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Introduction

The algebraic varieties have played a very important role in the development of geometry.
The lines and the conics where the first to be investigated and moreover, the study of
equations leads naturally to algebraic geometry.

The past century has witnessed the introduction of new ideas and techniques, notably
algebraic topology and complex geometry. These had a dramatic impact on the development
of this subject. There are several reasons which make algebraic varieties so attractive. On
one hand, it is their abundance and the wealth of techniques available to study them and,
on the other hand, there are the often unexpected conclusions. These conclusions lead
frequently to new research questions in other directions.

The gauge theoretic revolution of the past two decades has only increased the role played
by these objects. More recently, Simon Donaldson has drawn attention to Lefschetz’ old
techniques of studying algebraic manifolds by extending them to the much more general
context of symplectic manifolds. I have to admit that I was not familiar with Lefschetz’
ideas and this gave me the impetus to teach a course on this subject and write up semi-
formal notes. The second raison d’être of these notes is my personal interest in the isolated
singularities of complex surfaces.

Loosely speaking, Lefschetz created a holomorphic version of Morse theory when the
traditional one was not even born. He showed that a holomorphic map f from a complex
manifold M to the complex projective line P1 which admits only nondegenerate critical
points contains a large amount of nontrivial topological information about M . This infor-
mation can be recovered by understanding the behavior of the smooth fibers of f as they
approach a singular one.

Naturally, one can investigate what happens when f has degenerate points as well and,
unlike the real case, there are many more tools at our disposal when approaching this issue
in the holomorphic context. This leads to the local study of isolated singularities.

These notes cover the material I presented during the graduate course I taught at the
University of Notre Dame in the spring of 2000. This course emphasized two subjects, Lef-
schetz theory and isolated singularities, relying mostly on basic algebraic topology covered
by a regular first year graduate course.1 Due to obvious time constraints these notes barely
scratch this subject and yes, I know, I have left out many beautiful things. You should view
these notes as an invitation to further study.

The first seven chapters cover Lefschetz theory from scratch and with many concrete and
I hope relevant examples. The main source of inspiration for this part was the beautiful but
dense paper [46]. The second part is an introduction to the study of isolated singularities
of holomorphic maps. We spend some time explaining the algebraic and the topological
meaning of the Milnor number and we prove Milnor fibration theorem. As sources of
inspiration we used the classical [6, 56].

I want to tank my friends and students for their comments and suggestions. In the end
I am responsible for any shortcomings. You could help by e-mailing me your comments,
corrections, or just to say hello.

1The algebraic topology known at the time Lefschetz created his theory would suffice. On the other hand,
after reading parts of [48] I was left with the distinct feeling that Lefschetz’ study of algebraic varieties lead
to new results in algebraic topology designed to serve his goals.
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Chapter 1

Complex manifolds

We assume basic facts of complex analysis such as the ones efficiently surveyed in [31,
Sec.0.1]. We will denote the imaginary unit

√
−1 by i.

1.1 Basic definitions

Roughly speaking, a n-dimensional complex manifold is obtained by holomorphically gluing
open sets of Cn. More rigorously, a n-dimensional complex manifold is a locally compact,
Hausdorff topological space X together with a n-dimensional holomorphic atlas. This con-
sists of the following objects.

• An open cover (Uα) of X.

• Local charts, i.e. homeomorphism hα : Uα → Oα where Oα is an open set in Cn.

They are required to satisfy the following compatibility condition.

• All the change of coordinates maps (or gluing maps)

Fβα : hα(Uαβ)→ hβ(Uαβ), (Uαβ := Uα ∩ Uβ)

defined by the commutative diagram

Uαβ

hα(Uαβ) ⊂ Cn hβ(Uαβ) ⊂ Cn

[

[

[

[̂

hα

'

'

'

')

hβ

w

Fβα

are biholomorphic.

For a point p ∈ Uα, we usually write

hα(p) = (z1,α(p), · · · , zn,α(p))

or (z1(p), · · · , zn(p)) if the choice α is clear from the context.

1
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From the definition of a complex manifold it is clear that all the local holomorphic objects
on Cn have a counterpart on any complex manifold. For example a function f : X → C is
said to be holomorphic if

fα ◦ h−1
α : Oα ⊂ Cn → C, (fα := f |Uα)

is holomorphic. The holomorphic maps X → Cm are defined in the obvious fashion.
If Y is a complex m-dimensional manifold with a holomorphic atlas (Vi; gi) and F : X →

Y is a continuous map, then F is holomorphic if for every i the map

gi◦F : F−1(Vi)→ gi(Ui) ⊂ Cm

F−1(Vi) ⊂ X Vi ⊂ Y

Cm

w

F

'

'

'

'

'

')

gi◦F

u

gi

is holomorphic.

Definition 1.1.1. Suppose X is a complex manifold and x ∈ X. By local coordinates near
x we will understand a biholomorphic map from a neighborhood of x onto an open subset
of Cn.

Remark 1.1.2. The complex space Cn with coordinates (z1, · · · , zn), zk := xk + iyk is
equipped with a canonical orientation given by the volume form

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dzn =
(
i

2

)n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n,

and every biholomorphic map between open subsets preserves this orientation. This shows
that every complex manifold is equipped with a natural orientation.

If F : X → Cm, F = (F1, · · · , Fm) is a holomorphic map then a point x ∈ X is said to
be regular if there exist local coordinates (z1, · · · , zn) near m such that the Jacobian matrix

(
∂Fi

∂zj
(m)

)

1≤i≤m,1≤j≤n

has maximal rank min(dimX,m). This definition extends to holomorphic maps F : X → Y .
A point x ∈ X which is not regular is called critical. A point y ∈ Y is said to be a regular
value of F if the fiber F−1(y) consist only of regular points. Otherwise y is called a critical
value of F .

If dimY = 1 then, a critical point x ∈ X is said to be nondegenerate if there exist
local coordinates (z1, · · · , zn) near x and a local coordinate u near F (x) such that F can
be locally described as a function u(~z) and the Hessian

Hessx(F ) :=

(
∂2u

∂zi∂zj
(x)

)

1≤i,j≤n

is nondegenerate, i.e.
detHessx(F ) 6= 0.
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Definition 1.1.3. A holomorphic map

F : X → Y

is said to be a Morse map if

• dimY = 1.
• All the critical points of F are nondegenerate.
• If y ∈ Y is a critical value, then the fiber F−1(y) contains an unique critical point.

Example 1.1.4. The function f : Cn → C, f = z21 + · · ·+ z2n is Morse.

1.2 Basic examples

We want to describe a few fundamental constructions which will play a central role in this
course.

Example 1.2.1 (The projective space). The N -dimensional complex projective space PN

can be regarded as the compactification of CN obtained by adding the point at infinity on
each (complex) line through the origin. Equivalently, we can define this space as the points
at infinity (the “horizon”) of CN+1. We will choose this second interpretation as starting
point of the formal definition.

Each point (z0, z1, · · · , zN ) ∈ CN+1 \{0} determines a unique one dimensional subspace
(line) which we denote by [z0 : · · · : zN ]. As a set, the projective space PN consists of all
these lines. To define a topological structure, note that we can define PN as the quotient
of CN+1 \ {0} modulo the equivalence relation

CN+1 \ {0} ∋ ~u ∼ ~v ∈ CN+1 \ {0} ⇐⇒ ∃λ ∈ C∗; ~v = λ~u.

The natural projection π : CN+1 \ {0} → PN can be given the explicit description

~z = (z0, z1, · · · , zN ) 7→ [~z] := [z0 : · · · : zN ].

A subset U ⊂ PN is open iff π−1(U) is open in CN+1. The canonical holomorphic atlas on
PN consists of the open sets

Ui :=
{
[z0 : · · · zN ]; zi 6= 0

}
, i = 0, · · · , N

and local coordinates
ζ = ζi : Ui → CN

[z0 : · · · : zN ] 7→ (ζ1, · · · , ζN )

where

ζk =

{
zk−1/zi if k ≤ i
zk/zi if k > i

.

Clearly, the change of coordinates maps are biholomorphic. For example, the projective
line P1 is covered by two coordinates charts U0 and U1 with coordinates z = z1/z0 and
respectively ζ = z0/z1. The change of coordinates map is

z 7→ ζ = 1/z
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which is clearly holomorphic.

Observe that each of the open sets Ui is biholomorphic to CN . Moreover, the complement

PN \ Ui =
{
[z0 : · · · zN ]; zi = 0

}

can be naturally identified with PN−1= “horizon” of CN . Thus PN decomposes as U0
∼= CN

plus the “horizon”, PN−1.

Example 1.2.2 (Submanifolds). Suppose X is a complex n-dimensional manifold. A codi-
mension k submanifold of X is a closed subset Y ⊂ X with the following property.

For every point y ∈ Y there exists an open neighborhood Uy ⊂ X and local holomorphic
coordinates (z1, · · · , zn) on Uy such that

• z1(y) = · · · = zN (y) = 0.

• y′ ∈ Uy ∩ Y ⇐⇒ z1(y
′) = · · · = zk(y

′) = 0.

The codimension k submanifolds are complex manifolds of dimension n− k. There is a
simple way of producing submanifolds.

Theorem 1.2.3. (Implicit function theorem) If F : X → Y is a holomorphic map,
dimY = k and y ∈ Y is a regular value of F then the fiber F−1(y) is a codimension k
submanifold of X.

Regular values exist in rich supply. More precisely, we have the following result. For a
proof we refer to [55].

Theorem 1.2.4. (Sard Theorem) If F : X → Y is a holomorphic map then the set of
critical points has measure zero.

Thus, most fibers F−1(y) are smooth submanifolds. We say that the generic fiber is
smooth. In this course we will explain how to extract topological information about a
complex manifold by studying the holomorphic maps

f : X → T, dimT = 1

and their critical points. We can regard X as an union of the fibers F−1(t), t ∈ T . Most of
them are smooth hypersurfaces with the possible exception of the fibers corresponding to
the critical values. We will show that a good understanding of the changes in the topology
and geometry of the fiber F−1(t) as t approaches a critical value often leads to nontrivial
conclusions.

Example 1.2.5 (Algebraic manifolds). An algebraic manifold is a compact submanifold
of some projective space PN . To construct such examples of complex manifolds consider
the space Pd,N of degree d homogeneous polynomials in the variables z0, · · · , zN . This is a

complex vector space of dimension
(d+N

d

)
. We denote its projectivization by P(d,N).

To any P ∈ Pd,N we can associate a closed subset VP ⊂ PN defined by

VP =
{
[z0; · · · : zN ] ∈ PN ; P (z0, · · · , zN ) = 0

}
.
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VP is called a hypersurface of degree d. This depends only on the image [P ] of the polynomial
P in P(d,N). We claim that for most P the hypersurface VP is a codimension-1 submanifold.

We will use a standard transversality trick. Consider the complex manifold

X :=
{
([~z], [P ]) ∈ PN × P(d,N); P (~z) = 0

}
.

A simple application of the implicit function theorem shows that X is a smooth submanifold.
The hypersurface VP can be identified with the fiber F−1(P ) of the natural holomorphic
map

F : X → P(d,N), ([~z], [P ]) 7→ [P ].

According to Sard’s theorem most fibers are smooth.
The special case d = 1 deserves special consideration. The zero set of a linear polynomial

P is called a hyperplane. In this case the hyperplane VP completely determines the image
of P in P(1, N) and that is why P(1, N) can be identified with the set of hyperplanes in PN .
The projective space P(1, N) is called the dual of PN and is denoted by P̌N .

We can consider more general constructions. Given a set (Ps)s∈S of homogeneous poly-
nomials in the variables z0, · · · , zN we can define

V (S) :=
⋂

s∈S

VPs

V (S) is called an projective variety. Often it is a smooth submanifold. The celebrated
Chow theorem states that all algebraic manifolds can be obtained in this way. We refer to
[31, Sec. 1.3] for more details. In this course we will describe some useful techniques of
studying the topology of algebraic manifolds and varieties.

We conclude this section by discussing a special class of holomorphic maps.

Example 1.2.6 (Projections). Suppose X is a smooth, degree d curve in P2, i.e it is a
codimension-1 smooth submanifold of P2 defined as the zero set of a degree d polynomial
P ∈ Pd,2. A hyperplane in P2 is a complex projective line. Fix a point C ∈ P2 and a line
L ⊂ P2 \ {C}. For any point p ∈ P2 \ {C} we denote by [Cp] the unique projective line
determined by C and p and by f(p) the intersection of [Cp] and L. The ensuing map

f : P2 \ {C} → L

is holomorphic and it is called the projection from C to L. C is called the center of the
projection. By restriction this induces a holomorphic map

f : X \ {C} → L.

(see Figure 1.1). Its critical points are the points p ∈ X such that [Cp] is tangent to X.
The center C can be chosen at ∞ i.e. on the line z0 = 0 in P2. The lines through C can
now be visualized as lines parallel to a fixed direction in C2, corresponding to the point at
∞.

Suppose C 6∈ X. The projection is a well defined map f : X → L. Since X has degree d
every line in P2 intersects X in d points, counting multiplicities. In fact, by Sard’s theorem
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Critical point

C
L

Critical point

L

p

p f(p)

f(p)

The center of the

projection is at finite distance



The center of the projection

is at infinite distance

Figure 1.1: Projecting from a point to a line

a generic line will meet X in D distinct points. Since the holomorphic maps preserve the
orientation we deduce that the degree of f is d (see [55] for more details about the degree
of a smooth map).

The number of critical points of this map is related to a classical birational invariant of
X. To describe it we need to introduce a few duality notions.

The dual of the center C is the line Č ∈ P̌2 consisting of all hyperplanes (lines) in P2

passing through C. The dual of X is the closed set X̌ ⊂ P̌2 consisting of all the lines in
P2 tangent to X. X̌ is a (possibly) singular curve in P2, i.e. it can be describe as the zero
locus of a homogeneous polynomial.

A critical point of the projection map f : X → L corresponds to a line trough C (point
in Č) which is tangent to X (which belongs to X̌). Thus the expected number of critical
points is the expected number of intersection points between the curve X̌ and the line Č.
This is precisely the degree of X̌ classically known as the class of X.

Remark 1.2.7. Historically, the complex curves appeared in mathematics under a different
guise, namely as multi-valued algebraic functions. For example the function

y = ±
√
x(x− 1)(x− t)

is 2-valued and its (2-sheeted) graph is the affine curve

y2 = x(x− 1)(x− t).
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We can identify the complex affine plane C2 with the region z0 6= 0 of P2 using the corre-
spondence

z = z1/z0, y = z2/z0.

This leads to the homogenization

z22z0 = z1(z1 − z0)(z1 − tz0).

This is a cubic in P2 which can be regarded as the closure in P2 of the graph of the above
algebraic function.
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Chapter 2

The critical points contain

nontrivial information

We want to explain on a simple but important example the claim in the title. More con-
cretely we will show that the critical points determine most of the topological properties of
a holomorphic map

f : Σ→ T

where Σ and T are complex curves, i.e. compact, connected, 1-dimensional complex mani-
folds.

2.1 Riemann-Hurwitz theorem

Before we state and prove this important theorem we need to introduce an important notion.
Consider a holomorphic function f : D → C such that f(0) = 0, where D denotes the

unit open disk centered at the origin of the complex line C. Since f is holomorphic it has
a Taylor expansion

f(0) =
∑

n≥0

anz
n

which converges uniformly on the compacts of D. Since f(0) = 0 we deduce a0 = f(0) = 0
so that we can write

f(z) = zk(ak + ak+1z + · · · ), k > 0.

The integer k is called the multiplicity of z0 = 0 in the fiber f−1(0). If additionally, z0 = 0
happens to be a critical point as well, f ′(0) = 0 then k ≥ 2 and the integer k−1 is called the
Milnor number (or the multiplicity) of the critical point. We denote it by µ(f, 0). Observe
that 0 is a nondegenerate critical point iff it has Milnor number µ = 1. For uniformity,
define the Milnor number of a regular point to be zero.

Lemma 2.1.1 (Baby version of Tougeron’s determinacy theorem). Let f : D → C be as
above. Set µ = µ(f, 0) > 0. Then there exist small open neighborhoods U,Z of 0 ∈ D and
a biholomorphic map U → Z described by

U ∋ u 7→ z = z(u) ∈ Z

9
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such that
f(z(u)) = uµ+1, ∀u ∈ U.

Proof If µ = 0 then f ′(0) 6= 0 and the lemma follows from the implicit function theorem.
In fact the biholomorphic map is z = f−1(u). Suppose µ > 0.

We can write
f(z) = zµ+1g(z),

where g(0) 6= 0. We can find a small open neighborhood V of 0 and a holomorphic function
r : V → C so that

g(z) = (r(z))µ+1 ⇐⇒ r(z) = µ+1
√
g(z), ∀z ∈ V.

The map
z 7→ u := zr(z)

satisfies u(0) = 0, u′(0) 6= 0 so that it defines a biholomorphism Z → U between two small
open neighborhoods Z and U of 0. We see that f(z) = uµ+1, for all z ∈ Z.

The power map u → uk defines k-sheeted branched cover of the unit disk D over itself.
It is called cover because, off the bad point 0, it is a genuine k sheeted cover

D \ {0} ∋ u 7→ uk ∈ D \ {0}.

There is a branching at zero meaning that the fiber over zero, which consists of a single
geometric point, is substantially different from the generic fiber, which consists of k-points
(see Figure 2.1). We see that the Milnor number k − 1 is equal to the number of points in
a general fiber (k) minus the number of points in the singular fiber(1).

If X and Y are one dimensional complex manifolds, then by choosing coordinates any
holomorphic function f : X → Y can be locally described as a holomorphic function
f : D → C so we define the Milnor number of a critical point (see [58, Sec. II.4] for a
proof that the choice of local coordinates is irrelevant). According to Lemma 2.1.1, the
type of branching behavior described above occurs near each critical point. Moreover, the
critical points are isolated so that if X is compact the (nonconstant) map f has only finitely
many critical points. In particular, only finitely many Milnor numbers µ(f, x), x ∈ X are
nonzero.

Suppose now that Σ and T are two compact complex curves and f : Σ→ T is a noncon-
stant holomorphic map. Topologically, they are 2-dimensional closed, oriented manifolds,
Riemann surfaces. Their homeomorphism type is completely determined by their Euler
characteristics. Suppose χ(T ) is known. Can we determine χ(Σ) from properties of f?
The Riemann-Hurwitz theorem states that this is possible provided that we have some mild
global information (the degree) and some detailed local information (the Milnor numbers of
its critical points).
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u

u3

Figure 2.1: Visualizing the branched cover u 7→ u3

Theorem 2.1.2 (Riemann-Hurwitz). Suppose deg f = d > 0. Then

χ(Σ) = dχ(T )−
∑

p∈Σ

µ(f, p).

Proof Denote by t1, · · · , tn ∈ T the critical values of f . Fix a triangulation T of T
containing the critical values amongst its vertices. Denote by V,E, F the set of vertices,
edges and respectively faces of this triangulation. Hence

χ(T ) = #V −#E +#F.

For each t ∈ T set
µ(t) :=

∑

f(p)=t

µ(f, p).

Observe that µ(t) = 0 iff t is regular value. Moreover, a simple argument (see Figure 2.2)
shows that

µ(t0) = lim
t→t0

#f−1(t)−#f−1(t0) = d−#f−1(t0), ∀t0 ∈ T. (2.1.1)

The map f is onto (why ?) and we can lift the triangulation T to a triangulation T̃ = f−1(T)
of Σ. Denote by Ṽ , Ẽ and F̃ the sets of vertices, edges and respectively faces of this
triangulation. Since the set of critical points of f is discrete (finite) we deduce

#Ẽ = d#E, #F̃ = d#F.

Moreover, using (2.1.1) we deduce

#Ṽ = d#T −
∑

t∈T

µ(t) = d#T −
∑

µ(f, p).

Thus
χ(Σ) = #Ṽ −#Ẽ +#F̃ = d(#V −#E +#F )−

∑
µ(f, p).
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µ=3

µ=2

µ=0

µ=0

µ=0

Τ Τ

Σ Σ

Critical value Regular value

Figure 2.2: A degree 10 cover

Corollary 2.1.3. Suppose f : Σ→ P1 is a holomorphic map which has only nondegenerate
critical points. If ν is their number and d = deg f then

χ(Σ) = 2d− ν.

2.2 Genus formula

We will illustrate the strength of Riemann-Hurwitz theorem on a classical problem. Consider
a degree d plane curve curve, i.e. the zero locus in P2 of a homogeneous polynomial P ∈ Pd,2,
X = VP . As we have explained in Chapter 1, for generic P , the set VP is a compact, one
dimensional submanifold manifold of P2. Its topological type is completely described by
its Euler characteristic, or equivalently by its genus. We have the following formula due to
Plücker. (We refer to [58, Sec. II.2] for a more general version.)

Theorem 2.2.1. (Genus formula) For generic P ∈ Pd,2 the curve VP is a Riemann
surface of genus

g(VP ) =
(d− 1)(d− 2)

2
.



The topology of complex singularities 13

Proof We will use Corollary 2.1.3. To produce holomorphic maps VP → P1 we will use
projections. Fix a line L ⊂ P2 and a point C ∈ P2\VP . We get a projection map f : X → L.
This is a degree d holomorphic map. Modulo a linear change of coordinates we can assume
all the critical points are situated in the region z0 6= 0 and C is the point at infinity [0 : 1 : 0].
In the affine plane z0 6= 0 with coordinates x = z1/z0, y = z2/z0, the point C corresponds
to the lines parallel to the x-axis (y = 0). In this region the curve VP is described by the
equation

F (x, y) = 0

where F (x, y) = P (1, x, y) is a degree d inhomogeneous polynomial. The critical points
of the projection map are the points (x, y) on the curve F (x, y) = 0 where the tangent is
horizontal

0 =
dy

dx
= −F

′
x

F ′
y

.

Thus the critical points are solutions of the system of polynomial equations

{
F (x, y) = 0
F ′
x(x, y) = 0

.

The first polynomial has degree d while the second polynomial has degree d−1. For generic
P this system will have exactly d(d−1) distinct solutions. The corresponding critical points
will be nondegenerate. Thus

2− 2(g(VP ) = χ(VP ) = 2d− d(d− 1)

so that

g(VP ) =
(d− 1)(d− 2)

2
.
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Chapter 3

Further examples of complex

manifolds

3.1 Holomorphic line bundles

A holomorphic line bundle formalizes the intuitive idea of a holomorphic family of complex
lines (1-dimensional complex vector spaces). The simplest example is that of a trivial family

CM := C×M
where M is a complex manifold. Another nontrivial example is the family of lines tauto-
logical parametrized by a projective space PN .

More generally, a holomorphic line bundle consists of three objects.

