1. Prove that if \(S \) is a subset of 10 numbers from \(\{1, \ldots, 100\} \) then there are two nonempty subsets \(A, B \) with \(A \cap B = \emptyset \) such that the sum of the numbers in \(A \) is equal to the sum of the numbers in \(B \).

2. Prove that if \(S \) is any subset of 55 numbers chosen from \(\{1, 2, \ldots, 100\} \) then there are two elements of \(S \) differing by exactly 9.

3. If \(a, b \) are integers, then \(\gcd(a, b) \) means the greatest common divisor of \(a \) and \(b \). Prove that for any integers \(a \) and \(b \) there are integers \(s \) and \(t \) such that \(sa + tb = \gcd(a, b) \).

4. Let \(a, b, c, d \) be positive integers such that \(ad - be = 1 \). Show that the fraction \((a + b)/(c + d) \) is in lowest terms.

5. Prove that some positive multiple of 21 has 241 as its last 3 digits.

6. Prove that for any set of \(n \) integers, there is a subset of them whose sum is divisible by \(n \).

7. Prove that if \(2n + 1 \) and \(3n + 1 \) are both perfect squares, then \(n \) is divisible by 40.

8. Prove that there are no integers \(x \) and \(y \) for which \(x^2 + 3xy - 2y^2 = 122 \).

9. Do there exist 1,000,000 consecutive integers such that each one contains a repeated prime factor?

10. Prove that for any integer \(n \) there is a multiple of \(n \) whose base 10 representation contains only 1’s and 0’s.

11. The Fibonacci sequence is the sequence \(F_1, F_2, F_3, \ldots \) where \(F_1 = F_2 = 1 \) and \(F_n = F_{n-1} + F_{n-2} \) for \(n \geq 3 \). Prove that if \(k \) is a divisor of some Fibonacci number then it is a divisor of infinitely many Fibonacci numbers.

12. How many 0’s does 100! end with?

13. Determine, as a function of the integer \(n \), the number of ordered pairs \((x, y)\) such that \(1/x + 1/y = 1/n \).

14. Prove that not both integers \(2^n - 1 \) and \(2^n + 1 \) can be prime.

15. Find all pairs \((m, n)\) of positive integers such that \(|3^n - 2^m| = 1\)

16. (a) Find all pairs \((m, n)\) of positive integers such that \(|3^n - 2^m| = 1\)
 (b) Find all 4-tuples \((p, q, m, n)\) where \(p, q \) are prime and \(m, n \) are positive integers that satisfy \(|p^n - q^m| = 1\).

17. Prove that there are infinitely many natural numbers \(a \) with the property that \(n^4 + a \) is not prime for any natural number \(n \).