Epilogue

A whole is that which has a beginning, a middle and an end.

Aristotle *Poetics*

We can now take a step back and enjoy the view. Think of the places we’ve been and of the surprises we’ve uncovered! I hope this long and winding road we took has strengthened the idea that Mathematics is One Huge Question, albeit that it appears in different shapes, colours and flavors in the minds of the eccentric group of people we call mathematicians.

I think the sights you’ve seen are so breathtaking that even the clumsiest guide cannot ruin the pleasure of the mathematical tourist. I also have some good news for the thrill seeker. There is a lot more out there, and hereafter, you are on your own. Still, I cannot help but mention some of the trails that have been opened and are now advancing into the Unknown. (This is obviously a biased selection.)

We’ve learned that counting the monopoles on a 4-manifold can often be an extremely rewarding endeavour. The example of Kähler surfaces suggests that individual monopoles are carriers of interesting geometric information. As explained in [64], even the knowledge that monopoles exist can lead to nontrivial conclusions. What is then the true nature of a monopole? The experience with the Seiberg-Witten invariants strongly suggests that the answers to this vaguely stated question will have a strong geometric flavour.

In dimension 4, the remarkable efforts of C.H. Taubes [128, 129, 130, 131], have produced incredibly detailed answers and raised more refined questions.

One subject we have not mentioned in this book but which naturally arises when dealing with more sophisticated gluing problems is that of the
gauge theoretic invariants of 3-manifolds. There is a large collection of such invariants (see [24, 40, 41, 64, 71, 72, 81, 82, 84] and the references therein) which, with few exceptions, are very difficult to compute. The nature of 3-dimensional monopoles is a very intriguing subject and there have been some advances [64, 66, 93, 101], suggesting that these monopoles reflect many shades of the underlying geometry. These studies also seem to indicate that 3-dimensional contact topology ought to have an important role in elucidating the nature of monopoles.

One important event unfolding as we are writing these lines (December 1999) is the incredible tour de force of Paul Feehan and Thomas Leness, who in a long sequence of very difficult papers ([30]) are establishing the original prediction of Seiberg and Witten that the “old” Yang-Mills theory is topologically equivalent to the new Seiberg-Witten theory. While on this subject, we have to mention the equally impressive work in progress of Andrei Teleman [132] directed towards the same goal but adopting a different tactic. Both these efforts are loosely based on an idea of Pidstrigach and Tyurin.

Gauge theory has told us that the low-dimensional world can be quite exotic and unruly. At this point there is no one generally accepted suggestion about how one could classify the smooth 4-manifolds, but there is a growing body of counterexamples to most common sense guesses. Certain trends have developed, and there is a growing acceptance of the fact that geometry ought to play a role in any classification scheme. In any case, the world is ready for the next Big Idea.
Bibliography

http://www.math.harvard.edu/~kronheim/

http://www.math.harvard.edu/~kronheim/

[71] Y. Lim: Seiberg-Witten invariants for 3-manifolds in the case $b_1 = 0$ or 1, preprint, 1998.

http://abel.math.harvard.edu/HTML/Individuals/Curtis_T_McMullen.html

http://www.maths.warwick.ac.uk/gt/

http://math.polytechnique.fr/cmat/vidussi/

Index
eta invariant, 290
 reduced, 290
Euler sequence, 170
exceptional divisor, 211

formula
 blow-up, 463
 adjunction, 183, 201, 269
 genus, 184
 wall crossing, 168
 Wu, 191
Fredholm
 complex, 382
 family, 84
 determinant line bundle of a, 142
 orientation of a, 88, 142
 stabilizer of, 85
 index, 25
 property, 25

Gaussian
 group, 4
 transformation, 4, 8
 based, 327, 329
geometric genus, 202
global angular form, 10, 314, 460
ghūng cocycle, 2
grassmannian, 3
Green formula, 25

Hölder
 norm, 23
 space, 21
Hilbert complex, 382
homology orientation, 139, 153

inequality
 DeGiorgi-Nash-Moser, 339
 Kato, 22, 116, 339
 Morrey, 23
 Sobolev, 23

Kodaira dimension, see also complex surface
Kuranishi map, 130, 334, 436
Kuranishi neighborhood, 336

Laplacian, 17
 covariant, 18
 generalized, 18, 20, 27
 Hodge, 19
lemma
 Weyl, 24
Lie
 algebra, 8
 derivative, 16
 group, 5
line bundle, see also bundle
linear system, 199
 base locus, 199
 complete, 199
 pencil, 199
 local slice, 120
logarithmic transform, 253

manifold
 almost Kähler, 58
 cylindrical, 283, 286, 327
 Kähler, 58
 symplectic, 58, 155, 274
metric
 adapted, 58, 156
 Hermitian, 4
monopole, 105
 3-dimensional, 180, 330
 regular, 129, 334, 335, 387
 strongly regular, 387, 402, 409
multiple fiber, see also complex surface

obstruction space, 386, 436
operator
 APS, 286
 anti-selfduality, 310
 Cauchy-Riemann, 67, 204, 235
 CR, 67, 235, 239
 odd signature, 311
 orientation transport, 92

p.d.o., 15
elliptic
 analytical realization of an, 25
 index of an, 25
 formal adjoint of a, 18
 formally selfadjoint, 18, 48
 order of a, 17
 symbol of, 17
 elliptic, 20
pencil, see also linear system
 perturbation parameter, 105
 Picard group, 198, 208
 plurigenus, 202, 225
Penrose
 classes, 15
 forms, 15
$q(M)$, 202
quadratic form, 189
 E_8, 190
 characteristic vector of, 190
 definite, 189
 diagonal, 189
 even, 189
 hyperbolic, 190
 indefinite, 189
 odd, 189
signature of, 189
unimodular, 189
quadric, see also complex surface
quantization map, 29

scalar curvature, 48, 154, 185
Seiberg-Witten equations, 105
moduli space, 105
monopoles, 105
semi-tunneling, 421
signature defect, 322
simple type, 153, 466
Sobolev space, 21
embedding, 23
norm, 22
spinor representation, 30
splitting neighborhoods, 443
stabilizer, 92, 97
oriented, 97, 161
Stiefel-Whitney class, 40, 191
structure
spin, 40, 46, 50
spin*, 41, 50
cylindrical, 286, 327, 430
feasible, 142
almost complex, 53
almost Hermitian, 57
almost Kähler, 58
Kähler, 58
surface, see also complex surface
symbol map, 29

theorem
h-cobordism, 273
Cappell-Lee-Miller, 306
connected sum, 458
global gluing, 451
local gluing, 439, 452
Taubes, 276
Atiyah-Patodi-Singer, 288
Atiyah-Singer index, 53
Castelnuovo, 217
Castelnuovo-Enriques, 212
Dolbeault, 201
Donaldson, 192
Elkies, 191, 192
Gauss-Bonnet, 185
Hodge, 202
Hodge index, 207
Kazdan-Warner, 236
Kodaira embedding, 209
Kodaira vanishing, 209
Lefschetz hyperplane, 213
Nakai-Moishezon, 210
Riemann-Roch, 202, 270

Riemann-Roch-Hirzebruch, 202
Sard-Smale, 101, 145, 146, 193
Serre duality, 204
Wall, 273
Todd genus, 14, 202
torsor, 44
tunneling, 401, 445

vector bundle, see also bundle
virtual dimension, 129, 387
vortex, 245
vortices, 234

wall, 155
weak solution, 24
Weitzenböck
formula, 28, 49
presentation, 19, 279
remainder, 19, 49