• The total space (i.e. the disjoint union of all lines in the family) which is a complex
manifold L.

• The base (i.e the space of parameters) which is a complex manifold M .

• The natural projection (i.e. the rule describing how to label each line in the family by a
point in M) which is a holomorphic map π : L→M .

(L, π,M) is called a line bundle if for every x ∈M there exist

• an open neighborhood U of x in M ;

• a biholomorphic map Ψ : π−1(U)→ C× U
such that the following hold.

• Each fiber Lm := π−1(m) (m ∈ M) has a structure of complex, one dimensional vector
space.

• The diagram below is commutative

π−1(U) C× U

U

[

[

[℄π

w

Ψ

�

�

��

proj

15
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• The induced map Ψ(m) : Lm → C× {m} is a linear isomorphism.

The map Ψ is called a local trivialization of L (over U).

From the definition of a holomorphic line bundle we deduce that we can find an open
cover (Uα)α∈A of M and trivializations Ψα over Uα. These give rise to gluing maps on the
overlaps Uαβ := Uα ∩ Uβ . These are holomorphic maps

gβα : Uαβ → Aut (C) ∼= C∗

determined by the commutative diagram

C× {m} C× {m}

Lm

w

gβα(m)

'

'

'*

Ψα(m) [

[

[℄

Ψβ(m)

The gluing maps satisfy the cocycle condition

gαγ(m) · gγβ(m) · gβα(m) = 1C, ∀α, β, γ ∈ A, m ∈ Uαβγ := Uα ∩ Uβ ∩ Uγ .

We can turn this construction on its head and recover a line bundle from the associated
cocycle of gluing maps gβα. In fact, it is much more productive to think of a line bundles
in terms of gluing cocycles. Observe that the total space L can be defined as a quotient

(∐

α∈A

C× Uα

)
/ ∼

where ∼ is the equivalence relation

C× Uα ∋ (zα,mα) ∼ (zβ ,mβ) ∈ C× Uβ ⇐⇒ mα = mβ =: m, zβ = gβα(m)zα.

Definition 3.1.1. A holomorphic section of a holomorphic line bundle L
π→ M is a

holomorphic map

u :M → L

such that u(m) ∈ Lm for all m ∈ M . We denote by OM (L) the space of holomorphic
sections of L→M .

Every line bundle admits at least one section, the zero section which associates to each
m ∈ M the origin of the vector space Lm. Observe that if a line bundle L is given by a
gluing cocycle gβα, then a section can be described by a collection of holomorphic functions

fα : Uα → C

satisfying the compatibility equations

fβ = gβαfα.
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Example 3.1.2 (The tautological line bundle). Intuitively, the tautological line bundle
over PN is the family of lines parameterized by PN . We will often denote its total space by
τN . It is defined by the incidence relation

τN :=
{
[z, ℓ] ∈ CN+1 × PN ; z ∈ ℓ

}
.

Notice that we have a tautological projection

π : τN → PN , [z, ℓ] 7→ ℓ.

To show that τN is a complex manifold and (τN , π,PN ) is a holomorphic line bundle we
need to construct holomorphic charts on τN and to construct local trivializations. We will
achieve both goals simultaneously. Consider the canonical open sets

Ui =
{
[z0 : · · · : zN ] ∈ PN ; zi 6= 0

}
∼= CN , i = 0, · · · , N.

Denote by (ζ1, · · · , ζN ) the natural coordinates on this open set

ζk = ζk(ℓ) :=

{
zk−1/zi k ≤ i
zk/zi k > i

. (3.1.1)

We can use these coordinates to introduce local coordinates (u0, u1, · · · , uN ) on

π−1(Ui) ∼=
{
(z0, · · · , zN ; ℓ) ∈ CN+1 × Ui; (z0, · · · , zN ) ∈ ℓ

}
.

More precisely, we set
u0 := zi, uk := ζk(ℓ), k = 1, · · · , N.

Observe that the equalities (3.1.1) lead to the fundamental equalities

zk = uk+1u0, 0 ≤ k < i, zi = u0, zk = uku0, k > i. (3.1.2)

We define a trivialization
π−1(Ui)→ C× Ui

by
π−1(Ui) ∋ (z0, · · · , zN ; ℓ) 7→ (zi; ζ1, · · · , ζN ) = (u0;u1, · · · , uN ).

From this description it is clear that the gluing cocycle is given by

gji([z0; · · · ; zN ]) = zj/zi.

The zero section of this bundle is the holomorphic map

u : PN ∼= {0} × PN →֒ τN ⊂ CN+1 × PN .

The image of the zero section is a hypersurface of τN which in the local coordinates (uk)
on π−1(Ui) is described by the equation

u0 = 0.
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Observe that the complement of the zero section in τN is naturally isomorphic to CN+1\{0}.
The isomorphism is induced by the natural projection

βN : PN \ τN (PN )։ CN+1 \ {0}.

The equation (3.1.2) represents a local coordinate description of the blowdown map βN .
To understand the subtleties of the above constructions it is instructive to consider the

special case of the tautological line bundle over P1. The projective line can be identified
with the Riemann sphere S2 = C ∪ {∞}. The two open sets U0 and U1 on P1 correspond
to the canonical charts

U0 = VN := S2 \ South Pole, U1 := VS := S2 \North Pole

with coordinates z = z1/z0 (on VN ) and ζ = z0/z1 (on VS) related by ζ := 1/z. On the
overlap

U01 = S2 \ {North and South Pole}
with coordinate z, the transition function g10 is given by

g10(z) = gSN (z) = z1/z0 = z.

The total space is covered by two coordinate charts

WN = π−1(UN ), WS := π−1(VN )

with coordinates given by

(s, t) on WN where z0 = s, z1 = st,

and
(u, v) on WS where z0 = uv, z1 = v.

The transition map between the two coordinate charts is

(u, v) = (st, t−1).

In the coordinates (s, t) the transition map g10 is given by z1/z0 = t.

There are several functorial operations one can perform on line bundles. We will describe
some of them by explaining their effect on gluing cocycles.

Suppose we are given two holomorphic line bundles L, L̃→M defined by the open cover
(Uα) and the holomorphic gluing cocycles

gβα, g̃βα : Uαβ → C∗.

The dual of L is the holomorphic line bundle L∗ defined by the holomorphic gluing cocycle

1/gβα : Uβα → C∗.

The tensor product of the line bundle L, L̃ is the line bundle L ⊗ L̃ defined by the gluing
cocycle gβαg̃βα.
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A bundle morphism L→ L̃ is a holomorphic section of L̃⊗ L∗. Equivalently, a bundle
morphism is a holomorphic map L → L̃ such that for every m ∈ M we have φ(Lm) ⊂ L̃m

and the induced map Lm → L̃m is linear. The notion of bundle isomorphism is defined in
an obvious fashion. We denote by Pic(M) the set of isomorphism classes of holomorphic
line bundles over M The tensor product induces an Abelian group structure on Pic(M).
The trivial line bundle CM is the neutral element while the inverse of a line bundle is given
by its dual.

A notion intimately related to the notion of line bundle is that of divisor. Roughly
speaking, a divisor is a formal linear combination over Z of codimension-1 subvarieties. We
present a few examples which will justify the more formal definition to come.

Example 3.1.3. (a) Suppose f : D → C is a holomorphic function defined on the unit
open disk in C such that f−1(0) = {0}. The origin is a codimension one subvariety and so
it defines a divisor (0) on D. We define the zero divisor of f by

(f)0 = n(0)

where n is the multiplicity of 0 as a root of f . (n= Milnor number of f at zero +1.)

(b) Suppose f : D → C∪{∞} is meromorphic suppose its zeros are (ζi) with multiplicities ni
while its poles are (µj) of orders (mj). The zero divisor of f is the formal linear combination

(f)0 =
∑

i

niζi

while the polar divisor is

(f)∞ =
∑

j

mjµj.

The principal divisor defined by f is

(f) = (f)0 − (f)∞ = (f)0 − (1/f)0.

Observe that if g : D → C is a holomorphic, nowhere vanishing function, then (gf) = (f).

(c) More generally, if M is a complex manifold and f : M → C ∪ {∞} is a meromorphic
function, i.e. a holomorphic map f : M → P1, then the principal divisor associated to f is
the formal combination of subvarieties

(f) = (f−1(0))− (f−1(∞)).

What’s hidden in this description is the notion of multiplicity which needs to be incorpo-
rated.

(d) A codimension 1 submanifold V of a complex manifold M defines a divisor on M .

In general, a divisor is obtained by patching the principal divisors of a family of locally
defined meromorphic functions. Concretely a divisor is described by an open cover (Uα)
and a collection of meromorphic functions

fα : Uα → C ∪ {∞}
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such that on the overlaps Uαβ the ratios fα/fβ are nowhere vanishing holomorphic functions.
This means that on the overlaps fα and fβ have zeros/poles of the same order.

A divisor is called effective if the defining functions fα are holomorphic. A meromorphic
function f : M → C ∪ {∞} defines a divisor (f) called the principal divisor determined
by f . We denote by ∅ the divisor determined by the constant function 1. We denote by
Div(M) the set of divisors on M and by PDiv(M) the set of principal divisors.

To a divisor D with defining functions fα one can associate a line bundle [D] described
by the gluing cocycle

gβα = fβ/fα.

If D, E are two divisors described by the defining functions fα and respectively gα, we
denote by D + E the divisor described by fαgβ . Also, denote by −D the divisor described
by (1/fα). Observe that

D + (−D) = ∅
and (Div(M),+) is an abelian group, and PDiv is a subgroup. Since

[D + E] = [D]⊗ [E], [−D] = [D]∗ in Pic (M)

the map
Div(M) ∋ D 7→ [D] ∈ Pic(M)

is a morphism of Abelian groups. Its kernel is precisely PDiv(M) and thus we obtain an
injective morphism

Div(M)/PDiv(M)→ Pic(M).

A theorem of Hodge-Lefschetz states that this map is an isomorphism when M is an alge-
braic manifold (see [31, Sec. I.2]).

Example 3.1.4. Consider the tautological line bundle τN → PN . Its dual is called the
hyperplane line bundle and is denoted by HN . If (Ui)i=0,··· ,N is the standard atlas on Pn we
see that HN is given by the gluing cocycle

gji = zi/zj .

We claim that any linear function

A : CN+1 → C, (z0, z1, · · · , zN ) 7→ a0z0 + · · ·+ aNzN

defines a section of H. More precisely define

Ai : Ui → C, Ai([z0 : · · · : zN ]) =
1

zi
A(z0, · · · , zN ).

Clearly
Aj = (zi/zj)Ai = gjiAi

which proves the claim.
Similarly, any degree d homogeneous polynomial P in the variables z0, · · · , zN defines a

holomorphic section of Hd. We thus have constructed an injection

Pd,N →֒ OPN (H
d).

In fact, this map is an isomorphism (see [31, Sec. I.3]).
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3.2 The blowup construction

To understand this construction consider the following ideal experiment. Suppose we have
two ants A1, A2 walking along two fibers of the tautological line bundle τN towards the
image of the zero section. The ants have “shadows”, namely the points βN (Ai) ∈ CN+1 by
Si, i = 1, 2. These shadows travel towards the origin of CN+1 along two different lines. As
the shadows get closer and closer to the origin, in reality, the ants are far apart, approaching
the distinct points of PN corresponding to the two lines described by the shadows. This
separation of trajectories is the whole point of the blowup construction which we proceed
to describe rigorously.

Suppose M is complex manifold of dimension N and m is a point in M . The blowup of
M at m is the complex manifold M̂m constructed as follows.

1. Choose a small open neighborhood U ofM biholomorphic to the open unit ball B ⊂ CN .
Set

Ûm := β−1
N−1(B) ⊂ τN1 .

2. The blowdown map βN−1 establishes an isomorphism

Ûm \ PN−1 ∼= B \ {0} ∼= U \ {m}.

Now glue Ûm to M \ {m} using the blowdown map to obtain M̂m.

Observe that there exists a natural holomorphic map β : M̂m →M called the blowdown
map. The fiber β−1(m) is called the exceptional divisor and it is a hypersurface isomorphic
to PN−1. It is traditionally denoted by E. Observe that the map

β : M̂m \ E →M \ {m}

is biholomorphic.

Example 3.2.1. τN−1 is precisely the blowup of CN at the origin

τN−1
∼= ĈN

0 .

Exercise 3.2.1. Prove that the blowup of the complex manifold M at a point m is dif-
feomeorphic in an orientation preserving fashion to the connected sum

M#P̄N

where P̄N denotes the oriented smooth manifold obtained by changing the canonical orien-
tation of PN .

Definition 3.2.2. Supposem ∈M and S is a closed subset inM . The proper transform
of S in M̂m is the closure of β−1(S \ {m}) in M̂m. We will denote it by S̄m.

The following examples describes some of the subtleties of the proper transform con-
struction.
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Figure 3.1: Proper transforms of singular curves

Example 3.2.3. (a) Consider the set

S = {z0z1 = 0} ⊂M := C2.

It consists of the two coordinate axes. We want to describe S̄0 ⊂ M̂0.
The blowup M̂0 is covered by two coordinate charts

{
V0, (u0, u1); z0 = u0, z1 = u0u1

}

and {
V1, (v0, v1); z1 = v0, z0 = v0v1

}
.

Inside V0, the set S♭ \ E = β−1(S \ 0) has the description

u20u1 = 0, u0 6= 0⇐⇒ u1 = 0, u0 6= 0

while inside V1 it has the description

v20v1 = 0, v0 6= 0⇐⇒ v1 = 0, v0 6= 0.

On the overlap V0 ∩ V1 we have the transition rules

u0 = z0 = v0v1, u1 = z1/z0 = 1/v1.

We see that S♭ \E ∩ (V0 ∩ V1) = ∅. The proper transform of S consists of two fibers of the
tautological line bundle τ1 → P1, namely the fibers above the poles (see Figure 3.1).
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(b) Consider
S = {z20 = z31} ⊂M := C2.

Inside V0 the set S♭ \E has the description

S0 : u20(1− u0u31) = 0, u0 6= 0

while inside V1 it has the description

S1 : v20(v0 − v21) = 0, v0 6= 0.

Observe that the closure of S0 in V0 does not meet the exceptional divisor. The closure of
S1 inside V1 is the parabola v0 = v21 which is tangent to the exceptional divisor at the point
v0 = 0 = v1 (see Figure 3.1).
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Chapter 4

Linear systems

4.1 Some fundamental constructions

Loosely speaking, a linear system is a holomorphic family of divisors parametrized by a
projective space. Instead of a formal definition we will analyze a special class of examples.
For more information we refer to [31].

Suppose X →֒ PN is a compact submanifold of dimension n. Each P ∈ Pd,N \ {0}
determines a (possibly singular) hypersurface

VP :=
{
[z0 : · · · : zN ] ∈ PN ;P (z0, · · · , zN ) = 0

}
.

The intersection
XP := X ∩ VP

is a degree-d hypersurface (thus a divisor) on X. Observe that VP and XP depend only on
the image [P ] of P in the projectivization P(d,N) of Pd,N .

Each projective subspace U ⊂ P(d,N) defines a family (XP )[P ]∈U of hypersurfaces on
X. This is a linear system. When dimU = 1, i.e. U is a projective line, we say that the
family (XP )P∈U is a pencil. The intersection

B = BU :=
⋂

P∈U

XP

is called the base locus of the linear system. The points in B are called basic points. Any
point x ∈ X \B determines a hyperplane Hx ∈ U described by the equation

Hx := {P ∈ U ; P (x) = 0}.

The hyperplanes of U determine a projective space Ǔ , the dual of U . (Observe that if U is
1-dimensional then U = Ǔ .) We see that a linear system determines a holomorphic map

fU : X∗ := X \B → Ǔ , x 7→ Hx.

We define the modification of X determined by the linear system (XP )P∈U to be the variety

X̂ = X̂U =
{
(x,H) ∈ X × Ǔ ; P (x) = 0, ∀P ∈ H ⊂ U

}
.

25
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When dimU = 1 this has the simpler description

X̂ = X̂U =
{
(x, P ) ∈ X × U ; P (x) = 0⇐⇒ x ∈ VP

}
.

We have a pair of holomorphic maps induced by the natural projections

X̂U ⊂ X × Ǔ

X Ǔ

[

[

[

[̂

πX

'

'

'

')

f̂U

w

fU

Observe that πX induces a biholomorphic map X̂∗ := π−1
X (X∗) → X∗ and we have a

commutative diagram

X̂∗

X∗ Ǔ

��

��

πX
[

[℄

f̂U

w

fU

In general, B and X̂U are not smooth objects. Also, observe that when dimU = 1 the map
f̂ : X̂ → Ǔ can be regarded as a map to U .

Example 4.1.1 (Pencils of cubics). Consider two homogeneous cubic polynomials A,B ∈
P3,2 (in the variables z0, z1, z2). For generic A, B these are smooth, cubic curves in P2 and
the genus formula tells us they are homemorphic to tori. By Bézout’s theorem, these two
general cubics meet in 9 distinct points, p1, · · · , p9. For t := [t0 : t1] ∈ P1 set

Ct := {[z0 : z1 : z2] ∈ P2; t0A(z0, z1, z2) + t1B(z0, z1, z2) = 0}.

The family Ct, t ∈ P1, is a pencil on X = P2. The base locus of this system consists of the
nine points p1, · · · , p9 common to all the cubics. The modification

X̂ :=
{
([z0, z1, z2], t) ∈ P2 × P1; t0A(z0, z1, z2) + t1B(z0, z1, z2) = 0

}

is isomorphic to the blowup of X at these nine points

X̂ ∼= X̂p1,··· ,p9 .

For general A, B the induced map f̂ → P1 is Morse, and its generic fiber is a torus (or
equivalently, an elliptic curve). The manifold X̂ is a basic example of elliptic fibration. It
is usually denoted by E(1).

Exercise 4.1.1. Prove the claim in the above example that

X̂ ∼= X̂p1,··· ,p9 .
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Remark 4.1.2. When studying linear systems defined by projective subspaces U ⊂ P(d,N)
it suffices to consider only the case d = 1, i.e. linear systems of hyperplanes. This follows
easily using the Veronese embedding

Vd,N : PN →֒ P(d,N), [~z] 7→ [(zω)] := [(~zω)|ω|=d]

where ~z ∈ CN+1 \ {0}

ω = (ω0, · · · , ωN ) ∈ ZN+1
+ , |ω| =

N∑

i=0

ωi, ~zω =

N∏

i=0

zωi
i ∈ P(|ω|, N).

Any P =
∑

|ω|=d pω~z
ω ∈ P(d,N) defines a hyperplane in P(d,N)

HP = {
∑

|ω|=d

pωzω = 0}.

Observe that
V(VP ) ⊂ HP

so that
V(X ∩ VP ) = V(X) ∩HP .

Definition 4.1.3. A Lefschetz pencil on X →֒ PN is a pencil determined by a one
dimensional projective subspace U →֒ P(d,N) with the following properties.

(a) The base-locus B is either empty or it is a smooth, codimension 2-submanifold of X.
(b) X̂ is a smooth manifold.
(c) The holomorphic map f̂ : X̂ → U is a Morse function.

If the base locus is empty, then X̂ = X and the Lefschetz pencil is called a Lefschetz
fibration.

We have the following genericity result. Its proof can be found in [46, Sec.2].

Theorem 4.1.4. Fix a compact submanifold X →֒ PN . Then for any generic projective
line U ⊂ P(d,N), the pencil (XP )P∈U is Lefschetz.

4.2 Projections revisited

According to Remark 4.1.2, it suffices to consider only pencils generated by degree 1 poly-
nomials. In this case, the pencils can be given a more visual description.

Suppose X →֒ PN is a compact complex manifold. Fix a N − 2 dimensional projective
subspace A →֒ PN called the axis. The hyperplanes containing A form a line in U ⊂ P̌N ∼=
P(1, N). It can be identified with any line in PN which does not intersect A. Indeed if S is
such a line (called screen) then any hyperplane H containing A intersects S a single point
s(H). We have thus produced a map

U ∋ H 7→ s(H) ∈ S.
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Conversely, any point s ∈ S determines an unique hyperplane [As]containing A and passing
through s. The correspondence

S ∋ s 7→ [As] ∈ U
is the inverse of the above map; see Figure 4.1. The base locus of the linear system

A

S

s

s
X

B

[As]

Figure 4.1: Projecting onto the “screen” S

(
Xs = [As] ∩X

)
s∈S

is B = X ∩A. All the hypersurfaces Xs pass through the base locus B. For generic A this
is a smooth, codimension 2-submanifold of X. We have a natural map

f : X \B → S, x 7→ [Ax] ∩ S.

We can now define the elementary modification of X to be

X̂ :=
{
(x, s) ∈ X × S; x ∈ Xs

}
.

The critical points of f̂ correspond to the hyperplanes through A which contain a tangent
(projective) plane to X. We have a similar diagram

X̂

X S

�

��

π
[

[℄

f̂

w

f

.
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We define
B̂ := π−1(B).

Observe that
B̂ :=

{
(b, s) ∈ B × S; b ∈ [As]

}
= B × S,

and the natural projection π : B̂ → B coincides with the projection B × S ։ B. Set

X̂s := f̂−1(s).

The projection π induces a homeomorphism X̂s → Xs.

Example 4.2.1. Observe that when N = 2 then A is a point. Assume that X →֒ P2 is a
degree d smooth curve as A 6∈ X. We have used the above construction in the proof of the
genus formula. There we proved that, generically, every Lefschetz pencil on X has exactly
d(d− 1) critical points.

Example 4.2.2. Suppose X is the plane

{z3 = 0} ∼= P2 →֒ P3.

Assume A is the line z1 = z2 = 0 and S is the line z0 = z3 = 0. The base locus consists of
the single point B = [1 : 0 : 0 : 0] ∈ X. The pencil obtained in this fashion consists of all
lines passing through B.

Observe that S ⊂ X. Moreover, the line S can be identified with the line at ∞ in P2.
The map f : X \ {B} → S determined by this pencil is simply the projection onto the line
at ∞ with center B. The modification of X defined by this pencil is precisely the blowup
of P2 at B.
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Chapter 5

Topological applications of

Lefschetz pencils

The existence of a Lefschetz pencil imposes serious restrictions on the topology of an al-
gebraic manifold. In this lecture we will discuss some of them. Our presentation follows
closely [46].

5.1 Topological preliminaries

Before we proceed with our study of Lefschetz pencil we need to isolate a few basic facts of
algebraic topology. An important technical result in the sequel will be Ehresmann fibration
theorem.

