0=0F,p¢ Hg’l(M)}

~ (CoHY*(M))oHY' (M).
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The first summand corresponds to the spinor part of the kernel and the second summand corresponds
to infinitesimal deformations of connections. The kernel is naturally oriented as a complex vector
space.

To find the cokernel of ’TCOO we use the representation

Q00 @ w2(M) ¥
2 -]
001 (M) = iQY (M) !
: QM) =8y
TCO @Aw S
— | 2dFib | € iwe Qe Q0(M) ~i0% (M)
—4id*b ®
00 (M)

and the computations in the beginning of §§3.2.3. Recall that the isomorphism
iw® Qe Q%% M) i3 (M)
is given by the isometric identifications

i _ 1 _
Wwdd—iv+ —(®+d) = —(i® — iD).
(@04 8) = (0 iD)

This leads to the identification
i03(M) 5 (v, 9) = | (Rela &) — Re(, §)w
%(aﬁ +aB—afB - ap) (3.3.4)
1

1. . i . . . .
= i) — G (Re{a, ) ~Re(d, §)w® 5—(56 +a0).

Consider a vector

QU (M) =Sy
o @
fw®d | € iw® Qe 0% (M) =i0? (M)
if

2
/-\EB
S

)

in the cokernel of ’TCOO. We deduce
¢ € coker® 4, = H%’I(M)7

fuw +1(0 + 0) € iH% (M)

and
if e HY(M) = iR.

Thus » must be constant and 6 € H%’Q(M ). We conclude
coker 70, = HY'' (M) & HY?(M) & H(M) & Ruw.

The vector space in the right hand-side of the above isomorphism is naturally oriented (here the
order is essential) and it induces on coker 7¢, precisely the orientation discussed in §3.1.1.
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To compute the orientation transport we need to determine the resonance operator
d T 0 0
P% lr=0 7, : ker 7c, — coker T¢,

where P denotes the orthogonal projection onto coker ’TCOO. Observe that

p ; c(ib)y
27 =0 T¢, [ :/;) ] = | —3a(¥,v)

where » = A ® 0, ib = i(p+ @) and ¥ = & ® (3. Using the computations in §3.2.3 and (3.3.4) we
deduce

d b Aip
ar =0 % { i ] = | TTRedwt g0
iIm &

Clearly, % l7=0 ¢, maps ker T(:OO bijectively onto coker ’TCOO and it does so in an orientation preserving
fashion. Formula (1.5.9) now shows that the orientation transport is 1. We have thus proved the
following result.

Theorem 3.3.2. Suppose M is a Kdihler surface and o is the canonical spin® structure. If b;r >1
we have
swy(og) =1

while if b3 =1 we have
+
sw(00) = 1.

The above nonvanishing result has immediate geometric consequences.

Corollary 3.3.3. If M is a K3 surface then og = 6 is the only basic class of M and swys(op) = 1.

Proof Suppose L is a Hermitian line bundle on M such that swy; (L) # 0. Then
0<deg,(L) <deg, (Ky)=0
so that by Corollary 3.2.10 we deduce that L is the trivial line bundle. H.

Corollary 3.3.4. Suppose M is a Kdhler surface such that pg(M) > 0. Then there exist no
Riemannian metrics on M with positive scalar curvature.

Suppose M is a Kiihler surface such that p,(M) > 0 (so that by (M) > 1). Using (2.3.14) of
§2.3.2 we deduce
swr(0o) = swa(Kpr) = (—1)"swpr(0) = swas(00)
where ) L
K= 5(1);—&-1 —b) = 5(2—1)1 +2pg) =1—q+pg = Xhot(M).

Thus oo(= 0) and do(= K) are basic classes of a Kéhler surface with p, > 0. If M is an algebraic
surface of general type we can be even more precise.

Theorem 3.3.5. Let M be a minimal algebraic surface of general type such that pg > 0. Then oy
and 6o are the only basic classes of M.
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Proof Suppose L — M is a Hermitian line bundle such that swj,(L) # 0. We want to show that
(topologically) L = C or L = K. According to Corollary 3.2.10 it suffices to show

deg,, (L) € {0,deg,, Kn}.

We argue by contradiction. This means ¢;(L) and ¢;(K)s) are linearly independent in H él(M )
and we denote by V the two-dimensional space spanned by Kj; and L. We will show that the
intersection form is positive definite on V', thus contradicting the Hodge index theorem.

Since M is a minimal algebraic surface of general type we deduce

o K is nef and
° Kﬂ > 0.

According to Corollary 3.2.9 the condition swy, (L) # 0 implies several things.

& The virtual dimension d(L) = L - (Kj; — L) > 0 so that L? > Ky, - L.

¢ There exists a holomorphic structure on L which admits a nontrivial holomorphic section u.

o There exists a holomorphic structure on Kj; — L which admits a nontrivial holomorphic section
.

Observe that D := u~1(0) # 0 since L is not the trivial line bundle. Hence D is an effective
divisor.
Since Ky is nef we deduce
Ky -D=Kpy-L2>0.
In fact
Ky - L > 0.

Indeed, if Kps - L = 0 then the conditions K%, > 0 coupled with the Hodge index theorem would
imply that ¢;(L) = ¢1([D]) = 0. This is impossible since D is an effective divisor. Thus

L*> Ky -L>0. (3.3.5)

Replacing L — Kp; — L in the above arguments (which is equivalent to using the canonical
involution o — & on Spin¢(M)) we deduce

Ky (Ky—L)>0<«= K3 > Ky - L>0. (3.3.6)

We can represent the restriction of the intersection form to V using the basis (Kjs, L). We obtain
the 2 x 2 symmetric matrix
_| Ky Ku-L
@:= Ky - L L?

Clearly tr (Q) = K2, +L? > 0 and, using (3.3.5) + (3.3.6) we deduce det(Q)) > 0. Thus Q is positive
definite, contradicting the Hodge index theorem. W

The last proposition has a surprising topological consequence.

Corollary 3.3.6. Suppose M is a minimal algebraic surface of general type and f: M — M is a
diffeomorphism. Then f*(Kpy) = +Ky.

Proof It follows from the fact that the set of basic classes of M is a diffeomorphism invariant of
M: for any o € Bys we have f*o € By,. B

Thus the pair of holomorphic objects (Kps,—K)ps) of the minimal, general type surface M is a
diffeomorphism invariant of M
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83.3.2 Seiberg-Witten invariants of simply connected elliptic surfaces

The elliptic surfaces have a much richer structure than the surfaces of general type. They have
more complex curves and thus we can expect a more sophisticated Seiberg-Witten theory.

We begin with a warm-up result showing that, as in the case of surfaces of general type, the
basic classes of a minimal elliptic surfaces lie on the segment determined by the canonical classes og
and 7. If we use the language of line bundles this means the basic classes of such a surface lie on
the segment in H?(M,Z) determined by the trivial line bundle and K ;.

Definition 3.3.7. A proper elliptic surface is a minimal algebraic elliptic surface M such that
kod (M) > 0.

Proposition 3.3.8. Suppose M is a proper elliptic surface such that pg(M) > 0. If L is a (1,1),
Hermitian line bundle on M such that swps(L) # 0 then there exists t € [0,1] such that

c1(L) = tey (Kuy) in Hy'(M).

Proof Since M is a proper elliptic surface we deduce that Kj; is nef, nontrivial and K%, = 0.
Moreover, the metric w is defined by an ample divisor H and thus, for any line bundle E, we have
deg (F)=H - E.

Suppose L 2 C, K. It suffices to prove L = Kp;— L and L are collinear, for then the inequality

O<H-L<H-Ky

will force L to lie on the segment going from 0 to Kj;. We argue by contradiction. Suppose c¢;(L)
and ¢1(Ks) are linearly independent (as classes in Hgl(M))
Using Proposition 3.2.13 we deduce that there exist effective divisors D’ and D’ such that

[D'] 4 [D"] = Kur, cei([D']) = ci(L) in H*(M,Z).
Since Ky is nef we deduce
Ky -L=Ky-D >0, Kyy-L=Kpy-D">0

so that
Ky -L=0.

On the other hand, since d(L) = d(L) = L - L > 0 we deduce
I*>Ky-L>0, [?>Ky-L>0
so that L2, L2 > 0. From the identity
0=K3 =(L+L?=L*+2L-L+L*>0

we can now conclude L2 = [2 = L - [ = 0.
Set
t:=(H-L)/H? >0,

s:=(H-L)/H*>>0

and R
T:=tH-L, S:=sH— L.

Observe that
H-T=H-5=0.
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The vectors H, S, T are linearly independent in H é’l(M ) and thus span a three-dimensional space
V. We can now represent the restriction to V' of the intersection form as a symmetric 3 X 3 matrix
using the basis H, T', S. An elementary computation shows this matrix is

1 0 0
Q=H*|0 —t2 —(t% 4 52 + st)
0 —(t2+s%+st) —s?

The 2 x 2 minor in the lower right hand corner has negative determinant and thus @ has two positive

eigenvalues. This contradicts the Hodge index theorem and completes the proof of the proposition.
|

To get more detailed information about the Seiberg-Witten invariants of an elliptic surface we
need to have a deeper look into the structure of these surfaces. This is a very fascinating and
elaborate subject. We want to present to the reader a few facts about elliptic surfaces which are
needed in the computation of the Seiberg-Witten invariants. For more details we refer to [9, 40] or
the original articles of K. Kodaira [65].

An important concept in the theory of elliptic surfaces is that of multiple fiber.

Suppose 7 : M — B is an algebraic elliptic surface over the smooth complex curve B. The fiber
Fy of w at b € B is said to have multiplicity m if there exists a holomorphic coordinate w defined
on a disk neighborhood A of b such that

o w(b) = 0.
¢ There exists a holomorphic function g : 77 1(A) — A C C such that 7 = g™ on 7~ 1(A).
o The set Cy of critical points of g is finite.

The hypersurface F, = g~1(0) is called the reduction of the fiber 7=!(b). The multiple fiber is
said to have smooth reduction if Cy = 0 or, equivalently, if F}, is smooth. Using the open cover
Up=7"1(A), Uy = M \ F, and the holomorphic function

fo=m:Uy—ACC, fi=1:U;—-C
we obtain a divisor My on M. Observe that
Mb = mFb.

The multiple fibers are not just theoretically possible. There is a simple way to construct elliptic
surfaces with multiple fibers having smooth reductions. It relies on the logarithmic transform.

Let us first describe a simple procedure of constructing a smooth family of elliptic curves. Denote
by H. the half-plane {Im 7 > 0} C C. Each 7 € H defines a lattice

A, ={m+nr; m,neZ}

It is known that any elliptic curve is biholomorphic to a quotient C, := C/A,. If X is a complex
manifold and 7 : X — H, is a holomorphic map we can form a holomorphic family of smooth
elliptic curves C; := (C/A;(4))zex. More precisely, C; is defined as the quotient

C,=CxX/(Zo®Z)
where (m,n) € Z® Z acts on (z,2) € C x X by
(m,n)(z,z) = (z+m+n7(z),x).

We denote by 7, the natural projection C. — X.
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Suppose 7w : M — B is an elliptic surface and b € B is a regular value of 7 so that the fiber
7~1(b) is a smooth elliptic curve. Choose a small neighborhood A of b € B and a local coordinate
w on A such that w(b) = 0. For simplicity we assume that w identifies A with the unit disk in C.
Then there exist! a holomorphic map 7 : A — H and a biholomorphic map

F:n7Y(A) - ¢,
such that the diagram below is commutative.

~1(A) = ¢,
A A

Y= {(Z,’U),C), w,c S A, z € C—,—(w), Cm = w}

1a
_

Define ¥ C C; x A by

More intuitively, 3 is the pullback of the fibration 7, : C;; — A via the m-fold branched cover
A—-A (—w:="

The natural map
(:X—=A, (mw()—CeA

defines a structure of elliptic fibration on ¥. The fibers over ¢ and €2/ ¢ are biholomorphic to
Cr(¢my = Cr(w). This means we have a commutative diagram

|/w=7rT
w=¢™

A —— A

and we can also think of ¥ as the total space of the family of smooth elliptic curves (Cr(¢m))cea-
We can now construct an automorphism ¢ : ¥ — X

C.,.(Cm) X A> (Z,C) — ( (Z + M) mod AT(("”)a eQﬂi/mC> € C,,.(gm) X A. (3.3.7)

m

Observe that the iterates of ¢ generate a cyclic group with m elements which acts freely on 3. We
can form the quotient ~
¥ :=3/(9).

The natural map ("™ : ¥ — A is invariant with respect to the action of this cyclic group and thus
descends to a holomorphic map
u=_":Y— A

It clearly induces a structure of elliptic fibration on ¥ and the fiber over 0 € A is multiple, with
multiplicity m. Its reduction is smooth and is biholomorphic to C; (. The fiber over u € A\ {0}

I This claim needs a proof and we refer to [49] for details.
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is smooth, it has multiplicity 1 and is biholomorphic to C7,). Moreover, there is a biholomorphic
map ~
L, :X \ u_l(O) — C; \ C.,.(o)

induced by the ¢-invariant map

(™)

27i

by \ Cil(o) — Cr \ CT(O)a (Za C) = ( (Z - log C) mod AT(Cm)7Cm )

Observe that the 27iZ-ambiguity of log ¢ vanishes when we mod out the A -action.
The logarithmic transform can now be described explicitly as follows.

> Remove the fibered neighborhood set 77!(A;/5) of the fiber of 7 over w(b) = 0 where Ajjom
denotes the disk with the same center as A but with radius 1/2™.

> Glue back the elliptic fibration ¥ using the biholomorphism
Ly, : E\A\AWH T (AN Ay jpm).

We will denote the resulting manifold by L,, M, or by L., (b) M if the point b where the logarithmic
transform was performed is relevant. It is often useful to have a C'*°-interpretation of this operation.

The fibered neighborhood Y := 7~!(A) is a 4-manifold with boundary diffeomorphic to T2 x A.
Its boundary is a three-dimensional torus 72 x 9A. We will denote by w the complex coordinate on
A and by &;, & the angular coordinates on T2. When working in the C>°-category we can assume
that the map 7: A — H is constant 7(w) = i.

Denote by A another copy of A coordinatized by ¢ = re!’ € C. We pull back this T?-fibration
using the m-fold branched cover

pm A=A (ow=(m

and we obtain another T2-fibration ¥ = p* Y — A. Set w := €2™/™ and identify the cyclic group
Zy, with the subgroup of S' generated by w.
We can now define two Z,,-actions on Y:

w * (§1a§25<) = (517527“04)

and
wo (617 623 <) = (617 w€27w<)'
The o-action corresponds to the holomorphic action described by the map ¢ in (3.3.7).
These two actions are not isomorphic and lead to two quotients
Y 2 (w,%)
and R .
Y =Y /(w,0).

On the other hand, the restrictions of these actions to 7% = dY are isomorphic. To see this pick a
matrix A € SL(3,Z) such that

0 0
A 0]=1]1
1 1

This means the last column of A is the vector in the right-hand side of the above equality. For
example, we can pick

100
A=10 1 1
0 0 1
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Using the angular coordinates (£1,&2,6) on dY we can write the above two actions as

(&G ] o [0] [&]
W * fg :i 0 + 52 )
o] M1 o]
a1 L [0] [a
wo | & L I o
o] M1 o]

It is now clear that
Alw*T) =wo AT, V7€ R® mod (2n7Z)3.

Thus A induces a diffeomorphism B 3
A:9Y — 9Y.

This diffeomorphism does not extend to a diffeomorphismY — 'Y although Y and Y are diffeomor-
phic. ~ ~

We will produce a diffeomorphism ¥ — T2 x A by constructing a map T : Y — T2 x A whose
fibers are precisely the orbits of the (w, o) action. More precisely, set

T:V = T?x A, (&,6,C) — (&1, 6710).

To understand the effect of A we need to introduce angular coordinates on Y and dY .
On Y a natural choice is given by

(€1,82,83) = (61,62,¢™)

while on AY a natural choice is suggested by the definition of T
(1,62,8) = (61,68, 610).
The map A can be computed from the diagram
(61,62,0) —— (&1.64,0)
(€1,62,€3) J(fl,ﬁz,és)

A

(é1,&,¢™) - > (&1, (0™, &)

Thus A is given by _ _ ~
G=6, L=, =61

or, in matrix notation,

Its inverse is

1 0 O
Gn=10 0 1
0 -1 m

Thus, in the C*°-category, the logarithmic transform is obtained by removing a fibered neighborhood
T? x A of a smooth fiber and then attaching it back in a new fashion, using the gluing map G,,.

We collect below some basic topological and geometric facts about elliptic surfaces admitting
multiple fibers.
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Proposition 3.3.9. Suppose m : M — B is an elliptic surface with r multiple fibers, with smooth
reductions Fy,--- , F. and multiplicities m1,--- ,m,.. Then, there exists a holomorphic line bundle
L — B of degree deg L = 2g(B) — 2 + xpot(M) = 29(B) — 2+ 15X such that

T
K]\/[ ~a*L + Z(mz - 1)F1

i=1

For proofs of the above proposition we refer to [9, 49]. When B = P! we can be more specific
because in this case two holomorphic line bundles over P! are holomorphically isomorphic if and
only if they are topologically isomorphic, that is, they have the same degree. A holomorphic line
bundle of degree d over P! can thus be described by any divisor by + - - - + by, where the points b;
are pairwise distinct.

Corollary 3.3.10. Suppose 7w : M — P! is an elliptic fibration with r multiple fibers Fy,--- | F,
with multiplicities my,--- ,m,.. Then

Xhot (M)—2

Ky = Z Mbj + Z(ml — I)Fl
j=1 i=1

where the points b; € P! are pairwise distinct regular values of ™ and My, == 7 1(b;).

Denote by E(n;myq,---,m,) the smooth manifold obtained from the elliptic surfaces E(n) by
performing logarithmic transforms of multiplicities mq,--- , m, on r nonsingular fibers

E(n:mla"' 7m7") :Lmle1Vn

Denote by Fy, - -+ , F,. the multiple fibers in E(n;mq,- -+ ,m,). For a proof of the following nontrivial
result we refer to [40].

Theorem 3.3.11. Suppose 7 : M — P! is an elliptic surface such that

| 2 Xhol(M) =n>0.

» There is no smooth rational curve C — M entirely contained in a fiber of m and such that
C?=-1.

» There are r multiple fibers, with multiplicities mq,--- ,m, and smooth reductions Fy,--- , F}.

Then the following hold.
(a) M is diffeomorphic to E(n;my, -+ ,m,).
(b) M is simply connected if and only if either r < 1 or r = 2 and the multiplicities my, mg are
coprime.
(¢) Denote by m the least common multiple of my,--- ;m, and by F € Ho(M,Z)/Tors the homology
class carried by a nonsingular fiber of w. Then there exists a primitive class £ € Ha(M,Z)/Tors such
that m
F=mf F,=—1f VYi=1---r
m;

Using the above proposition we can now determine the homeomorphism type of the simply
connected surfaces FE(n;mi, ms), where we allow m; = 1.

In this case the least common multiple of my, mso is mymso. H?(M,Z) has no torsion and can be
identified with Ho(M,Z) via Poincaré duality. We deduce

xXym = 12n, by =12n — 2,
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pg = (n—1), b;:2n—1,

KMm{(nQ)JrZ(l ! )}f. (3.3.8)

m;

Using Wu’s formula we deduce that the intersection form of M is even if and only if

v(n;my,mg) = {(n—2) —|—Z(1 — rrlll)}

is even. This happens if and only if
n=m;+ms =0 mod 2.
Using Corollary 2.4.17 we deduce the following result.

Corollary 3.3.12. Two simply connected elliptic surfaces E(n;mi,mg) and E(n';mfi,mb) are
homeomorphic if and only if

and either
n=0 mod?2, m;+ms=m)+m) mod?2.

or,
n=1 mod 2.

We now have all the information we need to compute the Seiberg-Witten invariants of the elliptic
surface M = E(n;mq,ma), (m1,me) = 1, n > 3. Denote by F; and Fy the multiple fibers of M
and pick (n — 2) pairwise disjoint generic fibers, My, ,--+ , M, The line bundle determined by
the effective divisor

n—2"°

Cp:i= ZMbj + (m1 — 1)F1 + (mg — ].)FQ
J

is precisely the canonical line bundle Kj;. D determines a holomorphic section s of Kj; such that
D coincides with the zero divisor determined by s. Using Proposition 3.2.13 we deduce that if the
line bundle L — M determines a basic class of M then there exists a divisor D on M such that

c1([D]) = e1(L) and 0 < D < (.
This means D must have the form

D = D(J,al,ag) = ZMb? + a1F1 + a2F2

jeJ
where J C {1,2,---,(n—2)} and 0 < a; < m;, i = 1,2. Observe that with D as above we have
al ag
D)) = J+—+ —)f
(D) = (7] + 2+ 22

Since my1 and mq are relatively prime we deduce

ci([D(J,a1,a2)]) = e1([D(J', a1, a3)]) <= |J| = |J'|, a1 = a}, az = aj.
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Thus, if L determines a basic class then c;(L) is collinear with ¢;(Kys) in H?(M,Z), the virtual
dimension D(L) is zero and moreover

c1(L) = (mk +myias + mea))f, 0<k<(n-2), 0<a; <m,. (3.3.9)

Thus the set of basic classes of M has cardinality < mima(n — 1). We will denote by L(k, a1, az)
the complex line bundle such that

c1(L) = (mk + myag + maaq)f.

Suppose L = L(k,a1,az2). Then, according to Proposition 3.2.13, the set of orbits of monopoles
corresponding to the spin® structure og ® L and the perturbation tw 4+ s + § can be identified with
the set of effective divisors D(J, a1, a) such that |J| = k. There are exactly (”‘;‘2) such divisors.

Given a divisor D as above there exists a monopole

C:CD:(w:a@ﬁ, A:A0+2B)
such that B induces a holomorphic structure on L, o« = ap is a holomorphic section of L, 3 = 8p
is a holomorphic section of Kj; — L, D coincides with the zero divisor determined by «

o = =85, AFp = ((laf* = |5 - 1)

Proposition 3.3.13. (O. Biquard [13]) Each of the above monopoles C = Cp is nondegenerate.

Proof The idea of proof is inspired by [13]. Since the virtual dimension d(L) = 0 it suffices to
show ker 7c = {0}. Let o
(1, ib) € ker T¢.

As in §3.2.3 we write
b=adfeL) e 0"3(L) =% (L - Ky)

and .
_ v
V2

Then (see Proposition 3.2.14) «, B and ¢ satisfy the equations

ib (p+@), peQ®(M).

20" — (o, 0) + (8, 8) =
dp

\/iégd%—iga/\a
V2056 —iplpB =
aB+aB =

|
o oococo

(3.3.10)

The last equation shows &/a = —B/B on M\ (a~'(0) U 371(0)). We denote by f this smooth
function on M \ (a~!(0) U 371(0)). Since a3 = —8is we deduce

(B)=Co—(a) =Co—D =" My + (my —ay — )Fy + (my — az — 1)Fy
jeJ
where J := {1,2,---,(n —2)}\ J. Since & = af and B = —(f are smooth objects we deduce that
f extends to a smooth function on M \ (F} U F3).

Lemma 3.3.14. The function f extends to a smooth function on M.



206 Liviu I. Nicolaescu

We will complete the proof of the proposition assuming the validity of the above lemma.
Observe that since dga = 0 we have (on M \ a~1(0))

5f = B(6/a) = (adpd)/a?) = f%so

where at the last step we used the third equation in (3.3.10). Since
M\ a~1(0) is dense in M and f is smooth we can conclude that the last equality is valid everywhere
on M.

Using this identity in the first equation of (3.3.10) we obtain

0=—80"0f — (a, fay — (B, fB) = — (890 + |a|* + |B*) f.

Multiplying by f and integrating by parts we deduce f = 0. This implies ¢ =0, & = fa = 0 and
B = —Bf =0. This concludes the proof of the proposition. l

Proof of Lemma 3.3.14 We will show that f extends smoothly over Fj.

Suppose Fy is the fiber of 7 : M = E(n;my, ms) — P! over 0 € C C P!. We denote by w the
coordinate on C. Denote by A the unit disk centered at 0. By possibly rescaling we can assume
that the restriction of m to 7=1(M) has the form

T =um™

where u : 771(A) — A is a submersive holomorphic map.

Now fix a point ¢ € F} and a local holomorphic coordinate on Fj near gq. Then the pair of
functions (z, u) forms a local holomorphic coordinate system on a small neighborhood U of ¢ in M.
In this coordinate system F} is locally defined by v = 0 and the section « has the local description

a=u"ag

where ag is a nowhere vanishing holomorphic function on U.
Since dp = 0 we can choose U sufficiently small so that there exists g € C°°(U) such that
¢ = /20g. The second equation in (3.3.10) can be rewritten over U as

0(& +iag) = 0.

Thus
h:= a4+ iu" agg

is holomorphic on U. We now write
& =h—iu"apg (3.3.11)

and use this in the last equation of (3.3.10). This yields
(h —iu" apg)B + u‘“aoﬁ =0

so that L
h = u"ag(igh — B).

The last equality shows that the smooth function hy = aq(ig — B) is holomorphic on U \ F; (where
it equals h/u®) and thus it must be holomorphic everywhere on U. This allows us to write

h = u™ ho
where hg is holomorphic on U. Using this in (3.3.11) we deduce

& = u®t (ho — iagg)
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so that L .
f=da/la= 20— g 1aog'

&)
This proves that f is bounded on U since ag does not vanish anywhere. Bl

We now know that if L = L(k, a1, as) then there are precisely (”;2) G-orbits of nondegenerate
irreducible monopoles corresponding to the spin® structure og ® L. To compute the Seiberg-Witten
invariant we have to determine the signs attached to these monopoles.

Consider a monopole C = Cp = (a® 3, Ag+2B) as in Proposition 3.3.13. We begin by rewriting
the operator 7¢ using the identifications

Q0L 3 o s ib = %(s@ﬂﬁ) €iQ' (M),

%(9 +0) @ iuw € i0% (M),

[(S}) 24 «—a®feQL)e QL - Ky),
I(S;) = Q% (L).
Using the computations in §3.2.3 and the identification (3.3.4) we deduce

Q"2 (M) @ iw® Q' (M) 2 0 & uw «——

1 [ Vama 0 (o Aa—pJp)
| al= 20p n 53 (a8 +apf)
¢ | —iV2Im 9*p)w —i(Re(a,d) — Re(3, B))w
4 —4V2iRe 'y “iIm(a, ) — iIm(3, §)

Define the isomorphism
T (iQO(M) o ive QO(M)) @ QO2(M) — (QO(M) ® <c) @ QO2(M),
1 1 1
ifo @i ® —fo+ —=fii) ® z.
ifo@ifiwdy (4\/§f0 \/ifll) 57
Using these last isomorphisms we can further rewrite 7¢ «— Y7¢

i(pANa—¢1p)

a V2(9ua +I5) e
wl o= e 4| amts+ad
v =0 .
— (@) - (8.8))
pAha —p 1B
V2(9pa + 03) L L
= e +1i maﬁ +1i maﬁ
—d*p
_ﬁ<ava> 47\1/§<ﬂ7ﬂ>
Observe that ~ o
" @ [ Va@si + 050)
TCO[ j } =7 | B | = O

© —0%¢
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and our orientation conventions for ker 7? and coker 7? coincide with the orientations induced by
the above identification of these spaces with complex spaces.

To determine the sign associated to the monopole C we will compute the orientation transport
along a cleverly chosen deformation of TCO to 7c, suggested by [13]. We will get the same result since
it will be clear from the description of this deformation that it is homotopic to the deformation 7~
we have used so far.

The new deformation is a composite of two deformations. We first follow the path (¢ € [0,1])

PN
o \/5(530;6 + 5;@ L
U | B | = O +H | 0 |,
© 0% .
“nle )
and then the path
A -1
o V2(9pd + 95) L L
Vi| B | = dp +1i 7308 +ti| 7,390
@ —0%p L ) .
—m@h@ fﬁ<575>

Observe first that the operators U; are complex linear so the orientation transport along this path
is 1. Thus we only have to determine the orientation transport along V;. Let us first point out a
very useful fact.

Lemma 3.3.15. kerV; =0 for all t € (0,1].

The proof is word for word the proof of Proposition 3.3.13 (which corresponds to ¢t = 1) and can
be safely left to the reader. Denote by P the orthogonal projection onto coker Vy and set

d
Ry = P% lt=0 Vi : ker Vy — coker V.

Observe that

—p1p

é ; é o

Vo | B ::a‘t:OVt B | =i maﬂ
® )

2 5,)

is complex conjugate linear. Thus Ry is complex conjugate linear and if it is an R-linear isomorphism,
then the orientation transport will be

(=1)%, dy = dime ker V.

We will spend the remainder of this subsection proving that Ry is indeed an isomorphism and
determining dj.

Lemma 3.3.16. There exists a natural short exact sequence
0— C — H*([L, B]) = H*°([D(J, a1, a2)]) — ker Vo — 0

where [L, B] denotes the line bundle L equipped with the holomorphic structure defined by the Her-
mitian connection B. In particular,

do = ho([D(J, al,ag)]) —1.
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Proof Let (&, 3,¢) € ker Vy, that is,

5Bd+5gﬁ.+%<p/\a =0
Op+ fzaf = 0 . (3.3.12)
0% + 4%\‘/5(0'(,0() = 0

We use the same strategy as in the proof of Proposition 3.2.14. Using the first equality in (3.3.12)

we deduce .
i

V2

0> —[056017: = (Ind + —=¢ A a,350) 12

(use dpa = 0)

= <%5¢ A a, B>L2

(use the second equation in (3.3.12)
1 .
= <llal 131 I

This implies 3 = 0 and thus dp = 0, according to the second equation in (3.3.12). Since h%' (M) =0
there exists a smooth complex valued function f on M such that v20f = .
The first equation in (3.3.12) can now be rewritten

Op(a+ifa) =0

so that
hi=da+ifaeHY'(L,B))

and
& =h—ifa.

Using these last equalities in the third equation of (3.3.12) we deduce
ax 1 2 =

(00 + g\a| )f = —<ha.

Since the positive operator 9*9 + %\042 has bounded inverse we deduce

f = fulh) = (00 + é|a|2)_1(h07). (3.3.13)
It is now clear that the correspondence
Hz"([L, B]) 2 h = (&, 6, ¢) = (h —ifa(h)a,0,v20fa(h))

produces a C-linear surjection
HY'([L, B]) — ker Vy.

Observe that its kernel is generated by
hg = ia.

Lemma 3.3.16 is proved. B

Lemma 3.3.17. Ry is a complex conjugate linear isomorphism.
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Proof Let .
(C.VOaﬂO = 07 900) € ker Vo.
We will show that if

—po 3
Qg
Vol 0 | =i ﬁézoﬁ € Range (Vo)
¥o
0

then &g = 0 and ¢y = 0. )
Suppose there exists (¢, 3,¢) € QY(L) x Q%2(L) x Q%L (M) such that

L] E]-LE]

This means

53@+5E6+%@/\O{—%¢0Jﬁ = 0
5@+fbaﬁ'+ﬁoﬁoﬁ = 0
5*(,0—1—43/5(5407 =0
and _ .
dpdo + o ha = 0
5(,0() = 0 .
5*@0+$<d0,a> = 0

Again we rely on the idea in the proof of Proposition 3.2.14. We have
o i L
g0 Bll72 = (Opa + \ﬁa% BB —

i

V2

i

@0 )

o
V2
(use Opg = 0, 05 = dpa = 0)

i

i

V2

i

a5¢3B>LZ + <\@(Mp0 A %@76>L2

=

(use %(wo = —dpdo)
i

V2

<OZ(§Q0, B>L2

i

V2

(05 (cop) — codep, B) 12

<a5(pa6>L2 - <53d0 /\§07ﬂ>L2

_ i i

V2 V2

(use 953 = 0) )
i

_ %mé%ﬁ)p 4+ \/§<d05§07ﬁ>L2

s L (3.3.14) 1

= (¢, ——=(af + &op)) 2 glas +doBl7s.

V2

Liviu I. Nicolaescu

(3.3.14)

(3.3.15)

L2

On(0¢). A)12 + (T A s B)12 + <(\%)20¢900 Ao, B s
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This shows _ . .
9l — HPodB = 0
53%-#%04900 =0
dpg = 0 (3.3.16)
5*4,004—4%/5@064 = 0
af+a8 = 0

The above system of equations is very similar to (3.3.10). We can now conclude exactly as in the
proof of Proposition 3.3.13 that the system (3.3.16) has only the trivial solution

o =0, B=0, o=0.
This shows that Ry is an isomorphism as claimed. W

Observe that all divisors D(J, a1, a2), |J| = k are linearly equivalent. Indeed, for any two sets
J,J {1, ,n— 2} with |J| = |.J'| the divisors

C= ZM’U’ ¢' = Z M,
jeJ jeJ
are linearly equivalent since the divisors
D b Db
jed jeJ
on P! are linearly equivalent. Thus
d(J, ay, CLQ) := dim¢ Hg’o([D(J, ay, CLQ)D

depends only on k = |J|, a1 and az. We will denote this dimension by d(k, a1, az). This shows that
the Seiberg-Witten invariant of the spin® structure og ® L(k, a1, az2) is nontrivial and more precisely

SWy = (,1)d(k,a1,a2)71 <n ; 2> .

In particular, M = E(n,my,m2) has precisely mima(n — 1) basic classes. We can be even more
precise.

Proposition 3.3.18. d(k,a1,a2) =k + 1.

Proof The key ingredient in the proof is the following fact concerning multiple fibers. Its proof
can be found in [49].

Lemma 3.3.19. Denote by N; the holomorphic normal bundle of F; — M, i =1,2. Then N; is an
element of order m; in the group Pic (F}).

The proof of Proposition 3.3.18 will be completed in several steps. As in §§3.1.1, for any effective
divisor D on M, we denote by fp one of the nontrivial holomorphic sections of [D] canonically
determined by D. Fix k distinct regular fibers My, ,--- , M, and denote by Dy the divisor

k
Dy = Z M, .
j=1

k
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We can identify Dy with a smooth (reducible) curve on M. Now set T' = a1 F1 +aoF» and D = Do+T.
Step 1 The proposition is true if a; = az = 0. To see this consider the structural sequence
fpy-
0 — On =% 0u([Do]) = Op,([Do]) = 0
which leads to the long exact sequence

0 — H*(0xr) — H°(0a1([Do]) ) — H (0, ([Do])) — H'(Onr) = -+

Since M is simply connected we deduce dim¢ H 1(0 M) = h?\;fl = 0. Thus we have the short exact
sequence of complex vector spaces

0— H(Op) — HO(OM([DO])) — HO ((‘)DO([DO})) —0.

Hence 7o (OM([DOD) ~ H%(0y) ® H° (ODQ([DO]))

= [0(0y) & (EB 1 (O, ([DO])))'

The holomorphic normal bundle to M, < M is (holomorphically) trivial and, by the adjunction
formula, it coincides with [Dy]] M, - Thus

H (O, (IDo]) = C.

Step 1 is now complete.

Step 2 If a1 + as > 0 then
H(ou(IT))) =€, H' (oM (1)) 0.

We will distinguish two cases: a; + a2 = 1 and a1 + as > 1.
In the first case, assume a1 = 1, as = 0 so that T"= F;. Using the structural sequence

0— O0n — On([F1]) — Op, (N1) — 0
we obtain the long exact sequence
0= H(Ox) — H(0x([F])) — H* (0 (M) "
= H'(0u) = H (0u () = H' (05, (N1)) =+

From Lemma 3.3.19 we deduce that the degree zero line bundle N; — F} has no holomorphic sections
so that
H0<OF1 (Nl)) ~ ().

The first portion of the long exact sequence now implies
H° (OM([Fl])) >~ [{9(9) = C.
The Riemann-Roch theorem for the line bundle N; — F} implies

dimg H° (OM([F1])> — dim¢ Hl(OF1 (N1)>



Notes on Seiberg-Witten Theory 213

= X(N1) = deg(N1) +1 - g(F1) =0
so that
Ik (OFl(N1)> = 0.

Using this in the second portion of the long exact sequence (*) we deduce
I’I1 (O]V[([Fl])) = Hl(O]\/[) = 0.

This completes Step 2 in the case ay + as = 1.

The general case follows by induction. Suppose d := a3 + a2 > 1 and assume a; > 0. Set
To:=T — F1 = (a1 — 1)F 4+ a2 F>. We use the structural sequence

0 — Om([To)) — Om([T]) — O, ([T]) — 0
with associated long exact sequence
0— H°(0u () — HO(On((T])) — H°(0r (IT]))
— H' (0w ([T0])) — H' (0u(IT])) — H' (0, (1)) —---
The induction assumption implies
1 (0u(m)) = €, B (0m(T))) =0,

Now observe that [T]|r, = a;N; and since 0 < a; < m; we deduce from Lemma 3.3.19 that the
degree zero line bundle aq N7 is holomorphically nontrivial so that

1 (0, (1T])) 0.

Invoking again the Riemann-Roch theorem for a1 N; — F; we deduce
1 (0r, (1)) 2 0.

The conclusions of Step 2 now follow from the sequence (k).

Step 3 Conclusion. Consider the structural sequence
0 — O (T]) 2% 02 (1D]) = Op, (D)) — 0
with associated long exact sequence
0 — HO (O (7)) — H°(0a([D])) — HO(0p,(1D]))
— 1 (0a([T])) — B (0a([D]) — H' (0, (ID)) = -+

Observe that the restriction of [D] to the disconnected curve Dy is the holomorphically trivial line
bundle. Thus

(s * x)

HO(ODO([D})) = CF.

Using Step 2 we deduce H* (OM([T])) 2 () 3o that the first part of (* * *) reduces to a short exact
sequence

0 — H(0u (1)) — H(0a([D))) — H*(0p, (ID])) = 0.

Using Step 2 again we deduce that the first space in the above sequence is one-dimensional. Propo-
sition 3.3.18 is now clear. B

The next theorem collects the results proved so far.
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Theorem 3.3.20. The simply connected elliptic surface M = E(n;my, ms), (my,ms) =1, n > 2
has ezxactly mima(n — 1) basic classes

o(k,ai,a2) = 00 ® Li,a, a,

where 0 <k <n—-2,0<a; <my —1,0<ax <mg—1 and Ly q,,q, 15 the complex line bundle
determined by
Cl(Lk,al,aQ) = (mlmgk —+ miasg —+ mgal)f.

Moreover,

swr(o(k, a1, a2)) = (_1)k(" . 2).

Remark 3.3.21. For different approaches to Theorem 3.3.20 we refer to [21, 35, 42].
The above theorem has a truly remarkable consequence.

Corollary 3.3.22. ([82, 95, 129]) Two simply connected elliptic surfaces M = E(n;my,ms) and
M’ = E(n';my, mb) are diffeomorphic if and only if

n=n' and {my,ma} = {m},ms}. (3.3.17)

Proof Clearly, (3.3.17) implies that the two surfaces are diffeomorphic. Conversely, suppose the
two surfaces are diffeomorphic. In particular, they are homeomorphic and Corollary 3.3.12 implies

n=mn.
Since they are diffeomorphic they have the same number of basic classes so that
mime = mimb :=m.

Denote by f and f’ the corresponding primitive classes on M and M’. Since By; = By we deduce
that there exist ki, k2, 1,91, T2,y2 € Z such that

mif' = (mky + mize + moz)f, mof’ = (mky + miys + mayr)f

and
0<ki,ko<n—=2, 0<z,y1 <m1—1, 0< 22,92 <y — 1.

We deduce

my = mky + (mixa + max1) > miz2 + Maxy,

my = mka + (m1y2 + may1) > miys + mayr
and

mh|(mixa +maxy), my|(miya + mayr).

Thus,

! Vi
m; = MmiTa + MaZ1, My = M1Y2 + May1.

This implies
mimg = mimy = (mize + mox1) - (M1y2 + may1)

= mima(21y2 + T2y1) + mizays + M3z1y1.
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We conclude
T1y1 = Tay2 = 0, Z1Y2 +woy1 = 1.

Some elementary manipulations now imply

{mlva} = {mllamIQ} u

Using Corollary 3.3.12 we can draw the following surprising conclusion.

Corollary 3.3.23. There exist infinitely many smooth 4-manifolds homeomorphic to E(n;my,ms)
but not diffeomorphic to it !!!

Proof We can construct these manifolds of the form F(n;m},m}) such that

{mllv m,2} 7é {m17m2}

but still mq +mg =m) +m) mod 2if n=0 mod 2. B

Remark 3.3.24. We have seen that the Seiberg-Witten invariants contain nontrivial information
about the Kahler surfaces of Kodaira dimension > 0.

The Seiberg-Witten equations contain nontrivial information about the remaining case as well.
C. Okonek and A. Teleman have used these equations in [113] to give a new, very short proof of van
de Ven’s conjecture stating that an algebraic surface diffeomorphic to a rational surface must in fact
be rational. We refer to [88, 113] for more information.

83.3.3 The failure of the h-cobordism theorem in 4 dimensions

Recall that two compact, closed, smooth manifolds X4 are called h-cobordant if there exists a smooth
manifold W with boundary OW = X_ U X, such that the natural inclusions

Xi‘—>W

are homotopy equivalences. W is also called an h-cobordism between X_ and X,. An h-cobordism
W is said to be trivial if it is diffeomorphic to a cylinder [0,1] x X. The h-cobordism W is said to
be topologically trivial if it is homeomorphic to a cylinder.

In the award winning work [125], S. Smale has proved the following remarkable result.

Theorem 3.3.25. (The h-cobordism theorem) Any h-cobordism between two simply connected
smooth manifolds of dimension n > 5 is trivial. In particular, two smooth, compact, h-cobordant,
simply connected manifolds of dimension > 5 are diffeomorphic.

As explained in [51], the proof of Theorem 3.3.25 fails in dimension 4. Still, the h-cobordism
relation is very restrictive.

Theorem 3.3.26. (C.T.C. Wall, [145]) (a) Any h-cobordism W between two smooth, simply
connected 4-manifolds X and Y induces an isomorphism

fW : (H2(X7 Z)7qX) - (HQ(K Z)vqY)
(b) If X and 'Y are two smooth simply connected 4-manifolds and
g: (H2(X7Z)7qX) - (H2(sz)7qY)

is an isomorphism then there exists an h-cobordism W such that g = fw .
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This theorem suggests the introduction of the following object. Suppose X is a smooth, simply
connected 4-manifold. Denote by O(gx) the group of automorphisms of the intersection form gx.
If T'x denotes the group of components of the diffeomorphism group Diff (M) then there exists a
natural map

I's — O(gx)

with image G x. Theorem 3.3.26 implies that if an h-cobordism W is trivial then fy € Gx, i.e. the
automorphism fy is induced by a diffeomorphism of X. This shows that the index

dx = [O(gx) : Gx]

is a measure of the “size” of the set of nontrivial h-self-cobordisms of X . In particular, if there exists
a smooth manifold X such that dx > 1 then we can produce smoothly nontrivial cobordisms.

After considerable effort, M. Freedman succeeded in [38] in proving that a weaker version h-
cobordism theorem continues to hold in four dimensions.

Theorem 3.3.27. (M. Freedman) Any smooth cobordism between two, smooth, compact, simply
connected 4-manifolds is topologically trivial.

The weaker conclusion in the above theorem is not due to a limitation of the proof. It has deep
and still mysterious roots. Yet, the mathematical world was taken completely by surprise when S.
Donaldson announced the following result.

Theorem 3.3.28. There exist smoothly nontrivial h-cobordisms.

Proof We follow the approach in [51, Chap. 9]. Let X be the K3 elliptic surface E(2) . We will
show that dx > 1 by proving that the automorphism (—1) of gx is not induced by any diffeomor-
phism. We argue by contradiction.

Suppose there exists such a diffeomorphism f. Since X has a unique basic class oy we deduce

ffoo =09

and
swx(f*o9) =swx(op) = 1.

On the other hand, since f acts as —1 on H?(M,Z) and b (X) = 3 we deduce that f changes the
orientation of Hi(X ) by —1 and thus changes the Seiberg-Witten invariant by the same factor. B

83.3.4 Seiberg-Witten equations on symplectic 4-manifolds

We hope that by now we have convinced the reader of the powerful impact of the Ké&hler condition
on the Seiberg-Witten equations.

This condition can be relaxed in two ways. We can require the manifold to be complex but
not Kahler or we can drop the integrability condition on the almost complex structure but preserve
the symplectic form. Surprisingly, most of the consequences continue to hold under these weaker
assumption.

The first situation was considered in great detail in [13] and involves no new analytical difficul-
ties. By contrast, the symplectic situation is considerably more difficult. In a remarkable tour de
force, C.H. Taubes has shown in [134, 135, 136, 137, 138] that the essential features of the Seiberg-
Witten equations in the presence of a Kéahler form survive when the Kahler condition is relaxed to
a symplectic one.

It is beyond the scope of these notes to even attempt to survey Taubes’ remarkable results. We
have a much more modest goal in mind. We want to prove that the nonvanishing result of §§3.3.1
has a symplectic counterpart. Our presentation will rely heavily on the results in Section 1.4.



Notes on Seiberg-Witten Theory 217

Consider a symplectic 4-manifold (M,w) equipped with a compatible metric g and associated
almost complex structure J so that

w(X,Y)=9(JX,Y), VX,Y € Vect (M).
The almost complex structure canonically defines a spin® structure oy with associated line bundle
det(og) = K,
Any other spin® structure has the form
o =00® L, det(or) = K;; ® L*
where L is a Hermitian line bundle. Moreover,
L(Sf)=0%(L) e Q*(L), I(S;) = Q% (L).
Thus, any spinor ¢ € I'(S}) naturally decomposes as
Y=a®pfe (L) e (L).

The Chern connection on T'M induces a connection Ay on KA}l. Any Hermitian connection A
on det(oy,) can be written as
A= Ay+2B,

where B is a Hermitian connection on L. From Proposition 1.4.25 we deduce that, exactly as in the
Kaéhler case, we have

Pa = V2(05 + 0p).
Imitating the situation in §§3.2.1 we choose the perturbation parameter of the form
. t
M = 1iFy, + gw.

Again, we can rewrite the Seiberg-Witten equations in terms of («, 3, B) and, exactly as in §§3.2.1
we deduce

5Ba+57‘35 =0
AFg = i(a? = |82 -1) . (3.3.18)
Fy? = lap

The virtual dimension of the space of or-monopoles is computed by the same formula as in §3.2.1
d(op)=L-(Ky —L). (3.3.19)

As in the K&hler case, for any Hermitian line L — M, we denote by deg (L) the quantity

deg,, (L) := i/MFB ANw

where B is an arbitrary Hermitian connection on L. Since w is closed we deduce that the above
expression is independent of B.
If bf (M) = 1 then n; belongs to the + chamber if

167

(t— Vol (M) deg,, (L)) > 0.
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Theorem 3.3.29. (Taubes, [134, 135]) (a)
swii(0) = £sw',) (Ky) = +1.

(b) If swg\}_)(L) # 0 then deg,, (L) > 0 with equality if and only if L is trivial.
(c) If swg\;)(L) # 0 then deg, (L) < deg,,(Kr) with equality if and only if L is isomorphic to K.

Proof We follow the approach in [69]. Using the involution o — & we see that it suffices to prove
only that swx;)(ao) ==+1 and (b).