Theorem 5.1.1. ([23, Ehresmann]) Suppose Φ : E → B is a smooth map between two
smooth manifolds such that

• Φ is proper, i.e. Φ−1(K) is compact for every compact K ⊂ B.
• Φ is a submersion, i.e. dimE ≥ dimB and F has no critical points.
• If ∂E 6= ∅ then the restriction ∂Φ of Φ to ∂E continues to be a submersion.

Then Φ : (E, ∂E) → B is a smooth fiber bundle, i.e. there exists a smooth manifold
F , called the standard fiber and an open cover (Ui)i∈I of B with the following property.
For every i ∈ I there exists a diffeomorphism

Ψi : Φ
−1(Ui)→ F × Ui

such that the diagram below is commutative.

(
Φ−1(Ui), (∂Φ)

−1(Ui)
)

(F, ∂F ) × Ui

Ui














�Φ

w

Ψi

A

A

A

A

A

AD

proj

The above result implies immediately that the fibers of Φ are all compact manifolds
diffeomorphic to the standard fiber F .

31
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Exercise 5.1.1. Use Ehresmann fibration theorem to show that if X →֒ PN is an n-
dimensional algebraic manifold and P1, P2 ∈ Pd,N are two generic polynomials then

VP1 ∩X ∼=diffeo X ∩ VP2 .

Hint: Consider the set
Z := {(x, [P ]) ∈ X × P(d,N); P (x) = 0}

Show it is a complex manifold and analyze the map

π : Z → P(d,N), (x, [P ]) 7→ [P ].

Prove that the set of its regular values is open and connected and then use Ehresmann fibration

theorem.

In the sequel we will frequently use the following consequence of the excision theorem
for singular homology, [67, Chap. 6,§6].

Suppose f(X,A)→ (Y,B) is a continuous mapping between pairs of compact Euclidean
neighborhood retracts (ENR’s), such that

f : X \A→ Y \B

is a homeomorphism. Then f induces an isomorphism

f∗ : H∗(X,A;Z)→ H∗(Y,B;Z).

Instead of rigorously defining the notion of ENR let us mention that the zero set of an
analytic map F : Rn → Rm is an ENR. More generally every locally compact and locally
contractible1 subset of an Euclidean space is an ENR. We refer to [10, Appendix E] for
more details about ENR’s.

Exercise 5.1.2. Prove the above excision result.

In the sequel, unless otherwise stated, H∗(X) (resp. H∗(X)) will denote the integral
singular homology (resp. cohomology) of the space X. For every compact oriented, m-
dimensional manifold M denote by PDM the Poincaré duality map

Hq(M)→ Hm−q(M), u 7→ u ∩ [M ].

The orientation conventions for the ∩-product are determined by the equality

〈v ∪ u, c〉 = 〈v, u ∩ c〉,

where 〈•, •〉 denotes the Kronecker pairing H∗×H∗ → Z. This convention is compatible with
the fiber-first orientation convention for bundles. Recall that this means that if F →֒ E ։ B
is a smooth fiber bundle, with oriented base B and standard fiber F then the total space is
equipped with the orientation

or(E) = or(F ) ∧ or(B).

1A space is called locally contractible if every points admits a fundamental system of contractible neigh-
borhoods.
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5.2 The set-up

Suppose X →֒ PN is an n-dimensional algebraic manifold, and S ⊂ P(d,N) is a one dimen-
sional projective subspace defining a Lefschetz pencil (Xs)s∈S on X. As usual, denote by
B the base locus

B =
⋂

s∈S

Xs

and by X̂ the modification

X̂ =
{
(x, s) ∈ X × S; x ∈ Xs

}
.

We have an induced Lefschetz fibration f̂ : X̂ → S with fibers

X̂s := f̂−1(s)

and a surjection

p : X̂ → X

which induces homeomorphisms X̂s → Xs. Observe that deg p = 1. Set

B̂ := p−1(B).

Observe that we have a tautological diffeomorphism

B̂ →∼= B × S, B̂ ∋ (x, s) 7→ (x, s) ∈ B × S.

Since S ∼= S2 we deduce from Künneth theorem that we have an isomorphism

Hq(B̂) ∼= Hq(B)⊕Hq−2(B)

and a natural injection

Hq−2(B)→ Hq(B̂), Hq−2(B) ∋ c 7→ c× [S] ∈ Hq(B̂).

Using the inclusion map B̂ → X̂ we obtain a natural morphism

κ : Hq−2(B)→ Hq(X̂).

Lemma 5.2.1. The sequence

0→ Hq−2(B)
κ→ Hq(X̂)

p∗→ Hq(X)→ 0 (5.2.1)

is exact and splits for every q. In particular, X̂ is connected iff X is connected.

Proof The proof will be carried out in several steps.

Step 1 p∗ admits a natural right inverse. Consider the Gysin morphism

p! : Hq(X)→ Hq(X̂), p! = PDX̂p
∗PD−1

X ,
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i.e. the diagram below is commutative.

H2n−q(X) Hq(X)

H2n−q(X̂) Hq(X̂)

w

•∩[X]

u

p∗

u

p!

w

•∩[X̂]

We will show that p∗p
! = 1. Let c ∈ Hq(X) and set u := PD−1

X (x), u ∩ [X] = c. Then

p!(c) = p∗(u) ∩ [X̂].

Then
p∗p

!(c) = p∗p
∗(u) ∩ p∗([X̂ ]) = u ∩ p∗([X̂ ]) = deg p(u ∩ [X]) = c.

Step 2. Conclusion We use the long exact sequences of the pairs (X̂, B̂), (X,B) and the
morphism between them induced by p∗. We have the following commutative diagram

Hq+1(X̂) Hq+1(X̂, B̂) Hq(B)⊕Hq−2(B) Hq(X̂) Hq(X̂, B̂)

Hq+1(X) Hq+1(X,B) Hq(B) Hq(X) Hq(X,B)

w

u

p∗

w

∂

u

p′∗
u

pr

w

u

p∗

w

u

p′∗

w w

∂
w w

The excision theorem shows that the morphisms p′∗ are isomorphisms. Moreover, p∗ is
surjective. The conclusion in the lemma now follows by diagram chasing.

Exercise 5.2.1. Complete the diagram chasing argument.

Decompose now the projective line S into two closed hemispheres

S := D+ ∪D−, S1 = D+ ∩D−, X̂± := f̂−1(D±), X̂0 := f̂−1(S1)

such that all the critical values of f̂ : X̂ → S are contained in the interior of D+. Choose
a point • on the Equator ∂D+

∼= S1. Denote by r the number of critical points (= the
number of critical values) of the Morse function f̂ . In the remainder of this chapter we will
assume the following fact. Its proof is deferred to Chapter 7.

Lemma 5.2.2 (Key Lemma).

Hq(X̂+, X̂•) ∼=
{

0 if q 6= n = dimX
Zr if q = n

.

Remark 5.2.3. The number of r of nondegenerate singular points of a Lefschetz pencil
defined by linear polynomials is a projective invariant of X. Its meaning when X is a plane
curve was explained in Chapter 1 and we computed it explicitly in Chapter 2. A similar
definition holds in higher dimensions as well; see [46].
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5.3 Lefschetz Theorems

All of the results in this section originate in the remarkable work of S. Lefschetz [48] in the
1920’s. We follow the modern presentation in [46].

Using Ehresmann fibration theorem we deduce

X̂−
∼= X̂• ×D−, X̂0

∼= X̂• × S1

so that

(X̂−, X̂0) ∼= X̂• × (D−, S
1).

X̂• is a deformation retract of X̂−. In particular, the inclusion

X̂• →֒ X̂−

induces isomorphisms

H∗(X̂•) ∼= H∗(X̂−).

Using excision and Künneth formula we obtain the sequence of isomorphisms

Hq−2(X̂•)
×[D−]−→ Hq(X̂• × (D−, S

1)) ∼= Hq(X̂−, X̂0)
excis−→ Hq(X̂, X̂+). (5.3.1)

Consider now the long exact sequence of the triple (X̂, X̂+, X̂•),

· · · → Hq+1(X̂+, X̂•)→ Hq+1(X̂, X̂•)→ Hq+1(X̂, X̂+)
∂→ Hq(X+, X̂•)→ · · ·

If we use the Key Lemma and the isomorphism (5.3.1) we deduce that we have the
isomorphisms

L : Hq+1(X̂, X̂•)→ Hq−1(X̂•), q 6= n, n− 1, (5.3.2)

and the 5-term exact sequence

0→ Hn+1(X̂, X̂•)→ Hn−1(X̂•)→ Hn(X̂+, X̂•)→ Hn(X̂, X̂•)→ Hn−2(X̂•)→ 0 (5.3.3)

Here is a first nontrivial consequence.

Corollary 5.3.1. If X is connected and n = dimX > 1 then the generic fiber X̂•
∼= X• is

connected.

Proof Using (5.3.2) we obtain the isomorphisms

H0(X̂, X̂•) ∼= H−2(X̂•) = 0, H1(X̂, X̂•) ∼= H−1(X̂•) = 0.

Using the long exact sequence of the pair (X̂, X̂•) we deduce that

H0(X̂•) ∼= H0(X̂).

Since X is connected, Lemma 5.2.1 now implies H0(X̂) = 0 thus proving the corollary.



36 Liviu I. Nicolaescu

Remark 5.3.2. The above connectivity result is a holomorphic phenomenon and it is a
special case of Zariski’s Connectedness Theorem, [59], or [65, vol. II]. The level sets of a
smooth function on a smooth manifold may not be connected. The proof of the corollary
does not overtly uses the holomorphy assumption. This condition is hidden in the proof of
the Key Lemma.

The next result generalizes the Riemann-Hurwitz theorem for Morse maps

f : Σ→ P1, Σ complex algebraic curve.

Corollary 5.3.3.

χ(X̂) = 2χ(X̂•) + (−1)nr,
χ(X) = 2χ(X•)− χ(B) + (−1)nr.

Proof From (5.2.1) we deduce

χ(X̂) = χ(X) + χ(B).

On the other hand, the long exact sequence of the pair (X̂, X̂•) implies

χ(X̂)− χ(X̂•) = χ(X̂, X̂•).

Using (5.3.2), (5.3.3) and the Key Lemma we deduce

χ(X̂, X̂•) = χ(X̂•) + (−1)nr.

Thus

χ(X̂) = 2χ(X̂•) + (−1)nr
and

χ(X) = 2χ(X̂•)− χ(B) + (−1)nr.

Example 5.3.4. Consider again two cubic polynomials A,B ∈ P3,2 defining a Lefschetz
pencil on P2 →֒ P3. We can use the above corollary to determine the number r of singular
points of this pencil. More precisely we have

χ(P2) = 2χ(X•)− χ(B) + r.

We have seen that B consists of 9 distinct points. According to the genus formula the
generic fiber, which is a degree 3 curve, must be a torus, so that χ(X•) = 0. Finally,
χ(P1) = 3. We deduce r = 12 so that the generic elliptic fibration

P̂2p1,··· ,p9 → P1

has 12 singular fibers.
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Exercise 5.3.1. Suppose X is an algebraic surface (dimX = 2) and (Xs)s∈P1 defines a
Lefschetz fibration with generic fiber Xs of genus g. Express the number of singular fibers
of X in terms of topological invariants of X and Xs.

Exercise 5.1.1 shows that the diffeomorphism type of a hypersurface VP ∩X is indepen-
dent of the generic polynomial P of fixed degree. Moreover, for general P , the hypersurface
can be included in a Lefschetz pencil. Hence, studying the topological properties of the
embedding

VP ∩X →֒ X

is equivalent to studying the topological properties of the embedding X• →֒ X.

Theorem 5.3.5 (Lefschetz hypersurface section theorem). The inclusion

X• →֒ X

induces isomorphisms
Hq(X•)→ Hq(X)

if q < 1
2 dimRX• = n− 1 and an epimorphism if q = n− 1. Equivalently, this means

Hq(X,X•) = 0, ∀q ≤ n− 1.

Proof We will used an argument similar to the one in the proof of (5.3.2), (5.3.3). More
precisely, we will analyze the long exact sequence of the triple (X̂, X̂+ ∪ B̂, X̂• ∪ B̂).

Using excision we deduce

Hq(X̂, X̂+ ∪ B̂) = Hq(X̂, X̂+ ∪B ×D−) ∼= Hq(X̂−, X̂0 ∪B ×D−)

(use Ehresmann fibration theorem)

∼= Hq

(
(X•, B)× (D−, S

1)
) ∼= Hq−2(X•, B).

Using the Excision theorem again we obtain an isomorphism

p∗ : Hq(X̂, X̂• ∪ B̂) ∼= Hq(X,X•).

Finally, we have an isomorphism

H∗(X̂+ ∪ B̂, X̂• ∪ B̂) ∼= H∗(X̂+, X̂•). (5.3.4)

Indeed, excise B × Int (D−) from both terms of the pair (X̂+ ∪ B̂, X̂• ∪ B̂). Then

X̂+ ∪ B̂ \ (B × Int (D−) ) = X̂+

and, since X̂• ∩ B̂ = {•} ×B, we deduce

X̂• ∪ B̂ \ (B × Int (D−) ) = X̂• ∪
(
D+ ×B

)
.
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Observe that

X̂• ∩
(
D+ ×B

)
= {•} ×B

and D+ × B deformation retracts to {•} × B. Hence X̂• ∪
(
D+ × B

)
is homotopically

equivalent to X̂• thus proving (5.3.4).

The long exact sequence of the triple (X̂, X̂+ ∪ B̂, X̂• ∪ B̂) can now be rewritten

· · · → Hq−1(X•, B)
∂→ Hq(X̂+, X̂•)→Hq(X,X•)→ Hq−2(X•, B)

∂→ · · ·

Using the Key Lemma we obtain the isomorphisms

L′ : Hq(X,X•)→ Hq−2(X•, B), q 6= n, n+ 1 (5.3.5)

and the 5-term exact sequence

0→ Hn+1(X,X•)→ Hn−1(X•, B)→ Hn(X̂+, X̂•)→ Hn(X,X•)→ Hn−2(X•, B)→ 0.
(5.3.6)

We now argue by induction over n. The result is obviously true for n = 1. Observe that B
is a hypersurface in X•, dimCX• = n− 1, and thus, by induction, the map

Hq(B)→ Hq(X•)

is an isomorphism for q ≤ n − 2 and an epimorphism for q = n − 2. Using the long exact
sequence of the pair (X•, B) we deduce that

Hq(X•, B) = 0, ∀q ≤ n− 2

Using (5.3.5) we deduce

Hq(X,X•) ∼= Hq−2(X•, B) ∼= 0, ∀q ≤ n− 1.

We can now conclude the proof using the long exact sequence of the pair (X,X•).

Corollary 5.3.6. If X is a hypersurface in Pn then

bk(X) = bk(P
n), ∀k ≤ n− 2.

In particular, if X is a hypersurface in P3 then b1(X) = 0.

Consider the connecting homomorphism

∂ : Hn(X̂+, X̂•)→ Hn−1(X̂•)

Its image

V := ∂
(
Hn(X̂+, X̂•)

)
⊂ Hn−1(X̂•) = HdimC X̂•

(X̂•)
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is called the module of vanishing cycles. Using the long exact sequences of the pairs
(X̂+, X̂•) and (X,X•) and the Key Lemma we obtain the following commutative dia-
gram

Hn(X̂+, X̂•) Hn−1(X̂•) Hn−1(X̂+) 0

Hn(X,X•) Hn−1(X•) Hn−1(X) 0

w

∂

u

u

p1

w

u

∼= p2

u

∼= p3

w

w

∂
w w

All the vertical morphisms are induced by the map p : X̂ → X. The morphism p1 is onto
because it appears in the sequence (5.3.6) whereHn−2(X•, B) = 0 by Lefschetz hypersurface
section theorem. p2 is clearly an isomorphism since p induces a homeomorphism X̂•

∼= X•.
Using the five lemma we conclude that p3 is an isomorphism. The above diagram shows
that

V = ker
(
i∗ : Hn−1(X•)→ Hn−1(X)

)
= Image

(
∂ : Hn(X,X•)→ Hn−1(X•)

)
, (5.3.7a)

rkHn−1(X•) = rk V + rkHn−1(X). (5.3.7b)

These observations have a cohomological counterpart

Hn(X̂+, X̂•) Hn−1(X̂•) Hn−1(X̂+) 0

Hn(X,X•) Hn−1(X•) Hn−1(X) 0

u

δ
u u

u

y

mono

u

δ

u

∼=

u

i∗

u

u

This diagram shows that

I∗ := ker
(
δ : Hn−1(X̂•)→ Hn(X̂+, X̂•)

)
∼= ker

(
δ : Hn−1(X•)→ Hn(X,X•)

)

∼= Im
(
i∗ : Hn−1(X)→ Hn−1(X•)

)
.

Define the module of invariant cycles to be the Poincaré dual of I∗

I :=
{
u ∩ [X•]; u ∈ I∗

}
⊂ Hn−1(X•)

or equivalently

I = Im
(
i! : Hn+1(X)→ Hn−1(X•)

)
, i! := PDX•

i∗PD−1
X .

Since i∗ is 1− 1 on Hn−1(X) we deduce i! is 1− 1 so that

rk I = rkHn+1(X) = rkHn−1(X). (5.3.8)

The last equality implies the following result.
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Theorem 5.3.7 (Weak Lefschetz Theorem).

rkHn−1(X•) = rk I + rk V.

Using the Key Lemma, the universal coefficients theorem and the equality

I∗ = ker
(
δ : Hn−1(X̂•)→ Hn(X̂+, X̂•)

)
,

we deduce
I∗ =

{
ω ∈ Hn−1(X̂•); 〈ω, v〉 = 0, ∀v ∈ V

}
.

Observe that n − 1 = 1
2 dim X̂• and thus, the Kronecker pairing on Hn−1(X•) is given by

the intersection form. This is nondegenerate by Poincaré duality. Thus

I :=
{
y ∈ Hn−1(X•); y · v = 0, ∀v ∈ V

}
. (5.3.9)

∗ ∗ ∗
Let us summarize the facts we have proved so far. We defined

V := image
(
∂ : Hn(X,X•)→ Hn−1(X•)

)
,

I := image
(
i! : Hn+1(X)→ Hn−1(X•)

)

and we showed that
V = ker

(
i∗ : Hn−1(X•)→ Hn−1(X)

)
,

i! : Hn+1(X)→ Hn−1(X•) is 1− 1,

I =
{
y ∈ Hn−1(X•); y · v = 0, ∀v ∈ V

}
,

rk I = rkHn+1(X) = rkHn−1(X),

rk Hn−1(X•) = rk I + rk V.



Chapter 6

The Hard Lefschetz theorem

The last theorem in the previous section is only the tip of the iceberg. In this chapter we
enter deeper into the anatomy of an algebraic manifold and try to understand the roots
of the weak Lefschetz theorem. In this chapter, unless specified otherwise, H∗(X) denotes
the homology with coefficients in R. Also, assume for simplicity that the pencil (Xs)s∈P1
consists of hyperplane sections. (We already know this does not restrict the generality.) We
continue to use the notations in Lecture 5. Denote by ω ∈ H2(X) the Poincaré dual of the
hyperplane section X•, i.e.

[X•] = ω ∩ [X].

6.1 The Hard Lefschetz Theorem

For any cycle c ∈ Hq(X), its intersection with X• is a new cycle in X• of codimension 2 in
c, i.e. a (q − 2)-cycle. This intuitive yet unrigorous operation can be formally described as
the cap product with ω

ω∩ : Hq(X)→ Hq−2(X)

which factors through X•

Hq(X) Hq−2(X•)

Hq−2(X)

w

i!

'

'

'

'

')

ω∩
u

i∗

Proposition 6.1.1. The following statements are equivalent.

V ∩ I = 0. (HL1)

V ⊕ I = Hn−1(X•). (HL2)

i∗ : Hn−1(X•)→ Hn−1(X) maps I isomorphically onto Hn−1(X). (HL3)

41
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The map ω∩ : Hn+1(X)→ Hn−1(X) is an isomorphism. (HL4)

The restriction of the intersection form on Hn−1(X•) to V remains nondegenerate.
(HL5)

The restriction of the intersection form to I remains nondegenerate. (HL6)

.

Proof The weak Lefschetz theorem shows that (HL1)⇐⇒ (HL2).

(HL2)=⇒ (HL3). Use the fact established in Chapter 5 that

V = ker
(
i∗ : Hn−1(X•)→ Hn−1(X)

)
.

(HL3)=⇒ (HL4). In Chaper 5 we proved that i! : Hn+1(X) → Hn−1(X•) is a monomor-
phism with image I. By (HL3), i∗ : I → Hn−1(X) is an isomorphism.

(HL4)=⇒ (HL3) If i∗◦i! = ω∩ : Hn+1(X)→ Hn−1(X) is an isomorphism then we conclude
that i∗ : Im (i!) = I → Hn−1(X) is onto. In Lecture 5 we have shown that dim I =
dimHn−1(X) so that i∗ : Hn−1(X•)→ Hn−1(X) must be 1− 1.

(HL2)=⇒ (HL5), (HL2)=⇒ (HL6). This follows from the fact established in the previous
lecture that I is the orthogonal complement of V with respect to the intersection form.

(HL5)=⇒ (HL1) and (HL6)=⇒ (HL1). Suppose we have a cycle c ∈ V ∩ I. Then

c ∈ I =⇒ c · v = 0, ∀v ∈ V

while

c ∈ V =⇒ c · z = 0, ∀z ∈ I.

When the restriction of the intersection from to either V or I is nondegenerate the above
equalities imply c = 0 so that V ∩ I = 0. �

Theorem 6.1.2 (The Hard Lefschetz Theorem). The equivalent statements (HL1)-(HL6)
above are true (for the homology with real coefficients).

This is a highly nontrivial result. Its complete proof requires a sophisticated analytical
machinery (Hodge theory) and is beyond the scope of these lectures. We refer the reader
to [31, Sec.0.7] for more details. In the remainder of this chapter we will discuss other
topological facets of this remarkable theorem.
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6.2 Primitive and effective cycles

Set
X0 := X, X1 := X•, X2 := B

so that Xi+1 is a generic smooth hyperplane section of Xi. We can iterate this procedure
and obtain a chain

X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ ∅.
so that dimXq = n − q, and Xq is a generic hyperplane section of Xq−1. Denote by
Iq ⊂ Hn−q(Xq) the module of invariant cycles,

Iq = Image
(
i! : Hn−q+2(Xq−1)→ Hn−q(Xq)

)

and is Poincaré dual

I∗q = Image
(
i∗ : Hn−q(Xq−1)→ Hn−q(Xq)

)
= PD−1

Xq
(Iq).

The Lefschetz hyperplane section theorem implies that the morphisms

i∗ : Hk(Xq)→ Hk(Xj), j ≤ q
are isomorphisms for k + q < n. We conclude by duality that

i∗ : Hk(Xj)→ Hk(Xq), (j ≤ q)
is an isomorphism if k + q < n.

Using (HL3) we deduce that

i∗ : Iq → Hn−q(Xq−1)

is an isomorphism. Using the above version of the Lefschetz hyperplane section theorem we
conclude that

i∗ maps Iq isomorphically onto Hn−q(X). (†)
Now observe that

I∗q = Image(i∗ : Hn−q(Xq−1 → Hn−1(Xq))

and, by Lefschetz hyperplane section theorem we have the isomorphisms

Hn−q(X0)
i∗→ Hn−q(X1)

i∗→ · · · i∗→ Hn−q(Xq−1).

Using Poincaré duality we obtain

i! maps Hn+q(X) isomorphically onto Iq. (††)
Iterating (HL6) we obtain

The restriction of the intersection form of Hn−q(X) to Iq remains non-degenerate. (†††)

The isomorphism i∗ carries the intersection form on Iq to a nondegenerate form on
Hn−q(X) ∼= Hn+q(X). When n − q is odd this a skew-symmetric form, and thus the non-
degeneracy assumptions implies

dimHn−q(X) = dimHn+q(X) ∈ 2Z.

We have thus proved the following result.
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Corollary 6.2.1. The the odd dimensional Betti numbers b2k+1(X) of X are even.

Remark 6.2.2. The above corollary shows that not all even dimensional manifolds are
algebraic. Take for example X = S3 × S1. Using Künneth formula we deduce

b1(X) = 1.

This manifold is remarkable because it admits a complex structure, yet it is not algebraic!
As a complex manifold it is known as the Hopf surface (see [15, Chap.1]).

The q-th exterior power ωq is Poincaré dual to the fundamental class

[Xq] ∈ H2n−2q(X)

of Xq. Therefore we have the factorization

Hk(X) Hk−2q(Xq)

Hk−2q(X)

w

i!

'

'

'

'

')

ωq∩
u

i∗

Using (††) and (†) we obtain the following generalization of (HL4).

Corollary 6.2.3. For q = 1, 2, · · · , n the map

ωq∩ : Hn+q(X)→ Hn−q(X)

is an isomorphism.

Clearly, the above corollary is equivalent to the Hard Lefschetz Theorem. In fact,
we can formulate and even more refined version.

Definition 6.2.4. (a) An element c ∈ Hn+q(X), 0 ≤ q ≤ n is called primitive if

ωq+1 ∩ c = 0.

We will denote by Pn+q(X) the subspace of Hn+q(X) consisting of primitive elements.
(b) An element z ∈ Hn−q(X) is called effective if

ω ∩ z = 0.

We will denote by En−q(X) the subspace of effective elements.

Observe that

c ∈ Hn+q(X) is primitive⇐⇒ ωq ∩ c ∈ Hn−q(X) is effective.

Roughly speaking, a cycle is effective if it does not intersect the “part at infinity of X”,
X ∩ hyperplane.
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Theorem 6.2.5 (Lefschetz decomposition). (a) Every element c ∈ Hn+q(X) decomposes
uniquely as

c = c0 + ω ∩ c1 + ω2 ∩ c2 + · · · (6.2.1)

where cj ∈ Hn+q+2j(X) are primitive elements.
(b) Every element z ∈ Hn−q(X) decomposes uniquely as

z = ωq ∩ z0 + ωq+1 ∩ z1 + · · · (6.2.2)

where zj ∈ Hn+q+2j(X) are primitive elements.

Proof Observe that because the above representations are unique and since

(6.2.2) = ωq ∩ (6.2.1)

we deduce that Corollary 6.2.3 is a consequence of the Lefschetz decomposition.
Conversely, let us show that (6.2.1) is a consequence of Corollary 6.2.3. We will use a

descending induction starting with q = n. Clearly, a dimension count shows that

P2n(X) = H2n(X), P2n−1(X) = H2n−1(X)

and (6.2.1) is trivially true for q = n, n− 1. For the induction step it suffices to show that
every element c ∈ Hn+q(X) can be written uniquely as

c = c0 + ωc1, c1 ∈ Hn+q+2(X), c0 ∈ Pn+q(X).

According to Corollary 6.2.3 there exists an unique z ∈ Hn+q+2(X) such that

ωq+2 ∩ z = ωq+1 ∩ c

so that
c0 := c− ω ∩ z ∈ Pn+q(X).

To prove uniqueness, assume

0 = c0 + ω ∩ c1, c0 ∈ Pn+q(X).

Then
0 = ωq+1 ∩ (c0 + ω ∩ c1) =⇒ ωq+2 ∩ c1 = 0 =⇒ c1 = 0 =⇒ c0 = 0. �

The Lefschetz decomposition shows that the homology of X is completely determined
by its primitive part. Moreover, the above proof shows that

0 ≤ dimPn+q = bn+q − bn+q+2 = bn−q − bn−q−2

which imply

1 = b0 ≤ b2 ≤ · · · ≤ b2⌊n/2⌋, b1 ≤ b3 ≤ · · · ≤ b2⌊(n−1)/2⌋+1,

where ⌊x⌋ denotes the integer part of x. These inequalities introduce additional topological
restrictions on algebraic manifolds. For example, the sphere S4 cannot be an algebraic
manifold because b2(S

4) = 0 < b0(S
4) = 1.
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Chapter 7

The Picard-Lefschetz formulæ

In this lecture we finally take a look at the Key Lemma and try to elucidate its origins.
We will continue to use the notations in the previous two lectures. This time however H•(−)
will denote the homology with Z-coefficients.

7.1 Proof of the Key Lemma

Recall that the function f̂ : X̂ → P1 is Morse and its critical values t1, · · · , tr are all in D+.
We denote its critical points by p1, · · · , pr, so that

f̂(pj) = tj , ∀j.
We will identify D+ with the unit disk at 0 ∈ C. Let us introduce some notations. Let
j = 1, · · · , r.
• Denote by Dj a closed disk of very small radius ρ centered at tj ∈ D+. If ρ ≪ 1 these
disks are pairwise disjoint.
• Connect ζ ∈ ∂D+ to tj + ρ ∈ ∂Dj by a smooth path ℓj such that the resulting paths
ℓ1, · · · , ℓr are disjoint (see Figure 7.1). Set kj := ℓj ∪Dj , ℓ =

⋃
ℓj and k =

⋃
kj .

• Denote by Bj a small ball in X̂ centered at pj .
The proof of the Key Lemma will be carried out in several steps.

Step 1 Localizing around the singular fibers. Set L := f−1(ℓ) and K := f̂−1(k). We will
show that X̂ζ is a deformation retract of L and K is a deformation retract of X̂+ so that
the inclusions

(X̂+, X̂ζ) →֒ (X̂+, L) ←֓ (K,L)

induce isomorphisms of all homology (and homotopy) groups.
Observe that k is a strong deformation retract of D+ and ζ is a strong deformation

retract of ℓ. Using Ehresmann fibration theorem we deduce that we have fibrations

f : L→ ℓ, f̂ : X̂+ \ f̂−1{t1, · · · , tr} → D+ \ {t1, · · · , tr}.
Using the homotopy lifting property of fibrations (see [36, §4.3] we obtain strong deformation
retractions

L→ X̂ζ , X̂+ \ f̂−1{t1, · · · , tr} → K \ f̂−1{t1, · · · , tr}.

47
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Figure 7.1: Isolating the critical values

Step 2 Localizing near the critical points. Set Tj := f̂−1(Dj) ∩Bj, Fj := f−1(tj + ρ) ∩Bj

T :=
⋃
Tj , F :=

⋃
Fj .

The excision theorem shows that the inclusion

(B,F )→ (K,L)

induces an isomorphism

r⊕

j=1

H•(Tj , Fj)→ H•(K,L) ∼= H•(X̂+, X̂ζ).

Step 3 Conclusion We will show that for every j = 1, · · · , r we have

Hq(Tj , Fj) =

{
0 if q 6= dimCX = n
Z if q = n.

At this point we need to use the nondegeneracy of pj . To simplify the presentation, in the
sequel we will drop the subscript j.

We can regard B as the unit open ball B centered at 0 ∈ Cn and f̂ as a function
B → C such that f̂(0) = 0 and 0 ∈ B is a nondegenerate critical point of f̂ . By making B
even smaller we can assume the origin is the only critical point. At this point we want to
invoke the following classical result. It is a consequence of the more general Tougeron finite
determinacy theorem which will be proved later in this course. For a direct proof we refer
to the classical source [54].

Lemma 7.1.1 (Morse Lemma). There exist local holomorphic coordinates (z1, · · · , zn) in
an open neigborhood 0 ∈ U ⊂ B such that

f̂ |U= z21 + · · · + z2n.
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Figure 7.2: Isolating the critical points

By making B even smaller we can assume that it coincides with the neighborhood
U postulated by Morse Lemma. Now observe that T and F can be given the explicit
descriptions

T :=
{
(z1, · · · , zn);

∑

i

|zi|2 ≤ ε2,
∣∣∑

i

z2i
∣∣ < ρ

}
(7.1.1)

F = Fρ :=
{
z ∈ T ;

∑

i

z2i = ρ
}
.

The description (7.1.1) shows that T can be contracted to the origin. This shows that the
connecting homomorphism

Hq(T, F )→ Hq−1(F )

is an isomorphism for q 6= 0. Moreover H0(T, F ) = 0. The Key Lemma is now a
consequence of the following result.

Lemma 7.1.2. Fρ is diffeomeorhic to the disk bundle of the tangent bundle TSn−1.

Proof Set zj := uj + ivj , ~u = (u1, · · · , un), ~v = (v1, · · · , vn), |~u|2 :=
∑

j u
2
j , |~v|2 :=

∑
j v

2
j .

The fiber F has the description

|~u|2 = ρ+ |~v|2, ~u · ~v = 0 ∈ R

|~u|2 + |~v|2 ≤ ε2.
Now let

~ξ := (ρ+ |v|2)−1/2~u ∈ Rn.
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In the coordinates ξ, ~v the fiber F has the description

|~ξ|2 = 1, ~ξ · ~v = 0, 2|~v|2 ≤ ε2 − ρ.

The first equality describes the unit sphere Sn−1 ⊂ Rn. The condition

~ξ · ~v ⇐⇒ ~v ⊥ ~ξ

shows that ~v is tangent to Sn−1 at ξ. The last inequality shows that the tangent vector
~v has length ≤

√
(ε2 − ρ)/2. It is now obvious that F is the disk bundle of TSn−1. This

completes the proof of the Key Lemma.

7.2 Vanishing cycles, local monodromy and the Picard-Lefschetz

formula

We want to analyze in greater detail the picture evolving from the proof of Lemma 7.1.2.
Denote by B a small closed ball centered at 0 ∈ Cn and consider

f : B → C, f(z) = z21 + · · ·+ z2n.

We have seen that the regular fiber of F = Fρ = f−1(ρ) (0 < ρ≪ 1) is diffeomorphic to a
disc bundle over a n− 1-sphere Sρ of radius

√
ρ. This sphere is defined by the equation

Sρ := {~v = 0} ∩ f−1(ρ)⇐⇒ {~v = 0, |~u|2 = ρ}.

As ρ→ 0, i.e. we are looking at fibers closer and closer to the singular one F0 = f−1(0), the
radius of this sphere goes to zero , while for ρ = 0 the fiber is locally the cone z21+ · · ·+z2n =
0. The homology class in F carried by this collapsing sphere generates Hn−1(F ). This
homology class was named vanishing cycle by Lefschetz. We will denote it by ∆ (see Figure
7.3). The proof of the Key Lemma in the previous section shows that Lefschetz’ vanishing
cycles coincide with what we previously named vanishing cycles.

Observe now that since ∂ : Hn(B,F ) → Hn−1(F ) is an isomorphism, there exists a
relative n-cycle Z ∈ Hn(B,F ) such that

∂Z = ∆.

Z is known as the thimble determined by the vanishing cycle ∆. It is filled in by the family
(Sρ) of shrinking spheres. In Figure 7.3 it is represented by the shaded disk.

Exercise 7.2.1. Find an equation describing the thimble.

Denote by Dr ⊂ C the open disk of radius r centered at the origin and by Br ⊂ Cn

the ball of radius r centered at the origin. We will use the following technical result whose
proof is left to the reader as an exercise.
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Figure 7.3: The vanishing cycle for functions of n = 2 variables

Lemma 7.2.1. For any ρ, r > 0 such that r2 > ρ the maps

f : Xε,ρ =
(
Br \ F0

)
∩ f−1(Dρ)→ Dρ \ {0} =: D∗

ρ,

f∂ : ∂Xr,ρ = ∂Bε ∩ f−1(Dρ)→ Dρ

are proper, surjective, submersions.

Exercise 7.2.2. Prove the above lemma.

Set r = 2, ρ = 1 + ε, (0 < ε ≪ 1), X = Xr=2,ρ=1+ε, B = B2, D = D1+ε. According to
the Ehresmann fibration theorem we have the fibrations

F X

D \ {0}

y w

u

u

with standard fiber the manifold with boundary F ∼= f−1(1) ∩ B̄2 and

∂F ∂X

D

y w

u

u

with standard fiber ∂F ∼= f−1(1) ∩ ∂B̄. We deduce that ∂X is a trivial bundle

∂X ∼= ∂F ×D.
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We can describe one such trivialization explicitly. Denote by M the standard model for
the fiber, incarnated as the unit disk bundle determined by the tangent bundle of the unit
sphere Sn−1 →֒ Rn. M has the algebraic description

M =
{
(~u,~v) ∈ Rn × Rn; |~u| = 1, ~u · ~v = 0, |~v| ≤ 1

}
.

Note that
∂M =

{
(~u,~v) ∈ Rn × Rn; |~u| = 1 = |~v|, ~u · ~v = 0

}
.

As in the previous section we have

F = f−1(1) =
{
~z = ~x+ i~y ∈ Cn; |~x|2 + |~y|2 ≤ 4, |~x|2 = 1 + |~y|2, ~x · ~y = 0

}

and a diffeomorphism

Φ : F → M, F ∋ ~z = ~x+ i~y 7→





~u = 1
(1+|~y|2)1/2

~x

~v = α~y

, α =

√
2

3
.

Its inverse is given by

M ∋ (~u,~v)
Φ−1

7→
{
~x = (1 + |~v|2/α2)1/2~u
~y = 1

α~v
.

Set
Fw := f−1(w) ∩ B̄, 0 ≤ |w| ≤ 1 + ε.

Note that

∂Fa+ib =
{
~x+ i~y; |~x|2 = a+ |~y|2, 2~x · ~y = b, |~x|2 + |~y|2 = 4

}
.

For every w = a+ ib ∈ D̄1 define

Γw : ∂Fw → ∂M, ∂Fw ∋ ~x+ i~y 7→





~u = c1(w)~x

~v = c3(w)
(
~y + c2(w)~x

) ,

where

c1(w) =

(
2

4 + a

)1/2

, c2(w) = −
b

4 + a
, c3(w) =

(
8 + 2a

16− a2 − b2
)1/2

. (7.2.1)

The family (Γw)|w|<1+ε defines a trivialization ∂X → ∂M×D.
Fix once and for all this trivialization and a metric h on ∂F . We now equip ∂X with

the product metric g∂ := h⊕h0 where h0 denotes the Euclidean metric on D1. Now extend
g∂ to a metric on X and denote by H the sub-bundle of TX consisting of tangent vectors
g-orthogonal to the fibers of f . The differential f∗ produces isomorphisms

f∗ : Hp → Tf(p)D
∗
1, ∀x ∈ Xε,ρ.



The topology of complex singularities 53

In particular, any vector field V on D∗
1 admits a unique horizontal lift, i.e. a smooth section

V h of H such that f∗(V
h) = V .

Fix a point ζ ∈ ∂D∗ and suppose w : [0, 1]→ D∗ is a closed path beginning and ending
at ζ

w(0) = w(1) = ζ.

Using the horizontal lift of ẇ we obtain for each p ∈ f−1(ζ) a smooth path w̃p : [0, 1] → X
which is tangent to the horizontal sub-bundle H and it is a lift of w starting at p, i.e. the
diagram below is commutative

(
X, p

)

(
[0, 1], 0

)
(D∗, ζ)
u

f

[

[

[

[

[℄

w̃p

w

w

We get in this fashion a map

hw : F = f−1(ζ)→ f−1(ζ), p 7→ w̃p(1).

The standard results on the smooth dependence of solutions of ODE’s on initial data show
that hw is a smooth map. It is in fact a diffeomorphism of F with the property that

hw |∂F= 1∂F .

The map hw is not canonical because it depends on several choices: the choice of trivial-
ization ∂X ∼= ∂F × D∗, the choice of metric h on F and the choice of the extension g of
g∂ .

We say that two diffeomorphisms G0, G1 : F → F such that Gi |∂F= 1∂F are isotopic if
there exists a homotopy

G : [0, 1] × F → F

connecting them such that for each t the map Gt = G(t, •) : F → F is a diffeomorphism
satisfying Gt |∂F= 1∂F for all t ∈ [0, 1].

The isotopy class of hw : F → F is independent of the various choices listed above and
in fact depends only on the image of w in π1(D

∗, ζ). The induced map

hw : H•(F )→ H•(F )

is called the monodromy along the loop w. The correspondence

h : π1(D∗, ζ) ∋ w 7→ hw ∈ Aut
(
H•(F )

)

is a group morphism called the local monodromy. Since hw |∂F= 1∂F we obtain another
morphism

h : π1(D
∗, ζ)→ Aut

(
H•(F, ∂F )

)

which will continue to call local monodromy.
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Observe that if z ∈ H•(F, ∂F ) is a relative cycle (i.e. z is a chain such that ∂z ∈ ∂F )
then for every γ ∈ π1(D∗

ρ, ζ) we have

∂z = ∂hγz =⇒ ∂(z − hwz) = 0

so that (z − hwz) is a cycle in F . In this fashion we obtain a map

var : π1(D
∗, ζ)→ Hom (Hn−1(F, ∂F )→ Hn−1(F ) ), varγ(z) = hγz − z

(z ∈ Hn−1(F, ∂F ), γ ∈ π1(D∗, ζ)) called the variation map.

The vanishing cycle ∆ ∈ Hn−1(F ) is represented by the zero section of M described in
the (~u,~v) coordinates by ~v = 0. It is oriented as the unit sphere Sn−1 →֒ Rn. Let

~u± = (±1, 0, · · · , 0) ∈ ∆, P± = (~u±,~0) ∈M.

The standard model M admits a natural orientation as the total space of a fibration where
we use the fiber-first convention of Chapter 6

or(total space)=or(fiber) ∧ or(base).

We will refer to this orientation as the bundle orientation.

Near P+ ∈ M we can use as local coordinates the pair (~ξ, ~η), ~ξ = (u2, · · · , un), ~η =
(v2, · · · , vn). The orientation of ∆ at ~u+ is given by

du2 ∧ · · · ∧ dun Φ←→ dx2 ∧ · · · ∧ dxn.

The orientation of the fiber over ~u+ is given by

dv2 ∧ · · · ∧ dvn Φ←→ dy2 ∧ · · · ∧ dyn.

Thus

orbundle = dv2 ∧ · · · ∧ dvn ∧ du2 ∧ · · · ∧ dun ←→ dy2 ∧ · · · ∧ dyn ∧ dx2 ∧ · · · ∧ dxn

On the other hand, F has a natural orientation as a complex manifold. We will refer to it as
the complex orientation. The collection (z2, · · · , zn) defines holomorphic local coordinates
on F near Φ−1 so that

orcomplex = dx2 ∧ dy2 ∧ · · · ∧ dxn ∧ dyn.

We see that 1

orcomplex = (−1)n(n−1)/2orbundle.

Any orientation or on F defines an intersection pairing

Hn−1(F )×Hn−1(F )→ Z

1This sign is different from the one in [6] due to our use of the fiber-first convention. This affects the
appearance of the Picard-Lefschetz formulæ. The fiber-first convention is employed in [46] as well.
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formally defined by the equality

c1 ∗or c2 = 〈PD−1
or (i∗(c1)), c2〉

where i∗ : Hn−1(F )→ Hn−1(F, ∂F ) is the inclusion induced morphism,

PDor : H
n−1(F )→ Hn−1(F, ∂F ), u 7→ u ∩ [F ]

is the Poincaré-Lefschetz duality defined by the orientation or and 〈−,−〉 is the Kronecker
pairing. More concretely, to compute the self-intersection number of the generator ∆ ∈
Hn−1(F ) slightly perturb inside F the sphere S representing ∆,

S → S′

so that2 Sρ ⋔ S
′
ρ, and then count the intersection points with appropriate signs determined

by the chosen orientation. For that reason, the self-intersection number of ∆ is

∆ ◦∆ = (−1)n(n−1)/2∆ ∗∆ = e(TSn−1)[Sn−1] = χ(Sn−1)

=

{
0 if n is even
2 if n is odd

.

(7.2.2)

Above e denotes the Euler class of TSn−1.
Observe also that there exists an intersection pairing

Hn−1(F, ∂F ) ×Hn−1(F )→ Z, u ∗or v = 〈PD−1
or (u), v〉

which produces a morphism

Hn−1(F, ∂F )→ Hom(Hn−1(F ),Z), z 7→ z ∗or .

Let us observe this is an isomorphism. Denote by ∇ ∈ Hn−1(F, ∂F ) the relative cycle
carried by an oriented fiber of the disk bundle of TSn−1 (see Figure 7.3) so that

∇ ◦∆ = 1.

Hence, the image of ∇ in Hom(Hn−1(F ),Z) ∼= Z is a generator. On the other hand, by
Poincaré-Lefschetz duality we have

Hn−1(F, ∂F ) ∼= Hn−1(F ) ∼= Hn−1(Sn−1) ∼= Z

so that ∇ must be a generator of Hn−1(F, ∂F ).
The variation map is thus completely understood if we understand its effect on ∇ (see

Figure 7.4). At this point we can be much more explicit. The loop

γ0 : [0, 1] ∋ t 7→ w(t) := e2πit

2
⋔=transverse intersection
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∆

∆

)

∆

∆

(h
γ

Figure 7.4: The effect of monodromy on ∇

generates the fundamental group of D∗. We denote by var : Hn−1(F, ∂F ) → Hn−1(F ) the
variation along this loop. Observe that

var (∇) = m ·∆

where

m := ∇ ◦ var (∇).
We want to describe the integer m explicitly. We have the following fundamental result.

Theorem 7.2.2 (Local Picard-Lefschetz formulæ).

m = (−1)n

varγ0(δ) = (−1)n(δ ◦∆)∆ = (−1)n(n+1)/2(δ ∗∆)∆, ∀δ ∈ Hn−1(F, ∂F ).