Notice first that if L is trivial then (3.3.18) has a nontrivial solution with B the trivial connection,
6 =0 and o = t'/2. Suppose now that swg\})(oL) # 0. Fix t > 0 and consider an 7n;-monopole

(V, A) = (a, B, A = Ag+2B)

corresponding to the spin® structure or.
Using Proposition 1.4.22 we deduce

2050pa = (VP)*VPa —iA(Fp)a
Taking the inner product with o and integrating by parts we deduce
/ |VBal2dvy = / (2(5253@,0@ + iA(FB)|a|2)de. (3.3.20)
M M
Now use the first equation in (3.3.18) to deduce
/ (20505, a)dvy = —2/ (05058, a)ydvyr = —2/ (B, 0% ) dvpy

M M M

(use (1.4.19) in §1.4.2)
— 2 [ ((6.F4%) - (9. (0ma) o N) ) dox
M

(use the third equation in (3.3.18))

= | (~31eP13R +2(6.(050) o V) ) s

On the other hand, using the second equation in (3.3.18) we deduce

. 1
/ A (Fp)|a2doa = ‘g/ (Jf2 = 181% — )|al2dvar.
M M

Substituting this in (3.3.20) we obtain
(1970l + 2L a2 + 182 — 1o ) duas = 2 [ (8. (0500 0 V)
3 M= , (0a) o N)duvyy
M M
or, equivalently,
1 1 t
[ (1920 + SlaPIaP + g(af = 07 + L(af = 8))duay
M (3.3.21)
= 2/ <ﬁ, (630&) o N>dUM
M
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The right-hand side of (3.3.21) can be estimated using the interpolation inequality

5 1
b < —a? + —
jabl < 5+ 57

b2

and we obtain ) ) .
[ (920 + SlaPIaP + S(af = 02 + L(af = 8))duay
Y 8 8 8

1
Sf/ |VBa|2de—|—C/ |82 dvas
2 J/m M

where C' is some positive constant which depends only on the size of the Nijenhuis tensor N. Thus,

Lo 2, 1 o2, 10 0 t, o
[ (5197 + GlaPI? + (1o =0+ {(al* = 1)) doy

(3.3.22)
M
Now, using the identity
de (L)fi/F A fi/ AFpd
Ew 727TMB w727rM BAUM
- L (|Of|2* |5|2*t)dUM
167 M
we deduce . .
7/ (|a|* = t)dvar = < | |B|2dvps — 2nt deg,, (L).
8 Jm 8 Jm
Substituting this equality in (3.3.22) we obtain
1 1 1 t
[ (3190l + SlaPI8? + S(1al? =7 + 1817 duny — 2t de (L)
M (3.3.23)

<o / 12 dvar.
M

Since t > 0 we can assume t > 8C. The last inequality then implies

2rt deg,, (L)

1 1 1 t
> LoB 2 Y 22, L2 2 t 2 > 0.
[ (3175 + {10192 + (o ~ 02 + (£ = €)I5 )avas 2 0

Hence
deg,, (L) = 0.

Moreover, we see that deg, (L) = 0 if and only if |a| = t'/2, VBa = 0 and § = 0. This shows that
L must be trivial.
If L is trivial the above inequality shows that for all ¢ > 4C' there exists a unique (up to Gs,)
ny-monopole
CO = (Ozo = tl/z,ﬁo = O,Ao).

In this case, the twisting connection B on the trivial line bundle is the trivial connection. To complete
the proof of Theorem 3.3.29 we only need to show Cy is nondegenerate. We follow a strategy very
similar to the one employed in §§3.3.1. Set A := t1/2,
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As in §§3.2.3 we can write )
C=(@®pib=—5(o+9)

and we deduce C € ker Tc, if and only if

V2(da+ 0" B) +ile Aag — @ 1 By) =0, (3.3.24a)
A(Op + 0p) = 2—\1/§(Re<oz0, &) — Re(fo, 3)), (3.3.24b)
iéw::1$§<aﬂo+c%6x (3.3.24¢)

2V2(0* p + @) + Im(ayg, &) + Im(fo, 3) = 0. (3.3.24d)

(Recall that above ag = A, By = 0.) Using the Kahler-Hodge identities in Proposition 1.4.10 of
§81.4.1 we deduce as §§3.2.3 that (3.3.24b) and (3.3.24d) are equivalent to

~ Al
=—-———a.
¥ 12
We deduce that C € ker T¢, if and only if
V2(dé + 9% B) + Nig = 0, (3.3.25a)
i0p = Lﬁ' (3.3.25b)
0= 15" 3.
= Al
0" =——=a. 3.3.25¢
=17 ( )

Using the identities
D, = VEO+07): QOM) — QO3(0) — (M)

and
P, = V(0" ©0) : Q4L(M) — Q0(M) & Q°2(M)

we can rewrite the above equalities as

A

P =~

N .
©, @Zow=—zlw7 Y = [g}

Thus
. . 22 .
@AUQAow = *Ed)-

Using the Weitzenbdck presentation of the generalized Laplacian ’}2)20@ 4, We can rewrite the above

equation as
A2
(V'V+R+ 1—6)1/; =0 (3.3.26)

where R is a zeroth order operator independent of A. If A is sufficiently large we deduce that the
selfadjoint operator R + A? is positive definite so the only solution of (3.3.26) is ¢ = 0. This forces

¢ =0 and thus
ker Tc, =0, VA > 0.

The proof of Theorem 3.3.29 is now complete. B
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Remark 3.3.30. We have not discussed if there is a natural way of determining the sign of the
unique monopole Cy. This issue is equivalent to the existence of natural orientations on H'(M) and

H?%(M). Such choices are still possible and lead to the conclusion that swg\j})(ao) = 1. For details
we refer to [57, 119].

Remark 3.3.31. The above nonvanishing result implies that any symplectic (Kéhler) 4-manifold
admits almost complex structures which are not homotopic to an almost complex structure compat-
ible with a symplectic (K&hler) structure; see [27].

Remark 3.3.32. One can use the information contained in Taubes’ theorem to produce a very
ingenious invariant of a symplectic 4-manifold, (M,w).

Observe first that the symplectic structure determines a canonical spin® structure oy which allows
us to identify Spin®(M) with H?(M,Z). Using the morphism H?(N,Z) — H?(M,Z) we can map
the set of basic classes Bys to a finite collection of lattice points in H2?(M,R). (The lattice is the
image of H?(M,Z) — H?(M,R).) The image of oq is the origin of H?(M,R) while the image of
Gean coincides with the image of ¢1 (K ). For simplicity, we will denote by K, this image.

The symplectic form w defines by integration a linear functional L, : H?(M,R) — R. Denote by
Parrw the convex hull of By C H 2(M,R). P M, is a convex polyhedron. Taubes’ theorem imposes
several restrictions on Ppy .

e Since 0 € By; <= 7 € B); we deduce that Py, is symmetric with respect to the point %KM.

e The minimum (resp. maximum) of L, on Py, is achieved at precisely one point, 0 (resp. Kps)
which must be a vertex of Paz .

e The group ')y = (group orientation preserving diffeomorphisms)/(subgroup of diffeomorphisms
homotopic to 1) acts on Bjs thus inducing an (affine) action on Pps,, which must leave invariant
the finite set of vertices of Py .

Let us define a special polyhedron to be a I'j;-invariant convex polyhedron P in the affine space
H?(M,R) together with the following additional structure.

o The vertices of P are lattice points.

o P admits a center of symmetry O.

o There exist an affine map L : P — R and a pair of O-symmetric vertices Py of P such that +L
achieves its maximum exactly at P..

We will denote the special polynomials by (P, 0, P_, Py, L). Clearly, (Parw, %KM, 00y Ocans L)
is a special polyhedron.

Two symplectic forms wy and wy are called isotopic if there exists a smooth path w; of symplectic
forms connecting them. Two isotopic symplectic forms determine the same special polyhedron.

The group I'j; acts on the set of special polyhedra according to the rule

v (T,O,P,,P+,L) = (7?7707’7P*?7P+”7L7_1)

and two special polyhedra are said to be equivalent if they belong to the same I'p/-orbit.

Two symplectic forms wy and w; are called equivalent if there exists an orientation preserving
diffeomorphism ¢ of M such that ¢*wy is isotopic to w;. Taubes’ theorem implies that two equivalent
symplectic forms determine equivalent special polyhedra.

It is very easy to construct invariants of equivalence classes of special polyhedra,

(P,0,P_, P, L).

More precisely, the number deg(P-) of 1-faces of P which have P_ as one end point is such an
invariant. In particular, if w is a symplectic form on M then the integer

v(w) 1= deg(oo(w))
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is an invariant of the equivalence class of w. At a first glance, v(w) may look like a very difficult to
compute weak invariant.

In a recent stunning work [90], C.T. McMullen and C.H. Taubes have very elegantly constructed
compact smooth 4-manifolds admitting symplectic structures with distinct v-invariant. They have
thus given a positive answer to a longstanding question in symplectic topology: do there exist
compact smooth manifolds admitting non-equivalent symplectic forms?

Theorem 3.3.29 has a nice topological consequence.

Corollary 3.3.33. Suppose M is a smooth, compact, closed oriented manifold such that b;‘ (M) >1.
(a) If swpr (o) = 0 for all o € Spin®(M) then M cannot admit symplectic structures. In particular,
if M admits metrics of positive scalar curvature it cannot admit symplectic structures.
(b) If |swar(0)| # 1 for all o € Spin®(M) then M cannot admit symplectic structures.

Remark 3.3.34. Part (b) of Corollary 3.3.33, combined with some very ingenious topological
constructions, was used in [36, 131] to produce many families of smooth 4-manifolds which admit
no symplectic structures, and yet they have many of the known topological features of symplectic
manifolds.



Chapter 4

Gluing techniques

Treat nature in terms of the cylinder, the sphere, the cone, all in perspective.

Paul Cézanne

4.1 Elliptic equations on manifolds with cylindrical ends

This section includes some basic analytic facts absolutely necessary in the understanding of the
gluing problem. The main references for all of the following results are [6, 74]. We will follow the “
"7 conventions of §§2.4.1.

84.1.1 Manifolds with cylindrical ends

A cylindrical (n + 1)-manifold is an oriented Riemannian (n 4 1)-manifold (N, §) with a cylindrical
end modeled by R x N where (IV, g) is an oriented compact Riemannian n-manifold (see Figure
4.1). In more rigorous terms, this means that the complement of an open precompact subset of N
is isometric in an orientation preserving fashion to the cylinder R, x N. This isometry is part of
the structure of a cylindrical manifold. We will denote the canonical projection Ry x N — N by
7 while ¢ will denote the outgoing longitudinal coordinate along the neck. We will regularly denote
the “slice” N by s N and the metric g by 0s0g. For each t > 0 we set Ny = N\ (t,00) x N.

A cylindrical structure on a vector bundle E — N consists of a vector bundle E — N and a
bundle isomorphism

9 E\R+XN—> ' E.

We will use the notation E := 9., F.

- =

Z>

Figure 4.1: Manifold with a cylindrical end

223
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A cylindrical vector bundle will be a vector bundle together with a cylindrical structure (19, E).
A section 4 of a cylindrical vector bundle is said to be cylindrical if there exists a section u of Oog B
such that along the neck & = 7*u. We will use the notation u := J .

Given any cylindrical vector bundle (E', v, E) there exists a canonical first order partial differential

operator P, defined over the cylindrical end, uniquely determined by the conditions
df o .
P(fu)zau—&—fpu, VfeC®Ry xN), u€ Elg, xn

and Pv = 0 for any cylindrical section v of E |k, x~n. We will denote this operator by 0.

Example 4.1.1. The cotangent bundle of a cylindrical manifold (N ,g) has a natural cylindrical
structure with O T*N = R&T*N, where R denotes the trivial real line bundle spanned by dt. The
isomorphism # is given by

Do = () @ (a — a(8y)dt), Ya € QYN).

It is now clear that we can organize the set of cylindrical bundles over a given cylindrical manifold
as a category. Moreover, we can perform all the standard tensorial operations in this category such
as direct sums, tensor products, duals, etc.

Exercise 4.1.1. Formulate explicitly the exact definition of a cylindrical isomorphism of cylindrical
vector bundles.

Denote by VBUN,,; (V) the set of isomorphism classes of cylindrical vector bundles. We want
to draw the reader’s attention to one subtle fact. Two cylindrical vector bundles may be isomorphic
as vector bundles but may not be isomorphic as cylindrical vector bundles. Define

PicZo,(N) C VBUN,(N)
as the space of isomorphism classes of cylindrical complex line bundles over N. It is an Abelian
group with respect to tensor multiplication. We have a forgetful morphism

@ : Pic22 (N) — Pic™(N)
which is clearly onto. Its kernel consists of isomorphism classes of cylindrical structures on a trivial
line bundle. We leave it to the reader to check the following fact.

Exercise 4.1.2.

ker & = H'(N,Z)/H (N, Z) = Range(Hl(N, Z) % H2(N, N; Z)).

The above fact can be given an alternative interpretation. The group G := H'(N,Z) acts on
Picé’zl(N ) as follows. Given a line bundle L — N with a cylindrical structure (9, L) and g € G we
obtain a new cylindrical structure ¢- (9, L) on L described by the pair (v, L), where v : M — St is a
gauge transformation living in the homotopy class described by ¢. The action is not free, it is trivial
precisely for the elements ¢ living in the image of the restriction morphism H l(N ,Z) — H*(N,Z).
We will refer to this action as the asymptotic twisting of the cylindrical structure. The fibers of ®

are precisely the orbits of the asymptotic twisting action.
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A cylindrical partial differential operator (p.d.o.) will be a first order p.d.o. L between two
cylindrical bundles E, F' such that along the neck [T, 00) x N (T >> 0) it can be written as

L=Go+L
where L : C®(E) — C*®(E) is a first order p.do., E = FE |y, F=F|yand G : E — Fis a
cylindrical bundle morphism. We will use the notation
L:=0xL.
If & denotes the symbol of L then we see that G = ¢(dt) and
OscL = L — GO,

Example 4.1.2. If E - N is cylindrical then so is T*N @ E. Any connection is a first order p.d.o.
C*(E) —» C*(T*N®FE). A connection which is cylindrical as a p.d.o. is called cylindrical. Observe
though the following “pathology”. If V is such a connection then along the neck it has the form

V=dt® 0+ 0xV
where 9,V is a first order p.d.o. C®(E) — C®(E) ® C®(T*N ® E). The component
C*(E)—= C*(IT*NQ®E)
is a connection on E while the component
A:C*(E) — C™(E)

is a zeroth order operator, i.e. an endomorphism of E. Thus, D5V is 10 longer a connection. We
define a strongly cylindrical connection to be a cylindrical connection such that the zeroth order
component A described above vanishes identically.

At this point it is illuminating to have another look at a notion we encountered in §§2.4.1. Recall
that a connection V on a cylindrical bundle (E , 19) is called temporal if V, = 8,. Thus, a connection
is strongly cylindrical if it is both cylindrical and temporal.

A cylindrical Hermitian bundle is a cylindrical bundle (E , 19) equipped with a cylindrical metric
h and a strongly cylindrical connection VO compatible with .

Suppose N is an oriented cylindrical 4-manifold with N := O N and 6 is a spin® structure on
N. We say that & is a cylindrical spin®-structure if there exist a spin® structure o on N and an
isomorphism

p:0lr,xNn— Ry x0o

where Ry X o denotes the natural spin® structure on R x N induced by o. (¢ has to be compatible
in the obvious way with the cylindrical structure of N .) We set 0 := 05,6 and, whenever there is a
potential ambiguity, we will denote a cylindrical spin® structure by a triple

7:=(6,0,9).
We set 0oo7 := 0. Two such triples 7; = (6;, 04, ;) are isomorphic if there exist isomorphisms
@:61—>&2, d:01 — 09

such that the diagram below is commutative.

~ ¥1
(o} |]R+><N _— R+ X 01

A~ Y2
U2|R+><N e R+ X 09
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We denote by Spingyl(N ) the set of isomorphism classes of cylindrical spin®-structures over N.
Observe that Pic2%,(N) acts on Spingyl(N) freely and transitively, so that Spinf:yl(]v) is a Pic2%, (N)-

cyl cyl
torsor.

84.1.2 The Atiyah-Patodi-Singer index theorem

Suppose now that £ and F' are cylindrical Hermitian bundles over N. An Atiyah-Patodi-Singer
operator (APS for brevity) is an elliptic cylindrical p.d.o. such that along the neck it has the form
L = GO; + L where

e (G is a homothety, i.e. there exists a positive constant A such that GG* = );
0 oL := —G 10, L : C®(E) — C=(E) is formally selfadjoint.

Traditionally, the APS operators are described in the form (see [6]):
I= G(@t _ A).

The operator A is none other than 5mﬁ
We will use the symbol P(L)> to denote the orthogonal projection onto the space spanned by

the eigenvectors of 5oof/ corresponding to eigenvalues > 0. P(ﬁ)> is defined similarly.

Remark 4.1.3. We want to draw attention to a confusing point. Consider an oriented Riemannian
manifold N and form the cylindrical manifold N =R x N. 95N has two components Nis,. The
induced orientation on N4, is + the orientation on N. Any bundle £ — N and any selfadjoint
Dirac-type operator L : C(E) — C*(E) define in an obvious manner a cylindrical bundle £ = n*E
and an APS operator L =0, — L. Then 5mﬁ is a p.d.o. on the disconnected boundary dsN. On
N4 we have

OsoL|n. = L.

To avoid confusion always orient the manifold N first, and then give dso N the induced orientation
given by the outer-normal-first convention. There is no room for variation around this rule since the
orientability of a bordism implies the orientability of its boundary while the converse is certainly
not true (think of the Mobius band).

Suppose L : CO‘A’(E) — C°°(F) is an APS operator between cylindrical Hermitian bundles. The
APS problem for L is the following boundary value problem:

L A:OA onNTA (APS)
P(L)>4=0 ondN,

where r > 0. If L = GO, + L then the formal adjoint L* = —G*8, + L* is also an APS operator.
Indeed, using G* = AG~tand (9xL)* = oo L we deduce

Gl = (G 1L = —(G)) NG l) = —Gi LG = —%G@Z@G*

$0 O L* is formally selfadjoint.
The formal adjoint APS* of the APS boundary value problem is

L = N,
{ =0 on N, (APS*)

P(L*)s5=0 ondN,
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Remark 4.1.4. As pointed out in [6], the solutions of (APS) and (APS™*) can be given an alternate
description. For clarity, along the neck we write

L:=G@® —A), L*=-G*(8; — B), B:=-GAG™".
A and B are first order selfadjoint elliptic operators and thus have discrete spectra, consisting only

of eigenvalues of finite multiplicities. Denote by (¥x,, )x,.er and (@,,, ) u, cr, respectively, a complete
orthonormal system of eigenfunctions of A and B, respectively. Then

P(L)s>i =0 < ]y € spanps {1/),\m; Am < O},

P(L")sh =0+ 0]yx, € spang: {¢un5 tn < O}.

Suppose @& and ¢ are smooth solutions of (APS) and (APS*), respectively. Along ON,., we can write

0= Z Ux,, Yr,,, U, €C, Z U,

Am <0 Am <0

2<oo

and

0= Z Vo Ppns U, € C, Z [0, [ < 00

Hn <0 Hn <0

Now extend @ and @ to [r,00) X N by setting

ﬂ(t) = Z 6>\m(tir)u>\mll7[}>\7n’ {}(t) = Z e#n(tir)vp‘nqsl"n

Am <0 pn <0

and continue to denote by @ and v the sections thus produced over N. One can show that @ and 9
are smooth and

Li=0, L*5=0.

These two sections also have nice behaviors as ¢ — oo. @ decays exponentially to zero (and thus it
is an L2-section on V) while ©(¢) decays exponentially to

9(00) 1= Z Vgt Pt -

pn=0

The Atiyah-Patodi-Singer index of L, denoted by Iapg (I:), is the quantity
Iaps(L) = Iaps(L, N,) := dimker(APS) — dim ker( APS*).

A priori, this index may be infinite, or even worse, may not be well defined. The celebrated Atiyah-
Patodi-Singer index theorem, [6], states that both dimker(APS) and dimker(APS*) are finite and
their difference can be explicitly expressed in terms of L. To formulate this theorem we need to
define the eta invariant.

The elliptic selfadjoint operators on closed compact manifolds behave in many respects as com-
mon finite-dimensional symmetric matrices. The eta invariant extends the notion of signature from
finite-dimensional symmetric matrices to selfadjoint elliptic operators.

The signature of a finite-dimensional symmetric matrix A is defined as

sign (A) = number of positive eigenvalues — number of negative eigenvalues.
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This definition however does not extend to infinite dimensions since the above terms are infinite.
Following a strategy very dear to physicists one could try to “regularize” the definition. For each
s € C we set

dim ker(A — A
nals) =Y /\|>\|(S—1 ) (4.1.1)
Aeo*(A)
B Z dimker(A — A\) — dimker(A + \)
A>0 A*

where 0*(A) = spec (A) \ {0}. Then one can define
sign (A) = n4(0).

The advantage of this new definition is that it is admirably suited for infinite-dimensional extensions.
Assuming for simplicity that A is invertible we can define

nals) = tr (A-|A7CHD), A = (4%)12,

Using the classical integral
Ma)z™® :/ t* e at, x>0, a>1,
0
we get (x— A%, a— (s+1)/2)

1 oo
na(s) = / =D/ 24y (Ae_tAZ)dt.

I((s+1)/2) Jo
The right-hand side of the above expression has two advantages. First of all, it makes sense even
when A is not invertible and on the other hand, it extends to infinite dimensions. We will denote
the trace of an infinite-dimensional operator (when it exists) by “Tr” while “tr” is reserved for
finite-dimensional operators. We have the following result.

Proposition 4.1.5. (a) Consider a closed, oriented Riemannian manifold (N, g) of dimension d,
E — N a Hermitian vector bundle and
A:C*(E) — C™(E)
a first order selfadjoint elliptic operator. Then
1 /OO _ a2
— [ U2y (ATt (4.1.2)
L((s+1)/2) Jo

is well defined for all Re s > 0 and extends to a meromorphic function on C. Its poles are all simple
and can be located only at s = (d+1—n)/2, n=10,1,2,---.

(b) For |s| > 0 the function na(s) is described by the Dirichlet series (4.1.1).

(¢) If d is odd then the residue of na(s) at s =0 is zero so that s = 0 is a regular point.

na(s) ==

For a proof of this nontrivial result we refer to [8]. When d is odd we define the eta invariant of

A by
1(A) = 14(0).

Remark 4.1.6. (a) From the definition it follows directly that n(—A) = —n(A) and n(AA) = n(A4),
YA > 0.

(b) In [14] it is shown that if A is an operator of Dirac type then one can define its eta invariant
directly by setting s =0 in (4.1.2). In other words, in this case

1 o0
n(4) = —/ 12Ty (Ae*tAQ)dt. [ |

™ Jo
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Example 4.1.7. Let N = S and Dy = i0s. The spectrum of D is Z and all its eigenvalues are
simple. Thus, for Re s > 1 we have

signn
Do (5) = Z ns =0

n#0

By unique continuation we deduce that np,(0) = 0. This simple equality reflects the symmetry of
the spectrum of Dy. In general, the eta invariant should be regarded as a measure of the asymmetry
(about the origin) of the spectrum.

More generally, define for each a € (0, 1) the operator

D, := Dy + a.

Its spectrum consists only of simple eigenvalues A\, (a) = n + a, n € Z. Thus

where

denotes the Riemann-Hurwitz function. Thus

D, (0) - ((O,Q) - C(Ov 1- CL)
and, according to [148, 13.21],
1
¢(0,a) = ;@
We obtain the following identity (see [7]):

nDa(O) =1-2a.

Theorem 4.1.8. (Atiyah-Patodi-Singer, [6])
- . 1/ oo .
Laps(L,N,) = / p(L)dv; — 5(dlmkeraooL+n(aooL))
NT

where p(ﬁ) denotes the local index density of L which depends only on the coefficients ofL (see
[12, 48, 117] for an exact definition) while n(dx L) denotes the eta invariant of the operator da
(The above integral is independent of r > 0.)

Influenced by the above theorem we introduce the &-invariant (or the reduced eta invariant) of a
selfadjoint elliptic operator A by

(h(A) +n(A))

N

£(4) =

where h(A) := dimker A. Note that {(—A) = (h(A) — n(A4))/2 so that A — £(A) is not an odd

function.
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Figure 4.2: The smoothing function ~y

Exercise 4.1.3. Let Ly and L; be two APS operators on N which differ by a zeroth order term.
Suppose there exists ry > 0 such that Lo = L1 on N \ NTO Prove that

Iaps(Lo, Ny) = Laps(Ly, N,), Vr > ro.

In many geometrically interesting situations the index density p(ﬁ) has a very explicit description.
We present below one such instance.

Example 4.1.9. Suppose Nisa cylindrical 4-manifold equipped with a cylindrical spin® structure
6 and A is a strongly cylindrical Hermitian connection on det(5). Denote by o the induced spm
structure on 95N and set A = O A = A |n. Then, as shown in §§2.4.1, the Dirac operator Q)A is
an APS operator and Theorem 4.1.8 takes the form

Iaps(® 4, Ny) = é/N (—%m(?f’) + 1 (A)“’) —£(Da) (4.1.3)

where pl(Vg ) denotes the first Pontryagin form of TM deterrAmned from the Levi-Civita connection
V% on TN via the Chern-Weil construction. The 2-form ¢;(A) is defined similarly.

84.1.3 Eta invariants and spectral flows

While the eta invariant itself is a very complex object its deformation theory turns out to be a lot
more tractable. More specifically, in this subsection we will address the following problem.

Consider a smooth path of selfadjoint Dirac operators 2, on an odd-dimensional manifold N
(dim N =n). Compute {(D1) — £(Do).

Set & = £(D;). We want to compute & = % although at this moment we have no guarantee
that the map t — &; is differentiable.

Since the family of Dirac operators (2,,)uc[0,1) may not be independent of u near v = 0, 1 we need
to smooth out the corners. To this end, consider a smooth, nondecreasing map v : [0,1] — [0, 1],
u — 7y(u) such that v(0) =0, v(1) and 7/(u) = 0 for uw near 0 and 1 (see Figure 4.2). Moreover, for
each 0 < ¢ <1 set y4(u) = ty(u) so that v connects 0 to t.

Denote by u the longitudinal coordinate along [0,1] x N. For every 0 < t < 1 form the APS
operator Ly on [0,1] x N defined by )

Lt = 8u — gt'y(u)-
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From Theorem 4.1.8 we get
. A 1 1
ir = Laps(Li) = pt — §(h0 + he) + 5(770 — 1)

where p; denotes the integral of the index density of ﬁt, ht = h(D¢), 1 = n(D;). The above formula
can be rewritten as

& — &0 = pt + ¢ (4.1.4)

where j; = —(ho + 4;). The term p; depends smoothly on ¢ since the coefficients of L, do. The
term j; is Z-valued so it cannot be smooth, unless it is constant. If [] = & (mod Z) then the map
t +— [&] is smooth and by (4.1.4)

d[&]

—22 = Py 4.1.
dt Pt ( 5)

We will deal with p, a bit later. We first need to better understand the special nature of the
discontinuities of &;.

We see from (4.1.1) that the discontinuities of & (and hence those of j;) are due to jumps in h;.
We describe how the jumps in h; affect & in a simple, yet generic situation. We assume 9, is a
regular family, i.e.

e The resonance set Z = {t € [0,1] ; h: # 0} is finite.
e For every tg € Z and every sufficiently small € > 0, there exist an open neighborhood N of tg in
[0,1] and smooth maps A\, : N — (—¢,¢), k = 0,1, -+, hy, such that for all ¢t € N the family {\x ()}

describes all the eigenvalues of ©; in (—¢,¢) (including multiplicities) and, moreover, Ax(to) = 0,
Ai(to) Z0forall k=1,2,---, hy,.

Now for each t € Z set .
ox(t) = #{k; £ (t) > 0}

and
—o_(0) if t=0
Ajo=< op(t)—o_(t) if te(0,1)
or (1) if t=1
If
A El_i)r(r)ﬂr (§t+6 - ft—E)

we see that A& = 0 if ¢ ¢ Z while for ¢ € Z we have
Atf = AtO'. (416)

(To understand the above formula it is convenient to treat ©; as a finite-dimensional symmetric
matrix and then keep track of the changes in its signature as the spectrum changes in the regular
way described above.) Finally, define the spectral flow of the family ©; by

SF(D) = Y Ao (4.1.7)

te(0,1]

For example, in Figure 4.3 we have represented those eigenvalues \; of a smooth path of Dirac
operators which vanish for some values of t. The £1’s describe the jumps A;o. Thus the spectral
flow in Figure 4.3 is 1.

Intuitively, the spectral flow is the difference between the number of spectral curves A\ (¢) which
cross the axis A = 0 going up and the number of spectral curves which cross this axis going down.
The initial and final moments require separate consideration. At the initial moment only the going-
down spectral curves contribute (with a nonpositive quantity), while at the final moment only the
going-up spectral curves are relevant, contributing with a nonnegative quantity.
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-1 1 +1

Figure 4.3: Spectral flow

Using the equalities j; — jo = >, A& and jo = 0 we deduce

J1—Jo=—i1—ho= ZAt§ = Z Ao = SF(Dy) (4.1.8)
t te(0,1]
so that
i1 =Iaps(L1) = —ho — SF(@t) (4.1.9)

From the equalities (4.1.4) and (4.1.8) we now conclude

1
&1 — & = SF(Dy) +/O %dt. (4.1.10)

Remark 4.1.10. In the above two equalities we have neglected the smoothing effect of v. However,
since y(u) is nondecreasing the crossing patterns of the eigenvalues of ¢ — ©; and u — D, are
identical. This implies SF(D¢) = SF(D ()

Example 4.1.11. To make sure our sign conventions are correct we test the equality (4.1.9) on a
very simple example. Fix A € R\ Z and for each t € [0, 1] define

Dy =i + At : C*(SY) — C=°(S).

spec (Dy) = tA + Z and all the eigenvalues are simple. The family (D) is regular and its resonance
set is

Zy={te0,1]; A\t € Z}.

To compute the spectral flow note that when A > 0 we have o_(t) =0 and o4 (t) =1 for all t € Z
and thus

SF(Dy) = #Zx —1=[).
When A < 0 we have o_(t) =1 and o (t) = 0 for all ¢t € Z, so that

SF(Dy) = —#2x = [\
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We can form the operator Ly = d; — Dy on [0,1] x S'. A separation of variables argument shows
Inps(Ly)=#{n€Z;n>0,n+A<0}—#{ne€Z;n<0,n+ >0}
=#{n; 0<n< At —#{n; -A>n>0}

_ AT A<O0
_{—P\]—l T [A]—1, YAeR\Z.
In our case hg = 1 and we see that ho +ind (L)) = —SF(D;) which confirms (4.1.9). Again we have
neglected the possible corners of the family D; near ¢ = 0,1 but the above computations stay the
same if we work with the smoothed-out family D, instead.

It is now time to explain the continuous variation % [¢];. Formula (4.1.5) shows that this is a
locally computable quantity. In fact, one can be more accurate than this.

Assume we have a family (,)y,e[0,1) of Dirac type operators on our n-dimensional manifold N
(n is odd), acting on a Hermitian bundle E — N. Observe that ®©, can be written as D¢ + T,
where T, is a selfadjoint bundle endomorphism depending smoothly upon u. Set T, = d%Tu and
& = &(Dy). We then have the following result.

Proposition 4.1.12.
1

7

where aj(Tu,Qu) is determined from the asymptotic expansion

d . '
%[Su] =——a,1(T,,D2), n:=dim N

Tr (T, exp(—tD2)) ~ Zaj(Tu, D2)tU=m/2 ¢ 0.
Jj=0

For a proof of a more general version of above result we refer to [48, Thm. 1.13.2]. (Watch out
for an ambiguity in the statement of that theorem.)

The coeflicients a; are local objects but apparently the above proposition replaces an abstract
assertion with an impractical statement. In special situations though, the coefficients a; can be
determined quite explicitly. Such is the case when Ty, is scalar, T,, = uA so that T, = ). In this case
a;(T,,©2) = \a;j(D2) where the coefficient a; is determined from the asymptotic expansion

Tr exp(— Z a; (D t(J 2 t— 0.
7>0

For each u the operator 2 is a generalized Laplacian and so there exist a unique connection V,,
and an endomorphism R, such that

D2 = VIV, + R..

In [48, Chap. 4] it is shown that the coefficients a; can be expressed in terms of the metric g on N
and the Weitzenbdck remainder R,. As j increases the actual description becomes more and more
involved. However, for low j the expression is quite manageable. For example (see [48, Chap. 4])
we have

ag(D2) = W /NtridE dvy = W, (4.1.11)
ax(D?) = (4;"/2/ tr (Ru + S(GQ)idE> dv, (4.1.12)
4 N

where s(g) denotes the scalar curvature of the metric g.
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Example 4.1.13. We illustrate the strength of the above arguments on a simple example. Consider
again the operators D,, = i0p + uX of Example 4.1.11. Assume |A| < 1/2, A # 0. In this case n = 1.
Equip S* with the standard metric so that its length is 2. Using (4.1.11) we get

d.. A Ao2m
N A N AN

Note that our assumptions on A imply h; = 0. Since hg = 0 the variational formula (4.1.10) now
yields

(D2) = -\

1
€ =& —1- SF(D,) + /0 e,

Since n(Dp) = 0 we get
n(D1) =14 2(SF(Dy) — ).

From Example 4.1.11 we deduce SF =0 if A > 0 and SF = —1 if A < 0. Hence

, 1-2) i A>0
”(“9‘””:{—1—% if A<0

This is in perfect agreement with the computation in [7] or Example 4.1.7.

For more general paths of Dirac operators the formula in Proposition 4.1.12 is for all intents and
purposes useless. Fortunately, there is a geometric way out of this trouble supplied by Theorem
4.1.8.

We consider only a simple situation. Assume N is an oriented Riemannian manifold of dimension
3 equipped with a spin® structure o. Fix a smooth path of metrics (gu)uefo,1] on N such that g, = g;
if u is close to @ = 0,1. Next, choose a path (Ay)yue(o,1) of Hermitian connections of det(o) such
that A, = A; for u close to i = 0,1. For each u denote by ®, the associated Dirac operator on
N determined by g, and A,. Consider now the manifold N = [0,1] x N equipped with the metric
§ = du® + g,. The Levi-Civita connection V of § has the strongly cylindrical form

V =duA 8, + VI

near u = 0,1. The path of connections (A,) determines a connection A on the product spin®
structure & on A. Denote by ¥ ; the geometric Dirac operator determined by V and A. This is an
APS operator on N and, more precisely, along N it has the form

@A = c(du)(0y — D4, — Ty)
where T, are zeroth order operators such that
T, =0, forunear0and 1. (4.1.13)
Set iy
D5 = c(du)(d, —Da,).
Using (4.1.13), Exercise 4.1.3 and (4.1.9) we deduce

Iaps(@ ;) = IAPS(/QHA) = —ho— SF(Da4,).

Theorem 4.1.8 now implies

§1 -6 = %/N(*%pl(@) + Cl(A)2> - IAPS@)A) —ho

. (f%pl(@) + cl(A)z).

One can further simplify this formula by expressing the integral term as an integral over N of some
transgression forms. We refer to the beautiful paper [7] for more details.

1 N
= SF(@A“) + g/
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N S

1 t 1 t 1

Figure 4.4: Cutoff functions

84.1.4 The Lockhart-McOwen theory

Let us first introduce three important smooth cutoff functions «, 3,7 : R — R, satisfying the
following conditions.

e 0<p <4
e 3(t)=1on [1,00) and =0 on (—o0, 1/2].
e a(t) =1-p[(¢).

= Jy Bls)ds

The graphs of these three functions are depicted in Figure 4.4.

We can view T, first as a smooth function on the neck Ry x N and then, extending it by 0, as a
smooth function on N. In a similar way, we can regard o and 3 as smooth functions on N.

Fix a cyhndrlcal Hermitian vector bundle £ — N. For each § € R, k € Z and p € [1,00] we
denote by Lé’p(E) the space of LI"P-sections @ of E such that

loc
ll1 6 = [l€*Tallk,p < 00

where || - ||z, denotes the L*P-norm, defined in terms of the metric § and the fized connection V.
Notice that we have an isometry

m; : LYP(E) — LFP(E), i — e'Ta.

Much as in the compact case, these spaces are related by a series of Eiobolev—type embeddings.
For a proof of the following results we refer to [84, Sec. 3]. Set n := dim N.

Theorem 4.1.14. (Continuous embeddings) There is a continuous embedding
ko,po [ F ki,p1(
Ly () = Ly (B)

if

(i) ko — k1 > n(1/po — 1/p1),

(i) ko > k1 > 0 and either

(i1i) 1 < pg < p1 < 00 with puy < pg or
(#15°) 1 < p1 < pg < 00 with py < po.

Theorem 4.1.15. (Compact embeddings) If
(i) (ko — k1) > n(1/po — 1/p1),
(i) ko > k1 and
(iti) p1 < pio X X
then the embedding LZ%”’O (F) — Llljllpl(E) is compact.
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An L} -section 4 of a cylindrical bundle F is  called asymptotically
2

cylindrical (or a-cylindrical) if there exists an L -cylindrical section @ such that @ — dg € L? (E)
We set Onoli := Onolig. Observe that g is uniquely determined by 4. (N.B. In [6] the asymptot-
ically cylindrical sections were called extended L2-sections. We use the new terminology only for
coherence purposes.) The supremum of all 1 > 0 such that @ — 4 € Li is called the decay rate of
the a-cylindrical section .

We introduce a norm || - ||z on the space of asymptotically cylindrical sections defined by

HﬁHew = ||ﬁ - aOHL? + ||8o<>@||L2
and we denote by L2 the resulting Hilbert space. It fits into an exact sequence of Hilbert spaces
0— L2(E) — L% (E) % L2(0.E) — 0.

Using the cutoff function 8 we can construct an entire family of splittings i, : L?(9s F) — L2,(E),
r € R4, of this sequence described by

u(x) — (ipu)(t, ) = Bt — r)u(x).

We will find it convenient to have a whole range of asymptotically cylindrical sections. Define L2,
in the obvious way and then set

L (B):={tae LFPnL? (E); |a— 11060t vy + 1000t s () < 00}

W,ex loc
Apdo. L: C>®(E) — C*(FE) is called asymptotically cylindrical if there exists p > 0 such that
Ae Lﬁ’Q(Hom (E,F))7 Vk € Zy
and L — A is cylindrical. p = u(ﬁ) is called the decay rate. A connection is called asymptotically
(strongly) cylindrical if it differs from a (strongly) cylindrical one by zeroth order term in ()~ Lff.
Its decay rate can be defined similarly. -
An asymptotic APS operator (a-APS for brevity) is a first order operator which along the

neck can be written as R .
L=G0;—Ly)+ A

where Lo = G(0: — Lo) is an APS operator and Ae LZvQ(Hom (E,F))7 Vk > 0. The decay rate is
defined exactly as before. We set 5ooﬁ := Lg. For later use define the spectral gap

~(L) := dist (0, spec (Lo) \ {0} ).

Observe that if L is an a-APS operator then for every r > 0 we define L as the APS operator
which along the neck is described by

L= G(at - LO) +alt—r)- A
If L: C®(F) — C>®(F) is an a-APS operator on N then it defines a bounded operator
Ls=Lys: LITV2(E) — LY*(F), keZ,, (4.1.14)
for any § < ﬂ(i/) Its formal adjoint with respect to the metric L? is denoted by L*s and is given by
L* = m_o5L*mo;. (4.1.15)

We can regard it either as a closed unbounded operator L? — LZ or as a bounded operator L};’Q — L2
The gluing construction uses the following spaces.

kers L:=%kerLN Lg, keres L:=kerLN ng.

The following result is proved in [74] .
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Theorem 4.1.16. (Lockhart-McOwen) Suppose L is an a-APS operator. Then for any § < u(ﬁ)

which is not an eigenvalue of —5OOIA/ the operator IA/;W; is Fredholm and its index is independent of
k.

The following proposition is a slight generalization of [6, Prop. (3.11)].
Proposition 4.1.17. Suppose L is an a-APS operator. Then the following hold.
(a) kers L =ker Ly s , Yk € Z, § < u(L).

(b) The spaces kers L, ker_s L* are independent of 0 < § < min(u(L),~v(L)).

(¢) For every 0 < § < min(u(L),v(L)) the continuous map mys : L} — L2 5 induces an isomorphism
kers L™ = ker_g L*.
(d) For every 0 < 6 < min(u(L),v(L)) we have the equality
ker_g L= kere, L.

(e) For all r > 0 and for all 0 < § < min(u(L),v(L)) the pullbacks by the inclusions N, — N
induce isomorphisms R R
ker(,.L, APS) = kers(,.L)

and

Ak

ker(,L", APS*) = ker_5(, L") = kereg (,L.").

(f) A .
ind(L(s) = ILI& IAPS(rL)'

Exercise 4.1.4. Prove the above proposition.

The above results suggest the introduction of an AP.S index for an a-APS operator L by setting
Inps(L) = lim. Iaps(;L).

Using Proposition 4.1.17 and (4.1.9) we deduce that if L = G(8; — L(t)) is an a-APS operator on
R x N then A .
ind(Ls) = Iaps(L) = — dimker L(—o00) — SEF(L(t)). (4.1.16)

The remarks in §§4.1.3 can be used to determine i5 := ind (f/(;) for arbitrary 6. Assume for
simplicity that L is an APS operator (not just asymptotically). Set A := Dso L.
By definition, the map
mg: L3 — L% o )

is an isometry so that

is(L) = ip(msLm; ') = I4ps(msLm; ', N,).
A simple computation shows that
ﬁg = mgﬁmgl =1 5Tl(t)G.
Observe that 5wﬁ5 =A+6=: As and

is = Laps(Ls, N,).
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Set C,. :=[r,r + 1] x N. We have
Laps(Ls, Noy1) — Laps(L, N,) = —(£(As) — £(A)) +/ p(Ls)dvg.
C.

On the other hand, the above index density can be expressed as in (4.1.4) in terms of the APS index
of the operator Ls = L — 6G on C,.

/C p(La)duy = E(As) — £(A) + h(A) + Iaps(L — 6G. C,).

Finally, according to (4.1.9), the last term can be expressed as a spectral flow
Iaps(L —6G,C,) = —h(A) — SF(A+ 16, t € [0,1]). (4.1.17)

Putting all of the above together we obtain the following useful equality:

is = Iaps(L) — SF(A+t5, t €]0,1)). (4.1.18)

This is in perfect agreement with Theorem 1.2 in [74]. Note also that if § is sufficiently small then
there is no spectral flow correction in the above formula.

Exercise 4.1.5. (Excision formula) Consider two a-APS operators
Lo, Ly : F(E+) - F(E,)
on N which have the same principal symbol. Set A; = 5mf/i, 1 =0,1. Prove that
Iaps(Lo) — Iaps(L1) = SF(Ag — Ay) (4.1.19)

where SF(Ap — A;) denotes the spectral flow of the affine path of elliptic operators A; = Ag +
t(Al — AQ), t e [0, ].]

Remark 4.1.18. The above exercise illustrates one of the many “anomalies” of the non-compact
situation. The operators Ly and L, are obviously homotopic via the affine homotopy

f/t = (1 — t)fzo + tle.
However, for some values of ¢, the operator L may not define a Fredholm operator
1,2/ £ 2
LY2(B.) — LA(E-)

so that it is possible ind (IA,O,(;) 2 ind (El,é)- The correction is given by precisely the spectral flow
SF(AO — Al)

84.1.5 Abstract linear gluing results

The main result of this subsection is a general gluing theorem of Cappell-Lee-Miller [24]. To formu-
late it in a more intuitive fashion we need to introduce the asymptotic notions in [110]. We begin
with the notions of asymptotic map and asymptotic exactness. An asymptotic map is a sequence
(Ur, Vi, fr)r>0 with the following properties:

e There exist Hilbert spaces Hy and H; such that U, is a closed subspace of Hy and V,. is a closed
subspace of Hy, Vr > 0.

e f, is a densely defined linear map f, : U, — H; with closed graph and range R(f,), Vr > 0.
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o lim, o 0(R(fr), V) = 0 where, following [60], we set

o(U, V) = sup{dist (w,V);uel, |ul= 1}.

fr
We will denote asymptotic maps by U, —* V..

Example 4.1.19. Suppose Hy =R =U,, HH =R®R and V, = R& 0 C H;. Then the sequence
of maps
fr i Ho — Hy, tw (rt,t)

f7‘
defines an asymptotic map U, —® V... Observe that f,. does not converge in any reasonable sense

to any linear map.

There is a super-version of this notion when U, and V,. are Zs-graded and are closed subspaces
in Zo-graded Hilbert spaces such that the natural inclusions are even operators.
Define the gap between two closed subspaces U,V in a Hilbert space H by

S(UV) = max{S(U, V), §(V, U)}.

The sequence of asymptotic maps

3 gr
Ur _)a Vr *)a Wra r— 007
is said to be asymptotically exact if

lim §(R(f.),kerg,) =0.

The following result (proved in [110]) explains the above terminology.
Proposition 4.1.20. If the sequence

fr gr
U. —*V, —*W,, r— oo,

is asymptotically exact, P, denotes the orthogonal projection onto ker g, and @Q, the orthogonal

projection onto W, then there exists ro > 0 such that the sequence

P.of,

Ur — Vr QT—Og)T Wr

is exact for all r > 1.

fr
An asymptotic map U, —* V,. is said to be an asymptotic isomorphism if the sequence

fr
0—-U, —*V,—0

is asymptotically exact.
Two cylindrical manifolds (Nz, gi), © = 1,2, are called compatible if there exists an orientation
reversing diffeomorphism
p: N1 — No
such that
91=9"92.
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S

z

N

Figure 4.5: Gluing two cylindrical manifolds

Two cylindrical vector bundles (E, %, B = 8DOE’,;) — N; are said to be compatible if there exists a
vector bundle isomorphism
v: B — By

covering .

For simplicity, we will fix some (ghost) reference, orientation reversing diffeomorphism ®q : Ny —
Ns. We set N := N; so that we can identify ¢ with an orientation preserving self-diffeomorphism of
N. It is very convenient to think of the end of Ny as the cylinder (—co,0) x N so that the outgoing
coordinate on Ny is —t. Note that the compatibility condition provides a way of identifying 0w E
with O Fo so that we can compare a section of O E to a section of O Es.

The sections #; of the compatible cylindrical bundles E; are called compatible if Oxt; = Ooolls.
The cylindrical partial differential operators Lion N; ,i=1,2, are compatible if along their necks
they have the form

L4 :Glat—Lh Ggat—L27 G1+G2 =11 —Ly=0.

Consider two compatible cylindrical manifolds Ni, i = 1,2. For every orientation preserving
diffeomorphism ¢ : N — N and every r > 0 we denote by N(r) = N(r,¢) the manifold obtained
by attaching

Ni(r):== Ny \ (r+1,00) x N

to
Ny(r) := Ny \ (=00, —r — 1) x N

(see Figure 4.5) using the obvious orientation preserving identification
Or X Poo:[r,r+1] X Ny = [—r —1,—r] x Ny

where
dr(t) =t —2r — 1.

Two compatible cylindrical bundles E; can be glued in an obvious way to form a bundle E(r) =
E1 #TEQ for all » > 0. We want to emphasize that the topological types of the resulting manifold
N(r) and the bundle E(r) depend on the gluing isomorphisms . In the sequel, to simplify the
presentation, we will drop ¢ and v from our notations.