Proof ([40, Hussein-Zade]) The proof consists of a three-step reduction process. Set

E := f−1(∂D1) ∩ B̄.

E is a smooth manifold with boundary

∂E = f−1(∂D1) ∩ ∂B̄2

It fibers over ∂D̄1 and the restriction ∂E → S1 is equipped with the trivialization (Γw)|w|=1.
Observe that Φ |∂F= Γ1. Fix a vector field V on E such that

f∗(V ) = 2π∂θ and V |∂E=∂F×S1 := 2π∂θ.
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Denote by µt the time t-map of the flow determined by V . Observe that µt defines a
diffeomorphism

µt : F → Fw(t)

compatible with the chosen trivialization Γw of ∂E. More explicitly, this means that the
diagram below is commutative.

∂F ∂M

∂Fw(t) ∂M

w

Γ1

u

µt

u

1∂M

w

Γw(t)

Consider also the flow Ωt on E given by

Ωt(~z) = exp(πit)~z = (cos(πt)~x− sin(πt)~y) + i(sin(πt)~x+ cos(πt)~y).

This flow is periodic, satisfies
Ωt(F ) = Fw(t)

but it is not compatible with the chosen trivialization of ∂E.
We pick two geometric representatives T± of ∇. In the standard model M the represen-

tative consists of the fiber over ~u+ and is given by the equation

~u = ~u+.

it is oriented by dv2 ∧ · · · ∧ dvn. Its image in F via Φ−1 is described by the equation

~x = (1 + |~y|2/α2)1/2~u+ ⇐⇒ x1 > 0, x2 = · · · = xn = 0,

and is oriented by dy2 ∧ · · · ∧ dyn.
The representative T− is described in M as the fiber over ~u−. The orientation of Sn−1

at ~u− is determined by the outer-normal-first convention and we deduce that it is given by
−du2 ∧ · · · ∧ dun. This implies that T− is oriented by −dv2 ∧ · · · ∧ dvn. Inside F the the
chain T− is described by

~x = (1 + |~y|2/α2)1/2~u+ ⇐⇒ x1 < 0, x2 = · · · = xn = 0,

and is oriented by −dy2 ∧ · · · ∧ dyn. Note that Ω1 = −1 so that, taking into account the
orientations, we have

Ω1(T+) = (−1)nT− = (−1)n∇.

Step 1. m = (−1)nΩ1(T+) ◦ µ1(T+). Note that

m = ∇ ◦
(
µ1(T+)− T+

)
= T− ◦

(
µ1(T+)− T+

)
.

Observe that the manifolds T+ and T− in F are disjoint so that

m = T− ◦ µ1(T+) = (−1)nΩ1(T+) ◦ µ1(T+).
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Step 2. Ω1(T+) ◦ µ1(T+) = Ωt(T+) ◦ µt(T+), ∀t ∈ (0, 1]. To see this observe that the
manifolds Ω1(T+) and µt(T+) have disjoint boundaries if 0 < t ≤ 1. Hence the deformations
Ω1(T+)→ Ω1−s(1−t)(T+) µ1(T+)→ µ1−s(1−t)(T+) do not change the intersection numbers.

Step 3. Ωt(T+) ◦ µt(T+) = 1 if t > 0 is sufficiently small. Set

At := Ωt(T+), Bt = µt(T+).

Denote by Cε the arc

Cε =
{
exp(2πit); 0 ≤ t ≤ ε

}
.

Extend the trivialization Γ : ∂E |Cε→ ∂M× Cε to a trivialization

Γ̃ : E |Cε→M× Cε

such that
Γ̃ |F= Φ.

For t ∈ [0, ε] we can view Ωt and µt as diffeomorphisms ωt, ht : M → M such that the
diagrams below are commutative.

F M

Fw(t) M

w

Γ̃1

u

Ωt

u

ωt

w

Γ̃w(t)

F M

Fw(t) M

w

Γ̃1

u

µt

u

ht

w

Γ̃w(t)

We will think of At and Bt as submanifolds in M

At = ωt(T+), Bt = ht(T+)

Observe that ht |∂M= 1M so that Bt(T+) is homotopic to T+ via homotopies which are
trivial along the boundary. Such homotopies do not alter the intersection number and we
have

At ◦Bt = At ◦ T+.
Observe now that along ∂M we have

ωt = St := Ωt ◦ Γw(t) ◦ Γ−1
1 . (7.2.3)

Choose 0 < r < 1/2. For t sufficiently small the manifold Bt lies in neighborhood

Ur :=
{
(~ξ, ~η); |ξ| < r, |~η| ≤ 1

}
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of the point P+ ∈ M, where we recall that ξ = (u2, · · · , un) and ~η = (v2, · · · , vn) denote
local coordinates on M near P+. More precisely if P = (~u,~v) is a point of M near P+ then
its (~ξ, ~η) coordinates are pr(~u,~v), where pr : Rn × Rn → Rn−1 × Rn−1 is the orthogonal
projection

(~u,~v) 7→ (u2, · · · , un; v2, · · · , vn).
We can now rewrite (7.2.3) entirely in terms of the local coordinates (~ξ, ~η) as

ωt(~ξ, ~η) = St := pr ◦ Ωt ◦ Γw(t) ◦ Γ−1
1

(
u(~ξ, ~η), ~v(~ξ, ~η)

)
.

Now observe that St is the restriction to ∂F of a (real) linear operator

Lt : R
n−1 × Rn−1 → Rn−1 × Rn−1.

More precisely,

Lt

[
~ξ
~η

]
= C(t)R(t)C(0)−1 ·

[
~ξ
~η

]
,

where

C(t) :=

[
c1(t) 0

c3(t)c2(t) c3(t)

]
, R(t) :=

[
cos(πt) − sin(πt)
sin(πt) cos(πt)

]

and ck(t) := ck(w(t)), k = 1, 2, 3. The exact description of ck(w) is given in (7.2.1). We
can thus replace At = ωt(T+) with Lt(T+) for all t sufficiently small without affecting the
intersection number. Now observe that for t sufficiently small

Lt = L0 + tL̇0 +O(t2), L̇0 :=
d

dt
|t=0 Lt.

Now observe that

L̇0 = Ċ(0)C(0)−1 + C(0)JC(0)−1, J = Ṙ(0) = π

[
0 −1
1 0

]
.

Using (7.2.1) with a = cos(2πt), b = sin(2πt) we deduce

c1(0) =

√
2

5
> 0, c2(0) = 0, c3(0) =

√
2

3
> 0

ċ1(0) = ċ3(0) = 0, ċ2(0) = −
2π

25
.

Thus

Ċ(0) = −2π

25

[
0 0

c3(0) 0

]
, C(0)−1 =

[
1

c1(0)
0

0 1
c3(0)

]

Ċ(0)C(0)−1 = −2π

25

[
0 0

c3(0)
c1(0)

0

]

Next

C(0)JC(0)−1 = π

[
c1(0) 0
0 c3(0)

] [
0 −1
1 0

][ 1
c1(0)

0

0 1
c3(0)

]
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= π

[
c1(0) 0
0 c3(0)

] [
0 − 1

c3(0)
1

c1(0)
0

]
= π

[
0 − c1(0)

c3(0)
c3(0)
c1(0)

0

]

The upshot is that the matrix L̇0 has the form

L̇0 =

[
0 −a
b 0

]
, a, b > 0.

For t sufficiently small we can now deform At to (L0 + tL̇0)(T+) such that during the
deformation the boundary of At does not intersect the boundary of T+. Such deformation
again do not alter the intersection number. Now observe that Σt := (L0 + tL̇0)(T+) is the
portion inside Ur of the (n − 1)-subspace

~η 7→ (L0 + tL̇0)

[
0
~η

]
=

[
−ta~η
~η

]
.

It carries the orientation given by

(−tadu2 + dv2) ∧ · · · ∧ (−tadun + dvn).

Observe that Σt intersects the (n−1)-subspace T+ given by ~ξ = 0 transversely at the origin
so that

Σt ◦ T+ = ±

The sign coincides with the sign of the real number ν defined by

νdv2 ∧ · · · ∧ dvn ∧ du2 ∧ · · · ∧ dun

= (−tadu2 + dv2) ∧ · · · ∧ (−tadun + dvn) ∧ dv2 ∧ · · · ∧ dvn

= (−ta)n−1du2 ∧ · · · ∧ dun ∧ dv2 ∧ · · · ∧ dvn

= (−1)(n−1)+(n−1)2dv2 ∧ · · · ∧ dvn ∧ du2 ∧ · · · ∧ dun

Since (n− 1) + (n− 1)2 is even we deduce that ν is positive so that

1 = Σt ◦ Tt = Ωt(T+) ◦ µt(T+), ∀0 < t≪ 1.

This completes the proof of the local Picard-Lefschetz formula.

Remark 7.2.3. For a different proof we refer to [50]. For a more conceptual proof of the
Picard-Lefschetz formula we refer to [6, Sec.2.4]. We will analyze this point of view a bit
later.
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7.3 Global Picard-Lefschetz formulæ

Let us return to the setting at the beginning of Section 7.1. Recall that the function

f̂ : X̂ → S ∼= P1

is Morse and its critical values t1, · · · , tr are all in D+. We denote its critical points by
p1, · · · , pr, so that

f̂(pj) = tj , ∀j.

We will identify D+ with the unit disk at 0 ∈ C. Let us introduce some notations. Let
j = 1, · · · , r.
• Denote by Dj a closed disk of very small radius ρ centered at tj ∈ D+. If ρ ≪ 1 these
disks are pairwise disjoint.

• Connect ζ ∈ ∂D+ to tj + ρ ∈ ∂Dj by a smooth path ℓj such that the resulting paths
ℓ1, · · · , ℓr are disjoint (see Figure 7.1). Set kj := ℓj ∪Dj , ℓ =

⋃
ℓj and k =

⋃
kj .

• Denote by Bj a small ball in X̂ centered at pj .

Denote by γj the loop in D+ \ {t1, · · · , tr} based at ζ obtained by traveling along ℓj
from ζ to tj + ρ and then once, counterclockwise around ∂Dj and then back to ζ along ℓj .
The loops γj generate the fundamental group

G := π1(S
∗, ζ), S∗ := P1 \ {t1, · · · , tr}.

Set

X̂∗
+ := f̂−1(S∗).

We have a fibration

f̂ : X̂∗
+ → S∗

and, as in the previous section, we have an action

µ : G→ Aut (H•(X̂ζ) )

called the monodromy of the Lefschetz pencil.

From the above considerations we deduce that for each critical point pj of f̂ there
exists a cycle ∆j ∈ Hn−1(X̂ζ) corresponding to the vanishing cycle in a fiber near pj . It
is represented by an embedded Sn−1 with normal bundle isomorphic (up to orientation) to
TSn−1. In fact, using (7.2.2) we deduce

∆j ·∆j = (−1)n(n−1)/2
(
1 + (−1)n−1

)
=





0 if n is even
−2 if n ≡ −1 mod 4
2 if n ≡ 1 mod 4

.

This cycle bounds a thimble, τj ∈ Hn(X̂+, X̂ζ) which is described as this sphere shrinks
to pj. Using the localization procedure in the first section and the local Picard-Lefschetz
formulæ we obtain the following important result.
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Theorem 7.3.1 (Global Picard-Lefschetz formulæ). (a) For q 6= n − 1 = dimC X̂ζ , the

action of G on Hq(X̂ζ) is trivial i.e.

varγj (z) := µγj (z)− z = 0, ∀z ∈ Hq(X̂ζ).

(b) If z ∈ Hn−1(X̂ζ) then

varγj (z) := µγj (z)− z = (−1)n(n+1)/2(z ·∆j)∆j

Exercise 7.3.1. Complete the proof of the global Picard-Leftschetz formula.

Hint Set B := ∪jBi, Fj := f−1(tj + ρ) ∩ B̄j . Use the long exact sequence of the pair
(X̂ζ , X̂ζ \B) and the excision property of this pair to obtain the natural short exact sequence

0→ Hn−1(X̂ζ \B)→ Hn−1(X̂ζ)→
r⊕

j=1

Hn−1(Fj , ∂Fj)

where the last arrow is given by

z 7→
⊕

j

(z ·∆j)℧j.

Definition 7.3.2. The monodromy group of the Lefschetz pencil is the subgroup of

G ⊂ Aut
(
Hn−1(Xζ)

)

generated by the monodromies µγj .

Remark 7.3.3. Suppose n is odd so that

∆j ·∆j = 2(−1)(n−1)/2.

Denote by q the intersection form on L := Hn−1(X̂ζ). It is a symmetric bilinear form
because n− 1 is even. An element u ∈ L defines the orthogonal reflection

Ru : L⊗ R→ L⊗ R

uniquely determined by the requirements

Ru(x) = x+ t(x)u, q
(
u, x+

t(x)

2
u
)
= 0, ∀x ∈ L⊗ R

⇐⇒ Ru(x) = x− 2q(x, u)

q(u, u)
u

We see that the reflection defined by ∆j is

Rj(x) = x+ (−1)(n+1)/2q(x,∆j)∆j .

This is precisely the monodromy along γj. This shows that the monodromy group G is a
group generated by involutions.



Chapter 8

The Hard Lefschetz theorem and

monodromy

We now return to the Hard Lefschetz theorem and establish its connection to monodromy.
The results in this lecture are essentially due to Pierre Deligne. We will follow closely the
approach in [46]. We refer to [53] for a nice presentation of Deligne’s generalization of the
Hard Lefschetz theorem and its intimate relation with monodromy.

8.1 The Hard Lefschetz Theorem

In the proof of the Key Lemma we learned the reason why the submodule

V : Image
(
∂ : Hn(X̂+, X̂•)→ Hn−1(X̂•)

)
⊂ Hn−1(X̂•)

is called the vanishing submodule: it is spanned by the vanishing cycles ∆j. We can now
re-define the sub-module I by

I := {y ∈ Hn−1(X̂•); y ·∆j = 0, ∀j}

(use the global Picard-Lefschetz formulæ)

= {y ∈ Hn−1(X̂•); µγjy = y, ∀j}.

We have thus proved the following result.

Proposition 8.1.1. I consist of the cycles invariant under the action of the monodromy
group G.

Theorem 8.1.2. For the homology with real coefficients the following statements are equiv-
alent.

(a) The Hard Lefschetz Theorem (see Chapter 6).

(b) V = 0 or V is a nontrivial simple G-module.

(c) Hn−1(X̂•) is a semi-simple G-module.
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Proof (b) =⇒ (c). Consider the submodule I ∩ V of V . Since V is simple we deduce

I ∩ V = 0 or I ∩ V = V 6= 0.

The latter condition is impossible because G acts nontrivially on V . Using the weak Lefschetz
theorem

dim I + dimV = dimHn−1(X̂•)

we deduce that Hn−1(X̂•) = I ⊕ V so that Hn−1(X̂•) is a semi-simple G-module.

(c) =⇒ (a). More precisely, we will show that (c) implies that the restriction of the inter-
section form q on Hn−1(X̂•) to I is nondegenerate.

Denote by Ǐ the dual module of I. We will show that the natural map

I → Ǐ , z 7→ q(z,−)

is onto. Let u ∈ Ǐ. Since Hn−1(X̂•) is semi-simple the G-module I admits a complementary
G-submodule M such that

Hn−1(X̂•) = I ⊕M.

We can extend u to a linear functional U on Hn−1(X̂•) by setting it ≡ 0 on M . Since q is
nondegenerate on Hn−1(X̂•) there exists z ∈ Hn−1(X̂•) such that

U(x) = q(z, x+ y), ∀x⊕ y ∈ I ⊕M.

If g ∈ G ⊂ Aut (Hn−1(X̂•), q) then, since G acts trivially on I and GM ⊂M we deduce

q(gz, x + y) = q(z, g−1(x+ y)) = q(z, x+ g−1y) = U(x), ∀x⊕ y ∈ I ⊕M.

Thus Gz = z =⇒ z ∈ I. This proves that the above map I → Ǐ is onto.

(a) =⇒ (b). More precisely, we will show that if the restriction of q to V is nondegenerate,
then V = 0 or V is a nontrivial simple G-module. We will use the following auxiliary result
whose proof is deferred to the next section.

Lemma 8.1.3. (a) The elementary monodromies µ1 := µγ1 , · · · , µr := µγr are pairwise
conjugate in G that is, for any i, j ∈ {1, · · · , r} there exists g = gij ∈ G such that

µi = gµjg
−1.

(b) For every i, j ∈ {1, · · · , r} there exists g = gij ∈ G such that

±∆i = g∆j .

Suppose F ⊂ V is a G-invariant subspace and x ∈ F \ {0}. Since q is nondegenerate on
span {∆j} = V we deduce there exists ∆i such that

q(x,∆i) 6= 0.
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Now observe that

µi · x = x± q(x,∆i)∆i

so that

∆i = ∓
1

q(x,∆i)

(
µi · x− x

)
∈ F.

Thus span (G∆i) ⊂ F . From Lemma 8.1.3 (b) we deduce

span (G∆i) = V.

8.2 Zariski’s Theorem

The proof of Lemma 8.1.3 relies on a nontrivial topological result of Oskar Zariski. We will
present only a weaker version and we refer to [33] for a proof and more information.

Proposition 8.2.1. If Y is a (possibly singular) hypersurface in PN then for any generic
projective line L →֒ PN the inclusion induced morphism

π1(L \ Y )→ π1(P
N \ Y )

is onto.

Remark 8.2.2. The term generic should be understood in an algebraic-geometric sense.
More precisely, a subset S of a complex algebraic varietyX is called generic if its complement
X \ S is contained in the support of a divisor on X. In the above theorem, the family LN
of projective lines in PN is an algebraic variety isomorphic to the complex Grassmanian
of 2-planes in CN+1. The above theorem can be rephrased as follows. There exists a
hypersurface W ⊂ LN , such that for any line L ∈ LN \W the morphism

π1(L \ Y )→ π1(P
N \ Y )

is onto.

Observe that a generic line intersects a hypersurface along a finite set of points of
cardinality equal to the degree d of the hypersurface Y . Thus L \ Y is homeomorphic to a
sphere S2 with d points deleted. Fix a base point b ∈ L\Y . Any point p ∈ L∩Y determines
an element

γp ∈ π1(L \ Y, b)

obtained by traveling in L from b to a point p′ ∈ L very close to p along a path ℓ then going
once, counterclockwise around p along a loop λ and then returning to b along ℓ. Thus, we
can write

γp = ℓλℓ−1.
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Lemma 8.2.3. Suppose now that

• Y is a, possibly singular, degree d connected hypersurface.

• L0, L1 are two generic projective lines passing through the same point b ∈ PN \ Y and

• pi ∈ Li ∩ Y , i = 0, 1.

Then the loops

γpi ∈ π1(Li \ Y, b)→ π1(P
N \ Y, b)

are conjugate in π1(PN \ Y, b).

l

l

l0

0

0

0

p p p1

1

1

1

(t)

(t)

q
q

λ
λ




Figure 8.1: The fundamental group of the complement of a hypersurface in PN

Sketch of proof For each y ∈ Y denote by Ly the projective line determined by the
points b and y. The set

Z =
{
y ∈ Y ; π1(Ly \ Y, b)→ π1(P

N \ Y, b) is not onto
}

is a complex (possibly singular) subvariety of codimension ≤ 1. In particular Y ∗ := Y \ Z
is connected.

Denote by U a small open neighborhood of Y →֒ PN . (When Y is smooth U can be
chosen to be a tubular neighborhood of Y in PN .) Connect the point p0 to p1 using a
generic path p(t) in Y ∗ and denote by U0 a small tubular neighborhood of this path inside
U . We write

γpi = ℓiλiℓ
−1
i , i = 0, 1
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and we assume that the endpoint qi of ℓi lives on Lpi∩U . Now connect q0 to q1 by a smooth
path along ∂U0 and set w = l0ℓℓ

−1
1 (see Figure 8.1). By inspecting this figure we obtain the

following homotopic identities

wγp1w
−1 = l0ℓλ1ℓ

−1l−1
0 = l0λ0l

−1
0 = γp0 .

Proof of Lemma 8.1.3 (outline) Assume for simplicity that the pencil (Xs)s∈S on X
consists of hyperplane sections. Recall that the dual X̌ ⊂ P̌N of X is defined by

X̌ =
{
H ∈ P̌N ; all the projective lines in H are either disjoint or tangent to X

}
.

More rigorously consider the variety

W = {(x,H) ∈ X × P̌N ; x ∈ H
}
.

equipped with the natural projections

W

X P̌N

�

�

��

π1
[

[℄

π2

The X̌ is the discriminant locus of π2, i.e. it consists of all the critical values of π2. One
can show (although it is not trivial) that X̌ is a (possible singular) hypersurface in P̌N (see
[46, Sec 2] or [68] for a more in depth study of discriminants. In Chapter 9 we will explicitly
describe the discriminant locus in a special situation.)

The Lefschetz pencil (Xs)s∈S is determined by a line S ⊂ P̌N . The critical points of the
map f̂ : X̂ → S are precisely the intersection points S ∩ X̌. The fibration

X̂ → S∗ = S \ {t1, · · · , tr} = S \ X̌

is the restriction of the fibration

π2 : W \ π−1
2 (X̌)→ P̌N \ X̌

to S \ X̌. We see that the monodromy representation

µ : π1(S
∗, •)→ Aut

(
Hn−1(X•)

)

factors trough the monodromy

µ̃ : π1(P̌
N \ X̌, •)→ Aut

(
Hn−1(X•)

)

Using Lemma 8.2.3 we deduce that the fundamental loops γi, γj ∈ π1(S∗, •) are conjugate
in π1(P̌N \ X̌, •). Since the morphism

i∗ : π1(S
∗, •)→ π1(P̌

N \ X̌, •)
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is onto, we deduce that there exists

g ∈ π1(S∗, •)

such that
i∗(γi) = i∗(gγjg

−1) ∈ π1(P̌N \ X̌, •)
Hence

µ(γi) = µ(gγjg
−1) ∈ G. (8.2.1)

This proves the first part of Lemma 8.1.3.
To prove the second part we use the global Picard-Lefschetz formulæ to rewrite the

equality
µ(γig) = µ(gγj) ∈ G

as
(x ·∆j)g(∆j) = (g(x) ·∆i)∆i, ∀x ∈ Hn−1(X•;R). (8.2.2)

By Poincaré duality, the intersection pairing is nondegenerate so that either ∆j = 0 (so
∆i = 0) or x ·∆i 6= 0 which implies

g(∆j) = c∆i, c ∈ R∗.

To determine the constant c we use the above information in (8.2.2).

c(x ·∆j)∆i = (g(x) ·∆i)∆i = (x · g−1(∆i) )∆i =
1

c
(x ·∆j)∆i.

Hence c2 = ±1 so that
g(∆j) = ±∆i.



Chapter 9

Basic facts about holomorphic

functions of several variables

Up to now we have essentially investigated the behavior of a holomorphic function near
a nondegenerate critical point. To understand more degenerate situations we need to use
more refined techniques. The goal of this chapter is to survey some of these techniques. In
the sequel, all rings will be commutative with 1.

9.1 The Weierstrass preparation theorem and some of its

consequences

The Weierstrass preparation theorem can be regarded as generalization of the implicit
function theorem to degenerate situations. To state it we need to introduce some notations.

For any complex manifold M and any open set U ⊂ M we denote by OM (U) the ring
of holomorphic functions U → C.

Denote by On,p the ring of germs at p ∈ Cn of holomorphic functions. More precisely,
consider the set Fp of functions holomorphic in a neighborhood of p. Two such functions
f ,g are equivalent if there exists a neighborhood U of p contained in the domains of both f
and g such that

f |U= g |U
The germ of f ∈ Fp at p is then the equivalence class of f , and we denote it by [f ]p. Thus

On,p =
{
[f ]p; f ∈ Fp

}
.

For simplicity we set On := On,0. The unique continuation principle implies that we can
identify On with the ring C{z1, · · · , zn} of power series in the variables z1, · · · , zn convergent
in a neighborhood of 0 ∈ Cn. For a function f holomorphic in a neighborhood of 0, its germ
at zero is described by the Taylor expansion at the origin.

Lemma 9.1.1. The ideal

mn =
{
f ∈ On; f(0) = 0

}

is the unique maximal ideal of On. In particular, On is a local ring.
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Proof Observe that f ∈ On is invertible iff

f(0) 6= 0⇐⇒ f ∈ On \mn

which proves the claim in the lemma.

Lemma 9.1.2 (Hadamard Lemma). Suppose f ∈ C{z1, · · · , zn;w1, · · · , wm} satisfies

f(0, · · · , 0;w1, · · · , wm) = 0.

Then there exist f1, · · · , fn ∈ C{z1, · · · , zn;w1, · · · , wm} such that

f(z;w) =

n∑

j=1

zjfj(z, w).

Notice that the above lemma implies that mn is generated by z1, · · · , zn.
Proof

f(z;w) = f(z;w)− f(0;w) =
∫ 1

0

df(tz;w)

dt
dt =

n∑

i=1

zi

∫ 1

0

∂f

∂zi
(tz;w)dt =:

n∑

i=1

zifi(z;w)

where the functions fi are clearly holomorphic in a neighborhood of 0. This completes the
proof of Hadamard’s Lemma.

An important tool in local algebra is Nakayama Lemma. For the reader who, like the
author, is less fluent in commutative algebra we present below several typical applications
of this important result.

Proposition 9.1.3 (Nakayama Lemma). Suppose R is a local ring with maximal ideal m.
If E is a finitely generated R-module such that

E ⊂ m ·E

then E = 0.

Proof Pick generators u1, · · · , un of E. We can now find aij ∈ m, i, j = 1, · · · , n such that

uj =
∑

i

aijui, ∀j = 1, · · · , n.

We denote by A the n × n matrix with entries aij and by U the n × 1 matrix with entries
in E

U =



u1
...
un


 .

We have
(1−A)U = 0.

Since det(1−A) ∈ 1 +m is invertible we conclude that U ≡ 0.
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Corollary 9.1.4. Suppose R is a local ring with maximal ideal m, E,F R-modules such at
F is finitely generated. Then

F ⊂ E ⇐⇒ F ⊂ E +mF.

Proof The implication =⇒ is trivial. To prove the converse notice that

F ⊂ F ∩ E +mF =⇒ F/(F ∩ E) ⊂ m
(
F/(F ∩ E)

)
.

The desired conclusion follows by applying Nakayama Lemma to the module F/(F ∩E).

Corollary 9.1.5. Suppose R is a local ring with maximal ideal m, F is a finitely generated
ideal and x1, · · · , xn ∈ F . Then x1, · · · , xn generate F if and only if they generate F/mF .

Proof Use Corollary 9.1.4 for the submodule E of F generated by x1, · · · , xn.

We will present the Weierstrass preparation theorem in a form suitable for the applica-
tions we have in mind.

Definition 9.1.6. An analytic algebra is a C-algebra R isomorphic to a quotient ring On/A
where A ⊂ On is a finitely generated ideal.

Note that an analytic algebra R = On/A is a local C-algebra whose maximal ideal mR

is the projection of mn ⊂ On. Hadamard’s lemma shows that the maximal ideal mR is
generated by the images of the coordinate germs z1, · · · , zn.

A morphism of analytic algebras R,S is a morphism of C-algebras u : R→ S.

Exercise 9.1.1. Prove that a morphism of analytic algebras u : R→ S is local, i.e.

u(mR) ⊂ mS.

A morphism of analytic algebras u : R→ S is called finite if S, regarded as an R-module
via u is finitely generated. In other words, there exist s1, · · · , sm ∈ S such that for any
s ∈ S there exist r1, · · · rn ∈ R so that

s = u(r1)s1 + · · ·+ u(rn)sn.

A morphism of analytic algebras u : R→ S is called quasi-finite if the morphism

ū : R/mR
∼= C→ S/〈u(mR)〉

induces a finite dimensional C-vector space structure on S/〈u(mR)〉, where 〈u(mR)〉 denotes
the ideal generated by u(mR). Clearly, a finite morphism is quasi-finite.
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Lemma 9.1.7. u : R→ S is quasi-finite if and only if there exists r ∈ Z+ such that

mr
S ⊂ 〈u(mR)〉.

Proof Suppose S = Om/A. We denote the coordinates on Cm by ξ1, · · · , ξm. Suppose u
is quasi-finite. Then for some p≫ 0 the germs 1, ξj , · · · , ξpj are linearly dependent modulo
〈u(mR)〉, ∀1 ≤ j ≤ m. For all 1 ≤ j ≤ m there exist

aj0, aj1, · · · , ajp ∈ C,
not all equal 0, such that

aj0 + aj1ξj + · · · ,+ajpξpj ∈ 〈u(mR)〉.
If aj0, · · · , aj(ν−1) = 0 and ajν 6= 0 (ν = ν(j)) then we deduce that for some σ ∈ mS we
have

ξνj (1 + σ) ∈ 〈u(mR)〉.

This implies ξ
ν(j)
j ∈ 〈u(mR)〉. Thus

u quasi− finite =⇒ ∃r > 0 : mr
S ⊂ 〈u(mR)〉.

The converse is obvious.

We have the following fundamental result. For a proof we refer to [41, §3.2], [60, Chap2].
Theorem 9.1.8 (General Weierstrass Theorem). A morphism of analytic algebras u : R→
S is a finite if and only if it is quasi-finite.

Let us present a few important consequences of this theorem.

Corollary 9.1.9. Suppose u : R → S is a homomorphism of analytical algebras. Then
s1, · · · , sp ∈ S generate S as an R-module if and only if their images s̄1, · · · , s̄p in S/〈u(mR)〉
generate the C-vector space S/〈u(mR)〉.
Proof Suppose s̄i generate S/〈u(mR)〉. Then u is quasi-finite. Now the elements si
generate S modulo mS so that by Nakayama lemma they must generate the R-module S.

Definition 9.1.10. Consider a holomorphic map F : U ⊂ Cn
x → Cn

y

(x1, x2, · · · , xn) 7→ (y1, y2, · · · , yn) = (F1(x), F2(x), · · · , Fn(x))

such that F (p0) = 0. The ideal of F at p0 is the ideal IF = IF,p0 ⊂ On,p0 generated by the
germs of F1, · · · , Fn at p0. The local algebra at p0 of F is the quotient

QF = QF,p0 := On,p0/IF .

F is called infinitesimally finite at p0 if the morphism

F ∗ : On,F (p0) → On,p0 , f 7→ F ◦ f
is finite. The integer µ = µ(F, p0) := dimCQF,p0 is called the multiplicity of F at p0.
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Corollary 9.1.11. Consider a holomorphic map

F : U ⊂ Cn → Cn, x 7→ (F1(x), · · · , Fn(x))

such that F (0) = 0. Then the following are equivalent.
(i) F is infinitesimally finite at 0.
(ii) dimCQF <∞.
(iii) There exists a positive integer µ such that mµ

n ⊂ IF . (We can take µ = dimCQF .)

Proof We only have to prove (ii) =⇒ (iii). Set µ := dimCQF . We will show that given
g1, · · · , gµ ∈ mn then

g1 · · · gµ ∈ IF .
The germs 1, g1, g1g2, · · · , g1g2 · · · gµ are linearly dependent inQF so there exist c0, c1, · · · , cµ ∈
C, not all equal to zero, such that

c0 + c1g1 + · · ·+ cµg1 · · · gµ ∈ IF .

Let cr be the first coefficient different from zero. Then

g1 · · · gr
(
cr + cr+1gr+1 + · · ·+ cµgr+1 · · · gµ

)
∈ IF .

The germ within brackets is invertible in On so that g1 · · · gr ∈ IF .

Definition 9.1.12. Suppose 0 ∈ Cn is a critical point of f ∈ mn ⊂ C{z1, · · · , zn}. Then
the Jacobial ideal of f at 0, denoted by J(f), is the ideal generated by the first order partial
derivatives of f . Equivalently

J(f, 0) = J(f) := Idf

where df is the gradient map

df : Cn → Cn, Cn ∋ z 7→
( ∂f
∂z1

(z), · · · , ∂f
∂zn

(z)
)
.

The Milnor number of 0 is the multiplicity at 0 of the gradient map. We denote it by
µ(f, 0).

Exercise 9.1.2. Show that 0 is a nondegenerate critical point of f ∈ mn if and only if
µ(f, 0) = 1.

Corollary 9.1.13. Suppose f ∈ C{z1, · · · , zn} is regular in the zn-direction, i.e.

g(zn) := f(0, · · · , 0, zn) 6= 0 ∈ C{zn}.

Denote by p the order of vanishing of g(zn) at 0 so that

g(zn) = zpnh(zn), h(0) 6= 0⇐⇒ ∂p−1
zn f |(0,0)= 0, ∂pznf |(0,0) 6= 0.

We have the following.
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(Weierstrass Division Theorem) For every ϕ ∈ C{z1, · · · , zn} there exist

q ∈ C{z1, · · · , zn}, b1, · · · , bp ∈ C{z1, · · · , zn−1}

such that

ϕ = qf +

p∑

i=1

biz
p−i
n .

(Weierstrass Preparation Theorem) There exists an invertible u ∈ C{z1, · · · , zn} and

a1, · · · , ap ∈ C{z1, · · · , zn−1}

such that aj(0) = 0 and

f = u · (zpn +

p∑

j=1

ajz
p−j
n ).

Definition 9.1.14. A holomorphic germ P ∈ On of the form

P = zpn +

p∑

j=1

ajz
p−j
n , aq ∈ On−1

such that aq(0) = 0 is called a Weierstrass polynomial.

Proof of Corollary 9.1.13 Let

R := C{z1, · · · , zn−1}, S := C{z1, · · · , zn}/(f).

We denote by u : R→ S the composition of the inclusion

C{z1, · · · , zn−1} →֒ C{z1, · · · , zn}

followed by the projection

C{z1, · · · , zn}։ C{z1, · · · , zn}/(f).

TheWeierstrass division theorem is then equivalent to the fact that the elements 1, zn, · · · , zp−1
n

generate S over R. By Corollary 9.1.9 it suffices to show that their images in S/〈u(mR)〉
generate this quotient as a complex vector space. Now observe that

f(z1, z2, · · · , zn)− f(0, · · · , 0, zn) =
∞∑

k=0

ak(z1, · · · , zn−1)z
k
n, ak ∈ mR

so that
f(z1, z2, · · · , zn)− f(0, · · · , 0, zn) ∈ 〈u(mR)〉

Thus
S/〈u(mR)〉 = C{z1, · · · , zn−1, zn}/(z1, · · · , zn−1, f)
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= C{z1, · · · , zn−1, zn}/(z1, · · · , zn−1, g(zn)) = C{zn}/(g(zn) = C{zn}/(zpn).
Clearly the images of 1, zn, · · · , zp−1

n generate C{zn}/(zpn).
Let us now apply the Weierstrass division theorem to ϕ = zpn. Then there exists u ∈

C{z1, · · · , zn} and aj ∈ C{z1, · · · , zn−1}. such that

zpn = u · f −
p∑

j=1

ajz
p−j
n .

If we set z1 = · · · = zn−1 = 0 we obtain

zpn = u(0, · · · , 0, zn)g(zn)−
p∑

j=1

aj(0)z
p−j
n = u(0, · · · , 0, zn)zpnh(zn)−

p∑

j=1

aj(0)z
p−j
n

where h(0) 6= 0. Observe that u(0) = 1/h(0) so that u is invertible in On. Hence

f = u−1
(
zpn +

p∑

j=1

ajz
p−j
n

)
.

Note that if aj(0) 6= 0 for some j then the order of vanishing of f(0, 0, · · · , 0, zn) at zn = 0
would be strictly smaller than p.

Remark 9.1.15. The preparation theorem is actually equivalent to Theorem 9.1.8; see
[60].

Corollary 9.1.16 (Implicit function theorem). Suppose f ∈ C{z1, · · · , zn} is such that
f(0) = 0 and ∂f

∂zn
(0) 6= 0. Then there exists g ∈ C{z1, · · · , zn−1} such that the zero set

V (f) := {z; f(z) = 0}

coincides in a neighborhood of 0 with the graph of the function g,

Γg := {z; zn = g(z1, · · · , zn−1)}.

Proof Observe that

f(0, · · · , 0, zn) = znh(zn), h(0) 6= 0.

From the Weierstrass Preparation Theorem we deduce

f(0) = u(zn − g)

where u ∈ On is invertible and g ∈ C{z1, · · · , zn−1}. It is now clear that V (f) = Γg near 0.

Corollary 9.1.17. The ring On is Noetherian (i.e. every ideal is finitely generated) and
factorial (i.e. each f ∈ On admits an unique prime decomposition).
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Proof The proof uses induction. Observe that every element f ∈ O1 admits an unique
decomposition

f = u · zp1
where u ∈ O1 is invertible. It follows immediately that O1 is a PID (principal ideal domain)
so that it is both Noetherian and factorial.

Assume now that Ok is Noetherian and factorial for all 1 ≤ k < n. We will prove that
On is Noetherian and factorial. The Hilbert basis theorem and the Gauss lemma imply
that the polynomial ring On−1[zn] ⊂ On is both Noetherian and factorial.

Suppose now that I ⊂ On is an ideal and 0 6= f ∈ I. According to the preparation
theorem we may assume that after a possible re-labeling of the variables we have

f =
(
zpn +

p∑

j=1

ajz
p−j
n

)
, aj ∈ On−1, u ∈ On is invertible.

Set I ′ := I ∩ On−1[zn]. I
′ is finitely generate by p1, · · · , pm ∈ On−1[zn]. We will show that

I is generated by f, p1, · · · , pm. Indeed, let us pick g ∈ I. Using the division theorem we
have

g = qf + r, r ∈ On−1[zn]

which shows that
g ∈ (f, p1, · · · , pm).

To show that is factorial we can use the preparation theorem to show that up to an invertible
factor and/or a linear change of coordinates, each element in On is a Weierstrass polynomial,
i.e it belongs to On−1[zn]. The factoriality of On now follows from the factoriality of the
ring of Weierstrass polynomials.

Exercise 9.1.3. Complete the proof of factoriality of On.

9.2 Fundamental facts of complex analytic geometry

We now want to present a series of basic objects and results absolutely necessary in the
study of singularities. For details and proofs we refer to our main sources of inspiration
[16, 21, 31, 41, 62].

The building bricks of complex analytic geometry are the analytic subsets of complex
manifolds.

Definition 9.2.1. An analytic set is a subset A of a complex manifold M which can be
locally described as the zero set of a finite collections of holomorphic functions. More
precisely, this means that for any point p ∈ A there exists an open neighborhood U in P
and holomorphic functions f1, · · · , fs : U → C such that

A ∩ U = {x ∈M ; f1(x) = f2(x) = · · · = fs(x) = 0}.
For every open subset V ⊂ U define

IA(V ) :=
{
f : U → C; f holomorphic, A ∩ U ⊂ f−1(0)

}
.
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Suppose X is a Hausdorff space. Every point p ∈ X defines an equivalence relation on
2X

A ∼p B ⇐⇒ ∃ neighborhood U of p ∈ X such that A ∩ U = B ∩ U.
The equivalence class of a set A is called the germ of A at p and is denoted by Âp or
(A, p). Note that if p does not belong to the closure of A then (A, p) = (∅, p). The set-
theoretic operations ∪ and ∩ have counterparts on the space of germs. We denote these
new operations by the same symbols. If A is an analytic subset of a complex manifold and
p ∈ Ā, then the germ (A, p) is called an analytic germ.

Definition 9.2.2. An analytic germ (A, p) is called reducible if it is a finite union of distinct
analytic germs. An analytic germ is called irreducible if it is not reducible.

Given f ∈ On such that f(0) = 0 (i.e. f ∈ mn) we denote by V̂ (f) the germ at 0 of the
analytic set V (f) = {z; f(z) = 0} at 0 ∈ Cn. For any ideal I ⊂ On we set

V̂ (I) :=
⋂

f∈I

V̂ (f).

Since On is Noetherian, every ideal is finitely generated, so that the germs V̂ (I) are analytic
germs. Note that every analytic germ has this form.

Example 9.2.3. Consider the germ f := z1z2 ∈ O2. Then V̂ (f) is reducible because
it decomposes as V̂ (z1) ∪ V̂ (z2). On the other hand if g = y2 − x3 ∈ O2 then V̂ (g) is
irreducible.

The local (and global) properties of analytic sets are best described using the language
of sheaves. We make a brief detour in the world of sheaves.

Definition 9.2.4. (i) Suppose X is a paracompact Hausdorff space. A presheaf of rings
(groups, modules etc.) on X is a correspondence U 7→ S(U), U open set in X, S(U)
commutative ring (group, module etc.) such that for every open sets U ⊂ V there exists a
ring morphism rUV : S(V )→ S(U) such that if U ⊂ V ⊂W we have

rUW = rUV ◦ rVW .

We set f |U := rUV (f), ∀U ⊂ V , f ∈ S(V ).

(ii) A presheaf S is called a sheaf if it satisfies the following additional property. For any
open set U ⊂ X, any open cover (Uα)α∈A of U , and any family {fα ∈ S(Uα)}α∈A such that

fα |Uαβ
= fβ |Uαβ

, ∀α, β, (Uαβ := Uα ∩ Uβ),

then there exists a unique element f ∈ S(U) such that f |Uα= fα, ∀α ∈ A. For every
commutative ring R we denote by ShR(X) the collection of sheaves of R-modules over X.
When R ∼= Z we write simply Sh(X) := ShZ(X).

(iii) Let S0 and S1 be two (pre)sheaves of rings (groups, modules etc.) A morphism of
sheaves

φ : S0 → S1
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is a collection of morphisms of rings (groups, modules etc.)

φU : S0(U)→ S1(U), U open

compatible with the restriction maps, i.e for every V ⊂ U the diagram below is commutative.

S0(U) S1(U)

S0(V ) S1(V )
u

rVU

w

φU

u

rVU

w

φV

.

We denote by HomSh(X)(S0, S1) the Abelian group (module) consisting of morphisms of
sheaves S0 → S1. An isomorphism of sheaves is defined in an obvious fashion.

(iv) For any two sheaves S0, S1 ∈ Sh(X) we denote by Hom(S0, S1) the sheaf defined by

Hom(S0, S1)(U) = Hom(S0 |U , S1 |U ).

Suppose S is a presheaf of rings on a paracompact space X. If U, V are open sets
containing x and f ∈ S(U), g ∈ S(V ) then we say that f is equivalent to g near x, and we
write this f ∼x g, if there exists an open set W such that

x ∈W ⊂ U ∩ V, f |W= g |W .

The ∼x equivalence class of f is called the germ of f at x and is denoted by [f ]x. The set
of germs at x is denoted by Sx and is called the stalk of S at x. The stalk has a natural
ring structure.

Given a presheaf S on a paracompact Hausdorff space X we form the disjoint union

S̃ :=
∐

x∈X

Sx.

For every open set U ⊂ X and any f ∈ S(U) we get a map

f̃ : U → S̃, u 7→ [f ]u ∈ S̃.

Observe that we have a natural projection π : S̃→ X. Define

WU,f := f̃(U) =
{
[f ]u; u ∈ U

}
⊂ S̃.

The family B :=
{
WU,f

}
of subsets of S̃ satisfies the conditions

∀W1,W2 ∈ B, ∃W3 ∈ B : W3 ⊂W1 ∩W2,
⋃

W∈B

W = S̃.
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These show that B is a basis of a topology on S̃. The natural projection π : S̃ → X is
continuous, and moreover, for every germ [f ]x ∈ S̃ there exists a neighborhood W ∈ B such
that the restriction of π to W is a homeomorphism1 onto π(W ).

Denote by S̃(U) the space of continuous sections f : U → S̃ of π, i.e. continuous
functions f :→ S̃ such that f(u) ∈ Su. The correspondence

U 7→ S̃(U)

is a sheaf of rings on X called the sheafification of S, or the sheaf associated to the presheaf
S. Since every f ∈ S(U) tautologically defines a continuous section of π : S̃→ X we deduce
that we have a natural morphism of presheaves i : S→ S̃. When S is a sheaf then S = S̃.

A subsheaf of a sheaf F over X is a sheaf G such that G(U) ⊂ F(U). Given a morphism
of sheaves

φ : F → G

we define its kernel to be the subsheaf kerφ of f defined by

(ker f)(U) := ker
(
φU : F(U)→ G(U)

)
.

The image of φ is the subsheaf of G associated to the presheaf

U 7−→ φ(F(U) ).

If G ⊂ F is a subsheaf of F the the quotient sheaf F/G is the sheaf associated to the presheaf

U 7−→ F(U)/G(U).

Example 9.2.5. (a) If X is a topological space and R is a ring, then the correspondence

U open subset of X 7−→ R

defines a sheaf on X called the constant sheaf with stalk R and denoted by R = XR.
(b) Suppose R is a sheaf of rings on the topological space X. A sheaf of R-modules is a
sheaf of Abelian groups S equipped with a R-multiplication, i.e. a morphism of sheaves

R→ HomZ(S, S).

We denote by ShR the collection of sheaves of R modules. The notion of morphisms of
sheaves of R modules is the obvious one. We denote by HomR(S0, S1) the Abelian group of
morphisms of sheaves of R-modules and by HomR(S0, S1) its ”sheafy” conterpart

HomR(S0, S1)(U) := HomR(S0 |U , S1 |U ).
Given two sheaves S0, S1 ∈ ShR(X) we denote by S0 ⊗R S1 the sheaf associated to the
presheaf

U 7−→ S0(U)⊗R(U) S1(U).