Given two compatible cylindrical sections @; of E;, i.e Osily = Ooolia, we can glue them together
to a section iy #, 1o of E‘l #TEQ. More generally, if 4; are only Lzm—sections with identical asymptotic
values then we can approximate them by cylindrical sections

U; = ﬁi(T) = ar(t)ﬂ,» + ﬁr<t)aooai, 1 =1,2,
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where a,(t) := a(|t| —r) and G,(t) := B(|t| — r), Vt € R, r > 0. Observe that if 4; are genuine
cylindrical sections then 4;(r) = @, for all r > 0. Now define

ﬂl#r’&g = 1},1 (T)#TﬁQ(T), r > 0. (4.1.20)

The cylindrical partial differential operators L; on N; , 1 = 1,2, are compatible if along their necks
they have the form

Ly =G0, — Ly, G20y — Ly, G+ Gy =1Ly — Ly = 0.

Such pairs L; of compatible cylindrical operators can be glued following the above pattern and
we let the reader fill in the obvious details. Using the above cutoff trick we can extend the glu-
ing construction to compatible asymptotic operators, i.e. pairs of operators which differ from a
compatible cylindrical pair by zeroth order terms in (7, ng’z. Cylindrical connections are special
examples of cylindrical operators so the above gluing construction includes the gluing of compatible
asymptotically cylindrical connections as a special case.

Suppose D; : O (E’Z) — COO(E’i) are compatible, formally selfadjoint a-APS operators of Dirac
type. Observe that the compatibility condition implies (on account of orientations) 5ooﬁ1 = —5mﬁ2
so we set D := 5_"00D1.

We can now form the Dirac type operator

D(r) := Di# Dy : C=(E(r)) — C>(E(r)).
Fix 0 < § < min (’y(f)i), u(f)l)) and a continuous function
c:Ry = Ry
satisfying .

c(r) =o(1/r), — =0(’") as r — oc.

c(r)
Define ICC(T) as the finite-dimensional subspace of L2(E(r)) spanned by eigenvectors of D(r) corre-
sponding to eigenvalues in the interval [—c(r), ¢(r)]. Observe that l@c(r) C C>®(E(r)). One should

think of this space as an approximation for the kernel of b(r) for r > 0.
The formulation of the main gluing result requires the introduction of some splitting maps

ST C®(E(r) — L2 (E;), i=1,2.

We explain the construction for ¢ = 1. First, regard Nl,r as a submanifold of N (r) in an obvious
fashion. Thus any smooth section @ of E(r) — N(r) defines by restriction a section @ (1) over Ny .
Denote by z,. the midpoint of the overlapping interval [r,r + 1] and set

87-12 = ﬂ1(7‘) ‘zrxN .

Now set
T4 = a,(t)ay(r) + Br(t) 0y

Observe that S74 is a cylindrical section of E; and
050510 1= Ol
With S5 : C°(E(r)) — L2,(F,) defined in a symmetrical fashion we have the obvious equality

Ose STl = D0 ST .
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We assemble these maps in a single splitting map
ST = ST @ Sy C®(E(r)) — L2,(E)) ® L2, (E»).

Denote by L; C L?(E) the image of ker,, D; via the map 0. Observe that L; C ker D. The spaces
L; have additional structure which we now proceed to describe.

The symbols of the operators D; define Clifford multiplications on the bundles E; and that is
why we will denote them by the same symbol

¢:T*N; — End (E;).

Set J := é(dt). The operator J is skew-symmetric and satisfies J? = —1 so that it induces a
symplectic structure on L?(E) defined by

w(u,v) = / (Ju,v)dv,
N

Since {J,D} := JD + DJ = 0 we deduce that H := ker D is a symplectic space. We have the
following result (see [16, 104]).

Lemma 4.1.21. The spaces L; are Lagrangian subspaces of H i.e.

L = JL;.
We get a difference map
JANE: kerew Dl D kerex D2 — L1 + Loy C ker D, (ﬁl,ﬂg) — ooﬁl — 800112

The following result is due to Cappell-Lee-Miller [24]. For a shorter proof, in this asymptotic
mappings context we refer to [110]. This result will be the key to understanding the monopole
gluing problem.

Theorem 4.1.22. (Linear Gluing Theorem) Using the above notation and hypotheses we have
an asymptotically exact sequence

. S” R R
0 — Ko@) — kerey Dy @ kerey Dy == Ly + Ly — 0. (4.1.21)

We want to point out that the above sequence naturally splits. More precisely, the gluing map
#, :ker A — L*(E(r))

defines an asymptotic map ker A—*3,. which is an asymptotic right inverse for S,..
The above result also shows that the cut off level ¢(r) is somewhat artificial since KC.(,y is asymp-

totically independent of ¢(r). This shows that as r — oo the eigenvalues A, of D(r) satisfying
Al =0(r7179)
are subject to the sharper constraint
Al =0@(""), Vn>1.

We conclude this discussion with a special case of Theorem 4.1.22 particularly relevant in Seiberg-
Witten theory.
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Suppose now the entire problem is supersymmetric. Thus, Ey splits as EAi" &) E‘f and D has the
block decomposition
p=]2 7
0

p

The restriction E of E; to N induces a splitting £ = ET @ E~ and we can write

0 -G
=le

where G*G = 1+, GG* = 1. Moreover, J(E*) = JET and

D 0
D‘[ 0 —JDJll
The space H is Zs-graded,
H=H"®&H"
and GH* =H™.
The bundle E5 is also Zs-graded and the compatibility assumptions must include the condition
Do B = 0o EE.
Li=LfeL;, LfcH*

and the Lagrangian condition translates into

(LHt=G"L;, (L))" =GL] (4.1.22)

K2

where L denotes the orthogonal complements in H*.

All the spaces I@C(r), kerey D; and L; in the statement of Theorem 4.1.22 are Zo-graded and
in this case we can be more specific: all the asymptotic maps in (4.1.21) are even. Moreover, the
spaces I@c(T) have a particularly interesting description. To explain it we have to write b(r) is

supersymmetric form A
T 0 Py
by = [ pe) 0 } |

For every selfadjoint operator A and any compact interval I we denote by Spec(A;I) the spectral
subspace corresponding to the part of the spectrum situated in I. Then

K, = Spec(D(r)* D(r); [0,c(r)?])

and

Ky = Spec(D(r)P(r)"; [0,¢(r)?]).

Observe that dim I@j(r) — dim l@;(r) is a quantity independent of r because it is equal to ind ﬁ(r)

84.1.6 Examples

We conclude this section with several examples which in our view best reveal the nature and the
complexity of the objects involved in the gluing theorem. Moreover, we will need these computations
later on in concrete gauge theoretic applications.

Example 4.1.23. Suppose N is a cylindrical ~ manifold. The Hodge=
de Rham operator X X
d+d*: Q*(N) = Q"(N)
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is a cylindrical APS operator. According to [6, Prop. 4.9], the L2-kernel of this operator can
be identified with the “image of the relative in the absolute”, i.e. with the image of the natural
morphism

H*(Ny;, ON,) — H*(Ny)

(for some ¢ > 0). To understand the extended kernel let us recall that we are working with the
canonical cylindrical structure on T*N and we have

O N*T*N 2 A*T*0 o N & A*T* 0 N.
Along the neck we have the isomorphisms
Aeven/oddT*N — Aeven/oddﬂ_*T*N @ dt A Aodd/evenﬂ_*T*N.

We see that the induced grading on Do A*T* N is not the obvious one. The asymptotic boundary
map

0o 1 kerep(d+d*) — Q" (N) & Q" (N)
has two components. Given an a-cylindrical form & on N we have
O 1= g @ dt N\ *xaq

and we will set
ap :=0%a and a; = 9L a.

Denote by L, the image of the morphism
Ono : keTey(d + d*) — H*(N) @& H*(N)
and by Lo, the image of the morphism H *(1\7 )— H *((‘3]\7 ). We have the following isomorphisms:

Lan = Range (0%,) @ *Range (0%) = Liop ® *Liop- (4.1.23)

For the reader’s convenience we include a short proof of this fact.

Observe first of all that Lo, is a Lagrangian subspace of H*(N), i.e. *Lyp = L#;)p, so that

2dim Ly, = dim H* (N). Next, notice as in
[24, Sect. 10] that if & € kere,(d + d*) then
Dok = 0L 4+ dt N50% 6 & O % ==+%07" i=0,1.
This implies ' & € Ly, (i = 0,1) so that
Lan C Liop @ *Lygp.

Both  spaces above are Lagrangian and thus have the same  dimension,
dim H*(N). Hence they must be equal.
By comparing the short exact sequences

0 — kerg(d+ d*) — kerey (d+ d*) — Liop @ (*Liop) — 0

and

0 — kerg(d+d*) — H*(N) — Lop — 0

we conclude that the natural map ¢ : kere,(d + d*) — H*(N) is not injective (!) because we have

dim ker,, (d 4+ d*) = dimkerg(d + d*) 4 2 dim Ly, = dim H*(N) + dim Ly,.
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On the other hand, ¢ is surjective. Indeed, the isomorphism (4.1.23) shows that given the harmonic
forms Qag, a1 S Liop there exists a form a €
ker., (d 4+ d*) such that 9' & = ;. Its image in H*(ON) via the morphism

v kerep(d +d*) L H*(N) = Ligp

is the form 8% &. Thus the above composition is onto and its kernel can be identified with the
subspace of a-cylindrical harmonic forms & such that 8% & = 0. It has dimension

dim ker v = dim kerg(d 4 d*) + dim Liop.

On the other hand, ker(H*(N) — Lyop) = kero(d + d*) C Range () so that

dim ker v = dim ker ¢ + dim ker(H*(N) — Lyop)

= dimker ¢ + dim kero(d + d*).

Hence dimker ¢ = dim L,,, = dimker,, (ci—i— ci*) —dim H* (N) This proves the surjectivity of ¢. Its
kernel is a subspace of ker 3% . Moreover, the induced map

8;0 tker ¢ — Liop

is a bijection. Observe that if & € kery \ {0} (i.e. & is a nontrivial harmonic form representing
0 € H*(N)) then 8 d # 0 so that 9 & # 0 which shows that the harmonic form %@ represents a
nontrivial element in H*(N) !!!

These facts can be very clearly observed on the simplest situation. Suppose N =R x N. Then
for any harmonic form @ on N the form dt A a is both harmonic and in L2, but its image in H *(N )
is obviously trivial since dt A @ = d(ta). On the other hand, %(dt A a) = & % « is in L2, but it

represents a nontrivial cohomology class.

Exercise 4.1.6. Fix 0 < ¢ < 1. Use the results in the above example together with the Gluing
Theorem 4.1.22 to prove that there exists R = R. > 0 such that for all » > R, zero is the only
eigenvalue in the interval [—r=17¢ r717¢] of the Hodge-de Rham operator d + d* on the closed
manifold N(r) (introduced in §§4.1.5).

Example 4.1.24. Suppose N is a cylindrical 4-manifold. We can then form the anti-self-duality
operator

ASD : QY(N) — (22 ¢ Q°)(N), & V2(da)t & —d*a.

Remark 4.1.25. Let us explain the two unusual features of this definition. The factor v/2 guarantees
that ASD is an APS operator. The choice of —d* instead of the regular d* is motivated by
consistency reasons. When we investigated the linearization T¢ of the Seiberg-Witten equation
we encountered the operator d™ @ —2d*. The negative sign appears because we worked with the
left action of the gauge group. Changing this into a positive sign will affect all the orientation
conventions.

Observe that if 7 : R x N — N denotes the natural projection then along the cylinder we have
the bundle isometries

AT*N — (A' @ AO)7*T*N, w'e (a,f) = (w— hw, Jw),
AiT*N — AT T*N, n— V211

where _I; denotes the contraction by 8;. As in §§2.4.1, any differential form w on N can be uniquely
written as
w=dtANf+a, f:=_lhw, a:=w—dtAf.
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Moreover, R
d(dt A fO+a') =dt A (@' — df°) + da',
fw? = %(dt A f1+a?) = dt A xa® + xS
~ 1 =« ~
di(dt A f0+a) = 5 (d+#d)(dt A fO+a')
1 1
= 5dt A (@' — df® 4 *da) + 3% (@' — df° + da*)
and

d*(dt A fO 4 a') = =5dx(dt A fO + at) = —(f° — d*at).
We can now regard the ASD-operator \/§(f+ —d*asa p.d.o.

C=((A' @ AT T*N) — C®((A' @ A)7*T*N),

[a } _ [ d—I—'*da—df}
f foda |

We see that ASD has the APS form

a 0 —xd d a
wsol 3 -(G-[ 2 S [7]
D NI T*N = (A @ AO) T 0. N =2 05 (A2 ® AO)T*N
and

J..(ASD) = [ e } .

The operator —5M(ASD) is called the odd signature operator and we will denote it by SIGN. (The
negative sign is due mostly to historical reasons but not solely.) It depends on the metric g and its
eta invariant will be denoted by 74, (g) so that the Atiyah-Patodi-Singer has the form

1
p(ASD) + i(mign(g) — dim ker SIGN).

I1ps(ASD) = /N

Remark 4.1.26. If we define the “classical” ASD-operator by

ASD,, = V2dt & d*

then 1 0 0 d d
a — Xk a
asoa 7 )=[o & (@[ S )7
and 4 d
.o (ASD,) = { P ] — J. ASD.

If we assume N is spin and S = S; @S- is the associated bundle of complex spinors then the Clifford

multiplication map A
¢: AT*N ®C — End (S)

induces isomorphisms ( but not isometries)
A'T*N ® C = Hom (S4,S_) =S, @S- =S, ®S_ (4.1.24)

and
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(A°@A)T*N@C=End(S;) =S, ®S; S, @S;. (4.1.25)

The operator ASD,; can be regarded as an operator
ASDCZ : COO(S— & SJ,.) - COO(SJ,_ ® S+)

If®: C>®(S;) — C(S_) denotes the canonical Dirac operator then we can identify ASD,; with
the geometric Dirac operator @* twisted by the bundle S, equipped with the Levi-Civita induced
connection (see [5, Sec. 6] and the references therein for details).

The operators ASD and ASD,.; have the same local index densities since

ASD* - ASD = ASD?,- ASD,;, ASD - ASD* = ASD,, - ASD’,.

This common index density is

pusa(d) = —5 (V) + 2p1 (99)) (4.1.26)
where e(V§) € Q4(N) is the Euler form associated to the Levi-Civita connection of N (via the Chern-
Weil construction) and py(V9) € Q4(N) is the first Pontryagin form associated to the Levi-Civita
connection of §g. This follows essentially from the above identification of ASD.; with a geometric
Dirac operator (see [5, 6] for more details). Thus, as far as index computations are concerned, it
makes no difference whether we work with ASD or ASD,;.

Exercise 4.1.7. Show that D := ASD,; is a Dirac operator, i.e. both D*D and DD* are generalized
Laplacians.

Suppose « € ker,, ASD. Then
(d+ *d)a =0 and d¥a = 0.

We deduce that d*da = 0. Taking the inner product with & and using the integration by parts
formula of Sec. 1.2 over N,. (r > 0) we deduce

/ |da|?do = j:/ & A * g dév.
N, AN,
The boundary term goes to zero as r — oo since & € L2, and we deduce di = 0. Thus & €
kere, (d 4+ d*) so that

kerey (ASD) = kereg (d + d*) |15y -

Arguing similarly we deduce
kere, ASD” = Py kere, (d+ d*) |gp ) ©R (4.1.27)

where P, denotes the projection Q2 — Qi
We can now determine O kere, (ASD) and Ou kere, (ASD™). To present this description observe
that the spaces Lo, discussed in the previous example are graded by the degree. We denote by L

i
top
the degree-i subspace. Since L3 = 0 we deduce

top
Ooc kerey (ASD) = L}, = L{,, ® (dt AxLj,,) = Li,,. (4.1.28)
Since O kere, (ASD*) = GOy kere, (ASD) (see (4.1.22)) we deduce
Ooc kerey (ASD*) = xLj,, & LY, (4.1.29)
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The above equality can also be seen directly from (4.1.27). We can use the above simple observa-
tions to compute the APS index of ASD. Let us assume for simplicity that both N and N are
connected.We have

I1ps(ASD) = dimker2(ASD) — dim ker,, (ASD").

The first space can be identified with the image of HY(N,N) in H'(N). Using the long exact
sequence of the pair (N, N) we deduce

dimker;2(ASD) = dim H* (N, N) = b
where b% := dim H*(N). On the other hand,
dim kere, (ASD*) = dim P; kerey (d + d*) + 1.

We want to identify the right-hand side of the above equality with known topological invariants.
For a 2-form & € ker(d 4+ d*) the condition %& = & implies

o a =0l a
so that we have a natural map

P, kere,(d+ d*) — L?

~ 0
tops Q> Ot

From the isomorphism (4.1.23) we deduce the above map is onto. Its kernel is none other than the
self-dual part of kery2(d + d*). Thus

dim Py kereg (d + d*) = dim Py kerp2(d + d*) + dim L?

top-
The radical of the intersection form on H 2(N ,N) is precisely the kernel of the morphism
H*(N,N) — H*(N)
so that o .
dim Py kerp2(d + d*) = by
where l;i denotes the dimension of the positive/negative eigenspace of the intersection form. Thus
dim Py kere, (d +d*) = by + 12

where ¥ ;= dim Lk

top- Hence

Iaps(ASD) =% —b, —1? — 1.

On the other hand, we have the following identities which are either tautological or follow from the
long exact sequence of the pair (N, N) coupled with the identity I* + 13~% = dim H*(N):

V¥ o= by+r+bo
r = 1[2
T = b+ — b_

Bk _ B4—k = [k _ 4k

where r is the dimension of the radical of the intersection form and 7 is its signature. After some
elementary manipulations involving the above identities we reach the conclusion

1
IAps(ASD) = —§(X + 7+ h) (4130)

where y = 37, (—1)*b* and h = dim(H® & H')(N).
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We conclude this section with a detailed discussion of a very special choice of N which will be
needed for further applications.

Example 4.1.27. Supppose L, — S? is a Hermitian line bundle of degree ¢ € Z over the 2-sphere.
We assume S? is equipped with a round metric gg so that its area is 7. Thus its radius is 1/2 so its
Gauss (sectional) curvature is 4. Denote by wg the volume form on S2.

The metric on L determines a unit disk bundle D, — S? with boundary a principal S'-bundle

Sl <—>N€

SQ

Observe that Lg is the trivial line bundle and Ny = S' x S§? while L_; is the tautological line
bundle over P! = 52 and in this case N_; = S3. Moreover, D_; can be identified with a tubular
neighborhood of P — P2,

Ny is equipped with a free S!-action whose orbits coincide with the fibers of 7. We denote by
¢ its canonical infinitesimal generator. A global angular form is an Sl-invariant 1-form ¢ € Q(Ny)
such that ¢ 1 ¢ = 1. Equivalently, this means that the restriction of ¢ to any fiber of 7w coincides
with the angular form df on S'. Using the language of principal S!-bundles as in [64] we can say
that iy defines a connection on the principal bundle N,. Notice that

Ledp =0, ¢1(dp) = Lep —d(C 1) =0.

Thus idy is the pullback of an imaginary closed 2-form  on S2, the curvature of the connection ip.
Moreover

1
_%/Szg:/sz e1(L) = deg(L) = . (4.1.31)

The choice of global angular form is not unique. We can alter ¢ by the pullback of a 1-form a on
52. The curvature will change according to the rule

i — i + ida.
In particular, we can choose the global angular form so that its curvature is harmonic
Q=cwy, ceR.

Using this in the equality (4.1.31) we deduce

—%area (S%) = cwy =

"o Jen
so that ¢ = —2¢. Thus with this choice we have
dp = —201"wy.
Observe that ker ¢ determines a subbundle of TN, isomorphic to 7*7'S%. Thus
TN =R @ ker p =2 RC @ n*TS2.
For each r > 0 we construct a metric g, on T'N; uniquely determined by the conditions

*TS2 -

gT(C’ C) = 72’ gr |ker<p: (77*90)
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The metric g, is the restriction of a natural metric g, on D,. Denote by h the Hermitian metric on
Ly.

To describe g, observe that the angular form ¢ induces a Hermitian connection Ag on Ly. This
produces a splitting of the tangent bundle T'L, into vertical and horizontal parts.

TLy:=VTL,® HTLy.

The vertical part is spanned by vectors tangent to the fibers of 7 : L, — S? and is isomorphic to
m*Ly. The horizontal part is generated by the locally covariant constant sections in the following
sense. Choose local coordinates z = (z,y) on a neighborhood U of a point pg € S? and a local
unitary frame f of Ly |y. Then a point P € 7= 1(U) can be described by a pair of complex numbers
(£, z) uniquely determined by the conditions

Pernl(z), P=¢f..
A tangent vector (£,%) € TpLy is vertical if 2 = 0. It is horizontal if
£ +ial(2)E=0

where ia € iQ!(U) is the 1-form representing Ay with respect to the unitary frame f.
Consider the family of hypersurfaces X, C Ly

Xr = {(pa ’U); JZS Sza v E Tril(p)a hp(’l),"l)) = 7,.2}.
X, is locally described by the equation
X, ={(&2); €[> =12}

Observe that all these hypersurfaces are diffeomorphic to Ny. Since Ag is a Hermitian connection,
the horizontal sub-bundle is tangent to the hypersurfaces X,.. If we choose polar coordinates (r,0)
(away from the zero section) in each fiber

pi=I¢], &F = pef
then the horizontal distribution can be described by the equation
(p,0,2) € Te oLy, p=0, i6 +ia(3).

The 1-form df + a is precisely the global angular form expressed in the local coordinates (r, 6, z).
Now we can define a metric g, on TLy :=VTL,&® HTL, by

gr = 1r*h @7 (g0).

The restriction of ¢, to X; coincides with g.. We want to prove that the scalar curvatures of g,
and g, are everywhere positive provided r is sufficiently small. We will use Cartan’s moving frame
method. For more details concerning this method we refer to [105, Chap. 4].

Pick a local (oriented) orthonormal frame 71, 75 of T'S? |7, denote by 6%, 6% the dual coframe and

set .
= 0
0 = |: 02 :| .
Then the structural equations for the Riemann metric gy imply

s | 0w z 1
de_{_u 0} b, ue\U).
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]

describes the Levi-Civita connection with respect to the frame 71, 7o:

The so(2)-valued 1-form

LC LC
V™1 = pure, V519 = —um.

Then 1
dp = *Zwo

where 1/4 is the sectional curvature of S2. Set
ot i=rdp, 02 i=rp, ¢®:=71%0, ot =n"0%

Observe that the metric g, can be described as

G = {7+ ()} + {7+ (97}

so that (¢!, -+, ) is a local, oriented, §,-orthonormal coframe of T*L,. Set
o
2
.
P - (pz
¥

The Cartan structural equations show that there exists a unique 4 X 4 matrix

Sp=100)1<ij<a, 05 € QN (L),

such that R ‘ _
dg =S, N g, 0; = —9{.

Moreover, the curvature of the Levi-Civita connection of the metric g, is given by
Q. = —dS, + S, A S,.

If (1, ¢2, 3, C4) denotes the frame g.-dual to @ then the scalar curvature of the metric §, is given by

§T = Z(QT(C’h Cj)gﬁ CZ>

i#j
We have
0
- —2rlp3 A <p4
d<p - ’/T*/‘L A 904
_ﬂ_*u A S03
and
1o k k
3 Z{dap (G G) + d¢7 (G G) — dyp (Cij)}SD
k=2
We deduce

4
0 = —%Z{d<ﬁ2(C17Ck) ¢" (G, G) } Zd<ﬂ (C1,G)¢" =0,
k=2
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4

05 = —% Z{dwg(Cth) - dwk(Cth}Wk =0,

=
||
N

P2(Cor Go) + A (Gon Go) — A9 (s o) o =t

{ C43Ck + d‘P (<3a<k) k(c2;<4)} = 77’69037
1 k k
52 {d<P (Cas Ck) + dp™ (C3, C) — (C37C4)}<P ;

- *%{*5&02@3,(4)%02 —2d@>(C3, Ca) @ — 2dp* (G, C4)S04)} I B

Thus
0 0 0 0
g - 0 0 rlpt —rlp?
T 0 —rbpt 0 —rlp? + T
0 rlp® rlp?—7*p 0

The Riemann curvature tensor of g, is

Q. =—dS, + S, AS,

0 0 0 0
0 0 rér*p A 3 rér*p A
=| 0 —rlr*pAe? 0 (i —2r202)p3 A
0 —rlm*pnet (2r202 — 1pd At 0
[0 0 0 0
0 0 * *
+
0 —r20202 A3 —rlp® AT*p 0 *
| 0 —r202Q2 Nt —rlpt ATFp 202 At 0 ]
[0 0 0 0 |
0 0 r2020% A r2020% A ot
0 —r202p% A3 0 (i —3r202)p3 At
0 120202 Nt (3r202 — i)<p3 At 0 i

The scalar curvature of g, is
= 2{r220% N (G N G) + T2 A 6 (G A C)

1 1
+(Z —3r20%)° At (G, C4)} =5 2r° 0%,
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We see that 1
5 0, V —. 4.1.32
S'r‘ > bl r < 2|£‘ ( )
A similar computation shows that the scalar curvature of g, is

1 .
Sp = 3~ 2r20% = 3,.
Observe that we can slightly perturb the metric g, in a neighborhood U of 9D, so that the new metric
continues to have positive scalar curvature and its restriction to a smaller tubular neighborhood
V C U of Ny is isometric to the product metric dt? + g, on (0, ] x N,.
More precisely, near 0Dy, g, has the form

gr =1%dp* +17p*¢* + g0, p € (1-¢1].

Define the perturbed metric to be g, := r2dp? + r2a(p)?p? + 7*go, where the cut off function « is
depicted in Figure 4.6.

v

Figure 4.6: Smoothing the linear function p — p

The scalar curvature of g, differs from the scalar curvature of g, by a term bounded from above
by Cr?||al|cz where C' is a universal constant. The scalar curvature s(g,) will be positive as soon
as r is sufficiently small.

The classical topological invariants of Ny, £ # 0, are easy to compute. To determine its funda-
mental group observe that N, is a Z,-quotient of N_; & 53, To see this represent S3 as the unit
sphere in C2

S ={(z"2) e |+ [°P =1}
and the cyclic group Zj, as the multiplicative subgroup of S ! consisting |¢|-th roots of 1. Then Zyg
acts on S3 by
p(z',2%) = (p2',p2%) (p11 =1)
and this action commutes with the Hopf action of S*

eit(zl, 22) _ (eitZI’ eit22).
This action descends to an S'-action on the quotient N = S3/ Zyg and the stabilizer of each point
with respect to this action is precisely Z,. Thus N is equipped with a free Sl =~ Sl/ZW—action and

the natural projection
T:8%° =N



254 Liviu I. Nicolaescu

satisfies
m(elz) = efin(x).

Thus N — N/S! is a principal S*-bundle and the |¢|-fold cover 7 : S* — N maps the fibers of the
Hopf bundle S3 — 5?2 to the fibers of N — N/S!. Moreover the restriction to fibers is an |¢|-fold
cover. This shows that N is a circle bundle of degree —|¢| over S?, ie. N = N_j;. (To obtain
the bundles of positive degree we have to replace the Hopf action by its conjugate in the above
arguments.) This shows that

m1(Ne) = Zyg

and the homotopy class of a fixed orbit is a generator of this cyclic group. Thus
Hl(NbZ) = HZ(NZaZ) = Oa Hl(NZaZ) = H2(NfaZ) = Z|€|

It is convenient to describe the isomorphism H?(Ny,Z) = Zyq)) from a different perspective.
The manifold N, bounds a disk bundle D, of degree £ and we have a long exact sequence

0= HY(N;,Z) — H*(Dy, Ny; Z) — H?*(Dy,7) = H*(S?,Z) — H*(Ny)

— H3(Dy,Ny;Z) =2 Hi Dy, 7Z) = 0
where at the last step we have used Poincaré duality. On the other hand, the Thom isomorphism
theorem shows that the Poincaré dual 7 € H?(Dy, Ny; Z) of S? — D, satisfies
i*1 = £ x generator of H?(S% Z)
and the map
HY(S%,7) — H*(Dy, Ny; 7) = Ho(Dy, 7)), w7 AT*u

is an isomorphism. Above, 7 denotes the natural projection D; — S? while i denotes the inclusion
of S% in D, as the zero section. Thus, 7 is a generator of H2(Dy, Ny;Z). The image of 7 via the
morphism

H2(Dy, Ny Z) — H*(Dy, Z) =5 H(5%2)
is precisely i*7. Thus, the image of H?(Dy, Ny;Z) — H?*(Dy,7Z) = 7 is the subgroup ¢Z. The
surjective morphism H?(Dy, Ny) is none other than the natural projection

H*(Dy,Z) =7 — 7 — ZJIZ = H*(Ny, 7).

If we now identify H?(Ny,Z) with the Abelian group Pic™(N;) of isomorphism classes of smooth
complex line bundles then the above observations show that the restriction map

Pic™ (Dy) — Pic™(Ny) (4.1.33)

is a surjection, i.e. any complex line bundle over Ny extends to a line bundle over Dy,. Such extensions
are not unique. The kernel of the morphism (4.1.33) is freely generated by the VT' Dy = 7* L, = the
pullback of Ly — S? to the disk bundle Dy — Lj.

Consider the operator ASD on D, determined by the metric .. Because of the cylindrical
nature of g, near 9D, we can attach a cylinder [0, oo) X Ny and obtain a cylindrical manifold N,.
We will continue to denote the cylindrical metric on Ny by g,. Assume ¢ # 0. Then

Iaps(ASD) = ~2 (\(Dy) + 7(D) + h(N0))

= _%(2 +7(Dg)+1) = —%(2 + 1+ sign (¢£)).
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Moreover,
ker;2(ASD) = H'(Dy, Ny) = 0.

Observe that

Ooo kerey (ASD) = xL7,, & LY, = 0 ® R.
Thus
dimker., (ASD) = dimker;:(ASD) +1 =1
and

1
dim ker,, (ASD™) = 5(1 + sign(¢)) + 1.

This confirms the prediction
1
IAps(ASD) = *5(3 + T(Dg)).

We can now use the Atiyah-Patodi-Singer index theorem to conclude that

@+ 700) = =5 [ (o(97)+ 301(F) + 5 (nein(ar) ).

1
2 2 3

Since h = by(N) + b1(N) = 1 we deduce

(e(vor) + 1pl(%)).

nsign(gr) =—-2- T(DZ) + / 3

D,
On the other hand, the Gauss-Bonnet theorem for manifolds with boundary (see [48, §2.7.6 — 7])
implies

/ e(V9") = x(Dy) = 2
Dy
so that

3

The last equality is valid for any 4-manifold with boundary, not just the disk bundles Dy,. It justifies
the name signature defect used to refer to 7s4n(g) since the right-hand side of (4.1.34) would be
zero if Dy were a closed manifold. One of the main motivations for the research conducted in the
beautiful papers [6, 7, 8] was the need to better understand the nature of this defect.

Let us now turn our attention to Dirac operators. Again we restrict to the case ¢ # 0. Since the
tangent bundle of any compact, oriented 3-manifold is trivializable we deduce wq(Ny) = 0. Thus N,
is spinnable. The universal coefficients theorem shows that

Nsign(gr) = 1/D p1(V7) = 7(Dy). (4.1.34)

Zo ¢=0 mod 2

HQ(NZ’ZQ)gZé®Z2g{ 0 /=1 mod?2

Hence, if ¢ is even there are precisely two nonisomorphic spin structures on N, while when £ is odd
there is exactly one isomorphism class of spin structures.
If o € Spin®(N;) then ¢1(det 0) =0 mod 2. This implies that the range of correspondence

Spin®(N¢) > 0 + ¢y (det o) € H*(Ny, Z)

is the subgroup Gy of Z; generated by 2 mod ¢. We will identify G, with a subset of {0, 1,--- , |¢|]—1}.

Fix o € Spin®(Ny) and denote by k the element in Gy determined by ¢;(det(c)). Since ¢;(det o)
is a torsion class the line bundle det(o) supports at least one flat connection A,. This connection
is determined by its holonomy along the fibers (which generate m1(Ny)) and is given by a complex
number

Po 1= exp<27;ki> .
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As in [106, p. 369], we form the connection

ik
B, = A, + l—cp
4
so that
ik . .
Fp, = ngo = —2kir"wy.

The holonomy of B,, along any fiber is zero. (Can you see why ?) Since the curvature is the pullback
of a form on the base of the fibration N; — S? we deduce that B, is the pullback of a connection
B! on a line bundle L/ — S? such that 7*(L’) = L,. The Chern class of L’ is

i k
L/ —_ = L . —2 i = — .
e (L)) 5 (—2kiwp) - wo

Wy =T
S2

this class corresponds to the element k € H?(S?,Z) = Z. Since the pullback n* : H*(S?* Z) —
H?(Ny,Z) is given by the natural projection Z — Z/¢Z we deduce that k € Gy mod £ and ¢;(L,) =
k.

Since

On Ny there is a canonical spin® structure oy induced from the natural spin® structure 6y on D,
determined by the complex structure. Observe that as a complex vector bundle we have

TDy =27 Ly ® " TS? 2" (L K1)
where K denotes the canonical line bundle on S? = P!. Observe that deg K = —x(S?) = —2. Then
det(60) = Kpp) 2 7*(Ly @ K1),
This induces a spin® structure og on N, satisfying
det(og) = 7" (Le @ K1) [, = 7K1,

since Ly |n,2 C. Thus ¢1(0p) =2 mod ¢. For every n € Z denote by L,, the degree n line bundle
over S2 and set
Gn :=00® Ly, on:=0bn|N, -

Observe that
C1 (det(60)) = W*Lg+2, cl(det(&n)) = W*L£+2+2n.

Then o,, = 0, <= n =m mod ¢ so that
Spin®(Ng) = {on; n € Z mod {}.

Observe that c¢j(deto,) = (2n 4+ £ 4+ 2) mod £. Following [109], for each n € Z we define the
canonical representative L,, of o, to be the complex line bundle L — S? uniquely determined by
the requirements

1+ degL

degL=n mod /¥, — 7

€1[0,1).

We set

B 1+4+deglL,,
—

The rational number h(o,) has a simple geometric interpretation  namely,
exp(—4nh(o,)i) is the holonomy along the fibers of N, — S? of the flat connections over det(c,,).

h(oy) ==
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The previous considerations show that a flat connection over det(o,,) extends to a flat connection
over det(é,,) if and only if 2n +2 4 ¢ =0.

Fix a spin® structure o,, on Ny and denote by A,, a smooth flat connection on det(o,,). (There is
only one gauge equivalence class of such flat connections.) Suppose that there exists an asymptotic
strongly cylindrical connection A, on det(6,) — Ng, with positive decay rate pu and with anti-
selfdual L?(§,)-curvature F A, (FX = 0). (We will see later that if £ < 0 then there exist such

connections fln) The connection A, determines an asymptotically cylindrical Dirac operator @ A,
with
0P i =Da,.
The Weitzenbock formula implies that ker® 4, = 0 since Flq,, = 0 and the scalar curvature of g, is
positive. This implies
kere, @75 = kerp2 @
so that
IAPS(@AH) = dim(c kerLz @An — dim(c kerLz @}1 .
We claim that kerz29 ; is trivial.

For T' > 0 set R .
Ng(T) = Nz \ (T,OO) X Ng.

Denote by t — oo the longitudinal coordinate along the long neck of N, ¢, J := ¢(dt) and for each
T >1 set R A
NZ(T) = Nz \ (T,OO) X Ng.

Let ¢ € kerp» %,. Observe that since ker® 4, = 0 we have
||1/AJ‘{,5}><N£ lcr =o(1), as t — oc. (4.1.35)

Using the Weitzenbock formula (in which Fj{ = 0) and the integration by parts formula in Exercise
1.2.2 of Sec. 1.2 we deduce '

0= /N G PRI

N /mm <<(@An)*@fiw}’u}> - S(ZT) 7’ZJ|2>dv(gr)

e 5 i
= [ (9o Y - [ hd bt
Ne(T) ON(T)
The estimate (4.1.35) now implies

/A (|VA”1&|2 + %gr)h&ﬁ)dv(ﬁr) =o0(1) as T — oo.

Ne(T)

Now let T' — o0. Since the scalar curvature of g, is positive we conclude that ¢ = 0. Thus
IAPS(@An) = —dim kerm’}zzn = —dimkerj2 Qﬁzn.
Denote by 14ir(0n, gr) the eta invariant of the Dirac operator © 4, . Formula (4.1.3) of §§4.1.2 implies
—dimkere, @5 = Iaps(P1)

1

- 570+ 3 [ aldn) nad) - sn.)
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Thus

1 . . ) A A
MNgir (0, gr) = —3 /D p1(V7) + 8dimkere, 7 — /N c1(An) N er(Ar).
14 4

Using the equation (4.1.34) we obtain

F(Umng‘) = AN gir (Ua gr) + nsign(gr)

. N 4.1.36
= 8dimkere, @5 — 7(De) + / c1(An) Ner(Ay) ( )
n N,

In [107, 109] we showed that

F(on,gr) = 4Ch(o,)(h(oy) — 1) 4+ £ — sign (£). (4.1.37)
We deduce
8dimkere, @5 = 4lh(oy,)(h(on) — 1) + £ — c (fln) A cy (An)
n <

Suppose for example £ < —1 and —1 < n < |[¢| — 1. Then

n+1

h(on) = 7

so that
4lh(op)(h(oy) — 1) = A(n + 1)(2 140

To compute the integral term we use the intersection form on H?(N,Z) induced by the Poincaré
duality

H?(Dy,0Dy;7) x H*(Dy,Z) — 7.

Then
A . 2n 42 + )2
/ Cl(An)/\Cl(An):%

N,

since det(6y,) = 7* Loy 124¢. We conclude that

dim ker, @:“4 =0.

4.2 Finite energy monopoles

This very technical section offers a glimpse into the analytical theory of the Seiberg-Witten equations
on 4-manifolds with cylindrical ends. To keep the technical details within reasonable limits we will
consider only some special, simpler situations required by the topological applications we have in
mind. This choice has an academic advantage as well: it offers the reader a quite extensive picture of
what to expect relying on a relatively moderate analytical machinery. For an exhaustive presentation
of this type of problem in the Yang-Mills context we refer to [96, 133].

We tried to keep the presentation as self-contained as possible but, to keep the length of this sec-
tion within reasonable limits, we had to appeal to certain basic facts about elliptic partial differential
equations we did not include in this book. These can be found in [47, 105].
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84.2.1 Regularity

Suppose N is an oriented cylindrical 4-manifold with N := s N. Fix a cylindrical spin® structure
7 =(6,0,0) on N (0 := 856) (see §§4.1.1 for precise definitions). Denote by S5 = S+ & §7 the
bundle of complex spinors associated to ¢, and by S, the bundle of complex spinors assoc1ated to
o. S, can be equlpped with a cylindrical structure such that S, = Js S+

We denote by €5 the configuration space conslbtlng of pairs C := (1), ) where e L 2(SJ“) and

loc

Ais an L?? Hermitian connection of det(&). Define 90 as the space of L¥?-maps 4 : N — S, For

loc loc

every point py € N we define the subgroup 96(p0) C 90 consisting of maps 4 : N — S* such that
4(po) = 1. (Such gauge transformations are said to be based at pg.)

A finite energy monopole is a configuration C = (¢, A) € @ satisfying the Seiberg-Witten equa-
tions

|
o

D =
FFo= & (39))

and the growth condition
BQ) = [ (1F40P + Sla@)P + 154 + 10 ) do(g) < .
N

We will denote by 25 the set of finite energy monopoles on N.
As in the closed case, we will need to use perturbation parameters. In this case they will take
the form of closed, compactly supported 2-forms n € Q?(N) of appropriate regularity.

Proposition 4.2.1. Let C = (1/;7 /1) € 25. Then there exists 4 € G5 such that 5-CeC=.
Proof The proof relies on the following technical result.

Lemma 4.2.2. Suppose M is a smooth, compact, oriented Riemannian 4-manifold with smooth
boundary OM = N, o € Spin®(M ) (md C = (¢, A) is a L*2-monopole corresponding to the spin®-
structure o. Then there ezists a L>*-map f: M — R such that €'/ - C is smooth in the interior of
M.

loc

We will prgsept the proof of this lemma after we explain why it implies Proposition 4.2.1.
Let C = (¢, A) be a finite energy monopole on N. Set C,, := (n,n +2) x N, n € Z,. Using

Lemma 4.2.2 we can find L; ) -maps

f:Ni=N\(1,00)x N>R, f,:C,—R

such that o A o
el - Cly, € C™(N), €/Cle,e C®(Cy), Vn € Zy.

Set ug = fo—f, un := fn—fn-1, Vn > 1. Observe that u,, is a smooth function on (n,n+1)xN, Vn €
Z because on this cylinder we have

—2idu, = efr . A— et A e Coo((n,n+ 1) x N).

FixO0<ex %. For each n € Z define ¢, € C7,,, (N) such that ¢, = u, on (n+%fs,n+%+s) x N
and ¢, = 0 outside (n+ 3 —2e,n + 1 +2¢) x N. Finally, set

hp:(n—1/2—en+1/24e)x N >R, hy, = foo1+@n, n>1,

and A
ho=f+¢o on N\ [1/2,00) x N.
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Observe that h,_1 = hy, on (n+1 —&,n+ 3 +¢) x N so that the collection (h,,) defines an L?;i—map
h:N —R.

On the other hand, on the cylinder (n —1/2 —e,n+ 1/2 4+ ¢) x N we have

el . C=¢lon . (eif"*lé) celvn.Cc®cC™. 1

Proof of Lemma 4.2.2 Fix a Hermitian connection Ag on det(o) which is smooth up to the
boundary of M and set ia := A — Ag. The Dirichlet problem

Apyu = %d*a in M
u = 0 ondM
has a unique solution u € L>?(M) (see [47, Chap. 8]). Set v := €!* and (¢, B) := v (¢, A4). If
ib := B — A then
ib = ia — 2idu

so that d*b = i(d*a — 2Apsu) = 0. The Seiberg-Witten equations for (¢, B) can be rewritten as an
elliptic system

94,0 =~ lib)o, (42.12)

(d* ® d*)b = (%q(gb) - Ff,) @0, (4.2.1b)

An elliptic bootstrap, identical to the one in the proof of Proposition 2.1.11 of §§2.1.2 concludes the
proof of Lemma 4.2.2. B

Proposition 4.2.1 shows that there is no loss of generality by working only with smooth finite
energy monopoles. Observe also that nowhere in the proof have we relied on the growth condition
E(C) < oo to establish regularity modulo §. The growth condition affects only the asymptotic
behavior. In particular, the considerations in §2.4.1 show that

2o # () = there exist three-dimensional o-monopoles on N

In the next subsection we will have a closer look at three-dimensional monopoles.

84.2.2 Three dimensional monopoles

Consider a closed, compact, oriented Riemannian manifold (IV, g) and a spin® structure o € Spin®(N).
We want to define a functional set-up which closely follows the relationship between the four- and
three-dimensional theory.

Define a configuration space C, consisting of pairs (1, A) where v € L?2(S,) and A is an L*2-
connection on det(c). (Often we will need to consider configurations of different regularity, which
will be indicated by Sobolev superscripts attached to C,. E.g., €7 refers to configurations in L™2. )

Denote by G, the group of L3?-maps v : N — S'. Observe that since dim N = 3 the Sobolev-
Morrey embedding theorem implies L3? embeds in a Holder space and, as in §§2.1.2, we can conclude
that G, is a Hilbert-Lie group with commutative Lie algebra 171G, := L>»2(N,iR). For every * € N
we set

Go(%) :=={y € Go; v(x) =1}

Go(*) will be called the group of gauge transformations based at *. Observe that G, (x) acts freely
on C,. Now set B, : C;/Gs and B, (*) := Cy(*)/Gs(*). As in §§2.2.2 we can equip B, and B, (x)
with natural Sobolev metrics.
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For every C € €, we denote by
£C : Tlgo' - TCGD'

the infinitesimal action at C
Lc(if) = %It=o et . C = (ift, A — 2idf).
Its formal (L?) adjoint is
TcCy 3 C s £6C = LE(v, ia) = —2id*a — iTm (1, ).

As in the four-dimensional case, we can identify ker £¢ with the Lie algebra of the stabilizer Stab (C)
with respect to the G, action.
Since C, is an affine space we can identify the tangent space TcC, with €, via the map

C— C+C.
Define the slice 8¢ C TcC, =2 €, at C by
8c := ker £& N L*2.

More generally, we set 8¢ := ker £¢ NL™2. The slice at C is equipped with a natural Stab (C)-action
and, exactly as in the four-dimensional case (see §§2.2.2), we have the following result.

Proposition 4.2.3. There exists a small Stab (C)-invariant neighborhood Uc of C € 8¢ such that
every orbit of G, which intersects Uc does so trasversally, along a single Stab (C)-orbit. In partic-
ular, every G, (x)-orbit intersects Uc transversely in at most one point.

From the above proposition we conclude that B, (x) is a Hilbert manifold while B, is smooth
away from the reducible orbits.
A three-dimensional monopole is a configuration C = (¢, A) € C, satisfying the Seiberg-Witten

equations
{ Dab = 0
30() = c(xFa)
Denote by Z, C C, the set of three-dimensional monopoles. Exactly as in the four-dimensional
case we conclude that each three-monopole is §,-equivalent to a smooth one and M, := Z,/G, is a
compact subset of B,.

Remark 4.2.4. Arguing exactly as in the proof of Lemma 2.2.3 one can prove that if (1, A) is a
3-monopole then

sup [1h(z)]* < 2 sup |s(z)]
zeEN zEN

where s is the scalar curvature of N. We have already used this fact in the proof of the Thom
conjecture in §§2.4.2.

To describe the local structure of 9, we need to linearize the Seiberg-Witten equations along a
slice. The monopoles are zeros of the smooth map

SW:€p — €, = TcCy, (1, A) = (P avh,q(¥)) — e(+Fa)
As explained in §§2.4.1, the map SW is the formal (i.e. L?) gradient of the energy functional
Es:Cr — R,

1

& A) = 5 [ (A= A0) A (Pt Fay)+5 [ ®Dav.vido,
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where Ay is a fixed, smooth reference Hermitian connection on det(c). Since

d .

S l=0 (e -0 =0
we deduce

Dcé,(£cif) =0« (SW(C), £c(if) ), =0, Vif € T1G,

so that
SW(C) € 8¢, VC€C,.

Observe also that for every v € G, we have

SW(y-(¢,A)) = (YD av,q(¢)) — c(+Fa))

so that
[SW (- C)llzz = [SW(C)| 2.

Hence C — ||[SW(C)|| 2 is a well defined continuous function on B, which we denote by f. We can
regard SW(C) as an S'-invariant tangent vector field on B, (%) or as a genuine tangent vector field
on B, ;. For C € TcC, and if € 119, define

. Sw o —1gc C
C

dbas
-38& 0 if

i li=o SW(C +tC) — 5Lc(if) L
= € TcC, @ L*(N,iR).
—3LcC

More explicitly, if C := (¢, A) and C= (w, ia) then

¥ D4 0 0 ¥ se(ia)y — 3 fy

Jc| ia | = 0 —xd d |- | ia |+ G(, ) . (4.2.2)

if 0 a0 if j
Denote by T2 the first operator on the right-hand side of (4.2.2) and set Pc := Tc — TZ. Notice that
Pc is a zeroth order operator while T¢ is a first order, formally selfadjoint elliptic operator.

Exercise 4.2.1. Prove directly that T¢ is formally selfadjoint.

Suppose Cy is a 3-monopole. To understand the local structure of M, near Cy it suffices to
understand the structure of the critical set of the restriction of £, to a small neighborhood U of
Co € 8¢, For every C € C, we denote by Il the L2-orthogonal projection

TcCY — 8¢,
Since TcCY is independent of C, TcCY = L3(S @ iT*N), we can write II instead of Ilc.
Exercise 4.2.2. Show that IITcC; C 8¢, Vr > 0.

Lemma 4.2.5. There ezist a Stab (Cy)-invariant neighborhood U = Uc, of Co € 8¢, and a constant
A > 0 such that

1
FISW(Q) 22 < [TISW(C)][z2 < AISW(C)[| 22, VCeU.
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It is worth emphasizing the main point of the above result. Roughly speaking, it says that, for
C sufficiently close to Coy, the component of SW(C) orthogonal to Sc, is small compared to the
component along 8c,. In particular, if C € S¢, is close to Cy then SW(C) vanishes if and only if its
component along Sc, vanishes.

Proof Observe that we always have
[TLSW(C)|r2 < [SW(C)||r2
so it suffices to find a neighborhood U of Cy € 8¢, and A > 1 such that
ISW(C) 112 < AIUSW ()|, ¥C € U,

We will prove a slightly more general result. More precisely, we will show that there exists a
neighborhood U of Cy € 8¢, such that for any C € U and any ¥ € Sc we have the equality

192 < ATV

Lemma 4.2.5 follows by setting ¥ := SW(C) in the above inequality.
We argue by contradiction. Suppose there exist sequences C,, € Sc, and ¥,, € 8¢, such that

L2,2 1
Cu 25 Co. Wl = 1, M0 e < L
Set T, :=II¥,, and Z,, := (1 — I)¥,,. Then
12 5] > (1- ) (123)
- —n n . ohaie

n L 8¢, so there exists a unique if,, € (ker £c,)* = (T Stab(Co))* C 71§,

[1]>

Now observe that
such that .
2’Co (ifn) =Zn,

Lc,(1f) = £Le, + Ry

where R,, is a zeroth order p.d.o. (bundle morphism) such that ||R,|/2,2 = o(1) as n — co. The
condition

£¢,Yn =0
can be rewritten as
0= (L, +R)(Tn +En) = £6,8n + R Ey = £8,L¢, (ifn) + R En.
Thus if, L ker £¢ £c, and
1€¢, £co (ifn)llLr = 1Ry En | e, VP € (1, 00).
Using the Sobolev inequalities we deduce that there exists C' > 0 such that

[BnllLe < ClIR,|

2,2-
Hence there exists C' > 0 such that
[RLEnlle < Col|Rull22/Znl L2, VR

Using the elliptic estimate of Theorem 1.2.18 (v) for the generalized Laplacian £¢ £c, we deduce
that there exists a constant C' > 1 such that

£

22 < C||R,Ep|lL2 = 0o(1) asn — oco.



264 Liviu I. Nicolaescu

This implies f,, — 0 in L?? and since £¢,(if,) = =, we deduce =,, — 0 in L2. This contradicts the
inequality (4.2.3). Lemma 4.2.5 is proved. B

Fix a neighborhood U of Cy € 8¢, as in the above lemma. The critical points of &, |y are
determined from the equation
nsw ) =0, CeUl.

Equivalently, this means there exists a unique if € 715, such that
if L ker£c,, SW(Q)+ L£¢,(if) =0.

Thus, the problem of understanding the structure of 9, near Cy boils down to understanding the
local structure of the equation .
SW(Co+C)=0 (4.2.4)

where £2‘:OC =0 and ||C||a,2 is very small.
Set

HY, :=ker £c,, HE, := {C €Cc; SW(C) =0, g¢C= o}
and denote by II; : 8¢, — Héo the L2-orthogonal projection. Observe that
ker Tc, = H¢, @ H{,.

For every r > 0 we set _ _
Be(r) :={Ce H; ||C||2 <7}

The equation (4.2.4) is equivalent to the pair of equations

(1 —T)(SW(Co+€)) =0, Cee,o [ICllaz <, (t.)

M (SW(Co+€)) =0, €8y, €2z <e. (tt.)

The local structure of (f.) can be easily analyzed using the implicit function theorem. Our next
result states that the solution set of (f.) can be represented as the graph of a Stab(Cg)-equivariant
map

P Héo — ker II;

tangent to Hég at 0.

Proposition 4.2.6. Suppose Cy is a smooth 3-monopole. There exist 1o = ro(Co) > 0, £ = £(Co),
v =v(Cy) > 0 and a smooth Stab(C)-equivariant map

®; : Be,(ro) — ker(1 —1II4)8c,
satisfying the following requirements.
(i) ®1(0) = 0.
(ii) Any solution C' of (+.) decomposes as

C'=Ca®:(C)
where C =11,C’ € Be, (o). In particular,
(1) (SW(C+C+8,(8) + £cdo(©)) =0,

vC € Be(r).

(iii) |®1(C)|l2.2 < V|[C|12, || De®1(v)]l2,2 < Clv]| - |C]l, Yv,C € H¢,. (H{, is a finite-dimensional
space and thus all norms on it are equivalent.)
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The proof is a consequence of the implicit function theorem applied to the nonlinear equation
F(C)=0
where F' is the Stab(Cp)-equivariant map
F:8¢c, — (1-11;)8¢,, Crs (1—IL)IISW(Co + C).

The linearization of this map at C = 0 is (1 — IT,)SW,, which is onto and has kernel H¢, .
Set
Qc, : Be,(ro) — He,, C— ILiSW(Co+ C+ @41(Q)).

Qc, is called the Kuranishi map at Co. It is a Stab(Cp)-equivariant map and the above discussion
shows that ngl /Stab(Cp) is homeomorphic to a neighborhood of Cy in 9.

Definition 4.2.7. A 3-monopole Cy is called regular if Qc, = 0.

Example 4.2.8. Suppose Co = (¥g, Ag) is a smooth reducible 3-monopole, i.e. 19 = 0. Then
Sc, = {d)ea ih € L2*(S, @ iT*N); d*b= o}

and

Tc, = T, = D4, ® SIGN.

Thus
H¢, = ker®,, ®iH'Y(N,g), HZ = iH(N,g) ~iR.

Fix (¢, i) € Bc, (o). Then (¢, ib) := ®, (v}, ia) is the solution of the equation

((Z.Sv lb) 6 (]- - Hl)SCm ) )
(1 - Hl) (®A0+ia+ii)(¢ + ¢)7 *FA0+ia+ib - %Q(w + ¢)> =0

or equivalently,

(1T (D i+ elia + D)) =0,

20 (4.25)
(1= 119) (i db— Sa(d +9)) =0

where I} denotes the orthogonal projection onto ker D 4, and I} denotes the orthogonal projection
onto H(NV, g). _
Suppose now that ker ® 4, = 0. Then II{ = 0, ¢ = 0 and thus (4.2.5) is equivalent to

©A0+ici+il}¢.) =0, (1-10y) (i x db — Q(¢)) =0. (4.2.6)
The map P, of Proposition 4.2.6 is described by a pair of maps on
b=b(a), ¢=¢a), aeH'(N,g), a2 <ro, [b]2z < vlal3:

By making ry even smaller we can assume © 4 ., +ib(a) is invertible, being very close to the invertible

operator ® 4,. This shows that ¢ = 0 and the second equation of (4.2.6) implies b = 0. Thus ®; = 0.
To compute the Kuranishi map at Cy we need to compute

Hll/(*FAo+id)a a € Hl(N7 g)
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Now observe that since Cy is reducible we have Fq, = 0. Thus *F4,+is = i * da, which clearly
has trivial projection on the space of harmonic 1-forms. We have thus shown that if Ay is a flat
connection on det(o) such that ker® 4, = 0 then (0, A) is a regular, reducible monopole.

The stabilizer of Cy is S' which acts trivially on Héo = iH!'(N, g) so that there exists an open

neighborhood of Cy in 9, homeomorphic to an open ball in R?*™) and consisting only of reducible
monopoles.

Definition 4.2.9. A pair
(0,9) = (spin® structure on N, Riemannian metric on N)

is called good if all irreducible (o, g)-monopoles are regular and for any flat connection A on det(o)
the operator ® 4 is invertible.

The discussion in the above example has the following consequence.

Proposition 4.2.10. If g is a positive scalar curvature metric on N then (o,g) is good for every
o € Spin®(N). Moreover, M, is either empty or it is a compact smooth manifold diffeomorphic to
a bi(N)-dimensional torus consisting only of reqular reducible monopoles.

Remark 4.2.11. Suppose (o, g) is a good pair and Cy = (¢o, Ag) is a smooth monopole. If Cgy
is reducible then H} = H'(N,R) and the action of Stab (Co) on H¢_ is trivial. This proves that
T, = HE, ¥C € M, .

For each smooth monopole C and 0 < k < 1 we define the Kuranishi neighborhood of C
Uc(k) == {C € 8¢c; ||Cll2.2 < min(x,e(C))}

where ¢(C) is determined as in Proposition 4.2.6. After we factor out the action of Stab(C) it
determines an open neighborhood of C in B, .

A word about notation When no serious confusion is possible, we will continue to denote
by Uc, (k) the neighborhood of [Co] in B determined by Uc, C Sc,. For example, the statement
C € Uc,(k) means C— Cy € 8¢, and ||C — Coll2.2 < k while the statement [C] € Uc, provides
information only about the gauge equivalence class of C and not C itself.

The family
{Uet)s [0 e m, }

is then an open cover of the compact subset M, C B,. We can extract a finite subcover

Uc, (H)’ ) UCm(H)

and we set
ko := min{k(Cy), - ,k(Cpn)},
U, = U Uc,(k), VK < Ko.
i=1
U, is an open neighborhood of M, in B, called a Kuranishi neighborhood of M,. Observe that for
every C € Uy
diStgz([Cng) S K.
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84.2.3 Asymptotic behavior. Part I

Consider a semi-infinite cylinder R
N := (Ry x N,dt* + g)

and o a spin® structure on N. We will denote by & the induced cylindrical spin® structure on N.
For every smooth configuration L R
= (¢, A) eT(SF) x A,

we define the scalar quantity called the energy density as

’ 2

VA +

P *|q +|FA‘ W’

Thus,
EC) = / pedvg.
N

For every interval I C R, and every € > 0 we set

I :={teRy; dist(¢t,I) <e}

EC(I) :Z/I Npédvg.
X

Fix a Hermitian connection Ay on det(c) — N and denote by Ay its pullback to det(6) — N.
Any smooth Hermitian connection A on det(é) can be written as

A= Ay +ip(t)dt +ia(t)
where (t) (resp. a(t)) is a smooth path of O-forms (resp. 1-forms) on N. Set
A(t) == Ag +ia(t) = Al e -
If 4 := /() is a gauge transformation on N then

A d .
§- A = Ao +il(r) — 2% it +i(alt) — 24/ (1)
where we recall that d denotes the three-dimensional exterior derivative along N. If we regard 4 as

a smooth path of gauge transformations v; on N then the above computation shows
(5 - A)(t) = e - At).

In other words, the assignment A — A(t) defines a unique class [A(t)] € A, /G,. This also implies
that for any smooth configuration C the assignment

:C C(t) = Clyyxn

defines a unique gauge equivalence class [C(t)] € B, = C,/G,. Clearly, the path ¢ — [C(t)] in B, is
continuous. In particular, the quantity

ve(t) == §(C(1)) = ISW(C(®))]| 2

is well defined and independent of the gauge equivalence class of C.
Suppose now that Cisa4- monopole. Modulo a smooth gauge transformation we can assume C
is temporal

C= (@), A®).
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Then, for every interval I C R, we have

) . 1
JIswewnlia = [at [ R +14Rdu, = 5E(0)

so that L
el = 5 EeD) (4.27)

A simple application of Holder’s inequality shows that
distr2([C(to)], [C(t1)]) < %Ec([toatl])l/z(tl —t0)'/?. (4.2.8)
Consider a finite interval I = [to,?1] € R4 and set
|s] := max |s(x)]-

Observe that ) )
Tl Pl = 15 [t [ 1ot dn,

/dt/|q V)| < Ee(I —f/dt/s|1/)|dvg

I +i/dt/ 19]2dv,
4 I N
sl

< Ee(I) + Z(tl - to)l/QVOIg(N)l/Q||1;||2L4(1x1v)

< Be(l) + g sy + 20 11— to)vol, (V)
We have thus obtained the following L*-estimate.

1N Za vy < 32Be (1) + 16|51 (t1 — to)voly (N). (4.2.9)
We can build on this estimate to obtain a priori L>°-estimates for @Z

Proposition 4.2.12. There exists a constant C' > 0 which depends only on the metric g such that

10w .4y < C(Be(T = 1,T+2) +1), ¥T > 1. (4:210)
Proof We have 1
y 5 f VKA S h .

0=259 0 = (V) V4 + b+ Se(F).
We can now use Kato’s inequality and the equality c(Fj{) q(z/AJ) to conclude that

PN A ANkm A oA A N 1, -

b2 < AyrgA — 502~ 21s
Agldl? < 2( (VA) VA, ) = =29 — 14

Now set u := |)|2 so that we have
A s 1
Aju+ ~u < —=u? <0.
Gu + US TS
We can rewrite this as a differential inequality of the type

Agu+au§0
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where a = § € L>°([T' = 1,T + 2] x N). Using the DeGiorgi-Nash-Moser inequality (see [11] or [47,
Thm. 8.17]) we deduce that there exists a constant C' > 0 which depends only on g such that

sup  u < C'(|8| + ||UHL2([T71,T+2]><N)>
[T, T+1]x N

(4.2.9) 1/2
< C’(EC([t—1,T+2])+1) .m

Corollary 4.2.13. If C = (&,fl) is a finite energy monopole on N =R x N then there ezists a
constant C' > 0 which depends only on the metric g such that

Wllim(m < C(EC(RJr) + 1). (4.2.11)

The next result, whose proof is deferred to §§4.2.5, shows that if the total kinetic energy over a
time period of length 4 is small enough, then the kinetic energy at each moment must be small. In
other words, “bursts” of energy are prohibited.

Lemma 4.2.14. Fiz a smooth connection Ay on det(o). There exist Co > 0 and 0 < wg < 1 such
that for every smooth temporal monopole C on [—2,2] x N satisfying

C = (C(t) = (¥(t), Ao +1a(t)), a(t) € Q'(N),

E? .= /:dt/N(W(t)2+|a(t)|2)duN < wo

we have

ISWCENE = [ (WOF +1a)7)doy < CoE?, ¥e e [-1.1)

Corollary 4.2.15. There exist C > 0 and wyg € (0,1) such that if C is a smooth monopole on
[—2,2] x N satisfying
E2 = Ec([—Q,Q]) < wp

then
HS’W(C|th)||Lz(N) < CyE, Vte[-1,1].

Proof Since the above inequality is invariant under gauge transformations on [—2,2] x N we can
assume C is in temporal gauge and then apply Lemma 4.2.14. B

For every h > 0 denote by " the level set of f
f" ={Ce €y f(C) <h}.

Observe that § is an open neighborhood of Z, in B,. The following result refines Proposition 2.4.6
of §2.4.1. We leave its proof to the reader.
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Proposition 4.2.16. There exists a function
f:(0,1) — (0,00), K+ A(k)

such that
(Z) limm_)o h(K) =0.
(ii)If C € %) then there exist a smooth monopole Co € Z, and v € Gy such that

v - Ce Ug, (k).

From the above proposition we deduce the following consequence.
Corollary 4.2.17. If M, = O there exists hg > 0 such that §(C) > hy, VC.
The above result, coupled with Corollary 4.2.15, leads to the following conclusion.

Corollary 4.2.18. If Cisa finite energy monopole on Ry x N then for any sequence t, — co we
can find a subsequence t,, such that [C(t,,)] converges to a point in M, .

If sz}% e ,szf) are the connected components of 9, we can find ko > 0 such that Uy, consists
of disjoint open neighborhoods U,gf)) of SJT((TJ), j=1,--+ £ Set

do = do(ko) := Ir;indisth (U(i) U(j)).
i#]

Ko ? Ko

Exercise 4.2.3. Show that
lim inf dy (ko) > 0.
Ko\o

Hint: Show that if kg is sufficiently small there exists a constant C' > 0 depending only on the
geometry of N and C(FEy) such that

dist 2 ([C], M) < Cro, Vi, V[C] € UL.
Corollary 4.2.15 shows that if C is a finite energy monopole and T > 0 is such that
E¢([T,00)) < h(k)

then [C(¢)] € Uy, Vt > T + 1. Clearly, for large ¢ the path ¢t — [C(¢)] will wander inside a single
component U,gj ) of U,. We have thus proved the following result.

Corollary 4.2.19. Suppose Cis a finite energy smooth monopole on N. Then there exist a connected
component imﬁ,” of My and, for all k > 0, an instant of time t = t(k) > 0, such that [C(t)] € U,g])
for all t > t(k).

A priori, the path [C(¢)] in the above corollary may wander around smaller and smaller neigh-

borhoods U,gj ) of 93?,(,] ) without converging to any specified 3-monopole so the limit set may consist
of several points in 9,. The results we proved so far show that the manner in which [C(¢)] trav-
els around M, is quite constrained. More precisely, for every triple of arbitrarily small constants
a,b,c > 0 there exists an instant of time T' = T(a,b,c¢) > 0 such that for all ¢ > T the distance
between [C(t)] and 9M, is < a, the kinetic energy [[¢(t)]|2, + ||a(t)||2. at time ¢ is < b, and there is
not much energy left, i.e.

E¢([T,0)) < c.

The energy functional £ on N (whose critical points are the 3-monopoles) may not descend to C, /G,
S0 it may not induce a well defined function on 9M,. On the other hand, it descends to function on
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C,/GL where Gl denotes the identity component of G,. We denote by M, the space of Gl-orbits of
3-monopoles. & defines a continuous map from the discrete set of components of M, to R. M, is a
quotient of M, modulo the action of the discrete group H'(N,Z). Since

E(C(t1)) — €(C(t0)) = Ee([to, t1])

E(C(t)) has a well defined limit £, as t — oo so that the path C(¢) “orbits” closer and closer around
one of the components of M, where £ = E.

In the next subsection we will show that these restrictions, coupled with the ellipticity of the
Seiberg-Witten equations on cylinders, will force [C(t)] to converge to a specified monopole [Co] €
M. To minimize the volume of technicalities we will make the simplifying assumption below which
is satisfied in all concrete applications we have in mind. For a presentation of the general situation
in the similar case of Yang-Mills equations we refer to [96, 133].

In the remainder of this chapter we will work exclusively with (N)
good pairs (o, g).

84.2.4 Asymptotic behavior. Part II

Suppose C is a finite energy monopole on N. In the last subsection we have shown that for every
0 < k < 1 there exist a smooth monopole Cy and an interval J = [tg,t1] C R4 such that for every
t € J the configuration [C(t)] € Uc,(x). We deduced this conclusion by taking advantage of the nice
dynamical description of the Seiberg-Witten equations in temporal gauge. These arguments were
however not powerful enough to deduce, for example, that once [C(¢)] enters a neighborhood Ucg, (k)
of [Cp] it is then forced to stay inside it. From a technical point of view this is due essentially to
a lack of estimates of the length of the path [C(t)], that is, estimating L'-norms of ¢-derivatives on
long time intervals. It is desirable to control the length of a portion of this path in terms of its
energy. To obtain such estimates we need to modify C by a gauge transformation which will capture
the elliptic character of the Seiberg-Witten equations on a cylinder. Following [96, 133] we introduce
the following notion.

Definition 4.2.20. Let x € (0,1) and Cy be a smooth monopole on N. A configuration C on a
cylinder I x N is said to be in k-standard gauge with respect to Cq if there exist smooth paths

I>t— (if(t),V(t) € (ker £c,)* x Sc,, V(1) = (¥(t),ia(t))
such that ||V(2)|2.2 = [|[¥(¢)|l2,2 + ||a(t)]|2,2 < K, ¥Vt € T and

C = (Yo + (1), Ag + if(t)dt + ia(t)).

For a proof of the following technical result we refer to [96, Lemma 2.4.3].

Lemma 4.2.21. Assume C is a smooth configuration on I x N and Cy is a smooth monopole on N
such that C(t) is gauge equivalent to a configuration in Uc,(k), Vt € I. Then there exists a smooth
gauge transformation

4:Ix N — S

such that 7 - C is in r-standard gauge with respect to Cg.

Suppose now that C is a smooth 4-monopole on I x N in k-standard gauge with respect to the
smooth 3-monopole Cy = (¢bg, Ap). Thus, we can write

C = (¢ = o + (1), A = Ag +idf (t)dt +ia(1))
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where, for any t € I,
la@l32+ L(@0)]s 2 < (4.2.12)

L&, (W(t),ia(t)) =0, if(t) L ker £¢,.
Then, using the identities (2.4.1) and (2.4.2) in §§2.4.1, we deduce

Fj; = Fa, +idt A (a(t) — df (t)) + ida(t),

Ff= %(dt At #Fay + #da(t) — df (1) + #(a(t) + Fa, + da(t) — df (1))

(J = &(dt), A(t) := Ap +ia(t)),

9= J(%—Da +50).

If we suppress the ¢ dependence in the above notation and we use the identity
1 . 1 .
Datho = (’DAO + 50(1‘1))1/)0 = 50(10)%

we can rewrite the Seiberg-Witten equations for C as follows.

) .
L= (D4~ 3 )W+ 1h0) = Doagth + g (elia) — if) (o + ), (12.13a)
i%a = %q(wo + 1) — *ida + idf — *F4,, (4.2.13Db)

d*a + % TIm (o, %) = 0. (4.2.13¢)

One unpleasant feature of these equations is the apparent lack of information on the ¢-derivatives
of f. Still, the size of f can be controlled in terms of the sizes of (¢, A). To achieve this we will
need an elementary identity whose proof is left to the reader.

Exercise 4.2.4. ([107]) Suppose 9 is a smooth spinor on N and A is a smooth Hermitian connection
on det(o). Then

d*q(v) = —iIm(y), D 410). W (4.2.14)

For simplicity, in the sequel will denote the ¢-derivatives by dots. Also, we will denote by the
same letter C all positive constants which depend only on Cq, the total energy of C and the metric g.
Differentiating (4.2.13c) with respect to t we get

id*a + %Im(iﬁm By = 0.

Now use (4.2.13¢) and (4.2.14) to obtain

(4.2.130) 7% Im (b + 1, D a(Yo + ¥)) + id*df + % Im (3o, 1))

= —% Im(vo + ¥, % + %f(w +v0)) +id"df + % Im(¢o,9)
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-\ (4.2.13a)

= id"df + Zlo + ¥ f — 5 Im(y, )
{07+ Re(o + v, +4)f — 5 Tm{u, Da,) — - Rel, (o + )}
= id'df + ¢ Re{y, g+ )] — 1 Tm(.D,0)

= ia%df + ol + § Re(o, ) — 5 Tm(y, Da,0)

= 5,20, 1)+  Relo. )i — 5 T, D)

Hence
L&, Lc,if = —Re(¥ho, Y)if +2Im (), D a,1)). (4.2.15)

The proof of the following result is a simple application of Theorem 1.2.18 (v) and is left to the
reader.

Lemma 4.2.22. For each v such that ||¢]|2,2 < K consider the operator
Ty ker £6, N L*»* — LY2(N,iR), if — £& Lc, + Re (i, )if.

Then, if k is sufficiently small the operator Ty, is invertible. Moreover for every r € {0,1} and every
p € (1,2] there exists a constant C' > 0 depending only on p, v and the geometry of N such that

||f||2+np < C||Twif|

P

Using the above lemma we deduce that there exists a constant C' > 0 such that

[fll2,2 < Cl Tm{, D 4,9 || 2
The Sobolev embedding theorems show that we have continuous embeddings
L*?(N) < L>®(N), L"“?(N) < L°(N).

Using Holder’s inequality we deduce that there exists a constant C' > 0 such that for every a €
L*%(N) and b € L2(N) we have

la-bllzre < Cllallz2 - [[b]l1.2-

Hence
[T (i, D 4y )|[ 12 < Cl[pll22D o]l 2 < O3 5-
We have thus established the estimate
(4.2.12)
Ifllz2 <Cll¥l3, < Cx* (4.2.16)

Since £ is meant to be very small we deduce that f(t) is very small as long as C |rx v is in k-standard
gauge. Set
V(t) = (¥(t),ia(t)).

The flow equations (4.2.13) can be rewritten as

V =SW(Co+V)+ { _gwiodjj T ] (4.2.17)
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where
LV=0 (4.2.18)
and
if =27, (iIm(sh, D a,0)). (4.2.19)
We will denote the second term on the right-hand side of (4.2.17) by (V). Observe that
1 .
N(V) = _§£C0+V(1f)- (4.2.20)
The estimate (4.2.16) shows that
19UV l2,2 < CIIVII3 2- (4.2.21)

Remark 4.2.23. One can show exactly as in [96, Chap. 2] that there exists a natural L%-metric
on 8¢, such that in a neighborhood of 0 € 8¢, the equations (4.2.17) have the form

V= @€|gco (Co +V)

where the gradient V is computed with respect to this metric. l

For every 0 < k < 1 we can find Ty(k) = Ty(k, C) > 0 such that for all £, > Ty(k) there exists
a smooth monopole Cy = Cy(ty) € M, so that

[C(to)] € Ucy (+?)
Ee([To(k),0)) < &® , Vit > Ty(k). (4.2.22)
ISWCODIT2 < K°

Fix ty > Tp(k) and define
To(to) == sup{T > 0; [Clto +1)] € Ucyquo) (K), Vt € [o,T]}

= sup{T > 0; |V(to + )22 < 5, Ve € [0,7]}

where V() is determined as above by placing C in k-standard gauge at Cy over the time interval
for which this is possible. Roughly speaking, T (to) is the length of the time interval, beginning
at tp, during which the orbit [C(¢)] stays k-close to [Co] := [Co(to)]. We want to get more precise
information about the size of

diStgvg( [C(to + t)], [Co] )

for 0 <t <T,(t).

One of the main advantages of working in standard gauges comes from the fact that the 4-
dimensional equations become “almost” elliptic and thus one can control stronger norms by weaker
ones. More precisely, we have the following result.

Lemma 4.2.24. There exist ko > 0 and C > 0 with the following property. For any finite energy
monopole C on Ry x N and all

O0< k< Ko, to > T()(K&,(A:), t e [t() + ].,T,i(t())], [C()] e M,

such that
distrz2,2 ( [C(t0)], [Co] ) <’

we have
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distg, 2 ([C(to + t)], [Co))?
< C(disth([C(to + 1)), [Col)? + Be(ft — 1,t+ 1])) (4.2.23)
< C’(disth([C(tO + )], [Co])? + ,.;6).

In order to keep the flow of arguments uninterrupted we will defer the proof of the above lemma
to the next subsection. This lemma roughly states that the L?:2 -distance between [C(to+1)] and [Co]
can be controlled by the weaker metric dist;2. This type of control immediately leads to nontrivial
lower estimates on the duration T} (to).

Lemma 4.2.25. There exists a positive constant C' such that for all 0 < kK < 1 we have

T (to) > C(éf,@)z

Proof Let T =T,(tg). We rewrite
Clto+1t) = Co+V(t), L&, V(t) =0, [[V(t)|22 < .

(Note the time shift in the argument of V.) The maximality of T implies
IV(T)]

2,2 =K
so that using Lemma 4.2.24 we deduce

V(D)2 = CIV(T)|l2,2 — k> > Ck — K> (4.2.24)
The distance |[|V(T') — V(0)||z2 can be estimated using the flow equations (4.2.17). We have

T .
HWﬂ*V@Mz:AIN@MMt

T
sA(wwmm+mmﬂwwwmmaw

(4.2.21)
< C(Tl/QEC([tO,tO FT)Y? 4 Tﬁ) < C(TY?K? + K2T) < CTH?.

Hence,
V(D)2 < [IV(O)l|z2 + IV(T) = V(0)]| 2 < & + CTw?. (4.2.25)

Lemma 4.2.25 now follows by comparing (4.2.24) and (4.2.25). &

Since the configurations [C(¢)] lie in a very small neighborhood of Cy it is natural to expect that
the linearization of the flow (4.2.13) at Cy will contain information about the nonlinear situation.
We now want to suitably decompose the flow (4.2.13) into a linear part and a small nonlinear
perturbation, and analyze how much of the linear behavior is preserved under perturbation. At this
stage the regularity assumption on Cy introduces substantial simplifications.

Consider again the Stab (Cp)-equivariant map

(bl : UCD — (1 — HI)SCO
introduced in Proposition 4.2.6. Denote by A the linearization of SW at Cq:
A=SWe .
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Lemma 4.2.26. A defines a closed, densely defined linear operator
ker £¢, N L* — ker £¢,

with domain
ker £¢, N L"2.

This operator is selfadjoint with compact resolvent. Moreover ker A = Héo.
Exercise 4.2.5. Prove the above lemma.

The spectrum spec (A) of A is discrete, consisting of eigenvalues with finite multiplicities. We
have an L2-orthogonal decomposition

8c, = H¢, ®8E @ 8¢,
corresponding to the partition
spec (A) = {0} U spec(A)N(0,00) U spec(A) N (—o0,0).
Correspondingly, any vector U € 8¢, decomposes as
U=Ug+Ut+U".

Denote by puyr = us(Cp) the smallest positive eigenvalue of A, by —pu_ = —u_(Cp) the largest
negative eigenvalue of A and

p = min(p—, py.).

Now set
Vo(t) ==L V(t), &(t) == Vo(t) + 1(Vo(t)), U(t) :=V(t) —&(1).

Observe that Uy = 0. Since Cy is regular, the graph of the map ®; describes the critical points of
SW in Uc, (k). To proceed further observe that

SW(Co +V) = SW(Co+ &+ U) = SW(Co + £ + U) — SW(Co + &)
= A+ U) - A + R(E+U) — R(§) = AU+ R(§ + U) — R(¢)

where

IR(X)[l1.2 < ClIX]3 2, VX € Sc,.

Set
Q(V) == R(§ +U) — R(&) + (V).

() satisfies a similar quadratic estimate as R:
1QX) 122 < CIIXIE». VX € Sc,. (4.2.26)
We can be much more precise. The following estimates are proved in the next subsection.

Lemma 4.2.27. There exists C > 0 such that ¥t € [0, T,;] we have

IR +U®) — R[22 < CIV@O) 2,2 - [[UE) ]| L2, (4.2.27a)
[TLNV(@)) (L2 < CIV(E)ll2,2 - V@) 22, (4.2.27b)
(MV),UE) 2| < CIIVE) 2.2 - V@[ (4.2.27¢)

The estimates in Lemma 4.2.27 can be used to provide a crucial lower bound for ||[SW (V(t))]| 2.
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Lemma 4.2.28. If k is sufficiently small we have
ISW(Co 4+ V(t)) ||z > C||U(t)]|r2, V€ [0,Tx(to)]. (4.2.28)

Proof We have
[SW(V(®)llre = AU + R(§ + U) — R(U)||

> [AU][L2 = [|R(§ + V) = R(U)]| >
> pl[Ullz> = Ckl[U]| 2. W

The flow equations (4.2.17) now decompose as

Vo(t) = TLQ(V), (4.2.29a)
Ut(t) = AUt + Q(V)* — %(@1(Vo(t)))+, (4.2.20b)
U=(t) =AU~ +Q(V)~ — %(@1(Vo(t)))_. (4.2.29¢)

Set
fo) = Vo), fe(t) == UF@®)]7,
F@) = () + f- () = V@)1 72
Since [|®1(Vo)llz2 < [Voll32 < CfVoll7. we deduce that the problem of estimating [[V(t)]|z2 is

equivalent to the problem of estimating fo(¢) and f(¢).
From (4.2.29a), (4.2.27a) and (4.2.27b) we get

IVo(8)ll < CFY2.

In particular,

d . .
1= ®1(Vo(t))l[L2 = [ Dv, 5y @1 Vo)l < [[Dvyy @allz2 Vo (@)l 2

dt
< Cr|Vo (D)l 12 < CrfH2.
Thus,
d
‘<%<1>1(vo(t)),ui>m < Ckf. (4.2.30)
Using (4.2.27a) and (4.2.27c) we deduce
’<Q(V),Ui>L2 < Ckxf. (4.2.31)

Now, take the L?-inner product of (4.2.29b) with UT(¢) and use (4.2.30), (4.2.31) and the in-
equality
(AUT (), U () 12 = pa lUT (B)I[72 = po £ (2).

We get .

J+@) 2 2p4 f1(t) — Cok f. (4.2.32)
Using the equality (4.2.29¢) we deduce similarly that

fo(t) < —2pu_f; + C_kf. (4.2.33)

By replacing Cy with max(Cy,C_) we can assume Cy = C_. Set h := f; — f_. Notice that h
satisfies a differential inequality of the type

h>2uf > 2uh, Vtel0,T,]. (4.2.34)
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Remark 4.2.29. The trick in [133, Lemma 9.4] applies without change in this situation as well,
allowing us to conclude that

f(t) < 2( £.(0) + f,(T)) (e_“t + e”(t_T)), Y0 < t < T < Ty(to). (4.2.35)

Observe that this estimate is valid for any monopole C on a cylinder
[-1,T 4+ 1] x N provided the total energy is sufficiently small and the path [C(¢)] lies entirely
in a Kuranishi neighborhood of a 3-monopole Cy. B

Lemma 4.2.30. Suppose there exists 0 < 7 < T, (to) such that h(t) < 0 for all 0 <t < 7. Then
there exist ¢, C' > 0 such that for all t € [0, 7] we have

f(t) < 267(2“*705)15‘]!'(0)’
Vo (t)]| < C|IVo(0)]| < Cr2,
VO < C(IVOIR: + ateton-o)

and
VO3 < C(IVO)3: + 58 + e @rmet) < Cp(1 4 e (e,

Proof The inequality fi(¢t) < f_(¢) implies f(t) < 2f_(¢). Using this information in (4.2.33) we
deduce that _
Jot) < —@u —en)f-

from which we obtain by integration
F(t) S 2f-(t) < 27 B £(0).

Using (4.2.29a) we deduce

o6 = MV < [mV(©)] +/O T2V (s) | ds

< [mLV©)] +C / Y2 (s)ds

< OV ()] + £(0)!/2e=H==) < C|[V(0)]2.1.

We now conclude using Lemma 4.2.24. B

Set
Te(to) :=sup{r € [0, T, (t0)]; f+(t) < f-(t), YO<t< T} (4.2.36)

Lemma 4.2.31. For every € > 0 there exist 0 < k < € and tg > To(k) > 0 such that T, (ty) = 0.

Proof We argue by contradiction. Thus, assume there exists €y > 0 such that for all k < gy and
all tg > To(x) we have T := T,,(t9) < co. Taking into account the maximality of T} (o) we deduce

IV(T)

22 =K

so that
(IV(T)||L2 < k. (4.2.37)
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Using Lemma 4.2.30 we now deduce 7 := 7,,(tg) < T. Set ¢ := to + 7 and define x = x(x) by
X2 = max{/i2, diStQ’Q ([C(to + ’7')], [C(]D}

Lemma 4.2.30 shows that x < x = O(k). Observe that for ¢t > ¢; the configuration [C(t)] satisfies
the conditions (4.2.22),
[C(t1)] € Uy (x?)

E¢([t1,00))) < K% < xO (4.2.38)

supys, [SW(C@HDIZ: < x°

so that
ex !t < Ty =Ty (1) < oo.

Redefine V(t) := V(t1 +t), t € [0,T\(t1)] etc. Observe that by maximality
IV(T1)ll2,2 = x- (4.2.39)
From the definition of ¢; as t; = tg + 7«(to) and the maximality of 7, (to) we deduce
Folt) > 1-(t), Vie (0,T3)
Using the inequality (4.2.32) we deduce

1 o
IV < F1(0) < o (T)er Creme0 D

<N U(T)||22e~Cre=e0Ti=8 v e [0, T1).

Then .
memswwmwwmrwwWSme+Aanma
T
swww+cl|wmmm
T
QMWMHW@MB/ e (hs o) (M= gt
0
(4.2.28)
< VO + CIU@) e < Vol + CISW(Co + V()| 12
(4.2.38) (4.2.38) )
< VoD +0(x%) < x*+ O(k*) = O(x?). (4.2.40)
Thus

1U(T)][2 = [IV(T1) |2 = Cl[Vo(T1) || 2

(4.2.23) 6
> C(IV(T)ll2.2 — £°) = [IVo(T0) ||

(4.2.40) (4.2.39)
> CIV(T)|22 — CK? > Ok — K?).
This contradicts the inequality (4.2.28) which, coupled with the last condition in (4.2.38), implies

[U(T1)]|2 = O(x*).

The above lemma has an immediate consequence.
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Corollary 4.2.32. There exists [Co] € M, such that

tli»Igo diStQ’Q([C(tﬂ, [CO]) =0.

Proof Lemma 4.2.31 shows that for every limit point [Co] € 9, and any neighborhood U of [C)
in €,/G, there exists an instant of time ¢ = ¢y such that [C(t)] € U, ¥t > ty. In particular, this
shows there exists exactly one limit point.

We can now prove the main result of this section.

Theorem 4.2.33. Suppose C= (1/;, /1) is a smooth finite energy monopole on Ry x N. Then there
exist a smooth gauge transformation

4:Ry x N — St
and a smooth monopole Co = (19, Ag) on N such that
i C= (1), Ao + ialt) +if (t)dt),
L8, (1 (t) — o, ia(t)) = 0 <= (¥(t), Ao + a(t)) € S¢,, Vi >0,
Jm e”(W(t) = Yollzz2 vy + lla(®) |22 vy + Hf(t)||L3>2(N)) =0,
Y0 < A < p_(Co).

Proof Fix a smooth representative Co of the limit of [C(¢)] as t — co. For all s sufficiently small
we can find a smooth gauge transformation 4 on Ry x N such that 4 - C is in k-standard gauge
with respect to Cy on a semi-cylinder [Ty(k),00) x N. Re-label C := 4 - C. Then there exists a
to > To(k) > 0 such that

E¢([to, 00)) < K3,
1C(t0), CollL22 vy == 19(t) — YollL22(wy + lla(t)[|22(vy < K2,

||C(t0 + t) — CQ||L2,2(N) <R,

V0 < t < Tk(to). Observe that 7, (tp) defined in (4.2.36) is infinite. Indeed, if 74(tp) < oo then,
arguing as in the proof of Lemma 4.2.31, we would deduce that f (7, + t) increases exponentially.
This is plainly impossible.

Using Lemma 4.2.30 we deduce

2 < Cem W=k, > 1y
U@l < Qe (m-—cn)t vt > To(k)

and
[TV ()] = ([T V() — T V(co) || S/t T,V (s) | ds

< C/ o= (Hm—er)s g < (o= (u-—cr)t,
t

This shows that
IV(t)]l2,2 < CIIV(B)|| 2 < Ce™ W=t > Ty (k)

so that
lim e#-~disty o([C(£)],[Co]) =0, Ve < 1. W

t—o0
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Remark 4.2.34. The gauge transformation 4 postulated by the above theorem may not be in the
identity component of the group of gauge transformations on R, x N. The group of components is
parameterized by H'(N,Z). If 4 lies in the component parameterized by ¢ € H'(N,Z) then we can
find a smooth map

v:N — St

which belongs to the component of G, corresponding to c. We can think of v as a t-independent
gauge transformation on R, x N. Moreover 4. := 4 -7~ ! lies in the identity component of the group
of gauge transformations on Ry x N and 4. - C will satisfy similar asymptotic behavior as 74 - C with
Co replaced by 7! - Co. Thus we can strengthen the conclusion of Theorem 4.2.33 by adding the

fact that 4 can be chosen to be of the special form 4 = e/,
The above convergence result can be slightly strengthened.

Proposition 4.2.35. With the above notation, for every nonnegative integer m and every 0 < A <
”7’ there exists a constant which depends only m and A and the geometry of N such that

”V(t)||L’;’2([T0(fc),oo)><N) < Ck.

Exercise 4.2.6. Prove the above proposition.

Proposition 4.2.36. Fiz an instant of time To > 0. Then there exists a constant ko > 0 with the
following property. For every k < kg, and every monopole C on Ry X N such that

HpCH%Z([Tg,oo)xN = E¢([To,0)) < K,

and

dist 22 ([C(Tp)], M,) < K2

we have

sup [[SW([CON72v) < C°

t>Tp+1
o [C(t)] € Uy, ¥t > Tp.

e There exist a monopole Coo on N and a smooth gauge transformation 4 on Ry x N such that

lim H'A)/C |t><N —Coo||L2,2(N).
t—o0

Proposition 4.2.36 is a simple consequence of the previous considerations and we leave its proof
to the reader.

Exercise 4.2.7. Prove Proposition 4.2.36.

Proposition 4.2.35 can be roughly interpreted as saying that, if the total energy of the monopole
C is below a certain capture level, then its dynamics is constrained to a small Kuranishi neighborhood
of some 3-monopole on N.

Up to now we have worked on a very special cylindrical manifold, N = R, x N. The results
we proved extend without difficulty to the case when Nisa cylindrical manifold without boundary
such that 9, N = N. The next result summarizes all the facts proved so far.
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Theorem 4.2.37. Fiz T > 0. There exists a constant h > 0 with the following property. If m € Z,
0 <A< u_(Cy), there exists a constant C depending on m, \ and the geometry of N such that for
any smooth monopole C = (¢, A) satisfying

/ pe <h
[T,00)xN

there exist a smooth function
4:Ry x N—=R

and a smooth monopole Co = (1o, Ag) on N such that along the neck

et C = (p(t), Ag +ia(t) +if (t)dt)

£¢, (1) — o, ia(t)) = 0 <= ((t), Ao +a(t)) € 8¢, VE=T

and

() — onL;"v2([T,oo)xN) + ||a(t)||L;"v2([T,oo)><N) + 1) L2 (1e0)x Ny < C-

Remark 4.2.38. We would like to say a few words about an alternate proof of Theorem 4.2.33
which works in the more general situation when (N) is not satisfied (see [96]). For simplicity we will
describe it briefly in our nondegenerate context.

Observe that (4.2.15) can be rewritten as

Tyif = 2Im(eh, D 4¢h) = 2Tm (), 1))

where

I Tm(e, ) [ 22wy < Cllll2,2]1¢]| 2

from which we deduce that
NV |22 vy < ClIVI 22V L2

Next observe that there exists a constant depending only on the geometry of N such that if V €
Uc, (k) is sufficiently small in the L?2?-norm then

E(Co+ V) — E(Co)|[M? < C|SW(Co + V)| L2y,

ISW (Co + V)| 12 > Cdisty (co LV, 0, N UCO(K)).

If x is sufficiently small then, following the proof of [123, Lemma 1, p. 541], we deduce that if
V(t) € Uc, (k) for all t € [to,t1] then

| N0 2oyt < € (Befto, 50" = Eelltr, 50))') (12.401)

to

< C/Ec([fo,h])lﬂ

where C,C’ are geometric constants. Using Corollary 4.2.15 it is now a relatively simple job to
establish the existence of an asymptotic limit. We refer for details to [96, Chap. 4].
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84.2.5 Proofs of some technical results

As promised, we include in this subsection some proofs which would have diverted the reader’s
attention had they been included in the middle of the flow of arguments in the previous subsections.

Proof of Lemma 4.2.14 Set Cr := [-T,T] x N and denote by Ay the connection induced by
Ag on the cylinder Cy. There exists ¢ € [—2, 2] such that

ISW (C(to)) 72y < E/4 < wo/4.
Now fix wqg sufficiently small so that
distr2.2([C(to)], M,) < 1/100
for some tg € [—1,1]. Set Cq := (0, Ap) and
§ = sup{disth([CO], [C]); [C] e smg}.
Observe that § < oo since 9, is compact. We can find a smooth gauge transformation such that
IICo — - Clto)|lz2 <&+ 1/50.

Now observe that both the hypotheses and the conclusion of Lemma 4.2.14 are invariant under the
action of the group of smooth gauge transformations on N. Thus, modulo such a transformation we
can assume that our monopole C satisfies the additional restriction

lla(to)l|z22(n) < 6 +1/50

for some tg € [—1, 1]. Holder’s inequality now implies

)22 < latto)ll = / () | 2 vy s

< 3§ +1/50 +2EY/2,

(4.2.42)

The Seiberg-Witten equations have the form

{ P 4,0 = —5e(a(t))y
ia = 1q(¢) — xida — *Fa,

If we apply d* to the last equality we deduce

(4214) i

5 Im{, Doty raoy) = —5 Im(w, (8)).

N U
id'a = 3d"g(v) 5

Now regard a as a 1-form on the four-dimensional cylinder. Since J;a = 0 we deduce d*a = d*a.
Set b := a, ¢ := 1. By differentiating the Seiberg-Witten equations with respect to ¢ we deduce

4,0 = —5e(a(t)o + Fe(b)y
ib = g1, ¢) — idb
d'b =4 Tm (v, )
[ Pag=—fea®)e+ie®y
ASD(ib) = (q(t:.)) & (~3 Im(v, )
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According to (4.2.10) there exists a geometric constant C' > 0 such that

sup [¢(t)||2=(N) < C(1+ EYY) < C

[t]<1

so that
|ASD(ib)| r2(c,) < CF.

Using interior elliptic estimates for the elliptic operator ASD we deduce
b2 < C(B+ bllizes)) < CF.

Thus, for all ¢ € [-3/2,3/2] we have

la(®)l1,2 < [la(to)

t
PERTEE / 16(3) vy ds < C.
to

Using the Sobolev embedding
LY2(N) — LS(N)

we deduce
la®)lze(cs,s) < C-
Thus
1&(a)dll za/2(cy ) < CllPlL2(Cay0) < CE.

Using interior elliptic estimates for
i, i,
P 4,9 = —5¢lat)g + 5¢(b)y (4.2.43)

on C3/5 we deduce
&l L1sr2(cy0)

i, i,
< C(l9llusra(cy ) + 1| = 56(a®)e + 5Eb) ] e, ) < CE.

Using the Sobolev embedding L'3/2(Cy/3) < L2/°(Cy/3) and the Hélder inequality (with 1/6 +
5/12 = 7/12) we deduce
&(@)6llp12/7(cs ) < OF

and we conclude as before using (4.2.43) that

||¢||L1112/7(C5/4) < CEFE.

Now use the Sobolev embedding L2/7(Cs5,4) — L3(Cs,4) and the Holder inequality (with 1/6 +
1/3 =1/2) to deduce
le(a)¢llrz(c,,.) < CE.

Using (4.2.43) again we deduce
[9llLr2(cq,5) < CE.

Thus
10l L12(c ) + [|@llLr2(c5,5) < CE-

Using trace theorems (see [79]) we deduce

162 + 6|2 < IbllLr2(co/5) + 10llL12(co/5) < OB, VE € [=1,1].
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The last inequality is precisely the content of Lemma 4.2.14. W

Proof of Lemma 4.2.24 Consider 79 > 0 such that
IV(t)ll22 < Cr, V[t —70| <1, Ee([to+ 70— 1,00)) < K°.
Set I; = (19 — 1/27, 79 + 1/27). We will first prove that there exists j > 0 such that
V@321 xn) < CIIV(O) | L2 (1o x 3 (4.2.44)

where V(t) = C(t) — Cy. We follow an approach similar to the one used in the proof of Lemma 4.2.14.
Rewrite equations (4.2.17) and (4.2.18) as an elliptic system over the 4-manifold Iy x N

_i

5 (W) + o), (4.2.45a)

(01— Da,)i(t) = 3eialt)

1
ASD - [ _‘i‘%) ] - ' (4.2.45b)
—3 Im(3po, ) —if
The component f is uniquely determined by 1 via the differential equation on NV
Ty (if) := £¢,Lc,if + Re(vo, ¥)if = 2iIm(h, D a,1)). (4.2.46)
Observe also that
34(to + 1) — *Fa, + idf
ASD - [ ia(t) ] = . (4.2.47)

— 3 Im (o, ¥)

Our strategy is very simple although the details are somewhat cumbersome. We will use the fact
that (4.2.45a) + (4.2.45b) form an elliptic system and then, relying on interior elliptic estimates, we
will gradually prove that stronger and stronger norms of the right-hand side, on gradually smaller
subdomains of Iy x N, can be estimated from above by the L%-norm of V on Iy x N.