We have the adjunction isomorphism

HomR(S0 ⊗R S1, S2) ∼= HomR

(
S0,HomR(S1, S2)

)
. (9.2.1)

(c) The presheaf of bounded continuous functious on R is not a sheaf. Its sheafification is
the sheaf of continuous functions.

1A continuous map with such a property is called an étale map. Étale maps resemble in many respects
covering maps.
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If F : X → Y is a continuous map between paracompact, Hausdorff spaces, and S is a
presheaf on X, then we get a presheaf F∗S on Y described by

(F∗S)(U) = S(F−1(U)).

If S is a sheaf then so is F∗S. If T is a sheaf on Y , and π : T → Y denotes the natural
projection then define

F−1T = T ×Y X =
{
(s, x) ∈ T ×X; π(s) = F (x)

}
.

There is a natural projection F−1T → X and as above we can define a sheaf by using
continuous sections of this projection. Note that

(F−1T)x = TF (x).

When T is a subsheaf of the sheaf of continuous functions on Y and U is an open subset in
X then we can define F−1T(U) as consisting of pullbacks g ◦F where g is the restriction of
a continuous function defined on an open neighborhood of F (U) in Y .

For any continuous map F : X → Y and for every sheaves S on X and T on Y we have
a canonical adjunction isomorphism

HomSh(X)(F
−1T, S) ∼= HomSh(Y )(T, F∗S). (9.2.2)

Example 9.2.6. (a) If X is a paracompact space and for every open set U ⊂ X we denote
by C(U) the ring of complex valued continuous functions on U then the correspondence
U 7→ C(U) is a sheaf on X.

(b) If A is an analytic subset of the complex manifold M then the correspondence

V 7−→ IA(V )

defines a sheaf on M called the ideal sheaf of A.

(c) For every open set V ⊂M set

OA(V ∩A) := OC(V )/IA(V ).

The correspondence V ∩A 7→ OA(V ∩ A) is a sheaf on Cn called the structural sheaf. The
elements of OA(V ∩A) should be regarded as holomorphic functions U ∩A→ C.

Definition 9.2.7. Suppose Ai are analytic subsets of Cn, i = 0, 1.

(i) A continuous map F : A0 → A1 is called holomorphic if for every open set U0 ⊂ Cn

there exists a holomorphic map F̃ : U0 → Cn such that F̃ |U0∩A0= F . A biholomorphic
map is homeomorphism F : A0 → A1 such that both F and F−1 are biholomorphic.

(ii) A holomorphic map A0 → C is called a regular function.

(iii) A holomorphic map F : A0 → A1 is called finite if it is proper and its fibers are finite
sets.
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Example 9.2.8. Consider the holomorphic map F : C → C, z 7→ zn. Denote by O the
sheaf of holomorphic functions in one variable. Then F−1O is also a sheaf on C and

F−1Oz0
∼=





C{z} if z0 6= 0

C{zn} if z0 = 0
.

If Dr is the disc of radius r centered at the origin then

(F−1O)(Dr) =
{
f(zn); f : Drn → C is holomorphic

}
.

Theorem 9.2.9. (a) A germ (A, 0) ⊂ (Cn, 0) of analytic set is irreducible if and only if
IA,0 is a prime ideal of On.
(b) Every reducible germ is a finite union of irreducible ones.

Theorem 9.2.10 (Noether normalization). Suppose (A, 0) ⊂ (Cn, 0) is an irreducible
germ of an analytic set. Then there exist a positive integer d and holomorphic coordinates
(z1, · · · , zn) on Cn near 0 such that the natural map

ϕ : C{z1, · · · , zd} →֒ C{z1, · · · , zn}−→OA,0

is a finite, injective morphism of analytic algebras.

This theorem has a very simple geometric interpretation. If we think of A as an analytic
subset in Cn, then the normalization theorem essentially states that we can find a system
of linear coordinates z1, · · · , zn such that the restriction to A of the natural projection
(z1, · · · , zn) 7→ (z1, · · · , zd) is a finite-to-one holomorphic map. The integer d is by definition
of the dimension of A. The next result is a substantial enhancement of the Noether
parametrization theorem. For a proof we refer to [21, II.§4], [32, III.A] or [41, §3.4].

Theorem 9.2.11 (Local parametrization). Suppose A ⊂ Cn is an analytic set of dimension
d, 0 ∈ A and the germ (A, 0) = V (p), where p ⊂ On,0 is a prime ideal. Then we can find a
system of linear coordinates (z1, · · · , zn) on Cn and a small neighborhood U of 0 ∈ Cn with
the following properties.

(i) If we set z′ := (z1, · · · , zd), z′′ = (zd+1, · · · , zn),

Cd
z′ := {z ∈ Cn; z′′ = 0}, Cd+1

z′,zd+1
:= {z ∈ Cn; zd+2 = · · · = zn = 0}.

and denote by Cn πd−→ Cd
z′ , C

n πd+1−→ Cd+1
z′,zd+1

the corresponding linear projections, thenand
the map

πd : A ∩ U → Cd
z′ ∩ U

is onto, finite and π−1
d (0) ∩A ∩ U = {0}.

(ii) There exist Weierstrass polynomials

P (z′, T ), Pk(z
′, T ) ∈ C{z′}[T ], k = d+ 2, · · · , n
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all defined on U such that the discriminant ∆ = ∆(z′) ∈ Od of P is nontrivial, and if
q ∈ On,0 denotes the ideal generated by

{
P (z′, zd+1), ∆(z′) · zk − Pk(z

′, zd+1), k = d+ 2, · · · , n
}
,

then
p = IA,0

and
∆mp ⊂ q ⊂ p, m := max{p, (n − d)(p − 1)}, p := degzd+1

P.

(iii) We denote by D the discriminant locus

D = {∆(z′) = 0} ⊂ Cd
z′ ∩ U,

by B the hypersurface
{Pd+1(zd+1) = 0} ∩ U ⊂ Cd+1

z′,zd+1

and we set
A∗ := A \ π−1

d (D), B∗ = B \ π−1
d (D).

Then A∗ is, connected, open and dense in A,

πd+1(A ∩ U) = B

the map
πd+1 : A ∩ U → B

is a p-to-1 cover branched over D and the set A∗ ∩U can be identified with the graph of the
map

W : B∗ → Cn−d−1, zk =
1

∆(z′)
Pk(z

′, zd+1), k = d+ 2, · · · , n.

Remark 9.2.12. (a) The fact that the projection πd : A ∩ U → Cd
z′ ∩ U is onto can be

rephrased algebraically as
p ∩ C{z′} = (0).

Since ∆ ∈ C{z′} \ 0 we deduce ∆ 6∈ p.
(b) The coordinate function zd+1 plays a special role in the local parametrization theorem.
In fact it plays the following hidden role. From the finite extension

Od →֒ On/p

we obtain a finite extension of the corresponding fields of fractions

Q(Od) →֒ Q(On/p).

The element zd+1 ∈ Q(On/p) is a primitive element of the above finite extension of fields.
Moreover, P is the minimal polynomial of this primitive element. A little bit of Galois
theory implies that the coefficients of this polynomial are in Od.
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Example 9.2.13 (Local parametrization of hypersurfaces). It is useful analyze this result
in the special case of hypersurfaces because it highlights the geometric meaning of this
important theorem and explains the central role played by the Weierstrass division theorem.

Suppose (A, x) is the germ of a hypersurface A in Cn. We assume x = 0. This means
there exists f ∈ On such that f(0) = 0 and

(A, 0) = (V (f), 0).

Assume for simplicity that f is irreducible. We can choose linear coordinates (z1, · · · , zn)
on Cn such that f is regular in the zn-direction. By the Weierstrass preparation theorem
we can write

f = u(z)P (zn)

where u ∈ On, u(0) 6= 0, and Pn ∈ On−1[zn] is an irreducible Weierstrass polynomial of
degree q

Pn = zqn +

q−1∑

k=0

ak(z
′)zkn, z′ := (z1, · · · , zn−1).

The natural projection

π : {P (z′, zn) = 0} ∋ (z′, zn) 7→ z′ ∈ Cn−1

induces a one-to-one morphism On−1 → On/(P ), which factors trough the natural inclusion

On−1 →֒ On.

Weierstrass division theorem implies that this map is infinitesimally finite at 0 ∈ Cn.

We can go even further. We can think of the hypersurface P = 0 as the graph of the
multivalued function φ = φ(z′) defined by the algebraic equation

φq +

q−1∑

k=0

ak(z
′)φk = 0.

Equivalently, we can think of P as a family of degree q polynomials parameterized by
z′ ∈ Cn−1, P = Pz′ . Then φ(z′) can be identified with the set of roots of Pz′ . For most
values of z′ this set consists of q-distinct roots.

Denote by D ⊂ Cn−1 the subset consisting of those z′ for which Pz′ has multiple roots.
D is the discriminant locus of π. Note that 0 ∈ D.

Equivalently, D is the vanishing locus of the discriminant ∆ ∈ On−1 of P . Since P
is irreducible we deduce that ∆ 6= 0 ∈ On−1 so that (D, 0)  (Cn−1, 0). The subset
A∗ := {P = 0} \ π−1(D) is a smooth hypersurface in Cn and the projection

π : A∗ → Cn−1 \D

is a genuine q : 1 covering map. We conclude that locally a hypersurface can be represented
as a finite cover of Cn−1 branched over a hypersurface. The branching locus is precisely the
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Figure 9.1: A 3→ 1 branched cover and its discriminant locus (in red).

discriminant locus (see Figure 9.1). Moreover, when F is irreducible the nonsingular part
A∗ is connected.

As we have mentioned before, the discriminant locus consists of those z′ for which the
polynomial Pz′ ∈ C[zn] has multiple roots, i.e. Pz′(zn) its zn-derivative P

′
z′(zn) have a root

in common. This happens if and only if the discriminant of Pz′ is zero (see [47, Chap. IV])

∆(a1(z
′), · · · , aq(z′)) = 0.

Example 9.2.14. Suppose F (x) is a polynomial of one complex variable such that F (0) =
0. Then the hypersurface in C2 given by

C := {y2 = F (x)}

can be viewed as the graph of the 2-valued function y = ±
√
F (x). The natural projection

π onto the x axis displays C as a double branched cover of C,

C ∋ (x, y) 7→ x.

The branching locus is described in this case by the zero set of F which coincides with the
zero set of the discriminant of the quadratic polynomial P (y) = y2 − F .

The next result is an immediate consequence of the normalization theorem and is at the
root of the rigidity of analytic sets.

Corollary 9.2.15 (Krull intersection theorem). Suppose R is an analytic algebra, R =
On/I. Then ⋂

k≥1

mk
R = (0).

Proof Using Noether normalization we can describe I as a finite extension of C-algebras

i : C{z1, · · · , zd} →֒ R.

Using Lemma 9.1.7 we deduce that there exists r > 0 such that

mr
R ⊂ md ⊂ Od =⇒

⋂

k≥1

mk
R ⊂

⋂

k≥1

mk
d.
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On the other hand we have the strong unique continuation property of holomorphic func-
tions, which states that if all the partial derivatives of a holomorphic function vanish at a
point then the holomorphic function must vanish in a neighborhood of that point. Another
way of stating this is

⋂
k≥1m

k
d = 0.

Exercise 9.2.1. Suppose (X,x) ⊂ Cn and (Y, y) ⊂ Cm are germs of analytic sets and
u : OY,y → OX,x is a morphism of analytic algebras. Then there exist neighborhoods
Cn ⊃ U ∋ x and Cm ⊃ V ∋ y and a holomorphic map

F : U → V

such that F (x) = y and F ∗ = u : OY,F (x) → OX,x.
Hint: Use Krull intersection theorem.

Exercise 9.2.2. Noether normalization shows that any analytic algebra is a finite extension
of some Od. Prove that the converse is also true, i.e. if the C-algebra is a finite extension
of some Od then it must be an analytic algebra, i.e. it is the quotient of some On by some
ideal I.

◮ Let us summarize what we have established so far. We have shown that we can identify the
germs of analytic sets with analytic algebras, i.e. quotients of the algebras On, n = 1, 2, · · · .
This correspondence is in fact functorial. To any morphism of germs of analytic sets we can
associate a morphism of analytic algebras, and any morphism of algebras can be obtain in
this way. This shows that two analytic germs are isomorphic (i.e. biholomorphic) if and
only if their associated local analytic algebras are isomorphic.
◮ We have have also seen that any analytic germ is a finite branched cover2 defines an
analytic germ. Algebraically, this means than the category of analytic algebras is equivalent
to the category of C-algebras which are finite extensions of some On.

To formulate our next result we need to remind a classical algebraic concept.

Definition 9.2.16. The radical of an ideal I of a ring R is the ideal
√
I defined by

√
I := {r ∈ R; ∃n ∈ Z+ : rn ∈ I}.

We have the following important nontrivial result.

Theorem 9.2.17 (Analytical Nullstellensatz). For every ideal I ⊂ OCn,0 we have

IV̂ (I),0 =
√
I.

Equivalently this means that a function f ∈ OCn,0 vanishes on the zero locus V (I) of the
ideal I if an only if a power fm of f belongs to the ideal I.

2The converse, i.e. that any such branched cover has a natural structure of analytic set is also true but
it requires a bit more work, [29].
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Example 9.2.18. Consider f = zn ∈ O1. Then V̂ (f) is the germ at 0 of the set A = {0}.
Note that J(V̂ (f)) = (z) = m1.

The above theorem implies that the finiteness of the Milnor number of a critical point
is tantamount to the isolation of that point. More precisely, we have the following result3.

Proposition 9.2.19. Suppose F : 0 ∈ U ⊂ Cn → Cn ∈ Cn → Cn and F (0) = 0. Then the
following are equivalent.

(i) 0 is an isolated solution of F (z) = 0.

(ii) µ(F, 0) <∞.

Proof Denote by V̂ the germ of analytic subset generated by the ideal IF ⊂ On. If 0 is
isolated then V̂ = 0 and by analytical Nullstellensatz we have

√
IF = mn

Hence there exists k > 0 such that mk
n ⊂ IF which implies dimCOn/IF <∞.

Conversely, if µ = dimCOn/IF < ∞ then m
µ
n ⊂ IF so that V̂ = 0, i.e. 0 is an isolated

solution of F (z) = 0.

Inspired by the above result we will say that a critical point p of a holomorphic function
f is isolated if µ(f, p) <∞.

9.3 Tougeron’s finite determinacy theorem

The Morse Lemma (which we have not proved in these lectures) has played a key role in
the classical Picard-Lefschetz theory. It states that if 0 is a nondegenerate critical point of
f ∈ mn then, we can holomorphically change coordinates to transform f into a polynomial
of degree 2. The change in coordinates requirements can be formulated more conceptually
as follows.

Definition 9.3.1. Denote by Gn the space of germs of holomorphic maps G : 0 ∈ U ⊂
Cn → Cn such that G(0) = 0 and the differential of G at 0 is an invertible linear map
DG(0) : Cn → Cn.

The elements in Gn can be regarded as local holomorphic changes of coordinates near
0 ∈ C . Gn is a group. There is a right action of Gn on On defined by

On ∋ f 7→ f ◦G, ∀G ∈ Gn.

Two germs f, g ∈ On are said to be right equivalent, f ∼r g, if they belong to the same
orbit of Gn. In more intuitive terms, this means that g can be obtained from f by a local
change of coordinates.

3We refer to [2, Sec. 5.5] for a very elegant proof of this fact not relying on Nullstellensatz.
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Definition 9.3.2. The k-jet at 0 of f ∈ On is the polynomial jk(f) = jk(f, 0) ∈
C[z1, · · · , zn] obtained by removing from the Taylor expansion of f at 0 the terms of degree
> k. More precisely

jk(f) :=
∑

|α|≤k

1

α!

∂|α|f

∂zα
(0)zα,

where for any nonnegative multi-index α = (α1, · · · , αn) we set

|α| := α1 + · · ·+ αn, α! := α1! · · ·αn!,

zα := zα1
1 · · · zαn

n ,
∂|α|f

∂zα
:=

∂|α|f

∂zα1
1 · · · ∂zαn

n
.

Exercise 9.3.1. Suppose I ⊂ On is a proper ideal and f ∈ On is a holomorphic germ such
that for every k ≥ 1 there exists fk ∈ I so that

jk(f − fk) = 0.

Prove that f ∈ I. We can interpret this result by saying that if f can be approximated to
any order by functions in I then f must be in I. In more geometric terms, this means that
if two analytic sets have contact at a point of arbitrarily high order then they must coincide
in a neighborhood of that point. This is a manifestation of the coherence of the sheaf of
holomorphic functions. (Hint: Use Krull intersection theorem.)

Morse Lemma can now be rephrased by saying that if 0 is a critical point of f with
µ(f, 0) = 1 then f is right equivalent to its second jet. The next result is a considerable
generalization of Morse’s Lemma. We refer to [2] for an even more general statement.

Theorem 9.3.3 (Tougeron finite determinacy theorem). Suppose 0 is an isolated critical
point of f ∈ mn with Milnor number µ. Then f is right equivalent to jµ+1(f).

Proof We follow the strategy in [2, Sec.63] or [61, Sec. 5] which is based on the so called
homotopy method.

Roughly speaking our goal is to construct a local biholomorphism which will “kill” the
terms of order > µ + 1 of f . One of the richest sources of biholomorphisms is via (time
dependent) flows of vector fields. Our local biholomorphism will be described as the time-1
map of a flow defined by a time dependent vector field.

We will prove that for every ϕ ∈ m
µ+2
n the germ f +ϕ is right equivalent to f . We have

an affine path f + tϕ. We seek a one parameter family Gt ∈ Gn such that

(f + tϕ)(Gtz) ≡ f(z), G0(z) = z, Gt(0) = 0. (9.3.1)

Define the time dependent vector field

Vτ (z) :=
d

dt
|t=τ Gt(z).
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Differentiating (9.3.1) with respect to t we obtain the infinitesimal version of (9.3.1) known
as the homology equation

Vt(Gt(z)) · (f + tϕ) = −ϕ(Gt(z)) ∈ mµ+2
n . (9.3.2)

The proof will be completed in two steps: solve the homology equation and then integrate
its solution with respect to t.

Step 1. For every α ∈ mµ+1 there exists a time dependent holomorphic vector field
Vt(z) = Vt,α(z) defined in a neighborhood of 0 depending smoothly on t ∈ [0, 1] such that

Vt(0) = 0 ∀t ∈ [0, 1] (9.3.3a)

Vt,α(z) · (f + tϕ)(z) = α(z), ∀t ∈ [0, 1], ∀|z| ≪ 1. (9.3.3b)

Step 2. The equation (9.3.1) has at least one solution.

Lemma 9.3.4. (a) The equation (9.3.3b) has at least one solution Vt,α for every α ∈ mµ.
(b) The “initial value” problem (9.3.3a) + (9.3.3b) has at least one solution for every
α ∈ mµ+1.

Proof Consider all the monomials M1, · · · ,MN ∈ C[z1, · · · , zn] of degree µ. We will first
explain how to solve (9.3.3b) when α =Mj . We already know that

mµ ⊂ J(f)

so that there exist hij ∈ On such that

Mj =
∑

i

hij
∂f

∂zi
.

Hence

Mj =
∑

i

hij
∂(f + tϕ)

∂zi
− t
∑

i

hij
∂ϕ

∂zi

Next observe that since ϕ ∈ mµ+2 we have4

∂ϕ

∂zi
∈ mµ+1.

We can therefore write ∑

i

hij
∂ϕ

∂zi
=
∑

p

ajpMp, apj ∈ m

and

Mj =
∑

i

hij
∂(f + tϕ)

∂zi
− t
∑

p

ajpMp.

4This is the only place where the assumption ϕ ∈ mµ+2 is needed. The rest of the proof uses only the
milder condition ϕ ∈ mµ+1.
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As in the proof of Nakayama Lemma we can consider this as a linear system for the row
vector ~M := (M1, · · · ,MN ). More precisely we have

~M(1+ tA) = ~Bt,

where

Bℓ,t =
∑

i

hiℓ
∂(f + tϕ)

∂zi
∈ J(f + tϕ)

and the entries of A = A(z) are in m. The matrix (I + tA(z)) is invertible for all t ∈ [0, 1]
and all sufficiently small z. We denote by Kt(z) its inverse. We deduce

~M = ~BtKt

or more explicitly

Mj =
∑

ℓ

Kℓj,tBℓ,t =
∑

ℓ,i

Kℓj,thiℓ
∂(f + tϕ)

∂zi
.

Thus,

Vt,j(z) :=
∑

i

(∑

ℓ

hiℓKℓj,t

) ∂

∂zi

solves (9.3.3b) for α =Mj . Observe that this vector field need not satisfy (9.3.3a).
Any α ∈ mµ can be represented as a linear combination

α =
∑

j

αjMj, αj ∈ On.

Then
Vt,α :=

∑

j

αjVt,j

is a solution of (9.3.3b). If moreover α ∈ mµ+1 so that αj(0) = 0 then this Vt,α also satisfies
the “initial condition” (9.3.3a).

Since ϕ ∈ mµ+2 ⊂ mµ+1 we can find a solution Vt,−ϕ of (9.3.3a) + (9.3.3b) with α = −ϕ.
To complete the proof of Tougeron’s theorem we need to find a solution Gt(z) ∈ Gn of the
equation

d

dt
(f + tϕ)(Gtz) = 0, Gt(0) = 0, ∀t ∈ [0, 1], ∀|z| ≪ 1.

Such a solution can be obtained by solving the differential equation

dGt

dt
= Vt,−ϕ(Gt(z)), Gt(0) = 0.
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Chapter 10

A brief introduction to coherent

sheaves

10.1 Ringed spaces and coherent sheaves

Suppose A is an analytic subset of the complex manifold M . For every open subset U ⊂M
we denote by RA(U ∩A) the ring of regular functions U ∩A→ C. We obtain in this fashion
a sheaf on A. For every open set U ⊂M we have a natural map

OM (U)→ RA(U ∩A)

whose kernel is the ideal IA(U) of holomorphic functions on U which vanish on A ∩ U so
that we have an induced map

OM (U)/IA(U) = OA(U ∩A)→ RA(U ∩A).

This is clearly an isomorphism of sheaves. For this reason we will always think of the
structural sheaf of OA as a subsheaf of the sheaf of continuous functions on A. Note that
the stalk OA,x is an analytic algebra, and conversely, every analytic algebra is the stalk at
some point of the structural sheaf of some analytic set.