Observe first that L?2?(N) embeds continuously in L>°(N) because N is three-dimensional. The
L*2-norm of the right hand side of (4.2.46) is bounded from above by C||¢||2,2 and thus we have a
bound

[fllzz2vy < CllYllp22(w)-

Using interior elliptic estimates for the elliptic equation (4.2.45a) on I x N we deduce

[P lLr20,xn) < C(WU)HL?(onN) + lleia(®) (@) 2 (1o x )

L@ + Yo)llza(roxm))
(use ] < C)

S OOl L2roxny + lla®)ll L2 xw)) = CIVE 2 (1% v)- (4.2.48)
In particular, we deduce )
[Pl 21 x vy < CIVO L2 (o x N (4.2.49)
Set ¢(t) := D 4,1. Then

$(8) ~ Dag(t) = 5D clia))yr + elia)s — seldf) — 2o, (1250)
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Thus, we have
10022y < € (10O 21 + | 1eGdr Y@ 208 [ 12r,

| eGa) )l 2wy e 1y + | a0 GO 2w )-

Now use
Ndf |22 vy + |19l 222 () + llall22vy < Ck,
LY2(N) < LS(N) < L*(N)
and
lleia)dllznvy < CllallLavylloll ey
to deduce
le(ia) ()]l 2wy + le(df () (®)ll 2y < Cr(llgllza(ny + 1]l z2(x))
and
1D 40, cGa)[¥ [l L2y < CrllPll L1201, xn) < CR[IVI L2010 v)
Hence

16822012 < C (6Dl 2011w + AIVOllz2(1s )

(4.2.51)
< (@2 xm) + V@22, m) < CIVO oy
Differentiating (4.2.46) with respect to ¢ we deduce
Ty (if) = F(t) (4.2.59)

= —iRe({(1), v0) — 20 Im((1), ¢) + 2 Im(3, ).

Since f L ker £¢, and l4(t)[| L2.2(ny) is small we deduce from Lemma 4.2.22 that for every 1 < p < 2
there exists a constant C}, > 0 such that

Hf”L?vP(N) < CIF@®) e vy

Using the Sobolev embedding LY?(N) < LS(N), Hélder’s inequality (in the case 4/6 = 1/6 + 1/2)
and the estimates
||¢HL1‘2(N) < C”ia Hw”oo <C

we deduce
IF @) a2y < CUR O 2wy + 192 llE) | 12wy + KIS0 L2 ()

< O(sll9(0) ) + 19 Ollz2 ).

Invoking the Sobolev embedding
L2,3/2(N) PN L1,2<N)

we deduce

1F®) 200 < C (IO N2 + 81Ol 2w + 1Ol )

so that we get

1 @Olzen < CUEG 200 < (I OIaen) + 190 z20x) ) (4.2.53)
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Integrating over Iy and taking (4.2.49) and (4.2.51) into account we deduce

1z (raxny + 1Sl 2y < CURON L2108y + 1]l 2022 <))

(4.2.54)
S CIVO 210 xw)-
To proceed further observe that
q(tho + ¥) = q(vo) + 2q(vo, ¥) + q(¥)
where ¢(u,v) is the symmetric bilinear map associated to the quadratic map g(u),
1
) = gl +v) — glu ).
Since q(1hg) = 2 x F4, the equation (4.2.45b) can be rewritten as
1
ASD - [ —1?}2) ] — . (4.2.55)
—3 Im(epo, ) —if
Using interior elliptic estimates we deduce
(@ FllLrzy vy < Cp(||a(t)||L2(Io><N) + [P0l 22 (22 x ) (4.2.56)
Hllz2(raxm) < CIVOllz2n.
Putting together the estimates (4.2.48) and (4.2.56) we deduce
||V(t)||L1,2(13><N) < CHV(t) ||L2(IO><N)a pE (1, 2). (4.2.57)

Thus, we have estimated the L?(I3 x N)-norm of V(t) by a weaker one, L?(Iy x N). We iterate
this procedure. Observe that the L12(I3 x N)-norm of the right-hand side of (4.2.45a) is bounded
from above by the L?(Iy x N)-norm of V so, invoking the interior elliptic estimates, we deduce

1N 221 x Ny < ClIVI L2 (10 x N)-

Using this estimate and estimate (4.2.53) in (4.2.47) we deduce that the L1'?(I; x N)-norm of the
right-hand side of (4.2.47) is bounded from above by the L?(Iy x N)-norm of V. Using the interior
elliptic estimates we deduce

lallzz2(zsx vy < ClIV L2 (10 x Ny

This shows
IVIz22(z5x 8y < ClIVI L2 (1o x v - (4.2.58)

Differentiating (4.2.50) with respect to ¢t we deduce that gb satisfies the elliptic equation

016 =Dy = 5 [Day, ] + 5[0, elia)}
o - . (4.2.59)
5 (eldf)e + etdr)yi+ fo+ £9).

By trace results (see [79]) we deduce

la(®)ll1r220v) < Clla@)l|zr 2z xny, 1@ Liz2vy < ClEO@) L2 xw)-
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Using the continuous Sobolev embeddings
L'**(N) < L*(N), L"*(N) < L5(N)
and the Holder inequality, which produces a bounded bilinear map

L3(N) x L%(N) — L*(N), (u,v) — uv,

we deduce
| @ ctiatel],
< C(llaHme)lll/fHLoo(N> + Hd”Ll/?vQ(N)W||L1‘2<N>)
< CH(HV”L?(IOXN) + ||"1||L1’2(N))
so that

|1, clia)]o |

sty < O (IVllzzapm + lallzezge) ).

Using (4.2.53) and the L*-estimates on f and ¢ we deduce

|e(@fye + etdr)i + fo + £4)

) < OV lL2 (1o x N)-

L2(Isx N

Applying the interior elliptic estimates to (4.2.59) we deduce

@l 2r2(rsx vy < ClIVIL2(roxn)-

Differentiating (4.2.52) with respect to ¢t we deduce

£¢ Lcif +iRe(y(t), vo)f = —iRe(d(t), vo) f + 4iIm(P(t), §)

+2iIm(3(t), 6(t)) + 2 Im (1), 9).

We can rewrite the last equation as

Ty (if) = —iRe((t),v0) f + 4 Im (i (t), §)

+2Im () (t), (1)) + 21 Im (1), §).

Since [|1(t)|| 2.2y is small we deduce from Lemma 4.2.22 that for every 1 < p < 2 we have

1F 1|20 )

< Cp||—Re(y (1), vo) f + 4Im()(t), §) + 2Im(3(t), 6(1)) + 2Im(y), @‘

LP(N)

Now observe that

I Re(t(t), v0) fll zorz(ny < CllPN 2o flzs vy < Cl Nz I Iz

(use 4.2.53) and trace results) )
< ClVllezoxny ¥l 2 vy -

Similarly

1T (@ (t), o)l o2 (ny < ClbllLz w0l < CrllY L2y
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Next observe

1T (&, @)l 572 < Clld sy Dl oy < ClGE) L1722 191 /22y

(use trace results)
<Ol pr (1 1Dl L1 (165 ) -
Finally
I Tm(, §) || /2wy < ClIM(, B L2 vy < ClldllL2(av)-
We conclude that
£l 2wy < ClFlp2arzn
< O (Mo 92y + 1921 20t0x Il 220y + 12 v

Integrating the last inequality over Is we deduce

Il L2crexny + IdF |22 e xny < ClIVIL2(rox ) (4.2.60)

Now, look at the elliptic system (4.2.45a) + (4.2.47) in  which the
L*2(Is x N)-norm of the right hand side can be estimated from above by [|V||12(7yxn). Invok-
ing the interior elliptic estimates once again we obtain (4.2.44).

Now using trace results (see [79]) we get

V(T 1Z22 3y < CIVI 521, x0) < CIVOIL2 (1)

To+1
—C / disty= ([Clto + )], [Col)2dt <

0—1
To+1 9 (4.2.8)
c B (diStL2([C(t0 +1)], [Cto + 70)])* + dist 2 ([C(to + 70)], [Co]) )dt <
To+1 9
cf (disth (IC(to + 7o), [Co])® + |t — 70| Be ([to + 70 — 1,t0 + 70 + 1]))dt

< C’(disth([C(to +70)], [Co])? + ,-;6).

The conclusion in Lemma 4.2.24 is now obvious. H

Proof of Lemma 4.2.27  Set

iag iau
= , U:= .
e=[he] o= L]
The quadratic remainder R(V) = SW(Cy + V) — AV can be expressed explicitly and, after some
elementary manipulations left to the reader, we get

sciae +iay) (Ve + 1u)
R(E+U) = ,
$a(Ve) + a(vhe, ¥u) + $q(u) — *Fa,

sciag)ye
R(¢) =
3q(1he) — *Fa,

Clearly
[R(E +U) = R(§)llL2 < C[|V]|2,2][U]l2-
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The term 91(V) requires a bit more work. We use the identity (4.2.20)

V) = ~Leyvlif) = £e,i) - | | = 2e, i) +
Now define A := Ag + ia¢, and observe that
F:= Il’l’l<’(/)7 33Aow> = Im<w7 ©A5w>7

= Im(’tﬁ, ©A§¢€> + Im<¢, ©A§¢u> = Im(% CDAgwu>

We claim that
IFlz-12vy) < ClIV2,2 - U] 22, (4.2.61)

that is,
[(F, )2 < ClVll22 - [Ul[z2 - [[7]l2, V7 € CF(N).

Indeed, using the Sobolev embedding L*?(N) — L*(N) we deduce

1,2

[ 1m0, 04| < CPplli @ actulzsel 17

< D agthu + eliag)tullp-r2|[Tl12][¢]l2,2
< Clirlh 2l a2 (1D agtbull 1.2 + lletiae)ybull -1.2)
< Clrl2lVI2,2llU] 2
The equality Ty (if) = 2iF now implies
[fllne < CllF-12 < C([¥lloo + [[VI2,2) - [[U]] 2 (4.2.62)

so that
[€co+vif)lle < Cllflli2 < ClIV]22 - [V 2.

This proves (4.2.27b). To prove (4.2.27¢) observe that

2|((V), U%) 12

- |[ (2 i) + ¢ U5,
(8,U% = 0)
= | [ e.U%1dug] < plza Vs < 1 Fles e 0% 1

(use the Sobolev embedding L*?(N) — L*(N))

(4.2.62) )
< Clgll2lVil2z2 - (U] Ze-

This concludes the proof of Lemma 4.2.27. B

4.3 Moduli spaces of finite energy monopoles: local aspects

We have so far studied the internal structure of a single finite energy monopole. We now shift
the emphasis to a different structural problem. Namely, we would like to describe some natural
structures on the set of finite energy monopoles.

This problem encompasses both a local and a global aspect. The local aspect refers to the
smoothness properties and the expected dimension of this moduli space. The global issues we will
discuss are concerned with the compactness and orientability properties of this space.
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84.3.1 Functional set-up

To analyze the possible structures on the set of gauge equivalence classes of finite energy monopoles
on a 4-manifold with cylindrical ends we need to define an appropriate configuration space a priori
containing the set of such monopoles. Consider a cylindrical 4-manifold (N ,§) and a cylindrical spin®©
structure & on N. Set o := 9,,6. Again we will be working under the nondegeneracy assumption
(N) in §4.2.3, that the pair (g, o) is good.

The asymptotic analysis in the previous section suggests that it is wise to restrict our attention
to a special class of connections on det . We will follow an approach inspired by [96, 99]. Observe
first the following consequence of the nondegeneracy assumption (IN).

Lemma 4.3.1. The quantity

i-(0,9) = inf{ - ([C])s [Coc] € M, |
is strictly positive.
Exercise 4.3.1. Prove Lemma 4.3.1.

Proposition 4.2.35 shows that it is natural to restrict our attention only to configurations with
stringent restrictions on their asymptotic behaviour. Fix 0 < p < u_(o,g) and denote by €%

pex
the set of smooth configurations C on N which differ from a strongly cylindrical configuration by an
L??-term. More precisely, along the neck C has the form

C= (), A) = (1), A +if(B)dt +ia(t)), t € Ry, Axc € Aq
and there exist 1o € C(S,), as € Q*(N) such that

1122 + la(t) = asell 22 + [9() = booll 22 < oo

We set .
00C := Coo = (Y0, Ao + 100)-

We thus have a natural projection

Oso éffcm — C5° = smooth configurations on V.

As in §84.1.4, for every r > 0 we can construct a right inverse

. 000 P0oo
iy 0 CO HGWH

for 0u, Ox © 4, = 1. The space é;’f’ez is equipped with a natural metric

du(éh Co) = [|0sCi — aooCQHQ,Q + H(Cl —i1050Cy) — (Co — ilaooCQ)’

2,2°
Lu

We can now define! é%ez as the completion of éffﬂ with respect to the metric d,. It is naturally

equipped with a structure of Banach manifold. Observe that J., extends to a smooth map
O Cpea — Co.

O 18 a surjective submersion. R A
Proposition 4.2.35 shows that for any smooth finite energy monopole C there exists 4 € C*°(N, St)
such that 4-C € €f7,,. We want to prove that the converse statement is true: any monopole C € €

has finite energy.

o)
w,ex

IThis a departure from the traditional functional set-up which involves fractional Sobolev spaces, [96, 133]. Our
configurations have regularity slightly better than L22(N) because, by definition, their asymptotic traces are not in
L3/2:2(3N) but in the more regular space L%2(dN).
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Proposition 4.3.2. Fiz a smooth configuration Co = (g, Ag) € é#,em such that

Then C = (4, A) € éu,ez has finite energy

/AFAO/\FAD < Q.
N

PO = [ (I940F + Gla)F + P3P + 310 )du(d) < oo
yi= [ (Ba0P + 5le(FD) = 3R )av(a)

if and only if
E(C
FAU AN FAO < 00

+26,(05C) + /
N

where €, : C, — R is the energy functional described in (2.4.8) of §§2.4.1, defined in terms of the
Z‘fex s a monopole then

reference connection Ag 1= O Ag. In particular, if Cet
E(é) = 250(6OOC>+/A FAD /\FAO :/A FA/\FA < o0.
N N

Proof Set Ny := N\ (T,00) x N. Using the integration by parts formulz in Exercise 1.2.2 (in
9)

which all the inner products are real valued) we deduce
| waiPa) = [ Ba,(hp0wte)+ [ @b bl
Nt ONT Nt

_ / By, (,P4t)dv(g)
ONT

(use the Weitzenbock formula)

Denote the above boundary integral by Rg(T'). As in the proof of Proposition 2.1.4 we have

3 [ D)~ GahPan)
= [ (AP 4 Gla) - 5@t o)
By adding the above equalities we deduce
[, (bt + 5le) - o))
la()?) dv(3)

P S - 1
=Ra<T>+/ 4GP + Sl + 2P + &
NT< 4‘ | A 8
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= Ro(T)+ [ (VA0 + S0 + Faf + Gla(d)) (o)

Nt
- [ FA/\FA'
Nt

Using Exercise 1.2.2 we deduce
Ro(r) = [ ((79.940) ~ (0,90} )au(o)

(A(T) = A lo,)
ONT
:_/A (0, D ayP)dv(g)-
ONT

On the other hand, we can write F)y = F5 + J(A — Ao) so that
FA/\FA:FAU/\FAO—I—CZ((A—Ao)/\(FA—I—FAO)).

Thus
) FA/\FAz/A (A—AO)A(FA+FAO)+/A Fa, N4,
NT 6NT N

T

so that if we set C(T) := C lox, We deduce
[ (il + 5letE;) = Sa()R)de(a)
o\ A 20 AT 2

A Ao ~ 1 ~
= [ (AP + S19P + |4 + Sla(P)du(a)

Nt

*ZEU(C(T)) — /ﬁ FAO A FAO'

Nt
The first part of the proposition now follows by letting T — oc. R
The second part is an immediate consequence of the above proof and the fact that J,,C =
(Y00, Aoo) 1s @ monopole so that D4 1o =0. A

We now need to define an appropriate gauge group. Set
G = {4 € LEZ,(N,C); J3(p)| =1 Wpe N},

Observe that N . .
gu,ew . Cp,,ew - Cp,,em-

We can now define a metric d,, on /S\H’ez by setting
d,(91,%2) = [|[0sc¥1 — OxcH2||3,2
H(31(E) = i00scH1) = (G2 — iano:Y2)||Lﬁ=2(R+><N)~

§u,ez equipped with the above metric becomes a topological group and we have a continuous group
morphism R
800 : 9p,ex - 90’~
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Proposition 4.3.3. 9“ ez 15 a Hilbert Lie group and Ty SH er = L322 (N V,iR).

Exercise 4.3.2. Prove the above proposition.

The group §M$ may not be connected. Its group of components is isomorphic to H 1(Z\Af V7).
Since the map

HY(N,Z) — H'(N,Z) = the group of components of G,

may not be onto, the morphism

Os  Spex — o

may not be onto. It becomes onto if we restrict to the identity components of the two groups. We
will indicate these components by the superscript 1.

Lemma 4.3.4. The morphism O : §Lew — Gl admits a natural right inverse
E:8L =G0 exp(if) — exp(iiof).
We will denote by §u the kernel and by 92 the image of the morphism 0O, : gu,ew — G, so that
$,/92 = H'(N,Z)/H'(N,Z).
Fix Cp = (& fl) Cpex and set Cog := = 0:Co, Goo := Stab (Coo)- Define
800 :={C € Tc_Cy; SExC =0}.

Fix a tiny neighborhood U, of 0 € S, such that every G, orbit intersects Co, + Uy, along at most
one Goo-orbit. We deduce that any GZ2-orbit intersects U, along at most one G.-orbit. Set

Uso := 0 (Coo + Uso).

We see that any G,-orbit intersects Us along at most one orbit of the group 9# ezx(Coo) = 0N (Goo)-

Thus, the problem of understanding the local structure of GM ex/ 9 u,ex 15 equivalent to the problem
of understanding the local structure of

Usc/Gpusea (Coo)-
Observe that E‘B\H@C(Coo) is a commutative Hilbert Lie group with Lie algebra
T19uea(Coc) = {if € LiZst Ono(if) € TiGoc}.
Observe that there is a natural action of §WI(COO) on 931 (Cs) X Uy defined by
4(CCoo +C) i= (5 C, Coo + (9%) - €).
The following result should be obvious.

Lemma 4.3.5. The natural map
9.1 (Coo) X Uso — Ung, (C,€) — C+ioC

is a §H’ew(Coo)—equivariant diffeomorphism.
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The last lemma reduces the structure problem to understanding the quotient ' (Cs)/ §“7em (Coo)-
Observe now that 95'(Cso) is a smooth Hilbert manifold modeled by L>?(S} @ iT*N). The group

§u,em(cm) acts smoothly on this manifold and, as in the closed case, we can define the infinitesimal
action

~ . d sif 2
Le, : T1Spnex(Coc) = Te, 02 (Coo), if - |ls—0 €%/ - Co.
Set . . .
8¢, ={C € Tp, 0.1 (Coo); zyg =0}

where x,, denotes the L2-adjoint as in §4.1.4. Set Gy := Stab (Cy). Notice that the induced map
éo — (oo 1s One-to-one.
Let us first observe an immediate consequence of the Lockhart-McOwen Theorem 4.1.16.

Lemma 4.3.6. There exists p1o = po(o,g) € (0, u—(0,g)] such that the operator
(d+d*): LY*(AT*N) — LL2(AT*N)

is Fredholm for every 0 < p < uo(o, g).

In the sequel we will always assume 0 < p < po(o, g). (4.3.1)

Proposition 4.3.7. There exists a small Go-invariant neighborhood 14 of 0 € SCO such that every

orbit of /9\M7e$(COO) intersects Co + V. along at most one Go-orbit.

Proof We will follow the strategy used in the proof of Proposition 2.2.7 in §2.2.2. Consider
F: Gpuea(Co) x 8¢, — 021 (Cox)
defined by R . o R
F(H:v,ia) = (Y(vo + ), Ao + ia — 2d5/%).
We have the following counterpart of Lemma 2.2.8.

Lemma 4.3.8. There exists a Go-invariant neighborhood W of (1,0) € §#,ez(Coo) X Sco with the
following properties.

o P1 The restriction of F to W is a submersion. In particular, F(W) is an open neighborhood of
Co in 01 (Coo).

e P2 Each fiber of the map F: W — F(W) consists of a single Go-orbit.

Proof of Lemma 4.3.8 We will use the implicit function theorem. The differential of F at (1,0)
is the bounded linear map

DF : TyGy.e0(Coo) % 8¢, — Te, 05 (Coo)
described by o . . . . .
(if,¢,ia) — (ifvo +¢) @ (ia — 2idf) = L¢ (if) + ¥ @i
We want to prove that DF is surjective and ker DF = T, Go.
o ker DF = TyGy. Tf (if, 1), 1) € ker DF then £7(¢ @ ia) = 0 so that
¥ o\

0= £ DF(if,v,10) = £ (L¢, (if) + ¥ ® 1a) = £ L¢ (if)-
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Thus,
0= [ (20, () ihmayds) = [ (82 mate, (1), if)dv(o)
. o d -
= /NT |€¢, (if)Pma,dv(g) + /8 NT(f% Fma,, (T)dv(g).

By letting T'— oo we obtain
0= [ 126, i) Pmayde(s)
N
so that if € ker ECO >~ T, Gy. This equality forces é =0and a =0.

e Surjectivity We need the following technical result. Its proof will be presented after we complete
the proof of Lemma 4.3.8.

Lemma 4.3.9. The range of the bounded linear operator

Le, {if € L)2,(M,iR); 0xif € T1Gos} — L2(ST ®iT*N)

s closed.

If we assume the lemma then we deduce that any ¢ @ ia € Li(S}: @ iT*N) decomposes L2-

orthogonally as . o
Y@ia=Lc (if)+y@ia
where Ez“ (12) @ia) =0 and if is unique up to an element of ker Le,-
o\
Lemma 4.3.10. If R
¢ @ia e L?
then R
if e L3?

piex:

Observe that if 1[) @ ia € Li’z then Lemma 4.3.10 implies @ @ ia € L}L’z, thus proving the
surjectivity of DF.

Proof of Lemma 4.3.10 Observe that fo := aoof is a constant function on N and thus extends
in an obvious fashion to N. Set

fO = f_ foo
We use the equality

£ Lc, (ifo) = u = £¢ () ®ia) — £ Lc, foo € L.
Along a cylinder [T'—2,T +2] x N, T > 3, we have
8 8¢, (ifo) = (22, 8e + 2u8e, ) (ifo) = u
so that using interior elliptic estimates we deduce

||f0||L3v2((T—1,T+1)><N) < C(||fOHL2((T—2,T+2)><N) + ||UHLL2((T—2,T+2)><N))

< Ce_#T(Heutfo(t)HLQ((T72,T+2)><N) + ”eutu(t)||L1v2((T72,T+2)><N)>-
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Thus
e follLa.2((r—1,741)x 5y < C*T || foll a2 ((m—1,741)x N
< C(|\€“tf0(t)HL?((T—z,TJrz)xN) + ”eutu(t)||L1v2((T72,T+2)><N)>-
If we now square the above inequality and then sum over T'= 2,3, --- we obtain an estimate of the

L3?*-norm of fo in terms of the L,*-norm of u and the weaker L2 -norm of fo. This completes the
proof of the claim. W

We can now apply the implicit function theorem to conclude that there exists an open neigh-
borhood W of (1,0) € 9# ez (Coo) X SC such that the restriction of ¥ to W is a submersion. Since

ker D(1 ol =T Go we deduce that the fibers of F : W — F(W) are smooth manifolds of dimension
dim GO In partlcular if GO =1 then JF is a local diffeomorphism.

Suppose Go = S' so that wo = 0. We have to prove that each fiber of F: W — F(W) consists
of a single Gg-orbit. Let Flexp(ifi); vn,ia1) = Fexp(ifa); v, ias), i.e.
exp(if)z/?l = ’L/AJQ, &1 — dg = QdAfA
where f:= f; — fa. Since (4, id;) € 8¢, we deduce
EE’:(I;]', i&]) =0 d*"&j =0.
This implies o
d*df = 0.

Using again an integration by parts argument as before (over Nr, T — o0) we conclude d f =0,
which leads to the desired conclusion. This concludes the proof of Lemma 4.3.8. B

Proof of Lemma 4.3.9 Suppose we are given
fn Liix? ocfn 6TlG(oo
such that

2e,(fa) 25 (1), n— oo. (43.2)

We have to show there exists . R
if €L}, 0xf G

such that
¢, (if) = (¢,ia).

First of all, observe that it suffices to consider only the case

Indeed, we can write
fn = 7? + aoofn
and

CO (lfn) CO (lf ) CO (iaoofn) = ECO (lfg) + (eXP(iﬁoofAn)l/;o’ 0)'

A subsequence of J, fn converges modulo 277 to a constant w and clearly

(exp(iw)dho, 0) = L¢, (iw).
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Thus, it suffices to consider only the situation f, € L};*. The condition (4.3.2) implies

~ L2
df, - —a.

Now observe that we have the following

A priori estimate There exists C > 0 such that
1912 my xovy < Clldg L2 @y vy (4.3.3)

Vg e L2(Ry x N)N L2 (Ry x N).

loc

To prove the above inequality we will use a trick? in [151, Prop. (2.39)]. Observe first that we
only need to prove a L?-bound for j since

191722 = gl1Zz + lldaliZz -
Set b := dg and observe that

which implies

3] = a(t) — §(o0)] < / ” b(s)\ds.

oo oo oo . 2
/ 9(1)[2e2tdt < / ( / |b(5)\ds) e2t
0 0 t

(use the Cauchy-Schwarz inequality for the interior integral, 0 < v < p)

< /000 (/too |l;(s)|262”sds) (/too 672D5d8) et dt

1 oo oo N
(/ |b(s)|262”5ds> A=)t gy
t

:27 ;

Thus

(switch the order of integration)

1 (/ 62(“_”)tdt) |B(s)|262”sds
0

:E )

1 > 1 2(p—v)s 7 2 2vs
= — —_— S—1)[b °d
5 [ s JIo(s) e

— o ([P - [ i)

< 41/(:1/)(/000 |5(s)|262“sd8>.

To obtain the a priori estimate we only need to integrate the above inequality over N. B
Using (4.3.3) we deduce

[ fn — meL}LvQ(RxN) < Clla, *@mHLi(RerN)v Vn,m > 0.

2] am indebted to Stephen Bulloch for drawing my attention to this trick.
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Since (a,,) is Li—Cauchy sequence we deduce that ( fn) converges in the L};Z—norm to f satisfying
(weakly) the differential equation

df = —a.
This shows Eéo(if) = (@, ia), which concludes the proof of Lemma 4.3.9. B

Remark 4.3.11. (a) Observe that if § € Lllt;z (N) is such that cig € Li then the above proof shows
that g € L2, (N) and
19— 0nodllzs, < Clddlizs-

This is essentially the content of the key technical result [132, Lemma 5.2] proved there by entirely
different means. o

(b) Suppose E — N is a Hermitian vector bundle equipped with a cylindrical structure (¥, V°). Fix
p > 0. The above proof shows that there exists a positive constant C' with the following property:
for every u € L?(E) such that Vou € L2(T*N ® E) we have alls < C’\|V012||L2 Iterating the

above procedure to the bundles T*N® @ E we deduce

lall 2 < Crll(VO)*al| 2 (4.3.4)
for all 4 € LQ(E).
Exercise 4.3.3. Prove the claims in the above remark.

%k Xk 3k

_ We can now complete the proof of Proposition 4.3.7. We need to prove that there exists a small
Go-invariant neighborhood V of 0 € SC such that every SM ez (Coo )-orbit intersects Cy + V along at

most one orbit. In other words, we need to prove that, for V as above, each fiber of the map
F: Guen(Coo) x V — 01 (Coc)

consists of a single GO orbit. Observe that according to Lemma 4.3.8 this statement is true for the
restriction of F to a Go-invariant neighborhood Uy x Vg of (1,0) 9# ez (Coo) X S . We will argue
by contradiction. R

Suppose there exist sequences (’lZ}n’i&n), (qgn,ilgn) € Vp and An € Gp.ex(Coo) with the following
properties.

(¥n i), (G, ibp) — 0 in L2 (4.3.5)

Co + (U, idn) = An - (Co + (¢n, ibyn)), Vn. (4.3.6)
We will show that ¥, € éo, Vn > 0. We will rely on the following auxiliary result.
Lemma 4.3.12. 4,, belongs to the identity component of §H’ez(Coo) for all m > 0.

Let us first show why this result implies 4,, € Gy for all n > 0. Using Lemma 4.3.12 we can
write

ﬁ/n = eXp(ifn)a fn Liiw

We can also assume that the constant function f,, := 0 fn lies in the interval [0, 27]. By extracting
a subsequence we can assume
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Using (4.3.6) we deduce
Ci(fn - fn) = i)n — Q. (4.3.7)

The a priori estimate (4.3.3) implies
1 = full gy < Cllbu — aullzz — 0.
The equality (4.3.7) also implies

”dA(fn - fn)“Li2 < ”I;n - dn”Lﬁ’z'

We conclude that fn converges in Lizez to the constant function foo = feo. Using (4.3.6) we deduce

exp(ifoo) . CO = Co

so that exp(i foo) € Go. This proves that, for large n, 4, lies in the Go-invariant neighborhood Uo
of 1 € §,,e2(Coo). Thus, for all n > 0 (1, (¢n,iay)) and (n, (¥n,ib,)) lie in the same fiber of the
restriction of F to Uy x Vp. This shows An € Gy, thus completing the proof of Proposition 4.3.7. B

Proof of Lemma 4.3.12 The equality (4.3.6) shows that

1(d4n) /Al 2z — O

so that it suffices to prove that there exists ¢ > 0 such that

%]
:

» >c (4.3.8)

for all 4 € §M76x(Coo) which do not lie in the component of 1.
Observe that {25 := (d4)/4 is closed and 4 lies in the identity component of 9#’61;((?00) if and
only if there exists f € LI?;’Q such that

Set
Ly : LA(N) = R, f||Q +idf] -
This functional is smooth, strictly convex, and coercive, i.e.
L(f) = 00 as | fl e — oo.

(The coercivity is a consequence of (4.3.3).) The variational principle [19, I11.20] (or [105, Prop.
9.3.16]) implies there exists a unique f5 € L}L’z such that

1925 + idf’y”Lﬁ = min I5.
f:/ is characterized by the variational equation
Ci*"dAfAfy = i(i*“ny.

Arguing exactly as in the proof of Lemma 4.3.10 we deduce f@ € Lff. Set

(9] == exp(if3)7, [Q5] := Q).
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Observe [] is in the same component as 4 but
%] Iz < 1924122 -

Notice also that the assumption (4.3.1) implies that [Q4] lies in the finite-dimensional kernel of the
Fredholm operator

TR . 2 (% A Kk N T2 (AR N
(d+d"): L?(GA*T*N) —: L2 (IA*T*N).
The set ~

{[Q,ﬂ; € Su,ex(coc)}

is an Abelian subgroup S of ker(d—i—d*“) isomorphic to the discrete group of components of §#7EE(COO).
The constant ¢ in (4.3.8) is given by

inf{[[s|[r2; s€S\{0}}>0. W

It is now time to put together the results we proved so far to describe a topology on the set
¢ Chex/ 9 wez- The results we proved so far amount essentially to a “straightening statement”: each
orbit has an open invariant neighborhood equivariantly diffeomorphic to an open invariant neigh-
borhood of the zero section of a G, ¢;-equivariant vector bundle over G, ... Let us provide the
details. R R

Fix Co € Cpex and set Cg := 8OOC0. To describe a neighborhood of G, s - Co we need to fix
several objects.

e A small open neighborhood Uy, of 0 € 8¢_ such that every G,-orbit intersects Co, + Us along at
most one (Go.-orbit.

e A small open neighborhood Vof0e Séo such that every §“,em(COO)—orbit on 9} (Cy) intersects
Co +V along at most one G’o—orbit. Set

Uo = Uo(v, Uoo) = V 4+ 19U
where i : C, — C’Mm is the extension map defined as in §§4.1.4.
Lemma 4.3.13. The set W := §“ ex UO is an open neighborhood of §/L ex CO m é/t ex-

Sketch of proof Since W is 9 wex mvarlant it suffices to show that there exists an open neighbor-

hood V of CO such that W = 9 wex - V. To construct the neighborhood V we consider as in Lemma
4.3.8 a map

F: Gpew X Uy = Cpucw, F(3:9,10) = (3(dho + ), Ao +ia — 2d5/3).

Using the implicit function theorem (whose applicability can be established using the same arguments
as in the proof of Lemma 4.3.8) we can then show there exists a neighborhood Nofle gu,ew such
that the restriction of F to N x Up is a submersion. Then V := ff(j\f X Uo) is an open neighborhood
of Co in CA'[T,M and W = §u,ew . '\A7 |

There is a tautological left §#Vem—action on §#7m X UO and the above map JF is §#7m—equivariant.
Observe that the group Gy acts freely on G, er ¥ Uo by

4o+ (7,0 = (345 A0 - ©)

V9o € @0, € §u,ex, Ce Uo. This action commutes with the above §M76x action and, moreover, F
is Gg-invariant. We let the reader check the following fact.
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Exercise 4.3.4. Each fiber of I consists of a single Go-orbit.
We deduce the following local linearization statement.
Proposition 4.3.14. The induced map
F: (§u,ew x Up)/Go — W
is a §/Lvem—equivariant diffeomorphism.

A neighborhood of (1,0) € ((@Wm X Uo)/éo)@“,w is homeomorphic to Uo/éo. This has the
following consequence.

Corollary 4.3.15. A neighborhood of Co in W//S\H,ex (equipped with the quotient topology) is home-
omorphic to [70/@0.

Sometimes it is convenient to have a based version of this result. Fix a base point * € N and
form the groups

So(x) :={y € Go; (x) =1}
and

/g\p,ez(*) = 8;01(90’(*))

Using the short exact sequence
1o Gen (%) = Guew = ' — 1
(where the second arrow is given by 4 — 0oo¥(*)) we obtain a fibration
Spea(t) — Guew x Uo
p
St x Up.
The projection p is Go-equivariant and we get a fibration

gu,ea:(*) — (/9\,[1,,693 X UO)/GO

(S x Uy)/Go.
The last diagram has the following consequence.

Corollary 4.3.16. The based gauge group /S\M)ew(*) acts freely on é&,u and the quotient is naturally

a smooth Banach manifold equipped with a smooth S!-action. A neighborhood of Co in this based
quotient is S'-equivariantly diffeomorphic to

(ST % U)/Go.

Moreover, we have a natural homeomorphism

éé’,u//g\u,ez = (é&,u/gu,e;p(*)) /St
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The asymptotic boundary map Ou : €5, — Co fits nicely in this picture. Observe first that

and thus we get a smooth map
0o : €5 /Spuen () = Cq /5D (). (4.3.9)

This map is locally described by
Oso : Uo — Uy

which is clearly a submersion. Observe also that the map (4.3.9) is onto.

84.3.2 The Kuranishi picture

The ambient configuration space
eu,ez/gu,em

has a rich local and infinitesimal structure. We now want to analyze whether the set of gauge
equivalence classes of finite energy monopoles has a natural local structure compatible in a natural
way with the local structure of the ambient space.

We first need to define the appropriate functional set-up for the Seiberg-Witten map (whose zeros
will be our finite energy monopoles). To construct such a set-up we will rely on the nondegeneracy
assumption (IN). Denote by Z, C C, the set of 3-monopoles on N. The nondegeneracy assumption
implies that Z, is a Banach manifold.

Define
Cpsw = 01(Zs)

s

and
Y= L*(S; @iATTN).

Observe that éu,sw is a smooth §M,ew—invariant submanifold of éu)em.

At this point we want to draw the attention to a very confusing fact having to do with the
cylindrical structure of iAiT*N described in Example 4.1.24 of §§4.1.6. Recall that along the neck
R, x N we have the bundle isometry

T: AE_T*N = A TN, w— V2w

where 7 is the natural projection R x N — N.
The following fact indicates that, for essentially metric reasons, we have to be very careful how
we interpret the term ¢(v), as an endomorphism or as a differential form.

Exercise 4.3.5. (a) Show that if e!,e?, e® is a local oriented orthonormal frame of T*N then for
every ¢ € I'(S,) we have

M a) = 5 3 (el )l

2

(b) Show that for every ¢ > 0 and every ¢ ~ (1(t)) € F(S:) ~T(7*Sy)

VIZ (&7 (g(D)) ) loxn= e (al(0)).

Hint for (b): Use part (a) and the identity in Exercise 1.3.2.
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The Seiberg-Witten equations define a natural map
_— . P - 1, -
SW : Cusw = 9 (9, 4) =P (VRS - 567 (a())).

Using Exercise 4.3.5 the reader can immediately check that indeed SW (C) ey u for all Ce éu,sw
and that SW is twice continuously differentiable. Set

1

iy ——1 -~ — —_— o~
m# = SW (0)/9#7617 m#(*) =SW (O)/g,u,ex(*)

We want to analyze the local structure of ﬁu and ﬁu(*)

Suppose Co is a smooth finite energy monopole. The results in §§4.2.4 show that, modulo a

L?O’i—gauge transformation, we can assume Co € €, s,y. Denote by SWe  the linearization of SW at

Co. We obtain a differential complex

1
3L, -

_ s, n
0— Tlgu,ex — Téoe,u,sw — TO%H — 0. (ICCO)

Proposition 4.3.17. The complex I/C\CO is Fredholm.

Proof Let us first introduce a bit of terminology. A Hilbert complex is a differential complex
d d
O—>H0—>H1—>H2—>"'

in which the spaces of cochains H; are Hilbert spaces and the differentials are bounded linear maps.
A Fredholm complex is a Hilbert complex with finite-dimensional cohomology. (For more on Hilbert
complexes we refer to [20].) The following result is left to the reader as an exercise.

Lemma 4.3.18. Suppose

0 — (Co,do) ER (C1,d1) 2 (Ca,dy) — 0

is a short exact sequence of Fredholm complexes where the morphisms f and g are bounded linear
maps with closed ranges. If two of the complexes are Fredholm then so is the third and, moreover,

X(C1,dy) = x(Co,do) + x(Ca,d2)

where x denotes the Euler-Poincaré characteristic of the associated Z-graded cohomology space.

~

The complex (K¢ )fits in a short exact sequence

0-F<5Ke, 2=B—0 (E)
defined as follows.
o = FCO:
N ~ £ . . SWe .
0 L3*(N,iR) = T1 G, —> L2*(SE @iT*N) = T¢ 0. (Coe) — Y — 0. (F)
e B = B(Cy):
0— TG, 255 Te_2, —0—0. (B)

Denote by d(Cy) the dimension of the component of 9, containing Co,. We leave the reader to
check the following elementary facts.
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Exercise 4.3.6. (a) Prove that (E) is exact and the maps ¢ and J have closed ranges.
(b) Prove that B is Fredholm and x(B) = dim Stab(Cy) — d(C).

We see that Proposition 4.3.17 is a consequence of the following result.
Lemma 4.3.19. The differential complex F is Fredholm if 0 < p < po(o,g).

Proof The arguments in the proof of Lemma 4.3.9 (especially the estimate (4.3.3)) show that the
differential SCO in F has closed range if
0 < p < po(o,g). Moreover ker £¢ = T1Stab (Co). Thus it suffices to show that

SW : L2*(St &iT*N) — Y,

has closed, finite codimensional range and dim (ker SW ¢,/Range (SCO)> < 0.
Using Lemma 4.3.10 we deduce that any Ce LiZ(S;r &) iT*N) decomposes uniquely as

AL
o +C

[@F

i =
where N
C e Range (L¢,) C ker SWe
and
Co € L8] @iT"N), £2Cy=0.
0
Thus it suffices to show that the operator

T STV ]' * Q ok N () .
Tepu=8We, ® 5L+ Lp* (8] @iT°N) — Y, © L*(N,iR)

is Fredholm. To do so, we will rely on Lockhart-McOwen Theorem 4.1.16.
Let us first observe that ‘J’CO u is an a-APS operator. Set

Co = (tho(t), Ag), Coo = (Yoo, Ao) = nuCo

and
) (1) £22(8%)
C= € 5]
idt A u(t) + ia(t) L22(iT*(Ry x N))

Along the neck we can write Ag = Ao + idt A v(t) + ia(t), v,a € L2 for all k € Zy, 0 < pu < po.
The operator SW & @ %SE“ has the form
0

1

(@Co “3

e—2~t£goem) @(t) @ idt A u(t) + ia(t))
P 4, 0(t) + Se(idt Au(t) +ialt) ) o

| V2dT(idt Au(t) +ia(t)) — <& (G( o,

2

ASS

—icz*(dt Au(t) + Q(t)) + 2ipu(t) — § Tm (o, v)
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(use Exercise 4.3.5 and the computations in Example 4.1.24)

Joo o7 [ Ve - (Dacv+ ela®) —u®)do)  +ueu()

=|0 10 i(Owa(t) + *da(t) — du(t)) *5071Q(1/303f)
0 0 1 1(8tu ) + 2uu(t )) —1 Im(4o, )
J Da, O 0 Y(t)
| o 0 —+d d ia(t)
0 0 a —2u iu(t)
ie —u(t) )
) wét)J 0 0 %(t)
— | st d@o(t), v(t)) +1 0 00 ia(?)
0 0 0 iu(t)

5 Im( 4o (1), 9(1))
Proposition 4.2.35 shows that ||¢(t) — (t)”LfirZ < oo, for all k € Z,. The

above computation now implies that ‘jiCo u is an a-APS operator and, using (4.2.2), we deduce

8007@0# = Tewm = Lax 2
T2%Co ap

We want to show that ker(pu+ Tc__ ) =0 forall 0 < u < p—_(0,9).
Suppose C @ if € ker(v + Tc_ u), v € R. This means

SWe_ (C) = $&c.. (if) = —viC
. (4.3.10)
L¢_(C) +4pif = 2vif

Observe that £¢_SW. = (SW,_£c)* = 0. If we apply £¢_ to the first equation in (4.3.10) we
deduce _
Le L (if) =2vLle C=dv(v—2u)(if).

Let us now require that v is such that
dv(v —2u) < 0.

This implies f = 0 and forces . . )
£e.C=0, SW._(C) = —vC.

Suppose additionally that
0<v<p(o,9) <p(Cx).

This implies C=0.
Now, if v := u < p1—(0, g) then automatically both requirements are satisfied because

dv(v —2p) = —4u* < 0.
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We deduce that ker(p + Tc ) = 0 as soon as 0 < p < po(0, g). The Lockhart-McOwen Theorem
4.1.16 now implies that T is Fredholm if 0 < u < po(0, g) < p—(0, g). This completes the proof of
Lemma 4.3.18 and of Proposition 4.3.17. B

Set ‘ o
HY = H'(Ke,), i=0,1,2.

The finite-dimensional space Hg is called the obstruction space at Co. Observe also that
0
H? =TyG.
0

The results in §§4.3.1 show that the quotlent @u sw/ 9 wex €quipped with the quotient topology
has a nice local structure. Suppose Co € Gu sw 18 a finite energy monopole. Set

Séljo =8¢, NTc  Zs.

Then there exist a small neighborhood Vi of 0 € 8¢ and a small neighborhood Voof0e SCU such
that if . R .

Uyp:=Co+V +ipVe
then a neighborhood of [Co] in éﬂysw /gu,ex is homeomorphic to the quotient Uy/Go. The results in
§84.3.1 show that additionally

TCO éu,sw = (SCO + Zo(sgfo)) + Range (’QCO : Tlgu,ex — Téoéu78w>

and

(S@O + io(Sf:';’o)) N Range (ECO : T@MI - TC0 émsw) = 0.

Thus, to understand the nature of a small neighborhood of [Co] in ﬁﬂ it suffices to understand the
nature of the set of small solutions of the nonlinear equation

F(C)=0 (4.3.11)

where

T (sc + z‘o(Sf:':o)) —9,, FC) = 5W(Co+C).
Proposition 4.3.17 shows that the linearization of F at 0 is a Fredholm map and, moreover,

ker DoF = H} . cokerDofT%Hgo.

Arguing exactly as in §§2.2.2 we deduce that there exist a small Go-invariant open neighborhood N
of 0 € H1 and a Go-invariant map

. )
QCU : N — HCO
such that QCO (0) =0 and le(O)/éo is homeomorphic to an open neighborhood of [Co] in 0, .
0

Definition 4.3.20. (a) The monopole Co is called regular if its obstruction space is trivial, Hg = 0.
0

Co is called strongly regular if H*(F) = 0.
(b) The integer
d(Co) := —x(K¢,) = dimg Héo — dimg Hgo — dimg Hgo

is called the virtual dimension at Cqy of the moduli space ﬁ#.
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Remark 4.3.21. The long exact sequence associated to (E) shows that there is a surjective map
H?(F) - Hg so that a strongly regular monopole is also regular.
0

The above discussion has the following consequence.

Corollary 4.3.22. (a) If Co is a regular irreducible monopole then a small neighborhood of [Co] €
ﬁu is homeomorphic to R(Co) |

(b) If Co is a strongly regular irreducible then there exist a small neighborhood Uy of [Co) € ﬁu
and a small neighborhood Uy, of Coo € M, such that Uy = Rd(CO), Uy = 800(00) and the induced

map Os : Ug — U is a submersion.

Example 4.3.23. We want to point out some subtleties hidden in (E). Consider the special situation
when (N, g) is the sphere S® equipped with the round metric g of radius 1. Spin®(IN) consists of a
single structure o and the pair (o, g) is good since g has positive scalar curvature. 9, consists of
single reducible monopole Cy = (0, Ag). We deduce

H°(B)=R, H'(B)=0.

Suppose Co € é%sw is a smooth irreducible monopole on N. Then 8.,Co = Co and the sequence
(E) leads to a short exact sequence

0— H°B)=R— H'(F) — Hél0 — 0. (4.3.12)

A superficial look at the complex (F) might lead one to believe that H!(F) is intended to be the
tangent space at Cgy to the fiber of
Oso : M, — M.

Thus one would expect that H!(F) would inject into H éo, intended to be Téoﬁu — I,. However,
the sequence (4.3.12) shows that the natural map H'(F) — Héo is not injective since dim H'(F) =
dim Héo + 1. How can this be possible?

The explanation is simple. The fiber of the map 0y : 53\7# — 9, over Cy should be understood
as the set of monopoles on N modulo the group

Gu.ex(Co) = 95} (Stab(Cy)).
A careful look at (F') shows that it involves a smaller group §u which fits in a short exact sequence
1l— gp, — §M,ew(C0) - Sl — 1.

To correct our initial intuition of H*(F) we should think of it as intended to be the tangent space
to the fibers of

—~

Ooo : M, () — My (%).
In our case M, (x) = M.

In the remaining part of this subsection we want to provide alternate descriptions of the coho-
mology spaces intervening in the long exact sequence associated with (E). These interpretations
(more precisely Propositions 4.3.28 and 4.3.30) constitute the main difference between the approach
to gluing we propose in this book and the traditional one pioneered by T. Mrowka, [99]. They are
responsible for substantial simplifications to the whole gluing procedure. Our first result should be
obvious.
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Lemma 4.3.24. We have natural isomorphisms

Hl(FCO) = kery,(Te, )

H*(Fe ) = keru(‘Ig:’u).

Lemma 4.3.25. There exists a natural exact sequence

0 — Uy — kere, (7,

1
CO,M) - Hﬁo —0

where Uy is the kernel of the natural map Hl(FCO) — Hé or, equivalently, the cokernel of the map
0
800 : T1G0 — T1GOO

Proof The proof consists of two parts. We will first construct a natural map

kere, (T,

1
COv,U') - HCO

and then we will prove it leads to the above exact sequence. The details will be carried out in several

steps.

Step 1 If C € kere, (U’CO u) then C € Te, é#’sw , Le. Cis strongly cylindrical.
Suppose that along the neck C has the form

€ = ((1).3a(t) + iu(t)de).

Since C € kerew(ﬁ'é #) we deduce

0:,C = (¥(00),1a(00), iu(00)) € ker T, -

To prove that u(oo) = 0 it suffices to show that if (¢,1ia,iu) € ker Jc__ then w = 0. This follows
easily by looking at (4.3.10) in which » = 0. The details can be safely left to the reader. Thus, we
have a well defined map

~

T: kerw(‘TCO,#) — ker(ﬁéo : Téoéu,sw — Qu) —» Héo.

Step 2 T is onto. Observe first that the long exact sequence associated to (E) implies that we can
represent each cohomology class 7 € H é by an element C € TCO C,,sw such that
0

SW 0L =0, £ _0,C=0.
Next observe that since C is strongly cylindrical we have
O (22€) = £ 0L =0

so that
* 1,2/ x7 ¢
’QCOQ € LM (N,iR).

Arguing as in the proof of Lemma 4.3.9 we deduce that the densely defined, selfadjoint operator

Dgyp =228, L**(N,iR) C L%(N,iR) — L?(N,iR)
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has closed range. Clearly its kernel is trivial so that it is also surjective. Arguing as in the proof of
Lemma 4.3.10 we deduce that
AL (L1,2) — 132
COJ" H B

Thus we can find ify € L%Q(N, iR) such that
Ag, . (ifo) = 32’;2-
If we set

¢ = C- g (ifo)

then SW ¢ C’ = 0 so that C and C’ define the same element in H (1: . Moreover
0

sgézsgC—AQAﬁﬁ:o

so that C' € kere, Teou

Step 3 ker T = ker(Hl(FCO) — Hé ). From the natural inclusion
0

This proves that T is onto.

Hl(FCo) = kerﬂ(‘j'éo’u) - kerw(‘j'éoﬁu)

we deduce that
ker(Hl(FCO) — Héo) CkerY.

Conversely, suppose T(g) =0¢€ Hé . In particular, this implies
0

8oo§ = 07

ie. CeL? <= Ce Hl(FCO). [ ]

Remark 4.3.26. It is perhaps instructive to describe the image of Uy in kere, ‘j'éo u
for simplicity that N is connected, CO is irreducible but C., is reducible. Then Uy C H 1(FCU) is
spanned by the the infinitesimal variation £¢ (i). To find its harmonic representative (i.e. describe

Suppose

the element in ker,, ‘j'CO “ defining the same class in H 1(FCO)) it suffices to solve the equation

A¢, (1) = A, ()
with unique solution
Li’2 3 ipg = Aﬁ_ol,u (Aﬁo,u(i)>'
Then the harmonic representative of £¢ (i) is £¢ (i —ipo). Observe that fo :=1— g is the unique

function f € Lizez satisfying the equations

Aéo,u(ifo) = Oa 8oof() = 1 .

Lemma 4.3.25 has one small “defect”. More precisely, it describes a geometric object, the virtual
tangent space H! , in terms of the quantity ker ‘J'CU u which depends on the choice of u dictated by
0 )

functional analytic considerations. Our next result will remove this defect. Set

~ — 1 "
(‘TCO = SWCO &) iséo
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Observe that the a-APS operator ‘j‘Co can be formally obtained from ‘j’co u by setting u = 0.
Moreover, the decomposition
kerTc =Tc M, TG

produces a decomposition of the boundary map
Oso : kerey ‘ATCO — ker Tc_,

into components
0%, i kerey Te, — T1Goo, 05 i kerey To, — Te Mo

Remark 4.3.27. Using (4.1.22) of §84.1.5 with G = 1 we deduce that we have the orthogonal
decomposition ) )
9o (kere, Te ) ® 5 (kere, T ) = 11 Goc.

Now observe that if (,if) € LL2 (S, & iAiT*N) @ LL2 (iA°T*N) belongs to kere, ‘J”fo then

H,ex H,ex C
if € T\Go (see the the proof of Proposition 4.3.30. Thus

0%, (kerey T¢, ) 22 T1(Goo /D Glo).
As an example, suppose Co is reducible, Co = (0, AO). Then
‘jdéo = @Ao @® ASD.
The above observation implies that any 1-form w € ker., ASD is strongly cylindrical. This is in
perfect agreement with the equality (4.1.28) proved in Example 4.1.24 of §§4.1.6.

Proposition 4.3.28. There exists a natural short exact sequence
O — Héo — kere:r rjiéo — Tl(Goo/aooG()) — 0 (Hl)

In particular

kere, TCo,u = kerey ’J'CU.

Proof We discuss separately three cases.

Case A. CO is reducible. In view of Lemma 4.3.25 we only have to prove ker., T,

Co,/,L - CU
ker,, ‘J'CU. Set

~ 1 ~

V= S;f ®iNT*N.
Along the neck it decomposes as

VS, ®ir*A'T*N @ idtr*Ry

where 7 : R; X N — N is the natural projection. Over the neck, each section CofV splits as

(@¥

= Y(t) @ (ia(t) + iu(t)dt).

Denote by T}, the automorphism of V which is the identity off the neck while along the neck it has
the form

T, @(t) ® (ia(t) + iu(t)dt)) = () @ (ia(t) + imo,u(t)dt).
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A simple computation shows that since Co is reducible we have
£C‘; = m—2u£EOTu
and - R .
SWe T,C=T,SW¢ C.
We thus have a well defined bijection

ker ‘j'co’# — ker ‘j'co, C TMQ

which  maps ker_. ‘j‘c o injectively —into  ker_,_ E‘frf: Its inverse maps the

space ker_,_ s‘.T injectively into ker_,_ s‘.TC . To conclude the proof of Case A we only need
to recall Proposmon 4.1.17 which states that if u is sufficiently small then

kerem ‘TCO,M = ker_g TCO;N = ker_u_g TCO,M’ kerem TCO = kel"_“_E Téo'

Case B. C, is irreducible, and thus so is CO. We have to show ker,, ‘j’éo = Hé . Note that any
0
C € kere, ‘.TC tautologically defines a cohomology class in H é . We want to show that the induced
0

map kere, ‘T — H I is an isomorphism.
Observe ﬁrst that this map is 1 — 1. Indeed, if

C € keres ‘j'co and C = Le, (if)

for some f € L32_ then Ae (if) == £2 L¢ (if) = 0. Multiplying the last equality by if and
0 Co 0

1 em
integrating by parts on Np_, o we deduce Eéo(if) =0.
To show that this map is onto we construct a right inverse I'. More precisely, if Ce TCO Cpu,sw
satisfies SW & then we set
PP
(€)= C— g A g C

where we regard Aéo as a bounded Fredholm operator
Ag, : L¥*(N) — LY*(N).
(It is Fredholm since Ae = A+ i|;@0|2 and Ost)p # 0.) As such it has trivial index and kernel and
—1(71,2 3,2
Aéo (L?) C Ly
Case C. (g is irreducible but C is reducible. In view of Remark 4.3.27 we only have to prove that

Héo = Ko = ker(ago : kerem ‘jﬂéo — TlGoo)

Clearly Ky C TCO Cp,sw, that is every Ce Kyis asymptotically strongly cylindrical, and thus we get
a tautological map
Ky — Héo.

Arguing as in Case B we deduce that this map is 1 — 1. To prove that this map is onto we construct
a right inverse I' formally identical to the one in Case B,

o L
P(C) =€ -2, A7 LC,
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where this time we regard Aﬁo as a bounded Fredholm operator

A=

. 73,2 1,2
Co * LH - LH

of trivial index and kernel. (Note that since dsothy = 0 the operator ACO is no longer Fredholm in
the functional framework L32 — L12.) B

We conclude this section by presenting a similar description of H Z(FCO) in terms of ker.,, ‘J’zf: .
0

Proposition 4.3.30. There exists a natural short exact sequence
T ago 5 Ooo
0 — H?(F,) — kere, T¢, = Range(T1Go = TiGxc) — 0 (Hs)

where the upper x denotes the formal adjoint.

Proof Let us first observe that
H?(F) =ker, 7" =ker(Te, T2 :L>* — L)

Co,u Co,u Co,p
and )
Teo T2, , = SWe, SWe, © 1A, ,
where we recall that
ACO,/A = EZ‘;ECO.
Since ker(Ag L3? — L) = 0 we deduce

(0,if) € ker,, Az:ﬂ — f=0 and S/IX/CO(mQM\II) =0.
We conclude that the correspondence

ker,, ‘I:f::‘w > (0,if) % (mg,¥,0)

induces a map

o o — % 1 S
@ : ker, ‘ICo,u — ker_”(TCO =SWe, + 5}3@0) = kerEI(‘Iéo).

Clearly 9% o ¢ = 0.
Conversely, suppose

. . s 1 .
(U,if) € kerexTéo = SWe (C) + §£Co(if) =0

and f € Ll% (ie. 0% (¥ @ 1f) = 0). Apply Szf: to both sides of the above equation and use the
0
identity S’éo SWe, =0 to deduce
£¢ L, (if) = 0.
Since f , ECO ¢ f) € Lﬁ we can integrate the last equality by parts over Nr_.o and we deduce
/A |2¢0(if)\2dﬁ =0 Séo(if) =0<= f=0 (since f € L2).
N
The fact that the map
Tk 820 A Ooo
kere, Jg  — Range(T1 Gy = T1G o) (4.3.13)

is onto now follows from Remark 4.3.27. Proposition 4.3.30 is proved. B
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Remark 4.3.31. Proposition 4.3.30 shows that we have a natural map HQ(FCO) — Tc 9, which

for simplicity we will denote by J,. Observe also that if CO is reducible there exists (0, i f ) € kere, 725:
0
such that
o f = 1.

If (U1,if1), (Us,ify) are two such elements then

(01— Ws,ify —if2) € p(H*(Fe,)) C kereo T,
so that fl = fg. The function fo = fl = fg is uniquely determined by the equations
fo € Lytas L8 L¢,(if0) =0, O fo=1.
Notice also that we have a unitary isomorphism

oo kerey TE =2 O H?(Fe,) ® T1Goo.

More precisely, if (¥, if) € kere, ‘fréo is such that O f = 1 then
Ooo keTey ﬁ'éo = spanR{aoo(\I/, if), O H?(Fe,) @ 0}

- spanR{O ©i, O H*(Fe,) ® o}.

84.3.3 Virtual dimensions

Suppose Co = (1[)0, Ao) € éu,sw is a monopole. Set Coo = (Yoo, Aso) = 05,Co and d(Coo) =
dim Tc_ 9,. We want to describe a general procedure for computing the virtual dimension d(Cy).
Using Lemma 4.3.18 and Exercise 4.3.6 we deduce

d(Co) = —X(F) + d(Cs) — dim Goe
_ 1, N . . .
—ind (Sﬂco 30 LEASE @ INTN) — LAS; @ iMiT°N & iB))

+d(Cs) — dim G,

(use Proposition 4.1.17)

= IAPS(‘ICO,;L) +d(Cs) —dim G

(use the excision formula (4.1.19) of §§4.1.4)

= IApS(‘.TCO) +d(Co) —dimGoo — SF(Tc,, — Teo p)- (4.3.14)
To proceed further let us first notice the following result, whose proof will be presented a bit later.

Lemma 4.3.32.
SF (‘J’coo - ircw,t) = — dim G
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Thus R .
d(Co) = IAPS(‘ICU) + d(Coo). (4.3.15)

Now denote by ‘j'g the operator obtained by setting 1&0 = 0 in the description of ‘j'éo. Observe
0
that along the neck j{c) has the form
0

¥(t)
T | ia(t)
fu(t)
J 00 b (t) Du. 0 07 v
=10 1 o0|]|o|iat) | =] 0 —xd d|| ia(®)
0 0 1 iu(t) 0 0 iu(t)
w0 o[ e
+ 0 0 0 ia(t)
0 0 0 iu(t)

This shows ‘j'go is an a-APS operator and

_ 5 40 _ | Da. 0
Te. =0T, = 0 —SIGN

Set
Pc. =T, — ’J'(C)x

Observe that Pc_ is a zeroth order symmetric operator described by

%(C(Q)—U)i/}oo
¥
P | da | = | 3¢ (Ve )
iu )
5 Im( o, 1))

Denote by ¢(C) the spectral flow of the family T¢ +tPc_, t € [0,1]. Using the excision formula
(4.1.19) we deduce
d(CO) = IAPS’(“TgO) + d(coo) - (p(coo)

J CQ is the direct sum of the complez operator @ ; and the real operator ASD. Since we are interested
0
in real indices we have

Iaps(T2,) = 2Laps(@ 4,) + Laps(ASD).
Denote by 7sign(g) the eta invariant of SIGN and by 74 (Coo) the eta invariant of © 4 . We set
F(Cs) := 4m4ir(Coo) + nsign(g)~
Using (4.1.3) of §§4.1.2, (4.1.30) of §§4.1.6 we deduce

Lars(3) = 5 [ =gm(9) + c1(Ao)? - (dimeker D + (o)

4 /g
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—%(XN + 75 + bo(N) +b1(N))

Using the signature formula of Atiyah-Patodi-Singer (see [6] and also (4.1.34) of §84.1.6) we deduce
L (%9
. gpl(v ) = nsign(g) +7x
N

and we conclude ) ]
200y A2
IAPS(TgO) = Z(/N c1(Ao)” — 2xx + 3TN)> - 1F(Coo)

1
—dimg¢ ker@Aw - 5([)0(]\[) + bl(N)>

Putting together all of the above we obtain the following formula:

€)= ([ (Ao = (2xg +37)) = 5 () + (V)

+d(Coo) — p(Coo) —dimc ker D4 — iF<C°°)'

(VDim)

The first line in (VDim) consists of the soft terms, those which do not involve functional analytic
terms. The second line consists of the hard terms and their computation often requires nontrivial
analytical work.

Remark 4.3.33. (a) Observe that the integral term in (VDim) would formally give the virtual
dimension of the moduli space if N were compact. The remaining contribution depends only on
the geometry of the asymptotic boundary N and we will refer to it as the boundary correction. We
will denote it by S(Cs). The boundary correction is additive with respect to disjoint unions which
shows that formula (VDim) also includes the case when the asymptotic boundary is disconnected.

(b) Assume N is connected so that by(N) = 1. If C is reducible then, using the nondegeneracy
assumption (N), we can simplify somewhat the virtual dimension formula because ker® 4 = 0,
d(Cs) = b1(V) and ¢(Coo) = 0. We deduce

d(to) = i(/ Cl(AO)Q —(2xx + 37'1\7))
1

+%(61(N) - 1) - F(Cx).

(VDim,)

(c) The exact value of the term F(Cy) is very difficult to compute in general although it is known
in many concrete situations; see [107, 108, 115]. Consider more generally the quantity

F: A, x Metricson N = R, (A,g) — 40(D4) + Nsign(9)-
F(A, g) satisfies the variational formula
F(A1,91) — F(Ao, g0) = 4(ho — h1) + 85F (D ,)
1

4m?
where Ay := (1 — t)Ag + tA;, g(t) is a smooth path of metrics on g such that g(i) = ¢;, i = 0,1,
® 4, is the Dirac operator determined by A; and the metric g(t), and h; := dimcD4,, t = 0, 1.

In particular, we deduce that F(A,g) mod 4Z is independent of g. Moreover, if Ag, A; are flat
connections then

/(AI_AU)/\(FA0+FA1),
N

F(Ap,9) =F(A41,9) mod 47Z.
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When o is defined by a spin structure and A is the trivial connection, then F(A,g) is a special
case of the Kreck-Stolz invariant, [68]. The above variational formula coupled with the Weitzenbock
formula shows that this invariant is constant on the path components of the space of metrics of
positive scalar curvature. In the paper [68], M. Kreck and S. Stolz have shown that the higher
dimensional counterpart of F actually distinguishes such path components.
(d) The notation B(Cs) is a bit misleading since it does not take into account the dependence
of B(Cx) on the orientation of N. When changing the orientation we have to replace F(Cy) by
—F(Cw). ¢(Cx) changes as well, but in a less obvious fashion (see Exercise 4.3.8). This boundary
contribution is not G,-invariant due to the contributions ¢(Cs) and F(Cs ). More precisely, for
v € Gy, we gave

P(1Co0) + 2SF(Da. — Da21y/) = 9(Coo) (4.3.16)

where the above spectral flow is viewed as a spectral flow of complex operators. Using the variational
formula in (¢) we conclude that

1 1 1
-F - Fy = *(— .
w(vCoo)+4 (7C) 47T2/Nd7/7A Ao /MV (%)Acl(dew)

This computation also shows that 3(Cs) is Sg—invariqnt, where 92 denotes the subgroup of G,
consisting of gauge transformations which extend over N.

Exercise 4.3.7. Prove the equality (4.3.16).

Proof of Lemma 4.3.32  Assume for simplicity that IV is connected so that dim G, € {0,1}. We
first need to understand the spectrum of Tc__ ¢, t € [0,1], u positive and very small. Equivalently
this means solving the equation

SWe_(C) - $&c.(if) = viC

C C
T, [ ) } :1/[ ) ] — (4.3.17)
mLif if £t (C) + dtpif = —2wif

As in §4.3.2 we deduce
Ac, (if) = Le_Lc (if) = dv(v + 2tp)(if). (4.3.18)

The spectrum of the symmetric second order elliptic operator Ac_ is discrete and consists only of
nonnegative eigenvalues of finite multiplicities. We will distinguish two cases.

Case 1 C, is irreducible, so that dim G, = 0. In this case we have
ker Ac =2 T1Gs = 0.

If Coif € kerTc__ 4, then using (4.3.18) we deduce f = 0. Using this information back in (4.3.17)
we deduce )

This shows that ker Tc__ 4, = ker Tc__, for all t € [0, 1] and thus the spectral flow of the family Tc_ 1,
is equal to 0 = —dim G .

Case 2 C is reducible, so that dimker Ac_ = dim TG . Moreover
kerTc = {C oif; SWe_(O) @ g (€) =0, £c_(if) = o}.
Fix t € (0,1]. We claim that

ker Te_ o = {C oif; f=0, SWe_(C) @ ge_(C) = o}. (4.3.19)
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Using (4.3.18) with v = 0 we deduce
Ac (if) <= Lc_(1f)=0.

Using this information in the first equation of (4.3.17) we deduce SW¢ (C) = 0. Now apply £¢, to
both sides of the second equation in (4.3.17). Using the equality £¢__ (if) = 0 we conclude

Lc Lt (Co)=0.

We now take the inner product of the above equality with C and then we integrate by parts over N
to deduce that

/ 1€ ClPdv(g) =0 <= £¢_C=0.

N

Using the last equality in the second equation of (4.3.17) we deduce
tuf =0<= =0

which proves our claim.
The equality (4.3.19) shows that there is no contribution to the spectral flow of the family Tc_ 1,
for ¢ € (0,1]. The only contribution to the spectral flow can occur at ¢t = 0. Since

dimker Jc_ —dimkerTc__ 4, =1

and since the spectral flow contributions at ¢ = 0 are nonpositive we deduce that this contribution
is either 0 or —1.

To decide which is the correct alternative we need to understand the eigenvalues v; of ker Tc__ 4,
such that

vy /0 ast ™\, 0.

If v is such an eigenvalue then 4v;(v; + 2tp) must be a very small eigenvalue of Ac__, so that
ve(ve + 2tp) = 0.

The requirement vy < 0 forces vy = —2tu and L£c_(if) = 0. Applying £¢__ to both sides of the
second equation in (4.3.17) we deduce as before that

£ C=0+=Ce8c_.
Using the first equation in (4.3.17) we deduce
SW. (€)= -2tuC, Ce8c,
so that C is an eigenvector of SWc_ :38c., — 8¢, corresponding to —2tu. Since
2tp < 2p < p—(g9) < p—(Coo)

(where —p_ (Coo) is the negative eigenvalue of SWe_: 8¢ — 8c_, closest to zero) we deduce that

C=0. Thus —2tu is a simple eigenvalue of Tc__ ¢+, and the corresponding eigenspace is
{Coif; C==0, f=const.}.
This shows that the spectral flow contribution at ¢ = 0 is —1 and thus

SF(Te_ it €[0,1]) = 1= —dimGy. W
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Example 4.3.34. Suppose (I, g) is the sphere S3 equipped with the round metric. There exists a
unique spin® structure o on N and the pair (o, g) is good. Denote by Cy the unique (modulo §,)
monopole on N. Cy is reducible, Co = (0, Ap). Observe also that (4.1.37) (with ¢ = —1) implies
that F(Cy) = 0. Alternatively, S® admits an orientation reversing isometry, so that the spectra of
both © 4, and SIGN are symmetric with respect to the origin and thus their eta invariants vanish.
Using (VDim,) we deduce that the boundary correction determined by Cy is

B(Co) =~ ™

Example 4.3.35. Suppose (N, g) is the 3-manifold S* x S? equipped with the product of the
canonical metrics on S! and S2. g has positive scalar curvature so that (o,g) is good for every
o € Spin®(N). Since H' (N, Zy) = Zs there exist exactly two isomorphism classes of spin structures
on N but the induced spin® structures are isomorphic since H?(N,Z) has no 2-torsion.

Any monopole on N is reducible so that the only spin® structure o for which there exist monopoles
is the class og induced by the spin structures. The moduli space M, is diffeomorphic to a circle.

Remark 4.3.33 (¢, d) shows that the boundary correction term is G,,-invariant and, moreover, it
is identical for all C € 91,,. One can show that 74;,(C) = 0 (see [107, Appendix C]) and 7, (g) = 0
(see [67]). Since by (N) = 1 we deduce from (VDim,) that

B(C) =0, VCeM,,. W

Example 4.3.36. Suppose N =R x N. A finite energy monopole Co over N is called a tunneling.
Observe that 9, N = (=N) U N. A spin structure (o_,0,) on 8- N extends to N if and only if
o_ = o, = 0. Its asymptotic limit is a §%-orbit of pairs of ¢-monopoles (C_, C ), where G2 consists
of pairs (7—,v+) € Go X G such that v_ and 74 belong to the same component of 7,. We want to
emphasize that a priori it is possible that C_ and C; may be G,-equivalent. Set

9t Co = Cy

and
G+ = Stab (C.).

Modulo a gauge transformation we can assume Co is temporal:
Co = (C(1))ter-

The operator ‘j'CO has the APS form G(0; — Tc)). Using (4.3.14) and Lemma 4.3.32 we deduce

d(Co) = Iaps(T¢,) +d(C-) +d(Cy)
WL _ dimker Te_ — SF(Teq) +d(C_) +d(C4)
(dimker Jc_ =d(C_) +dimG_)
= —SF(‘IC(t)) +d(Cy) —dimG-_.
In particular, if d(C1) = 0 then

d(Co) = —SF(Tcwy) — dimG_. W



320 Liviu I. Nicolaescu

As indicated in Remark 4.3.33 (e), the term ¢(Cs) behaves less trivially when changing the
orientation of N. One can use the computations in the above example to describe this behavior.

Exercise 4.3.8. Suppose N is a compact, connected, orientable 3-manifold and C, is an irreducible
monopole on N. Denote by ¢ (Cs) the contributions ¢ in (VDim) corresponding to the two choices
of orientation on N. Show that

¢+ (Coo) + ¢ (Cso) = dimp ker Tc_ — dimp ker T _

=d(Cs) — dimp ker T2_.

84.3.4 Reducible finite energy monopoles

Assume for simplicity that IV is connected and suppose Co = (0, 1210) e u,sw 18 a reducible monopole.
This is equivalent to requiring that Ag is strongly a-cylindrical and

+ _
F A, = 0.
Then .
r‘TCO = @Ao ® ASD.
Using Proposition 4.3.28 and the computations in Example 4.1.24 we deduce

Hélo = keremf)Z)Ao @ ker., ASD = ker,, @AO &) kerem(dA—i— aAl*) |Q1(1\7)

(use (4.1.28) R
= keree P4, @ H'(N,N) & Ly, (4.3.20)
Denote by H_%_(N) the self-dual part of kery(d + d*) lg2(5y-  Using Proposition 4.3.30 and the
computations in Example 4.1.24 we deduce
H?(F(Cy)) = kerey D%, @ ker., ASD*

> kere, D% © H1(N) & L]

top-*

(4.3.21)

We deduce the following consequence.

Corollary 4.3.37. If kerm@j}‘o =0, Lfop = 0 and lA)+ = dimHi(N) = 0 then Cqy is strongly
regular.

We now want to investigate in greater detail the subset
ed =S
m et CMm,
consisting of reducible monopoles. Observe that
gﬁzed = {(OaA) S eu,sw; F}_ = O}/gp,e;v

Observe first that it is a connected space since it is a quotient of the linear affine subspace

Set

=

fosw = {A, (O,A) € éu,sw}.
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There exists a natural affine map
F: Apsw — LP(ALTN), A FL

and ﬁ;‘fd can be identified with

F(0)/Spca-
Given A € F-1(0) we get as in §54.3.2 a Fredholm complex

1 1150 — TiApsw — LY2AALT*N) — 0. (K)
We denote its cohomology by H fi and we set
x(K) = H% — Hii + Hfi'

Observe that H% is the tangent space to the stabilizer of A, which is S. Thus

dimHj = 1.

Since F is affine we deduce that the Kuranishi map associated to this deformation picture is trivial.
On the other hand, the stabilizer of A acts trivially on Hii and thus, if nonempty, Dﬁl’fd is a
connected, smooth manifold of dimension

dim M4 = dim HY — dim H? = —x(K) + 1.

As in §84.3.2 we can embed (K) in an exact sequence of Fredholm complexes similar to (E). Denote
by 9M7¢d the similar space of reducible o-monopoles on d, N. Arguing eractly as in the proof of
(4.3.15) of §84.3.3 we deduce that

—X(K) = Laps(ASD) + dim M

1. 1
(4.1.30) _i(XN+TN+bO(N)+b1(N)> +b1(N)

1
= (g g+ 1-bi(N)).
We have thus proved the following result.

Proposition 4.3.38. If ﬁffd is monempty then it is a smooth, connected manifold of dimension

Mred — %(bl(N) +1=xg = Ty):

In the next section we will have more to say about the existence of reducibles.

Example 4.3.39. Consider again the manifold Ny, ¢ = —1, discussed in Example 4.1.27. Recall
that N_; is obtained from a disk bundle D_; of degree —1 over S? by attaching an infinite cylinder

R, x 9D_; 2R, x S

Since H'(5%) = H?(S%) = 0 we deduce L{,, = L7,, = 0 and since the intersection form of N_, is

negative definite we deduce l;+ = 0. Moreover, HI(N,l, Ny)=0
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Fix a spin® structure 6 on N_q. In Example 4.1.27 we have equipped N_; with a positive scalar
curvature cylindrical metric and we have shown that for every reducible finite energy 6-monopole
Co = (07/10) on N_; we have

ker,, 3 4, = 0.

Set Cp := 80 Co. Arguing exactly as in the proof of (4.1.36) we obtain

8dimkerew :}2):%0 = F(Co) + 7']\771 - /A 01(1210)2 =-1 —/ Cl(A0>2.

N_; N_1

Thus Hé =0 and Cy is strongly regular if and only if
0

N_1

c1(6) - e1(6) :/ c1(Ag)? = —1.

If we identify H?(Dy,Z) = H?(D_1,0D_1;Z) = 7 with generator ug, the Poincaré dual of the zero
section of Dy, we see that the above equality is possible if and only if

Cl((}) = :l:llo.

We now want to prove that for any spin® structure ¢ over N_; there exists a unique (modulo
§M7ex) finite energy -monopole, which necessarily is reducible.

Observe first that according to Proposition 4.3.38 the space of reducibles is either empty or a
smooth, connected manifold of dimension

1
2
so that it consists of at most one point.

Denote by o the unique spin®-structure on Ny = s N_1 = $3 and denote by Ap the trivial
connection on the trivial line bundle det(c). We can form the energy functional defined in (2.4.8)

&)= [ (A=A nFasg [ Re@iw v

(1 +b1(53) —XN_, — TN,l) =0

The energy of the unique o-monopole Cy = (0, Ap) is 0. Now extend Ag to a strongly cylindrical
connection Ag on det(5). If C = (¢, A) is a finite energy é-monopole then according to Proposition
4.3.2 we have

:E(C):/N FA/\FAS/N |4 |*do.

Since § > 0 we conclude that ’L/AJ =0.
To establish the existence part it suffices to show there exists ia € Livz(iAlT*]\Af_l) such that if

A := Ay + ia then
Fl=0«idta=-F].

0

Look at the operator
ASD : L22(A'T*N_1) — L2 (i(A2 & A°)T*N_y).

According to Proposition 4.1.17 its cokernel is isomorphic to ker., ASD* = 0, which shows that the
above operator is onto. Since F;{O € L1 (it has compact support) we can find a € L2?(A'T*N_y)
such that

id"a=—F} and d*a=0<= ASD(ia) = (—V2F} ) @0.

0
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This proves that reducible monopoles do exist.
Suppose Cq is the unique finite energy -monopole. Thus the reducibles are isolated points in
9M,,. Using the virtual dimension formula (VDim,) we deduce that

2 1 : 1 11 3
d(CO):Z/ CI(AO)2_*(2XN71+3TN71> —521/ Cl(A0)2—1<O_

N, 4 N,

If we denote by &,, the spin® structure such that ¢;(6,) = (2n+1)up then the above formula becomes
d(Co,6p) = —(n® +n+1). (4.3.22)
This formula covers all spin® classes on N_l since the intersection form of N_l is odd.

Example 4.3.40. Consider the cylindrical manifold N diffeomorphic to the unit open ball B4 ¢ R*
equipped with a positive scalar curvature metric § such that 0. g is the round metric on s N =2 3.
SpinC(N ) consists of a single structure 6o and, exactly as in the previous example we deduce that
modulo gauge there exists a unique finite energy monopole Co which is reducible, Cy = (0, 1210). Set
Co = 90 Co.

Since ¢ has positive scalar curvature we deduce as before that ker., 4i, = 0. Moreover, as in
the previous example we have

8 dim kerez@f@o = F(Co) + 75— / CI(A(])2 —0.

N
Using Corollary 4.3.37 we deduce that Cois a strongly regular, reducible monopole.

Example 4.3.41. Consider the disk bundle D? x §? — S2. It is a 4-manifold with boundary
N := S x $2 which we equip with the product metric g as in Example 4.3.35. We form N by
attaching the cylinder Ry x N to the boundary of D? x $2. As in Example 4.1.27 we can equip N
with a cylindrical metric § of positive scalar curvature which along the neck has the form dt? + g.

The only spin® structure on N which admits monopoles is the structure oy induced by the spin
structures on N. In this case all monopoles are reducible and

m, = St

The structure og on N is induced by pullback from S? and thus it can be extended to N. On the
other hand, since the map R
H*(N,Z) — H*(N,7)

is one-to-one there exists exactly one extension &g of o to N satisfying
C1 (6’0) =0.

Arguing as in Example 4.3.39 we deduce that all finite energy &-monopoles are reducible. According
to Proposition 4.3.38, the expected dimension of zm;fd is

SN +1-2) =0

so that there exists at most one finite energy 6-monopole which must be reducible. Reducibles do
exist because det(6p) admits flat connections.

Suppose CQ = (0, /10) is a reducible monopole so that Ay is flat. From the long exact cohomology
sequence of (N, N) we deduce that H*(N, N) = 0 and the morphism H?(D? x S?) — H?(S* x N)

2

top = R. Thus Co is not strongly regular.

is onto, i.e. L
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If Cy := 0o Cp then exactly as in the previous example we deduce

8dimkere, @5 = F(Co) + 75 — / c1(Ap)?.
N
In Example 4.3.35 we have shown that F(Cy) = 0 and since 7,5 = 0 we deduce
8dimkere, @ = —/ c1(Ag)? =0
0 N,
According to (VDim,) we have

d(Co) = —i(sz +3rg) + %(bl(N) 1) =-1.

4.4 Moduli spaces of finite energy monopoles: global aspects

We now have quite a detailed understanding of the local structure of the moduli space of finite energy
monopoles. For applications to topology we need to know some facts about the global structure of
this space.

In this section we will discuss some global problems. As always we will work under the nonde-
generacy assumption (N).

84.4.1 Genericity results

In §4.3.2 we developed criteria to recognize when the moduli space of finite energy monopoles is
smooth. As in the compact case, there are two sources of singularities. The main problem is due to
the obstruction spaces H 2 and a second, less serious, problem is due to the presence of reducibles.
We will deal first with the reducibles issue.

In the compact case we found a cheap way to avoid the reducibles by perturbing the Seiberg-
Witten equations. We follow a similar strategy in the noncompact case.

Fix a cylindrical spin®-structure ¢ on N with ¢ := 9,6 such that there exists at least one
reducible finite energy monopole Co = (0, /Alo). For every sufficiently regular, compactly supported
2-form 7 on N we form the perturbed Seiberg-Witten equations

D=0
e(FT+int) = $q()

We will refer to the solutions of these equations as n-monopoles. Since 7 is supported away from the
neck the finite energy n-monopoles can be organized in the same fashion as the unperturbed ones
and we obtain a moduli space ﬁ#(n).

The reducible n-monopoles are described by the zeros of the map

SW,(1h, A) = 0 =

Ty Apow — Ly GAPT*N), A FT 4in".

If F,(Ag +ia) = 0 then
dta=—n".
To decide whether the above equation admits a solution ia € T AOA#,Sw we need to understand the
cokernel of the map R A
AT Ty Apsw — Ly ?((APT*N). (4.4.1)
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This map is part of the complex (K) and thus it has closed range and its cokernel is isomorphic to
H?
Ao :
To compute its dimension observe that
. 1 . 2 1
dlmHA0 —dimH7 = i(bl(N) +1—x5— TN)
and, exactly as in Proposition 4.3.28, we have
dim Hiio = dim ker., ASD.
The computations in Example 4.1.24 imply that
dimker., ASD = dimkerz2 ASD + dim . kerp, ASD = b® + [,
Referring to the notations in Example 4.1.24 we can further write

bl-l-l—XN—’TN
2

dim H% =b*+1' —
0

by — 0% — by +b_ + b+

_ 13 1
=b"+1 5

by — b2 —by +b_ + bt —b?

71 _
=1 5

by —2by —r+ 1L =13

1
=1 5

(r=021"+12=by, °=0)
T e S )
B 2

Thus if b+ = 0 then H 2 =0 and, exactly as in the compact case, the reducible cannot be perturbed
away because JF, is buI‘JQCthG

Suppose now b+ > 0. We can identify Hfio with the Li—orthogonal complement of the range of
the map (4.4.1). This is a finite-dimensional space

V C L2(AZT*N).
Now, fix a sufficiently large positive integer ky and define

N:= {77 € Lﬁo’z(iA2T*N); JeV: <77+7U>Lﬁ # 0, supp (1) Nneck = (Z)}.

We see that N is the complement of a finite dimensional subspace of LﬁO’Q(iAQT*N ) and for any
1 € N there are no reducible n-monopoles.

Using the Sard-Smale transversality theorem as in §§2.2.3 we can prove the following genericity
result.

Proposition 4.4.1. Suppose b+ > 0. There exists a generic subset N C N such that if n €’ N all
n-monopoles are irreducible and strongly regular. In particular, forn € N the moduli space m «(n)
is a smooth manifold.
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Idea of proof Denote by A the diagonal of M, x M, and consider
TN CIT /G, o X My — Y,y x My x My,

F(n,C,C) = (SW,(C),05C, Q).

One has to show that F is transversal to 0 x A C 9 uw X My x M, and then apply Sard-Smale to the
natural projection N R
T NXCC,/Gpex X My = N

restricted to the smooth submanifold F~1(0 x A). The details are very similar to the proof in §§2.2.3
with a slight complication arising from the noncompact background. It should be a good exercise
for the reader to practice the techniques developed in this chapter. B

Remark 4.4.2. The strong regularity implies more than the smoothness of the moduli spaces of
finite energy monopoles Assume b+ > 0 and suppose for s1mphc1ty that 0 € N so that each finite

energy monopole Co € zmu is strongly regular. Set Coo = 0o Co. The sequence (E) leads to a long
exact sequence .
0 T1Goo — H'(F(Co)) — HE — Tc.. — 0. (4.4.2)

Now set img =2/ 92. M, is a quotient of zmg modulo the action of the discrete group
HY(N,Z)/H'(N,7)
and we have a natural map
O : M, — imﬁ.

The sequence (4.4.2) shows that the strong regularity forces the above map to be a submersion.

84.4.2 Compactness properties

Because the background space N is noncompact it is a priori (and a posteriori) possible that the
moduli space §)\TH is noncompact. In the present subsection we will try to understand in some detail
the main sources of noncompactness.

Fix a cylindrical spz'n structure 6 on N with ¢ := 8,6. For 0 < i < po(o, g) we denote by ﬁu
the moduli space of 9 u,ex-0rbits of finite energy o-monopoles topologlzed with the L? i 2 _-topology.

Recall that in §4.2.3 we have introduced the quotient M, = Z,/GL, where G. denotes the
identity component of G,. 9, is a covering space of M2 and we denote by

W:93T0—>im§

the natural projection. The group H Y(N,Z) of components of G, acts on M, with quotient M, .
Similarly, M2 is a quotient of M, modulo a discrete group: the image of H'(N,Z) in H'(N,Z).
The map 0 induces a continuous map

5'oo:ﬁﬂ HDT(?.

We already see one (mild) source of noncompactness: the moduli space 9.
The three-dimensional energy functional £ defines a continuous function on 9, with discrete
range
LE1<&E<E <

Denote by Efﬂg’k the subset of M, where £ = &;. Set

ima k= W(ﬁjtg,k)
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Since £ is invariant under the gauge transformations on N which extend to N it descends to a
continuous function on 92 and the sets 93?27 « are precisely its fibers.
The energy functional defines a continuous function

E:Ms — R, C— E(Q).

Proposition 4.3.2 shows that E (C) depends only on the component of 9312,,@ containing 9,,C. We
conclude that the range of FE is discrete since it injects into the set of critical values of the three-
dimensional energy functional £,. We will refer to the range of E as the (¢)-energy spectrum. The
energy spectrum is

{c+&s kez}
where C' is a constant independent of k. Now denote by /E)J\Tﬁ the subspace
mﬁ = 8;1m27k

Clearly, if the energy spectrum is infinite then the moduli space 53\1# cannot be compact for obvious
reasons. We would like to investigate the compactness properties of the energy level sets.
As in §§4.2.3 define the energy density

p:ﬁﬂeCoo(N,R),
C= (0, 4) = pe = [V + Sla@)* + [F41* + 10

The Main Energy Identity in Lemma 2.4.4 shows that for every Ce 53\”(” the density p¢ is positive
on the cylindrical neck. Remarkably, the Key Estimate in Lemma 2.2.3 continues to hold in the
noncompact situation as well. More precisely, we have

sup [¢)(z)|* < 2 sup |5(z)]. (4.4.3)
zeEN zeN

To prove (4.4.3) we set u(z) := |[¢(z)[2. As in Lemma 2.2.3 we observe that u satisfies the
differential inequality

1, 8
If we compactify N to N by adding {00} X N then u extends to a continuous function on N and

thus it achieves a maximum at a point zg € N. If Ty € N then we conclude exactly as in the proof
of Lemma 2.2.3. If 29 € {00} x N then since 1 |sox x is a 3-monopole we deduce from Remark 4.2.4
in §84.2.2 that
u(zo) < 2sup |s(x)] < 2S5, So:= sup |3(z)].
TEN zeN
Set Ny := N\ (T,00) x N and fix Ey > 0. If E(C) < Eq then since pe is positive on the neck we
deduce

(194G + Sla(@)P +1F4 )b — Sivol (8ir)

(4.4.3)
< / pedt < Ey.
Ny

Thus, there exists a constant Cy which depends only on the geometry of N, Ey and T such that

—ngol (NT) < /
Nt

i ie 1 i
[ pcan [ (I9A0P + GlatP +154)do < o (14.4)
R+><N NT
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vC e ﬁﬂ st. B (C) < Ey. To proceed further we need the following technical result. Fix a smooth,
strongly cylindrical, reference connection Ag on det(d).

Lemma 4.4.3. Fiz the constants FEo, T > 0. Then there exists a positive constant C > 0 which
depends only on Eo, T, AO and the geomelry ofN with the followmg property.
For every C = (¢, A) € zm satisfying B(C) < Eq there exists 4 € 9u ea such that if (¢, B) = 4-C
then o
1B = Aoll 3.2 50,y < C-

Roughly speaking, the above lemma states that if the energy of (1/;, A) on Nr is not too large
then the gauge orbit of A cannot be too far from the gauge orbit of the reference connection Ag.
Thus, high (but) finite energy monopoles are far away from the reference configuration.

Proof Assume for simplicity that 7' = 0. The proof relies on elements of the Hodge theory for
manifolds with boundary as presented, e.g., in [98, Chap. 7]. Set id := A — Ag. The 1-form a
decomposes uniquely as a sum of mutually L2-orthogonal terms

o = 2du + 2d"b + 2
where u € L1,2(]\71), be [,1,2(/\2T*]\71)7 0c Ll’Q(AlT*Nl) are constrained by the conditions
U |8N1: 07 JtZA7|31\71: 0, CZQ = CZ*Q =0.

Q defines an element in the group H 1(AN1,R), which can be identified with the vector space spanned
by the harmonic 1-forms in LY2(AT*Ny). Denote by [©] a harmonic 1-form representing an element
in H'(Ny,2n7Z) closest to Q. We can find a map 4 : Ny — S! (smooth up to the boundary) such
that

o4
ﬂ = 2id0 + 2i[Q)]
¥

where © € L32(Ny,R), © o, = 0. Consider the gauge transformation

§ iz i,
Observe that .
245 _ Ag + 2id*b + 21(Q — [Q2)).

Using [98, Thm. 7.7.9] we deduce that there exists a positive constant v depending only on the
geometry of Nj such that

||d*b||L2(1\71) < V”dd*b”m(z\“rl) =v||F; - FA0||L2(N1)~
Using (4.4.4) we deduce
”FAHL2(N1) <C
so that

. 2d3
A -

— Aol o,y < CAH Q2= [l 25,)) < O
() (&)

where C’ is a positive constant depending only on the geometry of N; and Eo. We can now find a
gauge transformation 4; € G, ¢, such that

=3 on Nyjs=N\(1/2,00) x N.
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Set (g?),B) =5 C and i0 := B — Ay. Observe that on ]\71/2 we have
d6=0, do=—i(Fs—Fy), 625, <C"
Using interior elliptic estimates for the operator d + d* we deduce
HS||L1’2(N1/4) < C(HCZS ® d*gHH(Nm) + ||SHL2(N1/2)) <C”

We can now bootstrap the a priori L'2-bound to a L*2-bound using the Seiberg-Witten equations,
as we have done many times in this chapter. B

Remark 4.4.4. We only want to mention that one can use the techniques in [141] to give a different
(albeit related) proof of Lemma 4.4.3. The results in [141] require LP-bounds on curvature where
p > 2. However, since our gauge group is Abelian the arguments in [141] extend without difficulty
to L%-bounds as well.

Using Lemma 4.4.3 and the estimate (4.4.3) we can obtain after a standard bootstrap the fol-
lowing result.

Lemma 4.4.5. Fix Ey,T > 0. Then there exists C which depends only on Ey, T and the geometry

of N such that, for every C = (1, A) € ﬁu satisfying E(C) < Ey, there exists 4 € G,z such that
%'Ay:()fort > T + 2 and if we set (QS,B) :=%-C then

d*(é — Ao) =0 on NT+1

and
18 = Aol s sy + 19l oz ) < C-

Along the neck any Ce émsw has the form
(¥(t), Ag + ia(t) +if(t)dt)
where (Yoo, Ao + 1a(c0)) € Zo. For T > 0 we set
S1(€) 1= (1) = $(00) | 32 (1roey ey + la() = (00 152 ey

FIFON 132 (7,00) < 3y -

It induces a function
(Sr): 9, — Re, [S71(1C]) i= inf{S7(5 - O 7 € G -
According to Theorem 4.2.33 [S7]([C]) < oo for all C € 2/)3\?#.
Lemma 4.4.6. Fiz T > 0. For any constants Ey, Sy > 0 the set
{1 M BO) < Bo, [5r1(C) < S0

s precompact.
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Proof Consider a sequence of smooth monopoles

Cn = (7[}7“ An) € eu,sw

such that R R
E(CO) < EQ, ST(Cn) < S := SO + 1.

Set id, = A, — Ao. According to Lemma 4.4.5 we can assume there exists a constant depending
only on Ey and the geometry of Ny such that

”dnHLSﬂ(NT) + ||7[}n||L3>2(NT) <C, vn. (4.4.5)
Along the neck we write G, = a,(t) + fn(t)dt and set
Cp := (Yn(00), Ag + ia,(0)).

We can also assume d*a,,(oc) = 0, for otherwise we can replace C,, by e/ C,, f011 a suitable function
f:N —R. (Forany ¢ > 0 we can extend f to f on N such that, for all n, | Sz (e C,,) =S (Cp)| < €.)
We then deduce that Vn

llan(00)]|z2 vy < llan(T)l|z2 vy + lan(T) = an(00)|L2(n)

< lan(T)| 2wy + const - S7(Cy)

and
[¢pn(00)|| 2wy < N1¥n(D)ll2(vy + 1900 (T) — ¥n(00) |22

< [[n(0) 2wy + const - Sr(Cy).
On the other hand, the estimate (4.4.5) implies that
lan(T)lIz2(v) + [¥n (D)2 vy < €, Vn.

Thus
llan(o0)|l2(nvy + [¥n(00)l|L2(vy < C, Vn.

Since (¢ (00), Ag + iap(00)) is a 3-monopole and d*a,(c0) = 0 we deduce
llan(00)[|Ls.2(ny + [[¥n(00) |32y < C, Vn.
We can now conclude using the compact embeddings

L%QUV)—»LiQUVL L3%(N) — L**(N). &

_ In Theorem 4.2.37 we have introduced the capture level & > 0 and a constant t > 0 such that if
C € €, 5w is @ smooth monopole satisfying

/ pe < h
[T,00)xN

[S]([C]) <t

For every C € ﬁu define T(C) > 0 as the smallest nonnegative number 7" such that

/ pedd <.
[T,00)x N

We will refer to T(C) as the capture moment of C. Lemma 4.4.6 has the following consequence.

then
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Lemma 4.4.7. The set

A —

(CeM,: EC)<E, TC)< TO}

18 precompact.

The last results indicate that in order to proceed further we need a detailed study of the finite
energy monopoles on cylinders of longer and longer lengths. This study will also be relevant when
we discuss the gluing problem.

For each positive integer n consider a tube

Cn = (an,bn) XN, —OOSCln <bn SOO,

such that ¢, := (b, — a,) — 00 as n — oo. Continue to denote by o the spin® structure induced by
o on (). Consider now for each n a o-monopole C,, on C,, such that

—0 < B, := E(C,) <
and E, — E, € R} as n — oo. Define a density u, on R by

%fthpcnva, t € [an, by
pn(t) ==
0 otherwise

Observe that i, are nonnegative L!-functions on R and

1
/un(t)dt g
R 2
Observe also that if ¢ € (ay, by,) then

pa(t) = [ISW(Ca(E) 1 Z2v)-

According to the concentration-compactness principle of P.L. Lions [80, 81], we have the following
alternatives as n — oo.

There exists a subsequence of p, (which we continue to denote by wy) satisfying one and only
one of the following possibilities (see Figure 4.7).

e Tight-compactness There exists a sequence t,, € R such that

Ve>0, 3T >0: / pn(t)dt > Eso — e, ¥ > n(e).
[tn—Rtn+T]

e Vanishing
lim sup/ pn(t)dt =0, VT > 0.
[r=T,7+T]

n—00 reR
e Dichotomy There exists 0 < A < FEo such that for alle > 0 there existsne > 0, Re, t, =t, €R
and dy, := d,, . satisfying for n > n,

‘ftﬁRa findt — /\‘ <e,

tn+Re+dn
n—Re f -

tn—R.—d, Hn

dt — A\ <eg,
(4.4.6)

dyp.e — 00.

s

We call X above the splitting level of the dichotomy.
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Tight-compact "
n
e
Vanishing Hn
Hn
Dichotomy ‘

Figure 4.7: Concentration compactness alternatives

Remark 4.4.8. In [103] it is proved that the sequences ¢, . can be chosen independent of €, which
is what we will assume in the sequel.

Lemma 4.4.9. The Vanishing alternative cannot occur if Eo, > 0.

Proof Suppose vanishing occurs. Then for every e > 0 we can find n(¢) > 0 such that for all
n > n(e) the integral of p,, over any interval of length 4 is < €. Using Corollary 4.2.15 we deduce
that if ¢ is sufficiently small then

un(t) < Ce, Vt € |a,+1,b, —1].

This shows that the path ¢ — C ltxn stays in a small neighborhood of a connected component of
M, for t € [an, + 1,b, — 1]. Thus

0< E(C(by — 1)) — E(Clan + 1)) < C-
where C. — 0 as ¢ — 0. This leads to a contradiction since

E, = E¢ ([an,an +1]) + E¢ ([an + 1,0, = 1]) + E¢ ([bn — 1,b5])
<2+4+C.. 1

Lemma 4.4.10. If the sequence pi,, is tight then by extracting a subsequence we can find a sequence
t, € R such that a,, — t, — Ax € [—00,00], by, — t, = Boo € [—00,00] , a sequence of gauge
transformations 4, on Cy,, and a monopole C on [Aso, Boo] X N such that

E(C) = By
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and

(3 - Co)(t +tn) — C
in L} ([Aso, Boo] X N).

loc

Proof The Seiberg-Witten equations on cylinders are translation invariant so that by suitable
translations we can assume the sequence t¢,, in the description of Tight-compactness is identically
zero. Also, assume for simplicity that A,, = —0co and B, = oo.

Fix € > 0 smaller than the capture level h. We deduce that there exists T' > 1 such that for all

n>0
—T+1 0o T+42
[ it [ wm@arze [ noaz B
oo T—1 —T—2

Arguing as in  the proof of Lemma 4.4.6 we deduce that there exists
A € Gy ex(R x N) such that 4, - C,, is bounded in L¥2([~T — 1,T 4+ 1] x N). Relabel C,, := 4, - C,,
so that, in the new notation, C,, is bounded in L32([-T,T] x N).

The arguments in §§4.2.4 and in the proof of Lemma 4.4.6 show that there exist smooth 3-
monopoles C and a smooth function

faiRx N —=R

such that f, = 0 on [-T,T] x N and eifn . C,(t) stays in a tiny L*»2-neighborhood of C;; for all
t € [an,—T + 1] and eifn . C,.(t) stays in a tiny neighborhood of C;f for all t € [T — 1,b,].

Lemma 4.2.24 (or rather (4.2.44) in §84.2.5) shows that there exists a constant C' > 0 independent
of n such that for every interval I C R of length < 1 the L*»2(I x N)-norm of C, is bounded from

above by C. It is now clear that a subsequence of eifn . C, converges strongly in Lllci to a monopole

C on R x N. The tightness condition implies F(C) = E. B

Exercise 4.4.1. Prove that the convergence in the above result can be improved to a strong L*?

loc™
convergence.
Remark 4.4.11. The above Lfo’i—convergence has a built-in uniformity. More precisely, the rate of
convergence on cylindrical pieces of length 1 is bounded from above, meaning that for any € > 0
there exists n. > 0 such that

5 Cru (@ + t) — C(')||L2v2([T,T+1]><N) <e
for all n > n. and any admissible 7.

We now have to deal with the dichotomy alternative. The “di-” prefix may be misleading. It is
possible that the energy splits in several “bumps” each carrying a nontrivial amount of energy as in
Figure 4.8. We want to first show that there are nontrivial constraints on how the dichotomy can
oceur.

If the energy spectrum consists of at least two values we define the energy gap

0= min{Em — & m > k}
Observe that the compactness of MM, coupled with the gauge change law (2.4.9) implies that § >
0. For every sufficiently small x surround the closed sets 9, by tiny, mutually disjoint open

neighborhoods Oy (x) such that if C € Oy, then

£(C) — &kl < 6/8



334 Liviu I. Nicolaescu

Figure 4.8: Multiple splittings

and

dist 22 ([C], My 1) < x, VIC] € O(x)-
According to Proposition 4.2.16 we can find i(x) > 0 such that if |[SW(C)||7, < h(x) then C modulo
Gl belongs to one of the open sets O (x).
Suppose now that the dichotomy occurs. Fix a very small x > 0 and € > 0 such that 0 < ¢ <
h(x). Set
Ap = min(fy,, dy,).

By suitable t-translations we can arrange that the sequence t, in the definition of dichotomy is
identically zero. For each n > 0 we have

Re+dn —R.
/ o (t)dt —I—/ pn(t)dt < e (4.4.7)
R. —R.—d,
and
R,
A—e< / pn(t)dt < XA +e. (4.4.8)
—R.

We can now split the interval I,, = [a,, b,] into several parts:
I, = [an,bpy] N [—Re — An/2, Re + N\ /2], Jn =1, \ 1),

The set J,, has at most two components and the dichotomy assumption guarantees that as n — oo the
measure of .J,, increases indefinitely. We cannot exclude the possibility that one of the components of
J,, has bounded size as n — oo. Define J? as the union of I/, with the (possibly empty) asymptotically
bounded component of .J,,. We set

[Cnydp) i= J0.
Observe that
)\—5</ pn () < X4 2e.
U
I\ J? has at most two components and each of them increase indefinitely as n — oo.Three situations
can occur (see Figure 4.9).
A. I, \ J has two components JX! and their sizes increases indefinitely as n — oo.

B. The complement of [—R., R.] in I,, consists of two intervals of indefinitely increasing sizes but
I, \ J? is an interval J} whose size increases indefinitely as n — oo.

C. Exactly one of the components of the complement of [—R., R.] in I, increases indefinitely as
n — oo.

We will discuss the three cases separately.
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W\ /(\ AN

A
It Case
& /\ —_ by
0
In Case B

% : /\ by

JI? Case C

Figure 4.9: Dichotomy alternatives

A. Using (4.4.8) and Corollary 4.2.15 we deduce that C, |57, xn is very close to a pair of critical
points of €. Since the energy of C,, over J? x N (which is &~ ) can be expressed as

Eén([cmdn] x N) = g(én(dn)) - g(én(cn))

we deduce that it is very close to the difference of two critical values of £. Since A > 0 these two
critical values have to be distinct. We reach the conclusion that

A>0/2.

Thus the splitting energy A is bounded from below by a strictly positive constant which depends
only on the geometry of V.

B. We argue as before to conclude that for large n the energy on the two intervals JO and J} is
bounded from below by §/2.

C. The restriction C% of C, to JO x N defines a new sequence of monopoles on larger and larger do-
mains. This sequence is tightly-compact and thus it converges to a nontrivial finite energy monopole
on a semi-infinite interval.

Definition 4.4.12. A right semi-tunneling is a finite energy monopole on a cylinder [a,00) x N. A
left semi-tunneling is a finite energy monopole on a cylinder (—oo,b) x N.

In Figure 4.9 C?L converges to a right semi-tunneling. If we time reverse the situations depicted
in this figure we see that left semi-tunnelings are also possible.
The next result summarizes the previous discussion.

Lemma 4.4.13. If Dichotomy occurs then we can partition [an,b,] into k < 3 intervals J¢,
1 <i <k, with the following properties.
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(a)

lim length(J!) = oc.

n—oo
(b) If we set Ci, := C,, l7i xn then either (Ci) is tight and converges to a nontrivial (semi)-tunneling
or (C.) is not tight and E(C%) > /2.
If we iterate this discussion we deduce that there exist a positive integer k constrained by

2F
k<T°°+2

and a partition I, = [a,,by] into k intervals
L=I)urlu-..ur’

such that
lim length(l7) =00, V1<j<k

n—oo

and C7 := (C, | 73 x ) 1s tight. Modulo gauge transformations and time translations the sequences
2,2

1.2 to nontrivial (semi-)tunnelings Cg)o with the following properties.

(C3) converge L
o lim, ., E(C}) = E(CL), Vj.
° C{)o is a tunneling for every 1 < j < k.

° C})C is either a tunneling or a right semi-tunneling while C’;O is either a tunneling or a left semi-
tunneling.
e 91 Cl =9 Cit! foralll < j < k.

o If a,, = —o0 (resp. b, = o0) for all n then CL_ (resp. C* ) must be a tunneling.

The above discussion has the following important consequence

Proposition 4.4.14. If E/D\Tﬁ is noncompact then there exists a nontrivial tunneling CO such that

a;to S 951,,,;6.

Proof Suppose ﬁﬁ is not compact. Pick a sequence C, € ﬁﬁ with no convergent subsequence.

Lemma 4.4.7 shows that the sequence C, |k, xn cannot be tight and vanishing cannot occur. Di-
chotomy is the only alternative and the previous discussion implies the existence of tunnelings with
the required properties. B

We want to present a few applications of the above result. Suppose o is such that ¢;(det o) is a
torsion class. Then &, is G,-invariant and since M, is compact we deduce that £ has only finitely
many critical values

E1 <& < <.

Corollary 4.4.15. The space

1§ compact.
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Proof If C is a nontrivial o-tunneling then [9ZC] € M, and
£(0LC) — E(OLM) > 0.

In particular, there cannot exist tunnelings towards o-monopoles of smallest energy. The corollary
now follows from Proposition 4.4.14. B

Corollary 4.4.16. Suppose the metric g on N has positive scalar curvature. Then for every o €
Spin®(N), 6 € Spin®(N) such that 06 = o the space M, (G) is either compact or empty.

Proof If 53\@((7) # () then M, # 0. Since g has positive scalar curvature all the o-monopoles are
reducibles and thus ¢1(det o) is a torsion class. Moreover, according to Proposition 4.2.10 90, is a
b1 (IV)-dimensional torus. The energy functional &, has only one critical value. The compactness
now follows from the previous corollary. B

84.4.3 Orientability issues

When the background manifold N is compact, we established the orientability of the moduli space
of monopoles relying on two facts.

e The moduli space of monopoles is compact.
e The family of linearizations {TC; Ce 53\10} of the Seiberg-Witten equation can be deformed

through Fredholm operators to an orientable family of Fredholm operators.

When N is a cylindrical manifold none of the above facts is true in general and thus a general
approach to orientability requires new techniques. The possible noncompactness is not a very serious
obstacle since one can naturally embed the moduli spaces of finite energy monopoles into some com-
pact metric spaces. The deformation issue is a more serious problem and requires delicate analysis.
The references we are aware of at this time (July 1999) are rather sketchy on the orientability issue
which is discussed in special cases by ad-hoc methods.

We will not attempt to provide a comprehensive treatment of this problem since it is beyond the
scope of these notes. Instead, we will discuss in detail only the situations arising in the topological
applications we will present later on.

Suppose (N, g) is a cylindrical manifold such that 3+(N) > 0and (N, ¢g) := 0 (N, §) has positive
scalar curvature. (The concrete examples we have in mind are N = S, S! x S? with their natural
metrics.) Assume § is a spin® structure on N such that o := Oso0 supports reducible monopoles
(i.e. c1(deto) is a torsion class). The moduli space M, consists only of reducible monopoles and
is diffeomorphic to a by (N )-dimensional torus. We assume that we have generically perturbed the
Seiberg-Witten equations on N as in §64.3.1 such that the resulting moduli space ﬁu(&) consists

only of strongly regular irreducible monopoles. This implies that ﬁu(&) is a smooth manifold, the
asymptotic boundary map

—~

Do : M, (6) — M2

is a submersion and the dimension of each component of S/D\T# is given by the virtual dimension
formula. We want to warn the reader that, contrary to the compact case, the moduli space ﬁﬂ may
consist of several components of different virtual (and in this case actual) dimensions. We assume
for simplicity that n = 0 is such a generic perturbation.

Before we proceed with our orientability discussion let us first point out an interesting result.
We will present some of its topological implications in §§4.6.2.
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Corollary 4.4.17. If N is equipped with a metric of positive scalar curvature and the image of
HY(N,Z) in H'(N,Z) has infinite index then

Proof Set G := H'(N,Z)/H'(N,Z). The universal cover of 9 is M, = H' (N, g) (= monopoles
modulo gauge transformations homotopic to the identity). We deduce that 92 is connected and

Mm, == M?/G.

In particular, we deduce that M2 is noncompact and connected. Thus, there cannot exist submersions
from a compact smooth manifold M to 97 so that 9M,,(6) must be empty. M

For each C € 9 with Coo := (9006, the tangent space T, Cﬁu fits in a long exact sequence derived
from (E),
0— H'(F(C)) — Te9M, — Tc_9M, — 0.

To  describe  orientations  on Téﬁu we need to describe orientations on
HY(F(C)) and T9M,. It is clear that 901, can be oriented by specifying an orientation on H' (N, R).
To orient H'(F(C)) observe that

det H'(F(C)) = det T¢ ,

where we regard (j'é , as an unbounded Fredholm operator Li — Li. Thus, we need to study the
orientability of the family of Fredholm operators
53\?# = C — (j‘(h:,u
The computations in §§4.3.2 show that if C = (¢, A) and Coo = (tes, Ass) (ee = 0 since all
monopoles on N are reducible) then we can write
7. | ®Pi 0 b
Tep= [ 0 Asp, |*%c

= C,M — (1 — S)':Pé

o

where ASD,, := V2d+ @ (—d*+) and fj’é is a zeroth order operator. Set ‘j’é
We let the reader check that the family of operators

[0,1] x ﬁu 5 (s,C) — ‘j‘éu € Bounded Operators L};Q — Li

is continuous. Since

3

is independent of s we deduce that all the operators ‘j'é . are Fredholm.” The orientability of

Cr (j‘Cu is thus equivalent to the orientability of

0 _ | Pa 0
T '—[ 0 ASDM]'

3Warning: If Co, were irreducible then the operator ‘j’é " may not be Fredholm for all s.
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The first component of the above operator acts on complex spaces and thus defines a naturally
oriented family. The second component is independent of C and thus is orientable. To fix an
orientation we need to specify orientations on ker, ASD, and ker, ASD;‘*. Arguing as in the
proofs of Propositions 4.3.28 and 4.3.30 we deduce

ker, ASD,, = ker., ASD, ker, ASD" = ker., ASD/H’(N,R).
The computations in Example 4.1.24 show that ker., ASD/H°(N,R) fits in a short exact sequence

0 — H2(N) — ker., ASD/H°(N,R) — L?

top_>0

2
where Lj,,

denotes the image of H2(N,R) in H2(N,R) while Hi(N) denotes a maximal positive
subspace of the intersection form on H? (N, N;R).

Similarly ker., ASD can be included in a short exact sequence
0— Hi.(N) — kero, ASD — L}

top*)O

where H}, (N) denotes the image of H*(N,N;R) — H'(N,R) while L{,, denotes the image of
HY(N,R) — H'(N,R).

Proposition 4.4.18. Suppose (N, g) has positive scalar curvature. Then ﬁu is orientable. We can
fix an orientation on it by choosing orientations on

L2

top»

H'(N,R), L;

top»

H}:(N), H2(N). (4.4.9)

Remark 4.4.19. Using the long exact sequence of the pair (]\7, N) we see that the spaces in the
above proposition are naturally related. We let the reader to verify that a choice of orientations on
HY(N,R), H*(N,R) and H?(N,R) naturally induces orientations on the spaces (4.4.9).

4.5 Cutting and pasting of monopoles

We have traveled a long road and we have gathered a lot of information about the finite energy
monopoles. This section is the culmination of all this work. We will describe how to glue two
finite energy monopoles into a monopole on a closed compact manifold (pasting) and then we will
explain why all monopoles on a closed manifold partitioned by a hypersurface split into finite energy
monopoles (cutting).

84.5.1 Some basic gluing constructions

Consider again the situation in §§4.1.5. Suppose (N, §) is a cylindrical manifold, (N, g) := 0OO(N, g).
We want to emphasize one aspect relating to the notion of cylindrical structure which was muted
in our original definition. More precisely, a cylindrical structure presupposes the existence of an
isometry ¢ between the complement of a precompact open set D C N and the cylinder Ry x N.
The complete notation of a cylindrical structure ought to be

(N,D,N,§,9,¢)

but that would push the pedantry to dangerous levels. This notation (which will certainly not
be used in the sequel) has one conceptual advantage. It shows that there is a “quasi”’-action by
pullback of the group of diffeomorphisms of N on the space of cylindrical structures. We use the
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term “quasi” since a diffeomorphism f of N may not extend to a diffeomorphism of Ny However,
there will always exist a metric gy on Ny such that

arlo <N dt* + f*g.

This “quasi”’-action induces a genuine action on the space of equivalence classes of cylindrical man-
ifolds where we declare two cylindrical manifolds Ny and N to be equivalent when there exists an
orientation preserving diffeomorphism ¥ : Ni — N, which restricts to an isometry along the necks.
Similarly, if (E, 9, F) is a cylindrical vector bundle on N with E := 0. E there exists a natural
action of Aut (E) on the space of isomorphism classes of cylindrical structures on E.
As in §84.1.5, consider two cylindrical manifolds

(Ni7 Di7 Ni7§i>gi> SDZ)7 (Nza gz) = 800(Ni, gi), Z - 1, 2
Recall that (Ni, §i) are compatible if Ny & — N, (as oriented manifolds) and g; = go. More precisely,
this means there exists an orientation reversing isometry

¢ oo (N1, §1) — Do (N2, o).

We set N := N;(= —N3). Observe that the above “quasi”-action is hidden inside the above definition
of compatibility.

For every r > 0 we chop the half-cylinders (r + 2,00) x N; and glue the resulting manifolds
Ni(r + 2) over a cylinder (r,7 +2) X N to form a closed manifold N(r) with a long cylinder. The
diffeomorphism class of N (r) depends on ¢ but in order to simplify the notation we will not indicate
this in writing.

A simple rescaling argument shows that there exists a constant C' > 0 which depends only on
the geometry of N; such that for all # > 100 we have

1,1
lll oy < Cr3 5 ull s sryy: Vu€ L), 1<p<6. (45.1)

Suppose (E;, 95, B;) — N; are compatible cylindrical manifolds as defined in §§4.1.5. They can
be glued in an obvious fashion to form a bundle E(r) — N(r). For every p € (1,00), k € Z4 and
1 > 0 there exists a natural linear map

A= A(Ey, Ey) : L2, (Fy) x LFP (Ey) — LFP(E),

e wex
A(dy, tig) = Osoliy — Osolia.

The pairs of sections (41, Us) € ker A(Eq, Es) are called compatible pairs. In §4.1.5 we have con-
structed a gluing map

#r s ker A(Ey, Ey) — LEP(E(r)), (i, 2) > iy # i
defined by the cut off construction (4.1.20) (see Figure 4.10)

Uy Fr g i= Uy (1) H#r U (7).

The gluing construction extends to compatible asymptotically cylindrical first order p.d.o. L; to
produce a first order p.d.o. Li#,.Ls on E(r).

Lemma 4.5.1. Suppose L; are compatible asymptotically cylindrical operators. For any k € Z4
and any p € (1,00), u > 0 there exists a constant which depends only on k,p, ;. and the coefficients

of L; such that if 0; € L¥LP(E;) satisfy

ez

Doy = Doy, Lit; =0, i=1,2,
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Figure 4.10: Gluing compatible sections

then
Vit L (i)l oy < O™ (e + 2l e )-

Proof For simplicity we will consider only the case k = 0. Fix p € (1,00) and g > 0. We can
write . . R
Ll = L(l) + Al

where i/(f is a cylindrical operator and Ay is a bundle morphism which belongs to [ L.

meZy
The manifold N(r) consists of three parts (see Figure 4.11):

N~ 2Ny \ (r,00) x N, N(r)T = Ny \ (r,00) x N

and the overlap region

No(T) = (—1, 1) X N.

Over N(r)~ we have X X R
Li#,:La = Ly, Uil = 4.

A similar thing happens over N(r)+. Thus, the section L; #Tﬁg(ﬁl #,12) is supported on No (r). To
ease the presentation identify the region

Ny (r) := (=1,0) x N C No(r)

with the region (r,7 4+ 1) x N C Nj. Over N; (r) we have

UG = at — ) (121 - 600111) + 0ol
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Figure 4.11: The three regions of N (r)

and

Ll#rLQ = L1 - 6(t — T)Al = Ltl) + O[(t - T’)Al
where a(t) and ((t) are depicted in Figure 4.4 of §§4.1.4. A symmetric statement is true over
Ng(r) :==(0,1) x N C N(r)°.

_ To simplify the presentation we will use the symbol g1 ~ g2 to denote two quantities g1, g2 over
N(r)? such that

lar = Gell o ey < O (il n, + lliall . )

1,p

where C' > 0 is a constant depending only on p, i > 0 and the coefficients of L;.
We deduce that over N; () we have

Ln#, Lo(tn #02) = (il - 5/11)(04(121 — Ooo 1) 4 Ooo iy )

= ﬁl(a(ul — 800’&1)) + [Aqaooﬂl — ﬁz‘il( Oé(ﬂl — 800121) + Osolly )

~ ﬁl(a(ﬁl — 8OO’LAL1)) + i/laooﬁl = _El(Oé’LAbl + ﬂaoo’fbl)
(a+ 8 =1, [[0cctin =l 1oz (ry) < Ce Ml 1)

= Lyt 4 L1 (B(8sctiy — 1)) = Ly (B(dsotiy — 011)) ~0. W

Remark 4.5.2. Completely similar arguments can be used to prove the more general estimate

H(‘z’l#rf/Q)(ﬁl#rﬁQ) - (ﬁ1ﬁ1)#r(i2ﬁ2)‘

Ler (N () (4.5.2)
< O (il + ol ).

Exercise 4.5.1. Prove the estimate in the above remark.
Exercise 4.5.2. Suppose wy,ws are two compatible, asymptotically strongly cylindrical differential
forms on N7 and N, respectively. Show that

d(wr#,w1) = (dwy)#,(dws).
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Finally, we would like to explain how to glue cylindrical spin®-structures. We refer back to
§64.1.1 for the detailed description of the notion of cylindrical spin® structure. To figure out what
to expect we begin with a simple argument.

Suppose we have two compatible cylindrical manifolds Nl, NQ. As before, form N (r) for r > 0.
Let us (noncanonically) identify Spin®(N(r)) with H2(N(r),Z) or, equivalently, with the group

Pic®™(N(r)) of isomorphism classes of smooth complex line bundles over N(r). This group can be
recovered from the two pieces of the decomposition using the Mayer-Vietoris sequence

Ay

HY(N(r),Z) — H'(Ny,Z) ® H' (N5, Z) =% H*(N, Z)

2 HA(N(r), Z) 22 H2(Ny, Z) @ H*(No, Z) 2% H2(N, Z).

The arrow r, indicates that a line bundle 6 on N (r) induces by restriction line bundles &; on Nl
while the arrow As shows that these line bundles induce isomorphic line bundles on the dividing
hypersurface N. Denote by o this isomorphism class. The arrow §; shows that in order to recover
¢ we need to glue &; using an automorphism ¢ of o

G = 01#,02.
On the space of automorphisms of ¢ we can now define an equivalence relation ~ generated by

@ o 7" Yis homotopic to an automorphism of o
which decomposes as a product between
T = an automorphism which extends over Ny and
an automorphism which extends over Ng.

The arrow ¢; shows that the isomorphism class of &1#,62 depends only on the equivalence class of
. (Can you see this directly?) If we set

G := H'(N,Z) and G; := Range(H'(N;,Z) — @),

then we deduce that the space of ~-equivalence classes is isomorphic to G/(G1 + G2). Then the
restriction map ro defines a fibration

Pic™(N(r)) — ker A

with fiber the space of gluing parameters H(N,Z)/(G1 + G2),

G/(G1 4+ G3) — Pic™(N(r)) — ker A.

Let us now refine this construction. Denote by C the cylinder (—1,1) x N. We can regard it in a
tautological way as a cylindrical manifold with two cylindrical ends. A cylindrical structure on line
bundle L over C is then a quadruple (L,?+) where L. is a line bundle over {£1} x N and 9 is
an isomorphism .

V1t Llgr1yxn— Lx.

cyl

0 — G — Picgy,;(C) — Pic™(C) — 0.

cyl

Observe that the forgetful morphism Picoy;(C) — Pic™(C) is onto and its kernel is isomorphic to G

The above is a naturally split sequence, with splitting map

8 : Pic™®(C) — Pic2,(C), L — (f/;ﬁ\{il}xN, 1).

cyl

We have a natural difference map

Ay Picy (N1) x Picgy, (Na) — Picy (C),
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((il,Ll,ﬁl), (iz,Lz,ﬂz)) —
= ((E2® Lo (L2 @ Li loaxw. 1) (L2 © L hix 92 © 07)).
Two cylindrical line bundles (IA/Z7 L;,¥;) on NZ are called compatible if
(fq, f/g) € ker Ay
More precisely, this means that there exist isomorphisms
@ : Hom(L1|o, L2 |o) — C,

¢ :Hom(Ly, Lo)|_1xny— C, ¢4 : Hom(L1, Ly)|1xn— C

such that the diagram below is commutative

.. o 92097 "
Hom (L1, Lo)|—1xn «—— Hom(Ly, Lo)|c ——— Hom(Ly, Ly) |1xn

P— ) o+

C 1y Ce Cixn

Intuitively but less rigorously, if we think of cylindrical line bundles as bundles with a given “framing”
at infinity, then two cylindrical line bundles are compatible if the framings are homotopic. We will
write the pairs of compatible cylindrical line bundles in the form

((L1,L,91), (L2, L,92) ).
Such a pair can be glued using the trivial automorphism 1 : L — L to produce a line bundle
(L1, L,91)#+(La, L,92) € Pic™ (N (r)).
We thus have a surjective morphism called the gluing map
#, : ker Agy — Pic™ (N (7).

Its kernel consists of pairs
((Cg,»Cn,11),(Ck,,Cn,02))

with the property that there exist maps #; : N; — S, i=1,2 and v : N — C such that the diagram

below is commutative

V1 o

Cy Cy Cy
N
v
Cy

This implies
V192 [N= V21| N -
Since we are interested only in homotopy classes of such 4; we deduce that the kernel of the above

map is (G1 + G2)/(G1 N G2). We can express this more suggestively in terms of the asymptotic
twisting action. Define an action of G + G2 on ker A,y by

(Cl —|— 02) . (([Aq,L,le), (IA/Q,L,Q92>) = ((ﬁl,L702191)7 (lA/Q,L7cl’l92) ),



Notes on Seiberg-Witten Theory 345

where the above actions of ¢p, co are given by the asymptotic twisting operation defined in §§4.1.1.
This action is not free. The stabilizer of an element in ker A.y; is precisely the subgroup Gi N Gs
corresponding to the homotopy classes of gauge transformations over N which extend over N (r).
The orbits of this action are precisely the fibers of the gluing map #,. Thus the gluing operation is
well defined on the space of orbits of this G; + Ga-action. We will also refer to this operation as the
connected sum of an orbit of compatible cylindrical line bundles.

Proposition 4.5.3. For any complex line bundle L on N( ) there ezists a unique G + Ga-orbit of
compatible cylindrical line bundles L; — Nz, i =1,2, such that L = Ll#TLQ

Exercise 4.5.3. Prove that we have the following commutative diagram, with exact rows, column
and diagonal.

G Gi1+ Gy
G NG, T G1NG,
ker Agy
G R
m —— Pic (N(T)) ker A

We can now define the notion of cylindrical spin®-structure on N; in an obvious fashion. The
space of isomorphism classes of such structures is a Plccul(Z\Afi)—torsor. By fixing one such structure
we can now reduce the decomposition problem for spin®-structures to the analogous problem for
line bundles. We have the following result.

Proposition 4.5.4. Any spin® structure on N(T) can be written as the connect sum of a unique
G1 + Ga-orbit of compatible cylindrical spin® structures on N;.

84.5.2 Gluing monopoles: local theory

Consider two compatible cylindrical 4-manifolds N; and N,. Suppose (N, g) satisfies the nondegen-
eracy assumption (N). Fix p > 0 sufficiently small. Form the closed manifold N (r), r> 0, and fix
6 € Spin®(N(r)) so that

0 = 01#062
where &1 and 65 are compatible cylindrical spin®-structures on Ny and N, respectively. Now choose
strongly cylindrical connections 121071- on det(d;) and set

Ay = Ag(r) := Ap1#,Ag 2.

IfC; e éwx(N) we set

ko = 1Ci — (OaAO,i)HLﬁzfe’w'
Suppose Cl IS éu,sw(Ni, &;) are two smooth monopoles such that
90Ci = 95Ca.
As in the previous subsection we can form

Cr = (@rvfir) = Cl#ré2 = (¢I#T¢2aAl#rA2)-
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The configuration C, € Cs(N(r)) may not be a monopole but it almost satisfies the Seiberg-Witten
equations. Arguing as in the proof of Lemma 4.5.1 we deduce the following result.

Lemma 4.5.5. There exist constants C > 0 and ro > 0 which depend only on the geometry of N;
such that
2,2) )

. 1 - 1 R
”@Aﬁ/}rHLLZ’(N(r)) + ||F2_T - §Q(¢T)HL1,2(N(T)) <Ce” <||C1||2,2 +11C

Vr > 9.
Exercise 4.5.4. Prove Lemma 4.5.5.

Naturally, we would like to know whether there exist genuine monopoles near C,. In other words,
we would like to investigate the L??2-small solutions C of the nonlinear equation

SW(C,.+C) =0, 2’& (€) =0.
Form the nonlinear map
N : LM(S; @ iT*N(r)) o LL?(Sg @ iAiT*N(r))

given by . — A .
N(©) = SW(C, + C) @ £¢ (Q).

Denote by T, = (j‘CT the linearization of N at 0

Observe that
(4.5.3)

Now set

>

R(C) :=N(C) = N(0) - T,C.
Using (4.5.1) with p = 4 we deduce the following result.

Lemma 4.5.6. There exists a constant C > 0 which depends only on the geometry of N; such that

1RO 1120y < Cr21€N12 00 sy VE € L22(SE @iT* N(r)
(N(r)) (N (7))

IR(Cy) = R(Co)ll 1oy
< CTS/Q(HQHH»Z(N(T)) + ||§2||L212(1\7(7-))) Hg - §2||L2,2(N(r))’
vC,,C, € L“(Sg ® iT*N(r)).
To shorten the presentation we set
X" = L“(S; ® iT*N(r)), ak = Lk (Sg ® iAiT*N(r)),

LRSI

According to Lemma 4.5.6, N is a continuous map DC2+ — XL differentiable at 0.
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We can now form the closed, densely defined operator

L.:X%—x°

b= | 2 T
" T, 0
L, is the analytical realization of a Dirac type operator. It is selfadjoint and induces bounded
Fredholm operators

with block decomposition

Xk — k.

Denote by 3, the subspace of X spanned by the eigenvectors of L, corresponding to eigenvalues in
the interval (—r~2,72). J, consists entirely of smooth sections. The decomposition X° = X9 @ X%
induces a decomposition

H, =H oK, .

We denote by Y(r) the orthogonal complement of H, in X°. Y(r) is also equipped with a Sobolev
filtration
Y (r) :=Y0n X",

Again we have a decomposition
YE(r) == Yh(r) @ YE(r).
Denote by Py the orthogonal projection X4+ — fH;t and set Q4+ := 1 — Py. Observe that

Q= (X" = Y& (r).

For each Q IS x& we set

Co = P+Q QL = Q4

o

Observe that o o o L
P_T.(C) = T:(Cp), Q-(T.0) =T.C . (4.5.4)

Moreover, for every k € Z, 7, induces a bounded operator
Yt —yk
with bounded inverse S and there exists C' = C), > 0 such that
IS0l sz gy < Crr?llull ez gy, Yo € YE. (4.5.5)
The equation N(C) = 0 is equivalent to the pair of equations
P_N(C) =0 and Q_N(C) = 0.
Using the identities (4.5.4) we can rewrite the above equations as
A oal Al o
QNO) + 7.8 +Q_REC +Cy) =0 (4.5.6a)

P_N(0) + 5, + P_R(C" + &) (4.5.6b)
Set U+ := —SQ_N(0). Fix C,. We can rewrite (4.5.6a) as an equation for C*

C =) =0~ SQ_RC +C"). (45.7)
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One should think of F as a family of functions Fc (C ) parameterized by Cy. Using Lemma 4.5.6

and (4.5.5) we deduce

IF(CE) = F(CH) |22
N N R R (4.5.8)
< C'T5/2(||§1 + Coll2,2 + 11C, JFQOHQ,Q) 1€ — Collz,2-

Lemma 4.5.1 coupled with (4.5.5) shows that
1F(O)]l22 < Cree.

Thus A .
[F(CH) 2,2 < 1F(0)[|2,2 + [|F(CH) — F(0) |2,

L. L
< Cr?e ™ + Cro2|C + Coll22lIC 2.2

Observe that there exists r = r(p) > 0 such that for all » > r(u) we have

~ Ll L .
e (1€ 1 =172} € 1€ =), Vi o <

Moreover, according to (4.5.8) the induced map

Fe, {1 oz <77} = {IC" o2 <777}

is a contraction. Set L
Bu(r®) = {IC 22 <7} C ¥30),

Bo(r™%) = {\|§0H2,2 < 7"_3} C A
For each Cy € By(r~3) the fixed point equation (4.5.7) has an unique solution
Ct=a(Co) e BL(r™®).

We let the reader verify that ® depends differentiably upon Co.
Now define the Kuranishi map Co — k.(Cp) by making the substitution

Ct — 2(Co)

in (4.5.6b), that is
Kp : Bo(r™3) — 3,

Co = P-N(0) +7,Cy + P-R(2(Cy) + Cp)
- P_SI/V(Q +Co+ @(CO)).

The space . is called the obstruction space. The Kuranishi map «, has the following significance.
The part of the graph of ® sitting above the zero set ., 1(0) consists of all the monopoles on N,
located in the local slice at CT at a L?2-distance < r~3 from Cr. If k. = 0 (in which case we say
that the gluing is unobstructed ) then the set of monopoles near C, is described by the graph of ®.

The results in §§4.1.5 give more accurate information on the size and location of the Hilbert
subspaces H:=. More precisely, we have the short asymptotically exact sequence

0— J—C;"—ﬂ kerq, ‘j'él @ kere, ‘j'él A, IA,{F + lA}2+ —0
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where IZ;" is the range of the asymptotic boundary map O : kere, ﬁ’éi — ker Jc_ . Similarly, we
have a short asymptotically exact sequence

N ~ A . A
0— H, —kere, TX @kere, T2 —*— L7 +L; —0
T Ci Co 1 2
where IA{ is the range of 0y : kere, ‘j'(*: — ker Tc__. Using the notation and results in §§4.3.2 we set

L = 0% kerey T, — Te My,
¢l = 2% kere, ‘j‘c — TG = coker(Tléi Oep T1Go),

Lz_ = 820 kere, ‘jdé - Tcoo mo’

¢ = 0%, kere, ‘jc — TG %Range(Tléi Bep T1Gwo).

The results in Propositions 4.3.28 and 4.3.30 imply that we can identify H é with the subspace
ker(0%, : kere, ‘j'éi — T1G) and
LI =05 HL, Ly =05 H*(Fz).

00Tt C,? i

To put the above facts in some geometric perspective we need to recall the results in Propositions
4.3.28 and 4.3.30. Denote by él the stabilizer of C, and by G, the stabilizer of C.,. We then have
the following commutative diagrams in which both the rows and the columns are exact. .S, denotes
the splitting map defined in §§4.1.5 while A denotes the difference between the asymptotic limits.

o Virtual tangent space diagram

0 — 3 LN kere, (j’Cl @ kere, ‘J'Cz A, [A&*‘ + ZA;;‘ =0 (T)
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o Obstruction diagram

0 0 0

I

0 —kerA® 2 H(Fp )@ HX(Fe)) — Ly + Ly — 0

l

0 K- —s kereg ﬁgl D kero, ﬁa EN 0)
lago@ago
S A%
0>ker Al ———— 7@€ ——— € +& =0

The Lagrangian condition (4.1.22) establishes certain relationships between the above two se-
quences.
e Complementarity equations

Lj@L;:Téxmay Q::r@c;leGocw (L)

¢ = coker(Tléi LN T1Gw), € = Range(Tléi e, T1G), 1=1,2,
1 1
L= (L) e = ()
Suppose that at least one of the monopoles C, is irreducible, say C,. Then ¢ =0andker A° = 0.

The diagram (O) implies
H, =ker A° C H*(Fp,) @ H*(F,).

Our next result summarizes the facts we have established so far. A local gluing result of this nature
was proved for the first time by Tom Mrowka in his dissertation [99], in a slightly different form and
in the Yang-Mills context, relying on conceptually different methods.

Theorem 4.5.7. (Local gluing theorem) Suppose C, € émsw(Ni,&i), 1 = 1,2, are two finite
energy monopoles with compatible asymptotic limits such that at least one of them is irreducible.
Then the following hold.

(a)
H, = ker A C HQ(FEO) D HQ(FCO)'

(b) There exists 1o > 0 (depending only on the geometry of N; and ||Cill2.2) with the following
property. For every r > ry there exist smooth maps

kr: Bo(r™3) C K} — K7, ®: Bo(r %) c K — Y(r)*"

such that the variety

coincides with the set of monopoles C on N(r) satisfying
L (C=C)=0, [C=Clap<r™?

where C,. := C1#,Co and HE are determined from the diagram (T ).
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Remark 4.5.8. The obstruction space J_ can also be described as the space spanned by the
eigenvectors of ﬁ'rﬁ': corresponding to very small eigenvalues, i.e. eigenvalues in [0,7~%). (As pointed
out in §§4.1.5 the eigenvalues determining 3, are in reality a lot smaller than =%, in fact smaller
than any r~™ as r — c0.) Notice that

o S; @iAZT*N(r) S; @iAZT*N(r)
T, 32 D — L2 @
iNT*N (r) iAOT* N (r)

has the block decomposition

SW,SW. SW, ot

— %

LU
where SW » denotes the linearization of the Seiberg-Witten equations at C,. Now witness a small
miracle.

_ . d .
SW, 0 Le (if) = - li=o SW (e - C,)

¢
:%h:O(@M @Awﬂ\fFJr_* 1/)7) (ff“ﬁ )

This shows that the off-diagonal terms in the above description of ‘j ‘j' are zeroth order operators
111" Since

”@ATQZJTHLZQ(N(T)) < Ce HT

we deduce that their norm is exponentially small. We can now write

SW,SW, 0
0 £ L

T, T W, = Vo + W,

where W, is bounded, symmetric and |[W,| = O(e™*"). Denote (temporarily) by H(, the space
spanned by the eigenvectors of V,. corresponding to eigenvalues in [0,77%). We can now use the
perturbation results in [60] to deduce that the gap distance between H,~ and J converges to zero
as r — oo. In applications it thus suffices to work with J{ rather than H_. The space }, has
an additional structure deriving from the diagonal structure of V.. More precisely, H splits into a
direct sum

T

very small eigenvalues of SW Tg—ﬂ\/ : @ very small eigenvalues of Sé Le. -

We deduce from this picture that the operator 2’& ECT does not have very small eigenvalues if at least

one of C; is irreducible. The reason is simple: any eigenvector corresponding to such an eigenvalue
will contribute nontrivially to the kernel of A® in the diagram (O). We conclude that for any & > 0
there exists R = R. > 0 such that for all » > R. we have

Hﬂcr(if)lliz(mr)) = (L2 e (i), (i) =r " EHfIILz (N ()’
Vf e LY2(N(r)).

We left out one technical issue in the above discussion. More precisely, we cannot a priori elimi-
nate the possibility that some of the monopoles constructed in Theorem 4.5.7 are gauge equivalent.
It is true that they lie in the slice ker L£e but it is possible that the neighborhood in which they are
situated is so large that one gauge orblt intersects it several times. We will now show that this is
not the case by providing an explicit, r-dependent estimate of the diameter of the local slice at C,.
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Lemma 4.5.9. There exists ro > 0 such that for all r > rq the configurations

G +E, IEll L2 gy S 77°, LEE=0

are pairwise gauge inequivalent.

Proof We argue by contradiction. We assume that for all » > 0 there exist
€G3 #1

and =1, # Ea , such that

W (G +E10) =G+ oy €2 Zir =0, [Birll oy <777 (4.5.9)

r

Set C, =: (b, A,), Eip = (¢, ,iG;,) and Z, := Ep, — =y, Observe that
|Zirll22 =0(r"3) as r — o0. (4.5.10)

Denote by ¢, the average value of 4, : N(r) — C. We can regard ¢, as the orthogonal projection of
4, onto the kernel of d + d*. Using the estimate in Exercise 4.1.6 of §§4.1.6 we deduce

15 = erl3 = O(r*¥l1d5e 32 )

The equality (4.5.9) implies

2d(4 — ) = 2d, = (G, — 1) (4.5.11)
so that .
[d:|la = O(r?).
Hence
19 = erll3 = O(—"F9). (4.5.12)

Now use (4.5.10), (4.5.12) and interior elliptic estimates for the elliptic equation (4.5.11) to deduce
that there exists C' > 0 such that for any open set U C N(r) of diameter < 1 we have

A — CT‘||L3’2(U) < Cr—5/2+e,

Using the Sobolev embedding L>?(U) — L°(U) (where the embedding constant can be chosen
independent of U and r) we deduce

19 — CT”Loo(N(r)) = O(T75/2+5)~

The last estimate shows that 4, is very close (in the sup-norm) to being constant and thus it can be
represented as

3 = exp(ify).
Denote by ¢, the point on the unit circle S* C C and pick ¢, € [0,27] such that exp(ip,) = ¢
Observe that we can choose f, so that

/
e

||fr - ‘PT”Loo(N(T)) = O(T_5/2+E)'

We can now rewrite (4.5.9) as

iay, — 2idf, = ia,, exp(ify)(¥, + @M) =, + @ZT.
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These two equalities have to be supplemented by the slice conditions
0= EET (Ei,r) = 2(?*&1"7” + Im<’([}r,@i7r>.
A simple computation leads to the equality
_4J*szr + Im@&m (eifT - 1)(¢r + @2,7”»'
We can further rewrite the above as

ad*df, = —sin(f,) |9, 1% + Tm(y, (¢ = 1), ). (4.5.13)

Set &, := fr — ¢,. We have
4dvde, = —sin(p,) |12 - (sin(f,) — sin(p,) 16,2 + Im(d,. (¢ — 1), ).

Multiply the last equality by 1 and integrate by parts over N(r). Since |@2 e = O(r=3) and
| sin(f,) — sin(e,)|| L = O(r~5/2+¢) we deduce
jsinteo)l [ pavel = 0(5249) [ vl
N(r) N(r)

Thus
|sin(gr)| = O(r—>/27%).

Thus either |p,| = O(r=%/2%¢) or |p, — 7| = O(r=°/2*¢). We can exclude the second possibility by
using the equality

(Gt )=+,

and the fact that 1, does not vanish identically; better yet, ||1/A)r||Oo is bounded away from zero
independent of r. (Recall that C, is an almost monopole obtained by gluing two finite energy
monopoles at least one of which was irreducible.) Hence

| frllzoe = O(r—3/%F), (4.5.14)
We can rewrite the equality (4.5.13) as
£2 Le(fr) = Ad dfy + 0l fo
) o - ) (4.5.15)
= (fr = sin(f) |0 [* + Imdy, (e — 1), ).

Using interior elliptic estimates for the above equation we deduce that there exists C' > 0 such that
it U € N(r) is an open subset of diameter < 1 then

1l o2y < Cr?/2e. (4.5.16)
Multiplying the equality (4.5.15) by f, we deduce
(A fro o) < Ormo24 fo .
Using the eigenvalue estimate in Remark 4.5.8 we deduce
IFelIZe < Cr*<{Ae fr, fo)re.

The last two estimates contradict each other for » > 0. This concludes the proof of Lemma 4.5.9.
|

We have thus proved the following result.
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Corollary 4.5.10. There exist ry > 0 and for every r > ry an open neighborhood U, of 0 € V,. such
that the set R . . o . . R
{G+G g =0 C=C+ (&), G el m(Cy)=0]

18 homeomorphic to an open set in the moduli space ﬁﬁl#&z. |

We will refer to the open subsets of ﬁé—l#(}z described in the above corollary as splitting neigh-
borhoods.

Remark 4.5.11. The choice of size »—3 in the definition of ®, and &, is by no means unique or
natural. Our proof shows that if we replace 7=3 by r=™, n > 3, everywhere in the statement of
Theorem 4.5.7 we will still get a valid result.

To give the reader an idea of the strength of the gluing theorem we consider several special cases.

Example 4.5.12. Both Cy and Cy are irreducible, strongly regular and Coo is irreducible. In this
case, the middle column in (O) is identically zero and we deduce that the obstruction space H is
trivial. Thus, K, = 0 and the set of monopoles close to C, := C;#,Cs can be represented as the

graph of a smooth map
®: Bo(r~3) Cc H —Yi(r)

where C is implicitly defined by the fixed point equation (4.5.7). Moreover, the dimension and
location of 3 can be determined from the diagram (T'), which in this case simplifies to

A
0— HF—"H; @ He — Tc My — 0.

To see why L + L3 = Tc__9M, observe that in our special case we have L; = 0 and thus, using (L),
we conclude L} = Te__M,. The smooth manifold filled by the monopoles close to C, has dimension

d(Cy) + d(Cy) — d(Coo)-
Observe that all the monopoles on N (r) constructed in this way are regular.

Example 4.5.13. Both Cy and Cy are irreducible, strongly regular but Coo is reducible. The ob-
struction space H;. is trivial and the monopoles near C, form a manifold of the same dimension as
', which is

d(Cy) + d(C2) — d(Coo) + dim Gy

Again, all the monopoles near C, are irreducible and regular.

Example 4.5.14. Suppose both C; are strongly regular, Cy is irreducible butﬁg is reducible. Again
we deduce that the obstruction space H, vanishes. The monopoles near C, form a manifold of
dimension

dim K, = d(Cy) + d(Cs) — d(Coo) + dim Goe

Set
d(C)#d(Cy) := d(Cy) 4+ d(Cy) — d(Cso) + dim Goe

The above three examples show that if both C; are strongly regular and at least one is irreducible
then the set of monopoles near C, is a smooth manifold of dimension d(C;)#d(Cy). All these
monopoles are both irreducible and regular. We can formally write

d(Ci#,Cy) = d(Cr)#d(Cy).
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84.5.3 The local surjectivity of the gluing construction

The gluing process described in the previous subsection constructed certain open subsets (splitting
neighborhoods) of the moduli spaces of monopoles on a 4-manifold with a very long neck. This
splitting process we are about to present will show that if the 4-manifold is sufficiently stretched
then these splitting neighborhoods cover the entire moduli space. R

Consider again the Riemannian manifold N (r) introduced in the previous subsection. If C =
(1), A) is a monopole on N (r) then, according to Proposition 2.1.4, its energy

BO= [ (98 + Glath)F + 7P + S ) tan)

is a topological invariant, depending only on the spin® structure and not on the metric. On the
other hand, ||§(g,)|/r= is independent of r and because |||~ < 2||5(§r)||L we deduce that the
energy of C on any open set of N(r) of volume O(1) as r — oo is O(1) as 7 — oo. If we take this
open set to be the complement of the long neck we conclude that the energy of C on the long neck
is bounded from above by a constant independent of r.

The discussion in §§4.4.2 shows that any sequence (Cn) of monopoles on N (rn, — o0) splits as
n — oo into a chain o o

Co, C1,Co, -+, Cp, Cpn

where éo is a finite energy monopole on Nh CkJrl is a finite energy monopole on ]\72 and Cl, co G
are tunnelings on R x N such that . .
01Ci =0 Citr.

Assume for simplicity that tunnelings do not exist. We deduce that the moduli spaces of finite
energy monopoles on N; are compact and, moreover, as r — oo the monopoles on N (r) will spht into
a pair of finite energy monopoles C; and C, with matching asymptotic limits, 0 Ci = 0,0Cq €M,
Denote by P the set of such pairs.

Given such a pair (Cl, Cg), the local gluing theorem postulates the existence of ry = ro(Cl, Cg) >0
and for each r > r(y the existence of an open set uéhéw C ﬁg, (gr) with the property

uChC%T = {C c ﬁ&(ﬁr); diSth,z([CL [Cl#rtg]) < 7’_3}.
Since P is compact we deduce that there exists Ry > 0 such that
ro(C1,C2) < Ro, ¥(C1,Ca) € P

For each r > Ry we set
U= ) Ue e, €Ml
(C1,C2)eP

We can now state the main result of this subsection.

Theorem 4.5.15. Assume Ni and N are equipped with real analytic structures. Then there
exists Ry > 0 such that .
WU, = Ms(g), Vr> Ry.

Sketch of proof The method we will employ in the proof is a substantially sharper variation of
the strategy used in [26, Sec. 2.2] to establish a similar fact.

Consider a sequence C,_., of monopoles on N (r) which splits as r — oo to a pair (C;,Cy) € P.
Let us explain in some detail the meaning of this statement.
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Identify the long neck of N (r) with the long cylinder [—r,r] x N. The splitting implies that
there exists 7 > 0 independent of r with the following property: if we denote by C{ (resp. Cg) the
restriction of C, to the portion of N (r) containing [—r, 7] x N (resp. [r,7] x N) then Ci converges in
Liﬁ to C; (with the additional uniformity explained in Remark 4.4.11). Denote by G; the stabilizer
of C,L

We want to prove that for all 7 > 0 there exists (C1(r), C2(r)) € P such that

050Ci = 050 Ci(r) =: Coo

and . R A
dist 2,2 ([C,], [C1 (1) #,.Ca(r)]) < r73.
Assume for simplicity that 7 = 0. It will be convenient to regard C; as monopoles on the truncated
manifold N;(r) = N; \ (r,00) x N.
Define the configurations C; , € €, su(N;) by

Cir=0,Cl +(1—-0a,)Cs

where o, = a(t —r + 1) and « is depicted in Figure 4.4 of §4.1.4.
Using the estimate (4.2.35) in Remark 4.2.29 of §§4.2.4 coupled with the uniform Liﬁ—convergence
of C] we deduce after some elementary manipulations that

ISW (Cill 22 = O(e™7), dist;22(Ci, Ci) = o(1) as T — oo. (4.5.17)

Exercise 4.5.5. Prove the above estimates.
Hint: Consult [26, Sec. 2.2] for inspiration.

To procged further we need to use some of the constructions (and notation) in §§4.3.1 and §§4.3.2.

Denote by 8; the global “slice” .
Si =ker £ N LY.

Using Proposition 4.3.7 we deduce that there exists a Lff—small neighborhood V; of 0 € §; such
that every orbit of §,, on €, 4, (NN;) intersects C; + V; along at most one point. Modulo §,, we can
assume that C;, € C; +V;. Set 5, :=C;, — C; €8;.

Now denote by Y C S, the Li—orthogonal complement of H' (FC) in§;, by Y. the Li-orthogonal
complement of H Q(FCO) in its natural ambient space and by ﬁi(Coo) the moduli space of §/f

equivalence classes of finite energy monopoles C on N; such that 8C = Co. We have the usual
Kuranishi local description of a neighborhood of C; in 9;(Cw,). More precisely, there exist a small
neighborhood U; of 0 € Hl(FC ), a smooth map

®;:U; — Y, ©;(0)=0
and a real analytic map k; : U; — H 2(Féz) such that the set
{CZ +u+P(u); ueU, ki(u) = 0}
is homeomorphic to an open neighborhood of C e ﬁi(Coo). Moreover, there exists C' > 0 such that
ls(w)]| 2 < CISW(Ci+ )] 2, Vu € U (4.5.18)

Exercise 4.5.6. Use the fixed-point strategy in the proof of Theorem 4.5.7 to establish (4.5.18).
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Decompose Z;, = Ef, + &, € H'(Fg) @ Y] Since SW(C; + Z;i,) = O(e ") and ‘j’c y =
§W7 ¢ @ 22“ has closed range we deduce

=55l 22 = O(e™").
F

Thus .
ISW(Ci +E7 ) 12 = O(e™). (4.5.19)

i,r
The iterative construction of ®; via the Banach fixed point theorem shows that for every u € U; and
every sufficiently small =+ € Hj we have

19s(w) — 22 < CIQ-SW(Ci +u+EL)| e
where )_ denotes the orthogonal projection onto Y; . In particular, we deduce that
9422l 22 = O(e™). (1.5.20)
The estimates (4.5.18) and (4.5.19) imply that
17:(Eir) | = Oe™).

Since k. is real analytic we can use Lojasewicz’ inequality (see [15, 86]) to deduce that there exists
p > 0 such that
dist(Z,., k;1(0)) = O(||ki(E),)|IP) = O(e™P#") as r — oo.

—i,r Vg

Using (4.5.20) we can now conclude that
dist 22 (Ci.p, M (Coo)) = O(e ™)

for some ¢ > 0. Thus, we can find C;(r) € §J\Yi(COO) such that

diStLi~2(Ci,T7 C,(T‘)) =0(e™ ).

This implies immediately that there exists Ry > 0 which depends only on the geometry of N; such
that for all » > Ry we have

distz2.2(C,, C1(r)#,Ca(r)) < Ce " < 773,

This completes the proof of Theorem 4.5.15. B

84.5.4 Gluing monopoles: global theory

It is now the time to put together the facts established in the previous two subsections. There is
a wide range of situations possible and we will not attempt to formulate the most general result.
In this subsection we will deal only with two generic situations which display most of the relevant
features of the general gluing problem.

Again we consider the cylindrical manifolds (Nl, g1) and (]\72, g2) with N = 8wNi, g = Ol
together with a G 4+ Ga-orbit of compatible cylindrical spin® structures 6;, 0sod1 = 0502 = 0. For
every ¢ € G we denote by cd; the asymptotic twisting of the spin® structure 6; defined in §§4.1.1.
We will identify an element ¢ in G with the unique gauge transformation v : N — S! such that

1

5d7v/7 is the harmonic 1-form in N representing c. We form as before the Riemannian manifold

(N(r), §,) with a long cylindrical neck.
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CASE 1. We will first consider the situation characterized by the following conditions.
A (g,0) is good.

Ay There exist no (g, 0)-tunnelings on R x N.

As b () > 0.

A, All finite energy monopoles on N; are irreducible and strongly reqular.

Observe that A; and A, are automatically satisfied if g has positive scalar curvature. The
genericity discussion in §§4.4.1 shows that we can arrange so that A, is fulfilled using generic
compactly supported perturbations of the Seiberg-Witten equations. Fix a base point at infinity,

x€e N = BOON1 = 8001\72

We need to introduce some notation.

® 2 C Cy(IN) ~ monopoles on N.
* 5i = Guea(Ni), GV := 05 C G, GV =GN -GV C G,

mNe .= 2/6% N .= 2/GV,

The based versions of these spaces are defined in the obvious way. The space sme " is a cover of MV ,
while 9% is a cover of 9M,. Moreover we have induced boundary maps

oo O, 2= e s N

Boo + D (5) 22 N s V(4.
° Zl - émm(Ni, &;) — the set of finite energy ;-monopoles on ]\A/'i,

M; o= 2;/G;, i=1,2.

Define . o R . R . X
% = {(cl, Cs) € 21 % 29 0Cr = 9Cs mod 9N},
2(*) = {(Cl, CQ) € 21 X 22; 8OOC1 = 80062 mod SN(*)},
The group §1 X §2 acts on Z. The quotient Z/ §1 X §2 can be given the following description.
Lemma 4.5.16.

2/G) % Gy = {([Cl], (o) € Ty x My: 9 [Ch] = D [Co] € me}.

204)/G1() x Ga(#) = {(C1). [Cal) € Ma(#) x Da(x); D2 [Ca] = D% [Cal}.

In particular, there exist natural maps
(900 X (900 : 2//9\1 X §2 —>9ﬁN,

8 x O+ 2(%)/G1(%) x Ga(x) — MY (x).



Notes on Seiberg-Witten Theory 359

We get a decomposition
2= Zreq U Zirr 1= (00 X 0s0) L (MY, U (00 x 0s0) (MY ).
Observe that

and we have a trivial fibration

where the action of S' on ZiM is given by
e“(C1,Ca) = (Cy,eCy).
We have a short split exact sequence
1—>/9\1(*)X/9\2(*)‘—>§1 ><§2—»Sl ><Sl—>17
where the last arrow is given by the evaluation at *. Set
N = Z/@1 x §2)» N(x) := Z(*)/@d*) x §2(*))
The assumption A4 implies that Z/@l X §2 is a Hilbert manifold. Note that
Nirr = Nipr (%) /S, Mrea = Nyea() /S
Denote by As, s, (*) the diagonal of SDIN(*) X SUIN(*) We deduce
N(*) = (Ooo X Do0) " (D5,,65 (), M= (Do X D)~ (A, ,6,(%)) /5"

The manifold 91 will provide an approximation for the Seiberg-Witten moduli space ﬁ(N (r), 61#62).
The gluing operation produces a family of S!-equivariant maps

#T : ‘5‘{(*) — ‘BN7(*> = é(N(T),&l#&Q)//g\N(T)(*)7

([Ca], [Ca]) = [Cal#r[Cal.
More precisely, if (Cl, Cg) € Z then there exists a pair 4; € §Z such that 0.%;(*) =1 and
950C1 = 0. Co.
We set o R R
[C1]#:[Co] i= [11Ci#92Co].
Let us check that this is a correct definition.

1. Suppose first that (91,4%) € §1(*) X §2(*) is another pair with the above properties. Set
d; :=4;/%i. Because the based gauge group G(x) acts freely on C, we deduce

05001 = D002,
and
71 Ci#A2Ca = (B1#:62) - (Gt A5Co)
2. Suppose we have (C),C}) € Z such that there exists a pair (5],44) € §1(*) X §2(*) with the
property . A o
(71C1,95Ca) = (C1, Ca).

Then 9x1171C) = 0xA295Ch

[CL1#(C5) = (5191 € #9275

= [’?161#1"7262] = [Cl]#r[éﬂ
Denote by ﬁr the moduli space of (61#072, §,)-monopoles on N (r).
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Theorem 4.5.17. (Global gluing theorem) There exists ro > 0 with the following properties.
(i) For all r > ro all the monopoles in ﬁT are irreducible and regular.
(i) For all r > 1o the smooth manifolds ﬁr(*) and #, (‘ft(*)) are S-equivariantly isotopic inside
@&,irr(Nm *)
Proof Let

ZA = {(Cl, CQ) C 2(*),6006:1 = 80062},

and

o~

§a(r) = {(11,92) € G1(#) x Ga(#); 91 = Do }.

Observe that the group §A(*) acts freely on Za and the quotient is 9M(x). We have a gluing map
#r:Ga(x) = G

which a group morphism. We also have a gluing map

#r: 2 — Cx.

which is (§A(*), § M(*)—equivariant. This map descends to the gluing map #T. For large r, we have
an Sl-equivariant embedding
#r . m(*) — .BI\A/}(*)

We denote its image by 9M,.(x), and set N, := N,.(x)/S. For every (C1,Cy) € Za we set
Cr =G (Ch, Co) == Ci#:,Co
We get a virtual tangent space J{g , described by a diagram of the type (T), and an obstruction
space Hy , described by a diagram of the type (0).

Since the moduli spaces E/D\Tg x are compact these diagrams are asymptotically exact (uniformly
in C.(Cy,Cs)) as r — oo. In particular, we deduce that there exists Ry > 0 such that :HC_ =0,

Vr > Rg and all C, € #, 2. Moreover, the diagram (T) shows that the map

#:(2a) 2 Co o dime 3, €2

is continuous and the family {9‘(2‘ ; CT IS #TZZA} forms a smooth #T§A—equivariant vector bundle

HE — #TZA. It descends to a smooth vector bundle [H;}] on N, = #TZ(;/#,@A. We regard it in
a natural way as a sub-bundle of TBy |g .

A quick inspection of the diagram (T) shows that [J(] = TN, in a very strong sense: there
exists 6 : [1,00) — R such that 6(r) — 0 as r — oo and

sup gap dist . (T¢ Ny, [j{+]@r) <#é(r), vr>0.
[C lem.

Thus, for all intents and purposes we can identify TN, with [H].
The space Hi (C,) introduced in the proof of the local gluing theorem is orthogonal (or uniformly
almost orthogonal) to Tcr‘flr, and thus the collection

Y = {$C) Coet)
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defines an infinite-dimensional vector bundle over 9,: the normal bundle corresponding to the
embedding . R
mr — B&,ir'f~

We leave the reader to verify that Lemma 4.5.9 implies that the exponential map Y, — @&ﬂw
defined by the embedding R A
Ny — Bsirr
induces a diffeomorphism from the bundle of disks of radii 2 of Y, to a tubular neighborhood of
‘jtr — @&JT’I"
The local gluing theorem produces for each [C,] € M, a local section ®e of Y defined on
a neighborhood of radius r =2 centered at [CT] We can view ®¢ as a normal pushforward of a

r~3-sized neighborhood of CT into a small tubular neighborhood of ‘flr — @&J-M. Set
U, (Cp) = D¢ (C,).

Since this is an unobstructed gluing problem we deduce that \IIT(CT) is a genuine &-monopole.
Moreover, according to Remark 4.5.11,

disty22(Cp, U,(C)) < v, Vr >0, VG,

We can now invoke Corollary 4.5.10 and Theorem 4.5.15 to conclude that for large r the space
M5 (§r) consists only of irreducible, regular monopoles and the map V¥, is a diffeomorphism

U, N, — Ms ().

Clearly I, := U, 0 #,. : N — ﬁ& (gr) is a diffeomorphism. Since this diffeomorphism is defined by
a small pushforward in the normal bundle it is clear that it can be completed to an isotopy. This
construction lifts to an S'-equivariant diffeorphism

% N(x) — Ms(Gy,+). W

Remark 4.5.18. The covering space Dﬁffv — M, may have infinite fibers if the index of G| + G4
in @ is infinite. This would indicate that ‘fl, and thus ﬁgf (gr) may be noncompact, which we know
is not the case. How can we resolve this conflict? .

First of all, if these coverings are infinite then it is possible that the moduli spaces 9; are empty
(see Corollary 4.4.17 for such an example). On the other hand, the maps 0 : /Dﬁl(*) — Emf,v (%) have

compact fibers and may not be onto. The intersection 97 (ﬁ{v )yna%, (53\”@[ ) can then be compact or
even empty.

CASE 2. We now analyze one special case of degenerate gluing. More precisely, assume the
following.

B1 (N, g) is the sphere S3 equipped with the round metric.

By by (N1) > 0, by (Nz) = 0.

B3 All the finite energy monopoles on Ny are irreducible and strongly regular.

B4 Up to gauge equivalence, there exists a unique finite energy o-monopole C, = (O,Ag) on N

which is reducible and satisfies Hé = 0. We denote by dy its virtual dimension. (Observe that
2

dp <0.)
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Observe that, according to (4.3.20), the condition By implies
HY(N,,N;R) =0 = H'(N,,R).

The identity (4.3.21) implies
H2(FC2) = kere, P

H Z(Féz) is a complex vector space, and thus equipped with a natural S'-action. Set

do+1
h2 ::dim(CH2<FC2):_ O;— .

Denote by
L — ﬁu(le&l)

the complex line bundle associated to the principal S*-bundle
M, (N1, 61%) — M, (N1, 61).
In this case Z(*) =2 = Zyeq and N = Z/@l X §2.

Theorem 4.5.19. (Degenerate gluing) There exists 7o > 0 with the following property. For

every v > rg the moduli space Ms, 44, (N,g,) consists only of regular irreducible monopoles and
there exists a S'-equivariant map

ST : S/D\I#(J\A/vl,é'l, *) — (Ch2

such that its zero set is a smooth S -invariant submanifold of 53\7# (]\71, 61, %) St-equivariantly diffeo-
morphic to M, us, (N, Jry%). In particular, this means there exists a section s, of the vector bundle
LM — M, (Ny,61) whose zero locus is a smooth submanifold diffeomorphic to My, ws, (N, §r).

Sketch of proof We use the same notation as in CASE 1. Observe first that assumption By
implies that there exist a unique spin® structure oy on N and an unique og-monopole C,, which is
reducible and regular. In particular

Te. My, =0, TyGoo = R.

Moreover, since G = HY(N,Z) = 0 we deduce that G; = G = 0, and any gauge transformation on
N7 extends to. N 5 . R R R
Suppose (Cq,Cs) € Za. Then we can form C,. := Cy#,Cy. There are many cancellations in the
diagrams (L) and (O) associated to C,.. More precisely, we have
+ —
Hi =0, L7 =0, € =0, ¢ =0, H*(F)=0.

We deduce that ker Ag =0, ker AS = H(l: such that
1
GG 2 HY,

Observe that Lemma 4.5.9 implies that the subspace 3 (C,.) C Téré(NT) and the tangent space to

the /9\(N,,)—0rbit through C, are transversal. Moreover,

TCT <#T(ZA)) = TCT» (/S\(NT) ’ CT) + ‘}C;‘—(Cr)
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and the assignment

ZA > (Cl, Cz) — g‘f:r(él#TCQ) C TCl#rCZé(NT)
isa G &,~equivariant sub-bundle of TC(N,)| 4,4, and it descends to a smooth vector bundle
(7] — N,
For large r we have diffeomorphisms
N, =N =M.

Moreover, the bundle [H;] — N, is isomorphic to the tangent bundle of 0.
To see this observe first that Tclf))h = Hé . Next, the compactness of My implies that we have
1

uniformity with respect to Cy as 7 — oo in the Cappell-Lee-Miller gluing theorem. Thus, the family
2a 3 (C1, C) = 3 (G, Co)
is homotopic as r — oo to the family
Za 3 (C1,Co) — Hél = Te M.
Using the obstruction diagram (O) we conclude similarly that
H,(Cr) = H?(Fy).
Fix (C9,C9) € Za and set

VO =3, (O94,.CY) ¢ Y, := LY(S GIAZT*N,).

G1#rG2

According to the Cappell-Lee-Miller gluing theorem, Theorem 4.1.22, there exists g = r9(Cy,C2) > 0
so that for r > r¢(Cy, Cs) the last isomorphism is described by an explicit map

-

e H (Cr) = V0 = H?(Fey).

In fact, since S/D\TH(]\AH, &1) is compact, we have

Ro:= sup ro(cl, Cg) < 00
(Cl,éz)EZA

so that for all r > R there exists an isomorphism f¢  : H; (CT) — V9 depending continuously on

Cl. This means that for » > Ry the collection
Za 3 (G, ) = H (Cr#,Co)
forms a trivial complex vector bundle H;~ of rank hy over ZA. Using the diffeomorphism
#e:2a = #r(2a) C C(N,)

we can think of . as a vector bundle over #,(Z).
If (91,%2) € Ga then R )
}C;((?}/l#rﬁﬁ) : Cr) = (’?1#7"3/2) : f]’(:: (Cr)
Two configurations in #TZA belong to the same /9\(Nr)—orbit if and only if they belong to the same
#,Ga-orbit. Since #,Za consists only of irreducible configurations we can thus think of H as a
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§(NT)—equivariant subbundle of the infinite-dimensional vector bundle 'W,. over §(NT) . #TZA with
standard fiber Y,.. Although the bundle I is trivial, it is not equivariantly trivial. To see this, we
present an alternate description of the bundle .

Denote by Grass the Grassmannian of complex hy-dimensional subspaces of L Q(SU1 #, 02) cY,.

The action of 9( ) on Y, induces an action on Grass. The isomorphisms I¢ . can be regarded as

a #TS A-equivariant map
¢ : #.2A — Grass

whose image lies in the 9( )-orbit of V?. The bundle K is defined by the 9( »)-equivariant
extension of ¢
o 9( ) - #,.25 — Grass.

The stabilizer of V) € Grass with respect to the action of S(NT) is the subgroup S! of constant
gauge transformations. It is convenient to think of S* as given by the obvious inclusion S* — G(IV,.)
which splits the short exact sequence

~ A~

1< G(N,, %) — G(N,) =5 51 - 1.

The quotient (/9\(]\Afr) . #TZA) / §(]\7T, %) is the space of gauge equivalence classes of based almost
monopoles on NT,

(S(0) - #:25) /(N ) = T, (5).

The bundle K- descends to a bundle [H;] — N, which is the bundle associated to the S!-fibration

N, () — N,
via the natural action of S* on V,?,
[H] 2 M (5) xg1 VI 20N (x) x g0 C'2 22 L2 9,

Denote by Z, the orthogonal complement of H;' in TBs, 4,.4,,irr- We can regard =, as the normal
bundle of the embedding A
mr — Bé'l#rﬁg,irr-

Using the exponential map we can identify a tubular neighborhood U, (of diameter ~ r=3) of
gjltr C B&l#&g,irr

with a neighborhood 'V, of the zero section of Z,. Observe that we have a natural projection
7 : U, — N, which we can use to pull back H; to a vector bundle 7*[H; ] — U,

The Seiberg-Witten equations over N define a section SW of an infinite dimensional vector
bundle W, over Bs, 44, irr with standard fiber Y,. According to Remark 4.5.8 we can regard [H{, ]
as a subbundle of W,.. We denote by P_ the L?-orthogonal projection

P_ W, — [H]].

Arguing as in the proof of Theorem 4.5.17 we deduce from the local gluing theorem that there exists
a smooth section U, : U, 2V, C Z, — [H, ] such that, for all [C,] € 91,., we have

W(CT + \IIT(CT)) €K e, vuney VCr € #ika. (4.5.21)

Set
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Observe that
N, =N, =M, (Ny,61),

and moreover, according to (4.5.21), the restriction of the Seiberg-Witten section SW to ‘ft’r defines
a smooth section of the vector bundle 7*[H; ]. This is a smooth section s, of

£he — ‘51; o ‘ﬁr.
Its zero set is precisely ﬁ&l#&z (N , gr), which is generically a smooth manifold. B

The above theorem has an immediate corollary which will be needed in the next section. Suppose
N is a compact, smooth, oriented 4-manifold and Ny is the cylindrical 4-manifold obtained from N
by deleting a small ball and attaching the infinite cylinder Ry x S®. Denote by Ny the cylindrical
4-manifold with positive scalar curvature obtained by attaching the infinite cylinder Ry x S® to
a small ball. Observe that Nl#TNQ is diffeomeorphic to N. Moreover, if 6o denotes the unique
cylindrical spin®-structure on N then the correspondence

Sping,;(N1) 3 61 — 61#62 € Spin°(N)

is a bijection. We will denote its inverse, Spin®(N) — Spin(N;), by

Q»
=
=

Corollary 4.5.20. Suppose by (N) > 0. Then the S* bundles
Sl — S/D\t&(NagT7 *) - mé’(Nag’r)

and
Sl — E)JTM(N17&|N1,*) — m,u(Nha—lNl)

are naturally isomorphic.

Proof The conditions B; and Bg are clearly satisfied. Bg is generically satisfied. Finally, according
to Example 4.3.40 in §§4.3.4, condition By is also satisfied, with Ay = 0. The corollary now follows
immediately from Theorem 4.5.19. W

4.6 Applications

We have some good news for the reader who has survived the avalanche of technicalities in this
chapter. It’s payoff time!

We will illustrate the power of the results we have established so far by proving some beautiful
topological results. All the gluing problems in Seiberg-Witten theory follow the same pattern.

A major limitation of the cutting and pasting technique has its origin in the difficulties involved
in describing the various terms arising in the diagrams (T), (O), (L). A good understanding of both
the geometric and topological background is always a make or break factor.

84.6.1 Vanishing results

The simplest topological operation one can perform on smooth manifolds is the connected sum. It
is natural then to ask how this operation affects the Seiberg-Witten invariants. The first result of
this section provides the surprisingly simple answer.
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Theorem 4.6.1. (Connected sum theorem) Suppose My and My are two compact, oriented
smooth manifolds such that by (M;) > 0. Then

SWarn 4, (0) =0, Yo € Spin®(Mi#Ms).

Before we present the proof of this result let us mention a surprising consequence.

Corollary 4.6.2. No compact symplectic 4-manifold M can be decomposed as a connected sum
Ml#MQ with b+(Mz) > 0.

Proof  The result is clear if by (M) = 1 since by (Mi#Ms) = by (My) + by (M), If b (M) > 1
then, according to Taubes’ Theorem 3.3.29 not all the Seiberg-Witten invariants of M are trivial. l

Remark 4.6.3. (a) The smooth 4-manifolds which cannot be decomposed as My # My with by (M;) >
0 are called irreducible. We can rephrase the above corollary by saying that all the symplectic 4-
manifolds are irreducible. It was believed, or rather hoped, that the symplectic manifolds exhaust
the list of irreducible 4-manifolds and all other can be obtained from them by some basic topological
operations, much as in the two-dimensional case where all compact oriented surfaces are connected
sums of tori.

This belief was shattered by Z. Szabé in [131], who constructed the first example of a simply
connected, irreducible, non-symplectic 4-manifold. Immediately after that, R. Fintushel and R.
Stern showed in [36] that the phenomenon discovered by Szab6 was not singular and developed a
very elegant machinery to produce irreducible manifolds, most of which are not symplectic.

(b) Up to this point we knew only one vanishing theorem: positive scalar curvature = trivial
Seiberg-Witten invariants. The connected sum theorem, however, has a different flavor since the
vanishing is a consequence of a topological condition rather than of a geometric one.

Proof of Theorem 4.6.1  Set N := M;#M,. Observe that by (N) > 1 so that the Seiberg-Witten
invariants of N are metric independent.

Denote by N; the manifold obtained from M; by deleting a small ball and then attaching the
infinite cylinder R, x S3. Observe that

N Zgifreo Ni# g3, No.

On S3 there exists a single spin® structure and any two cylindrical structures &; € Spingyl(Ni) are
compatible. Thus

Spin®(N) = Spingyl(](fl) x Spin®(Ny).
The manifolds N; and N, (generically) satisfy all the assumptions of the Global Gluing Theorem
4.5.17 and thus

— N

ma'l#&2 (Nrg’!) = ﬁM(Nh&l; *) X ﬁM(N%&Q*)/Sl'

Moreover, according to the computation in Example 4.5.13 we have (componentwise)
dim M, 45, (N, g,) = dim M, (N3, 61) + dim M, (N, 62) + 1.

The left-hand side of the above equality can be zero if and only if one of the two dimensions on the
right-hand side is negative, forcing the corresponding moduli space to be (generically) empty. Thus,

if 6 € Spin®(N) is such that the expected dimension d(6) = 0 then the corresponding moduli space
is generically empty so that sw g (6) = 0.
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To deal with the case d(61#62) > 0 we follow an approach we learned from Frank Connolly.
Suppose 6o = 61#52 € Spin®(N) is such that d(6¢) = 2n > 0. Then

sw g (60) = /A Qp
My,
where Qo € H Q(ﬁﬁo,Z) is the first Chern class of the base point fibration
ST s Xg = My, (%) 25 M, .
Denote by €;, i = 1,2, the first Chern class of the base point fibration
St X; = ﬁu(Ni,&i, *) RN ﬁu(Ni,ﬁi).

It is convenient to think of ;, j = 0, 1,2, as differential forms. The pullbacks p*); are exact and
there exist 1-forms 6; such that

dej = p* Qj
and

/A Qm:/A 0 A (d0;)™, ¥m € Zy, j=0,1,2.
M Mo ; ()

(Above, we have tacitly used the fact that the manifolds ﬁg,j are orientable.) The 1-forms 6; have
a simple geometric interpretation: they are global angular forms of the corresponding S*-fibrations.
In topology these forms also go by the name of transgression forms.

On the other hand, we can regard 6 as a global angular form for the diagonal S'-action on

X = M, (N1, 61, %) X M, (N, 63, %)
so that we can choose .
Oy = 5 (91 + 92) + exact form.

Thus )
SWN(&O) = ﬁ /X (91 + 92) A (d¢91 + dﬁg)”
0

1 n
- W/XIXXQ(% + 02) A (dbr + dba)™.

For j = 0,1,2 set m; := dim X and ¢q := 2~("+1). Observe that when ﬁM(Nl) # () its dimension
must be nonnegative and we have

my,mo >0, moy=n+1=mi+ ms. (461)
Using Newton’s binomial formula we deduce

sw 5 (60) = co mfl (mok_ 1) ( =y (d&l)k) (/X (d92)7”0_1_k>

k=0

+eo n;ﬁ:__ol (m‘)k— 1> </X (d01)k> (/X 0o A (d@z)molk)

The integrals involving only powers of (df;) vanish because these are exact forms. We deduce

SWN(&O) = Co 01 A (d&l)n + co O N (d92)n
X1 X2

Using (4.6.1) we now deduce n + 1 > max(m1,mz) so that both integrals above vanish. B
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Remark 4.6.4. For a proof of the connected sum theorem not relying on gluing and pasting
techniques we refer to [120].

We conclude this subsection with another vanishing result implied by a topological constraint.
This result will be considerably strengthened in the next subsection.

Before we state the result let us mention that an element = of an Abelian group G is called
essential if it generates an infinite cyclic group.

Proposition 4.6.5. Suppose N isa compact, oriented, smooth 4-manifold satisfying the following
conditions.
(a) by (N) > 1.
(b) There exists a smoothly embedded S* — N with trivial self-intersection and defining an essential
element in H*(N,Z).

Then all the Seiberg- Witten invariants 0f]\7 are trivial.

Proof Observe that because the self-intersection of S2 < N is trivial it admits a small tubular
neighborhood U diffeomorphic to the trivial disk bundle D? x $2. Set N := U = S x $2 and
equip it with the product metric g.

Denote by (Nl, g1) the manifold obtained from N by removing U and attaching the infinite
cylinder Ry x N. Moreover, we choose §; such that d.G1 = g. Also, denote by (Ng,gg) the
cylindrical manifold obtained by attaching the cylinder Ry x N to U and such that 0ucg2 = g¢.

Observe that N is diffeomorphic to Ny#, N, for any r > 0. Suppose there exists a spin® structure
& on N such that

sw i (6) # 0.
Since by (N) > 1 this implies that E/)J\T&(N7§T) # (0, Vr > 0. In particular, if we use the unique
decomposition
G = 01#02
we conclude that ﬁu(ﬁl, 61) # 0. At this point we want to invoke the following topological result,
whose proof we postpone.
Lemma 4.6.6. The image of Hl(Nl,Z) — HY(N,7Z) has infinite index.
The last result and the positivity of the scalar curvature of N now place us in the setting of

Corollary 4.4.17 of §84.4.3 which implies that §J\TH(N1,&1) is empty. This contradiction completes
the proof of Proposition 4.6.5. B

Proof of Lemma 4.6.6 We will prove the dual homological statement, namely that the image of
Hs3(Ny, N,Z) — Hy(N,Z) has infinite index.
Observe that
Hy(N,Z) = Hy(S* x S?,7) = 7

with generator 5% — N = S! x §2. Next, notice that the inclusion
N < N

induces an injection X

H2(N7 Z) — HQ(Naz)
whose image is generated by the cycle 52 < N. Denote by k[S?] the generator of the image
Hs(Ny,N,Z) — Hy(N,Z). Thus, there exists a cycle ¢ € H3(Ny, N,Z) such that

Oc = k[S?] € Hy(N,Z).
This cycle determines a three-dimensional chain ¢ on N such that
dc = k[S? — N]

so that k[S? < N] =0 € HQ(.A\[A, Z). Since the homology class [S? < N] is essential we deduce
k = 0 so that the morphism Hs(N1, N,Z) — Hy(N,Z) is trivial. B
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84.6.2 Blow-up formula

In the previous subsection we have shown that the connected sum of two 4-manifolds with positive
by’s has trivial Seiberg-Witten invariants. This raises the natural question of understanding what
happens when one of the manifolds is negative definite. In this case we know that the intersection
form is diagonal, exactly as the intersection form of a connected sum of TP ’s.

In this final subsection we will investigate one special case of this new problem. More precisely,
we will determine the Seiberg-Witten invariants of M #@2 in terms of the Seiberg-Witten invariants
of M. As explained in Chapter 2, the connected sum M #@2 can be interpreted as the blow-up
of M at some point. It is thus natural to refer to the main result of this subsection as the blow-up
formula.

Suppose M is a compact, oriented, smooth 4-manifold such that b, (M) > 1. Denote by N,
the manifold obtained from M by removing a small ball and then attaching the infinite cylinder
R, x S3. Observe that R

Spin®(M) = Sping,,(N1).
Now denote by N, the manifold obtained from TP by removing a small disk and then attaching
the cylinder Ry x S3. Again we have

Spinc(@2) > Spint,;(Ny).

cyl

C

cyl(Ni) are compatible and the induced map

Moreover, any two spin® structures ¢; € Spin

Spin,, (N1) x SpinS, ;(No) — Spinc(M#@2),

cyl cyl
(51,&2) = 01#02
is a bijection. .

The manifold Ny can also be obtained as in Example 4.3.39 in §§4.3.4 by attaching R, x §°
to the boundary of the Hopf disk bundle over S2. If we now regard S as the total space of the
degree —1 circle bundle over S? we can equip it with a metric g of positive scalar curvature as
in Example 4.1.27. (TheAround metric is included in the constructions of Example 4.1.27.) Fix
cylindrical metrics g; on IN; such that g» has positive scalar curvature and

0501 = g = 0s002-

——2
The manifold CP" is equipped with a canonical spin® structure o.q, induced by the complex
structure on CP?. The map

Spin®(Ny) 3 6 — ¢1(det(5)) € H*(Ny, Z) = 7

is a bijection onto 2Z+1 C Z where the generator of H2(N, Z) is chosen such that ¢;(0can) = 1. For
each n € Z denote by &, the unique cylindrical spin® structure on Na such that ¢;(6,) = (2n + 1).
Observe that ¢1(Fcan) = —1 so that Gean = 0_1.

Theorem 4.6.7. (Blow-up Formula) For every & € Spin®(M) we have

PN 0 if d(6)<z£n(n+1)
'SWM#W("#”“)"{ swu(8)| if  d(@)>n(n+1)

Corollary 4.6.8. If By, C Spin®(M) denotes the set of basic classes of M then

B {&#&n; 5 € By, n € Zd5) 2n(n+1)}.

M#TP? —

In particular, By # 0 <= B, 52 # 0.
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Proof of the Blow-up Formula  The computations in Example 4.3.39 show that the moduli
space 9M(Na, 6,,) consists of a single reducible monopole and the virtual dimension is d,, = —(n? +
n + 1). Moreover (see Example 4.5.14 in §§4.5.2)

d(6#6,) = d(6)#d(6,) == d(6) + d(6) + 1 = d(6) — n(n+1).

We prove first that
|SWM#@2 (6—#6n)| = |SW]V[(&)|

if n = £1. We want to use Theorem 4.5.19. The computations in Example 4.3.39 show that the
assumptions B, By, By are satisfied with ho = 0. Moreover, Bg is generically satisfied. We deduce
that we have an isomorphism between the S'-bundles

P= {%(Nl,a—, %) — ﬁu(m,&)}
and . ., . .,
Py i= { Moo, (M#TP", 3y, %) = Moo, (MHTF, 3,) |-
Using Corollary 4.5.20 we obtain an isomorphism of S!-bundles

P = { M (N1,5,%) = T, (W1, 6) } = (M (M, v, ) — M5 (M, 5,) | = Q.

Thus we have Q := ¢1(Q) = ¢1(P),

sw(0) = <(1 - Q)_lv [ﬁ&(M)]>

_ :|:<<1 - cl(Pn))_l, [ﬁ&#&n(M#(C]P’Q)]> = 5w, o (6#).

(The above integrations are well defined since all the manifolds involved are orientable.)
In general, set

X, 1= Mo, (MHTE",§,), X := M (N1, 5).

Example 4.3.39 shows that we can apply Theorem 4.5.19 for any spin® structure &,, on Ny but if
n # £1 we will encounter obstructions to gluing. The manifold X, is thus the smooth zero set of a
section s, of the vector bundle

n(n+1)

Op =P xg1 CP2, hy:= 5

over X. The cycle determined by X, in X is therefore the Poincaré dual of the Euler class of this
vector bundle. Observe that
e(0,) = ¢ (P)'2 = Qh2,

Consequently,
|SW]W#@2 (&#&n” = ‘< (]_ — Q)*l’ [3;1(0)] >'

~ |- e )| <[00 - 0 1))

= ‘< (1-0)7 [X] >‘ = [swp(6)]. W
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Corollary 4.6.9. (Fintushel-Stern [34], Morgan-Szabé6-Taubes [97]) Suppose M is a com-
pact, oriented, smooth 4-manifold satisfying the following conditions.
(a) by (M) > 1.
(b) There exists an embedding S* — M which determines an essential element of Ha(M,Z) with
nonnegative self-intersection d.

Then all the Seiberg- Witten invariants of M are trivial, i.e. By = 0.

Proof Denote by M, the d-fold blow-up of M, My := M #d@z. Each blow-up decreases self-
intersections by 1 so that M, contains an essentially embedded 2-sphere with trivial self-intersection.
According to Proposition 4.6.5 in the preceding subsection we have

By, = 0.

We can now invoke Corollary 4.6.8 to conclude that By, = (). W

Remark 4.6.10. The results of C.T.C Wall [144] imply that if M is a simply connected manifold
with indefinite intersection form and ¢ € Hy(M,Z) is a primitive class (i.e. Hy(M)/Z - ¢ is torsion
free) which is represented by an embedded 2-sphere and ¢? = 0 then

M = N#(S? x S?) or M = N#(CP2#TP").

In particular, by the connected sum theorem the Seiberg-Witten invariants of M must vanish. Corol-
lary 4.6.9 shows that the Seiberg-Witten vanishing holds even without the primitivity assumption.

Remark 4.6.11. We have reduced the proof of Corollary 4.6.9 to the special case when the embed-
ded sphere S% — M has self-intersection 0.

Stefano Vidussi has shown in [143] that such an essential sphere exists if and only if there exists
a hypersurface N — M carrying a metric of positive scalar curvature such that b1(N) > 0 and
decomposing M into two parts M* satisfying

bi(M) +b1(N) > by (MT)+ by (M™).
We refer the reader to [111, 143] for details and generalizations of Corollary 4.6.9.
The above vanishing corollary has an intriguing topological consequence.

Corollary 4.6.12. Let M be a compact symplectic 4-manifold with
by (M) > 1.

If ¥ — M is an embedded surface representing an essential element in Ho(M,Z) with nonnegative
self-intersection then its genus must be positive.

Proof If the genus of ¥ were zero then, according to Corollary 4.6.9, the Seiberg-Witten invariants
of M would vanish. Taubes’ theorem tells us this is not possible for a symplectic 4-manifold with
by>1. 1

Remark 4.6.13. (a) The above genus estimate is optimal from different points of view. First of all,
the genus bound is optimal since it is achieved by the fibers of an elliptic fibration. The condition
on self-intersection being nonnegative cannot be relaxed without affecting the genus bound. For
example, the exceptional divisor of the blow-up of a Kéahler surface has self-intersection —1 and it
is represented by an embedded sphere.



372 Liviu I. Nicolaescu

(b) The above minimal genus estimate has the following generalization known as the adjunction
inequality.

Suppose M is a closed, oriented 4-manifold such that by (M) > 1. If ¥ — M s an essentially
embedded surface such that ¥ -3 > 0 then for any basic class o € Bys we have
29(2) > 243X — (c1(det o), X).

(When ¢(X) > 1 we can drop the essential assumption.) One can imitate the proof of the Thom
conjecture in §§2.4.2 to obtain this result (see [119]). For a different proof, using the full strength of
the cutting-and-pasting technique we refer to [97].

Observe that if M is symplectic and the essential homology class ¢ € Ha(M, Z) is represented by a
symplectically embedded surface o and
¢+ ¢ > 0 then the adjunction equality implies

29(20) =24 ZQ . 20 - (cl(det(o)), 20>

In particular, if ¥ is any other embedded surface representing ¢ we deduce from the adjunction
inequality that
9(Xo) < g(%).

This shows that if ¥ is a symplectically embedded surface such that ¥ -3 > 0 then it is genus
minimizing in its homology class.

In a remarkable work, [114], P. Ozsvath and Z. Szabdé have shown that we can remove the
nonnegativity assumption ¥ -3 > 0 from the statement of the adjunction inequality provided we
assume that g(X) > 0 and X has simple type, i.e. if o € By, is a basic class then d(o) = 0. It is
known that all symplectic manifolds have simple type; see[97].

Exercise 4.6.1. Use the blow-up formula and the techniques in §§2.4.2 to prove the adjunction
inequality in the case ¥ - X > 0.

The adjunction inequality implies the following generalization of Corollary 4.6.12.

Corollary 4.6.14. Suppose M is a symplectic manifold and ¥ — M 1is an essentially embedded
surface such that ¥ -3 > 0. Then

g(2) > 1+ %2 5 (4.6.2)

In particular, for any n € Z* we have

n2
g(n¥) > 1—|—?E-E.

Assume by (M) > 1. For every cq € Hom (H?(M,Z),R) and every a,b € R the set
S, (a) :=={x € H*(M,Z); |{z,co)| < a}

represents a strip in the lattice H?(M,Z). The adjunction inequality shows that we have restrictions
on the location of the set of basic classes. More precisely, for every essentially embedded surface
Y= M (9(¥)>0if X% < 0) we have

ci(Bur) C Sy (u(E)), p(E)=-—x(X)-2-%.

If M also happens to be symplectic, then Taubes’ Theorem 3.3.29 also implies

1
Cl(EM) C 7561(KM) +Sw(degw KM)
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Exercise 4.6.2. Suppose M is a closed, oriented 4-manifold with b4 (M) > 1.
(a) Show that if ¢ € Hy(M,Z) is a nontrivial homology class such that ¢- ¢ = 0 which is represented
by a smoothly embedded torus 72 «— M then

By C ¢ == {o € Spin°(M); (ci(deto),c) =

0.

(b) Show that if ¢ € Hyo(M,Z) is represented by an embedded 2-torus and ¢ - ¢ = —2 then either

(c1(Bar),c) € {—2,0,2}

or

(c1(Bps),c) € {-1,1}.
(c) Show that the same conclusion continues to hold if ¢-¢ = —2 and c¢ is represented by an embedded
2-sphere.

(d) Suppose ¢ is a homology class represented by an essentially embedded surface ¥. If
1
g(Z):1+§c~c>0

then By, C ct. If moreover 0 < g(¥) < 1+ %c - ¢ then By, = 0.



Epilogue

A whole is that which has a beginning, a middle and an end.
Aristotle, Poetics

We can now take a step back and enjoy the view. Think of the places we’ve been and of the
surprises we’ve uncovered! I hope this long and winding road we took has strengthened the idea that
Mathematics is One Huge Question, albeit that it appears in different shapes, colours and flavors in
the minds of the eccentric group of people we call mathematicians.

I think the sights you’ve seen are so breathtaking that even the clumsiest guide cannot ruin the
pleasure of the mathematical tourist. I also have some good news for the thrill seeker. There is a
lot more out there and, hereafter, you are on your own. Still, I cannot help but mention some of the
trails that have been opened and are now advancing into the Unknown. (This is obviously a biased
selection.)

We've learned that counting the monopoles on a 4-manifold can often be an extremely rewarding
endeavour. The example of Kéhler surfaces suggests that individual monopoles are carriers of
interesting geometric information. As explained in [70], even the knowledge that monopoles exist
can lead to nontrivial conclusions. What is then the true nature of a monopole? The experience with
the Seiberg-Witten invariants strongly suggests that the answers to this vaguely stated question will
have a strong geometric flavour.

In dimension four, the remarkable efforts of C.H. Taubes [136, 137, 138, 139], have produced
incredibly detailed answers and raised more refined questions.

One subject we have not mentioned in this book but which naturally arises when dealing with
more sophisticated gluing problems is that of the gauge theory of 3-manifolds. There is a large
body of work on this subject (see [25, 43, 44, 70, 77, 78, 83, 88, 89, 91, 109, 111] and the references
therein) which has led to unexpected conclusions. The nature of 3-monopoles is a very intriguing
subject and there have been some advances [70, 72, 100, 108], suggesting that these monopoles reflect
many shades of the underlying geometry. These studies also seem to indicate that three-dimensional
contact topology ought to have an important role in elucidating the nature of monopoles.

One important event unfolding as we are writing these lines is the incredible tour de force of Paul
Feehan and Thomas Leness, who in a long sequence of very difficult papers ([33]) are establishing the
original prediction of Seiberg and Witten that the “old” Yang-Mills theory is topologically equivalent
to the new Seiberg-Witten theory. While on this subject we have to mention the equally impressive
work in progress of Andrei Teleman [140] directed towards the same goal but adopting a different
tactic. Both these efforts are loosely based on an idea of Pidstrigach and Tyurin. A new promising
approach to this conjecture has been recently proposed by Adrian Véajiac [142], based on an entirely
different principle.

Gauge theory has told us that the low-dimensional world can be quite exotic and unruly. At
this point there is no one generally accepted suggestion about how one could classify the smooth
4-manifolds but there is a growing body of counterexamples to most common sense guesses. Certain
trends have developed and there is a growing acceptance of the fact that geometry ought to play a
role in any classification scheme. In any case, the world is ready for the next Big Idea.
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