Suppose F : A → B is a holomorphic map between two analytic sets, and let p ∈ A.
Then F induces a natural morphism of sheaves

F ∗ ∈ HomSh(A)(F
−1OB ,OA).

We deduce that for every p ∈ A, there is an induced morphism of analytic algebras

F ∗ : OB,F (p) → OA,p.

This suggest that one could interpret the morphisms of analytic algebras as germs of holo-
morphic maps. Exercise 9.2.1 shows that this is an accurate intuition.

The above considerations lead to the following important concept.

Definition 10.1.1. (i) A ringed space is a pair (X,RX ), where X is a topological space
and RX is a sheaf of commutative rings with 1. The ringed space (X,RX) is called local
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if for every x ∈ X the stalk RX,x is a local ring with maximal ideal mx. RX is called the
structural sheaf of the ringed space.
(ii) A morphism of ringed spaces (X,RX) → (Y,RY ) is a pair (f, f#) where f : X → Y is
a continuous map and

f# : Hom(f−1RY ,RX)

is a morphism of sheaves of rings. If the ringed spaces are local then a morphism of ringed
spaces is called local if for every x ∈ X the induced map

f# : RY,f(x) → RX,x

maps the maximal ideal mf(x) into the maximal ideal mx.

Example 10.1.2. Suppose R is a commutative ring with 1. Then the spectrum of R is
the set SpecR is the set of all prime ideals of R. It is equipped with the Zariski topology
whose closed sets are V (S), S ⊂ R

V (S) :=
{
p ∈ SpecR; S ⊂ p

}
.

For every p ∈ SpecR we denote by Rp the localization of R at p. For any Zariski open set
U ⊂ SpecR we denote by R(U) the set of functions

f : U−→
∐

p∈U

Rp such that f(p) ∈ Rp, ∀p ∈ U

and for every p ∈ U we can find a Zariski open neighborhood V of p ∈ U and elements
p, q ∈ R such that

q 6∈ q, f(q) =
p

q
, ∀q ∈ V.

Then U → R(U) defines a sheaf of rings on SpecR and the pair (SpecR,R) is a local ringed
space. A morphism of rings φ : R0 → R1 induces a continuous map

f : SpecR1 → SpecR0, f(p) = φ−1(p).

The pair (f, φ) : (SpecR1,R0) → (SpecR1,R1) is a morphism of local ringed space. Con-
versely any morphism of local ringed spaces (SpecR1,R0) → (SpecR1,R1) is obtained in
this fashion. For more details we refer to [34, Chap. II] or [65, vol.II].

Using the adjunction isomorphism (9.2.2) we deduce that a morphism of ringed spaces

(f, f#) : (X,RX )→ (Y,RY )

induces a morphism of sheaves
f# : RY → f∗RX .

Observe that if S is a sheaf of RX-modules then f∗S is naturally a sheaf of f∗RX-modules.
Via the morphism f# : RY → f∗RX we can regard f∗S as a sheaf of RY -modules. Thus a
morphism of ringed spaces (f, f#) : (X,RX)→ (Y,RY ) induces a map

f∗ : ShRX
→ ShRY

.
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Given a sheaf F of RY -modules we obtain a sheaf f−1F of f−1RY -modules over X. We can

regard RX as a sheaf of f−1RY -modules via the morphism f−1RY
f#

−→ RX . We define

f∗F := f−1F ⊗f−1RY
RX .

f∗F is a sheaf of RX-modules and we have an adjunction isomorphism

HomRX
(F∗F,G) ∼= HomRY

(F, f∗RY ), ∀F ∈ ShRX
, G ∈ ShRY

. (10.1.1)

We conclude that if A is an analytic subset of a complex manifold M then (A,OA) is a local
ringed space and any holomorphic map F : A→ B between two analytic subsets induces in
a natural way a morphism of local ringed spaces.

Definition 10.1.3. A complex space is a local ringed space (X,OX ) , where OX is a
subsheaf of the sheaf of complex valued continuous functions on X with the property that
every point x ∈ X has an open neighborhood U such that the local ringed space (U,OX |U )
is isomorphic to a local ringed space of the form (A,OA), where A is an analytic subset of
an open polydisk D ⊂ CN . We will refer to such a U as a coordinate neighborhood.

If (X,OX ) and (Y,OY ) are complex spaces then a holomorphic map f : X → Y is a
morphism of local ringed spaces (f, f#) : (X,OX ) → (Y,OY ) such that for every x ∈ X
there exist coordinate neighborhoods U of x and V of f(x) such that

f(U) ⊂ V, f : U → V is a holomorphic map between analytic sets

and

f#(g) = g(f(x), ∀g ∈ OY,f(x).

Suppose (X,RX ) is a local ringed space. We denote by ShRX
the collection of sheaves

of RX-modules. Given S0, S1 ∈ ShRX
we denote by HomRX

(S0, S1) the group of morphisms
of sheaves of RX-modules.

Definition 10.1.4. Suppose (X,RX) is a ringed space and S ∈ ShRX
.

(i) The sheaf S is said to be of finite type if for every x ∈ X there exists an open neighborhood
U , a positive integer g and an epimorphism of sheaves

R
g
X |U։ S |U .

Equivalently, this means that there exists sections s1, · · · , sg ∈ S(U) such that the germs
s1,y, · · · , sg,y generate the stalk Sy for any y ∈ U .
(ii) The sheaf S is called coherent if it is of finite type and relationally finite, i.e. for any
open set U ⊂ X and any morphism of sheaves

φ : Rg
X |U→ S |U , g ∈ Z>0,

the kernel is of finite type.
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Let us analyze the coherence condition a bit further. First, observe that a morphism
φ : Rg

X |U→ S |U can be identified with a section of ~s ∈ S(U)g,

~s = (s1, · · · , sg).

For every section ~f = (f1, · · · , f g) of Rg
X on an open subset V ⊂ U we set

〈~s, ~f〉 =
∑

j

f jsj = φ(~f) ∈ S(V ).

The coherence means that for every x ∈ U there exists an open neighborhood V and sections
~f1, · · · , ~fr ∈ R

g
X(V ) such that

〈~s, ~fk〉 = 0, ∀k = 1, · · · , r

and for every y ∈ V and every ~t ∈ R
g
X,y with the property 〈~sy,~t〉 = 0 there exist c1, · · · , cr ∈

RX,y such that

~t =
∑

k

ck ~fk(y).

The finite type sheaves satisfy a property reminiscent of the unique continuation property
of holomorphic functions.

Proposition 10.1.5. Suppose S ∈ ShRX
is a finite type sheaf. Set

supp S := {x ∈ X; Sx 6= 0}.

Then the following hold.

(i) supp S is a closed subset of X.
(ii) If s1, · · · , sg are sections of S defined in a neighborhood U of x ∈ X such that s1,x, · · · , sg,x
generate the stalk Sx then there exists a neighborhood V of x in U such that for any y ∈ V
the germs s1,y, · · · , sg,y generate the stalk Sy

Proof (i) We prove that X \ supp S is open. Let x ∈ X \ supp S so that Sx = 0.
Since S locally finitely generated there exists an open neighborhood U of X and sections
s1, · · · , sg ∈ S(U) such that {s1(y), · · · , sg(y)} generate Sy for all y ∈ U . Since Sx = 0 we
deduce that there exists a neighborhood V of x in U such that si |V = 0 for all i = 1, · · · , g.
Hence Sy = 0 for all y ∈ V so that V ⊂ X \ supp S, i.e. X \ supp S is open. Part (ii) is
immediate.

The next result is frequently used to produce new coherent sheaves out of old ones. For
a proof we refer to [64, I.13].

Theorem 10.1.6. Consider a short exact sequence in of sheaves of RX-modules

0→ S0 → S1 → S2 → 0.

If two of the sheaves S0, S1, S2 are coherent, then so is the third.
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Corollary 10.1.7. (i) Suppose φ ∈ HomRX
(S0, S1) is a morphism between coherent sheaves.

Then the kernel, the image and the cokernel of φ are coherent sheaves.
(ii) Suppose x ∈ X and φ ∈ HomRX

(S0, S1) is as above. If φx : S0,x → S1,x is an isomor-
phism then so is φy for all y sufficiently close to x.

Proposition 10.1.8. (i) If S0, S1 are coherent subsheaves of the coherent sheaf S ∈ ShRX

then the sheaves S0 + S1 and S0 ∩ S1 are coherent.

(ii) If S0, S1 are coherent sheaves on the local ringed space (X,RX ) then S0 ⊗RX
S1 and

HomRX
(S0, S1) are coherent sheaves.

Proof (i) The sheaf S0 + S1 is coherent as a finite type subsheaf of of the coherent sheaf
S. Then the sheaf (S0 + S1)/S1 is coherent and

S0 ∩ S1 = ker
(
S0−→(S0 + S1)/S1

)

so that S0 ∩ S1 is coherent.

(ii) For any point x ∈ X we can find an open neighborhood U and a short exact sequence

Rr
X |U→ R

g
X |U→ S0 |U→ 0

so that we obtain a short exact sequence

Sr1 |U→ S
g
1 |U→ (S0 ⊗RX

S1) |U→ 0

which shows that (S1 ⊗RX
S1) |U is coherent. This implies the coherence of S0 ⊗RX

S1 since
coherence is a local property.

To prove the coherence of HomRX
(S0, S1) we need the following auxiliary result of inde-

pendent interest.

Lemma 10.1.9. For every x ∈ X the natural morphism

ρ : HomRX
(S0, S1)x → HomRX,x

(S0,x, S1,x) (10.1.2)

is an isomorphism.

Proof of Lemma 10.1.9 Suppose U is a neighborhood of x and φ ∈ HomRU
(S0 |U , S1 |U )

is such that the induced morphism

φx : S0,x → S1,x

is trivial. Since S0 is of finite type we deduce that φ is trivial in a neighborhood of x so
that the morphism ρ in (10.1.2) is injective.

Let us now show that ρ is surjective. In other words, given a RX,x-morphism

φ : S0,x → S1,x

there exist a neighborhood U of x and ψ ∈ HomRU
(S0 |U , S1 |U ) such that ψx = φ.
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S0 is coherent so that there exists a neighborhood V of x and a short exact sequence

Rr
X |V

κ−→ R
g
X |V

γ−→ S0 |V→ 0.

The morphism γ is described by sections s1, · · · , sg ∈ S0(V ) such that the germs si,y,
i = 1, 2, · · · , g generate the stalk S0,y for any y ∈ V .

There exists a neighborhood W of x ∈ V and sections σ1, · · · , σg ∈ S1(W ) such that

σi,x = φ(si,x), ∀i = 1, · · · , g.

Set ~s = (s1, · · · , sg) ∈ S0(W )g, ~σ = (σ1, · · · , σg) ∈ S1(W )g. For ~f = (f1, · · · , f g) ∈ RX(W )
we set

γ(~f) = 〈~s, ~f〉 =
∑

i

f isi ∈ S0(W ), 〈~σ, ~f〉 =
∑

i

f iσi ∈ S1(W ).

Let K := ker γ ⊂ R
g
X |V . K is of finite type so there exist a neighborhood W ′ of x ∈W and

sections ~f1, · · · , ~fℓ ∈ RX(W ′)g such that the germs ~fs,y span Ky for all y ∈W ′. We have

〈~σ, ~fj〉x = φ( 〈~s, ~fj 〉x) = 0, ∀j = 1, · · · , ℓ

so that there exists a neighborhood U of x ∈W ′ such that

〈~σ, ~fj〉 |U= 0, ∀j = 1, · · · , ℓ.

In particular, we deduce that

〈~σy, ~fy〉 = 0, ∀~f ∈ Ky, ∀y ∈ U.

For every y ∈ U a germ sy ∈ S0,y can be represented non-uniquely as

sy = 〈~sy, ~fy〉, ~f ∈ R
g
X,y (10.1.3)

We set
ψy(sy) = 〈~σy, ~fy〉.

If sy has two representations of the type (10.1.3),

sy = 〈~sy, ~fy〉 = 〈~sy,~hy〉,

then
~fy − ~hy ∈ Ky =⇒ 〈~σy, ~fy − ~hy〉 = 0.

Hence the definition of ψy(sy) is independent of the representation (10.1.3) of sy. Clearly
φ(sx) = ψx(sx)

Suppose S0, S1 are coherent sheaves. For every x ∈ X there exists a neighborhood U
and a short exact sequence

Rr
X |U→ R

g
X |U→ S0 |U→ 0.

In particular we obtain a sequence

0→ HomRX
(S0 |U , S1 |U )→ HomRX

(Rg
X |U , S1 |U )→ HomRX

(Rr
X |U , S1 |U ). (10.1.4)
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Using Lemma 10.1.9 we obtain the following sequence at stalk level

0→ HomRX,x
(S0x , S1,x)→ HomRX,x

(Rg
X,x, S1,x)→ HomRX,x

(Rr
X,x, S1,x).

This sequence is exact since the sequence

Rr
X,x → R

g
X,x → 0

is exact. Next observe that the exact sequence (10.1.4) can be rewritten as

0→ HomRX
(S0 |U , S1 |U )→ S

g
1 |U→ Sr1 |U

which produces a description of HomRX
(S0 |U , S1 |U ) as a kernel of a morphism of coherent

sheaves.

Proposition 10.1.10. Suppose X is a topological space, (Y,RY ) a ringed space such that
Y is a closed subset in X. Denote by j : Y →֒ X the natural inclusion. A sheaf S ∈ ShRY

is RY -coherent if and only if the sheaf j∗S is coherent as a sheaf of j∗RY -modules.

Note that in the above proposition j∗S is precisely the extension by zero of S to X, i.e.

(j∗S)x =

{
0 if x ∈ X \ Y
Sx if x ∈ Y

Suppose RX is coherent when viewed as a module over itself. Given a coherent sheaf S
on X we denote by Ann (S) the subsheaf of RX with stalk at x defined by

Ann (S)x := {f ∈ RX,x; f · Sx = 0}.
Equivalently, Ann (S) can be defined as the kernel of the multiplication morphism

RX → HomRX
(S, S).

In particular we deduce the following result.

Corollary 10.1.11. If RX is coherent and S is a coherent sheaf of RX-modules, the anni-
hilator sheaf Ann (S) is coherent.

Given a coherent sheaf F on (X,RX) and G ⊂ F a coherent subsheaf we defined the
transporter of F in G to be the sheaf of ideals

(G : F) := Ann (F/G), (G : F)x := {u ∈ RX,x : u · Fx ⊂ Gx}.
More generally, given coherent subsheaves F,G of the same sheaf S we define (G : F) to be
the ideal sheaf with described by

(G : F)x := {u ∈ RX,x : u · Fx ⊂ Gx}.
Note that

(G : F) = (G ∩ F : F)

so that (G : F) is a coherent sheaf.

Proposition 10.1.12 (Change of rings). Suppose (X,RX ) is a ringed spaces such that RX

is coherent, I ⊂ RX is a coherent ideal sheaf, and S is a sheaf of RX/I-modules. Then S is
coherent over RX/I if and only if it is coherent over RX . In particular RX/I is coherent as
a sheaf of RX/I-modules.

For a proof we refer to [64, I.16].
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10.2 Coherent sheaves on complex spaces

So far we have not produced one nontrivial example of coherent sheaf. We have merely
pointed out to produce new coherent sheaves out of old ones. Once we have a few nontrivial
example we can use the previous machinery to produce many more sophisticated examples.
Here is the first nontrivial example.

Theorem 10.2.1 (Oka). The sheaf On of holomorphic functions on Cn is coherent.

Proof The proof is carried by induction over n. The case n = 0 is trivial. We thus assume
On−1 is coherent and we prove that On is coherent. Clearly On is of finite type. We need
to prove that given an open set U ⊂ Cn and a morphism

γ : On |rU→ On |U
its kernel ker γ is a finite type sheaf. Let x ∈ U . Assume for simplicity x = 0 ∈ U . Denote
by δi ∈ On(U) the canonical sections

~δi = (δi1, · · · , δir) ∈ On(U),

where δij denotes the Kronecker symbol. Set

fi := γ(~δi).

For every sections ~ρ = (ρ1, · · · , ρr), ~s = (s1, · · · , sr) of Or
n we set

~ρ · ~f =
∑

i

ρifi, ~ρ · ~s =
∑

i

ρisi.

ker γ ⊂ Or
n |U is the sheaf of relations (amongst the f ’s), i.e. sections ~ρ satisfying

~ρ · ~f = 0.

After a linear change in coordinates in Cn we can assume that there exists d > 0 such that

∂dznfi(0) 6= 0, ∀i = 1, · · · , r.

We identify Cn−1 with the subspace {zn = 0}. For z ∈ Cn we write z = (z′, zn) and
for any open set V ⊂ Cn we set V ′ = V ∩ {zn = 0}. Using the Weierstrass preparation
theorem we can find a small open polydisk D ⊂ U centered at 0, Weierstrass polynomials
wi ∈ On−1(D

′)[zn] and nowhere vanishing holomorphic functions ui ∈ On(D) such that

degzn wi ≤ d, fi |D= uiwi, ∂dznfi(z) 6= 0, ∀i =, · · · , r, ,∀z ∈ D.

We can assume without loss of generality that ui ≡ 1 so that fi are Weierstrass polynomials
in zn of degree ≤ d. We have the following result.

Lemma 10.2.2. Let p ∈ D. Then (ker γ)p is generated as an On,p-module by germs ~ρz =
(ρ1p, · · · , ρgp) ∈ O

g
n,p such that

ρip ∈ On−1,p′ [zn], degzn ρ
i
z ≤ d.
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Let us explain how the above lemma implies Oka’s Theorem. For every integer ν we
denote by Sν the sheaf over the hyperplane {zn = 0} consisting of polynomials in zn with
coefficients in On−1 and with degree ≤ ν. We have Sν ∼= Oν+1

n−1 and the induction assumption

implies that Sν is coherent. Observe that ~f can be viewed as a section of Sgd.
We have a morphism of sheaves

γd : S
g
d → S2d, ~ρ 7→ ~ρ · ~f.

Since S2d is coherent we deduce that the kernel of the above map is of finite type. In particu-
lar we can find a polydisk ∆′ ⊂ D′ centered at 0′ ∈ Cn−1 and sections ~R1, · · · , ~Rm ∈ S

g
d such

that for any z′ ∈ ∆′ the stalk ker γd,z′ is generated as an On−1,z′-module by ~R1,z′ , · · · , ~Rm,z′ .
Using Lemma 10.2.2 we deduce that for any p = (p′, pn) ∈ D such that p′ ∈ ∆′ the stalk

ker γz is generated as an On,z-module by ~R1,z′ , · · · ~Rm,z′ .

Proof of Lemma 10.2.2 Assume that

d = degzn fg ≥ degzn fi, ∀i = 1, · · · , g.
Let p = (p′, pn) ∈ D. Since ∂dznfg(p) 6= 0 we deduce from the Weierstrass preparation
theorem applied at p that fg,p is a Weierstrass polynomial at in the variable (zn − pn) of
degree d′ ≤ d. Suppose ~ρ ∈ On,p is the germ at p of a relation.

For i = 1, · · · , q − 1 the Weierstrass division theorem gives

ρi = fg,pqi + ri, qi ∈ On,p, ri ∈ On−1[zn], degzn r
i < degzn fq,p = d′.

Consider the Koszul relations
~kij = fj~δi − fi~δj .

Observe that the components of the Koszul relations are polynomials in On−1[zn] of degree
≤ d. Moreover

~ρ− q1~k1,g − · · · − gg−1
~kg−1,g =




r1

...
rg−1

ρq +
∑g−1

i=1 qifi


 =: ~r.

It follows that ~r ∈ ker γp. By construction

degzn r
i < d, ∀i = 1, · · · , g − 1.

The last component is not independent. From the relational equality ~r · ~f = 0 we deduce

rgfg = −
g−1∑

i=1

rifi.

Observe that the degree of the right-hand-side is ≤ d′ + d so that

degzn r
gfg ≤ d′ + d, degzn fg = d′ =⇒ degzn r

g ≤ d.
We have shown that any relation ~ρ can be written as an On-liner combination of relations
whose components are polynomials in On−1[zn] of degree ≤ d.
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Theorem 10.2.3 (Oka-Cartan). Suppose U ⊂ Cn is an open set and A ⊂ U is an analytic
subset. Then the ideal sheaf IA is coherent.

Proof Suppose 0 ∈ A. We can assume the germ (A, 0) is irreducible. Otherwise by
shrinking if necessarily U we have A = A1 ∪ · · · ∪Ak and

IA = IA1 ∩ · · · ∩ IAk
.

If the sheaves of ideals IAj are coherent then so is IA.

Fix holomorphic functions f1, · · · , fg defined in a neighborhood V of 0 such that their
germs at 0 generate the prime ideal p = IA,0 ⊂ On,0.

If the neighborhood V is small enough we can find from the Local Parametrization
Theorem 9.2.11 a function ∆ on V (the discriminant) such that A∗ = A ∩ V \ D, D :=
{∆ = 0} is smooth and for every p ∈ A∗ we have

(f1,p, · · · , fg,p) = IA,p.

Now consider the following ideal sheaf on V

J := (f1, · · · , fg) : (∆).

By Oka’s Theorem 10.2.1 the ideal sheaves (f1, · · · , fg) and (∆) are coherent so that J is
coherent.

Choose finitely many generators h1, · · · , hs for J. At 0 we have

∆0 · hj,0 ∈ (f1,0, · · · , fg,0) = IA,0 = prime ideal.

Since ∆0 6∈ IA,0 (this follows from part (ii) of the local parametrization theorem) we deduce

hj,0 ∈ IA,0, ∀j = 1, 2, · · · , s.

We conclude that by shrinking the size of V we can assume that we have the equality of
sheaves

(f1, · · · , fg) : (∆) = (f1, · · · , fg). (10.2.1)

Now let p ∈ V and h ∈ IA,p. Then h is defined on a small neighborhood W of p in V and
h vanishes on A ∩W , i.e.

h−1(0) ⊃ A ∩W.
To prove that hp ∈ (f1,p, · · · , fg,p) it suffices to show that

(f1,p, · · · , fg,p) : (hp) = On,p. (10.2.2)

On the neighborhood W of p in V the transporter ideal F := (f1, · · · , fg) : (h) is coherent
and thus it has finitely many generators u1, · · · , ut. Since IA,q = (f1,q, · · · , fg,q) for all
q ∈ V \D we deduce

hq ∈ (f1,q, · · · , fg,q), ∀q ∈ V \D,
so that Fq = On,q. Thus the equality (10.2.2) holds for p ∈ V \D. Assume p ∈ V ∩D.
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Since Fq = On,q for all q ∈ V \D we deduce

{u1 = · · · = ut = 0} ⊂ D = {∆ = 0}.

It follows from the analytical Nullstellensatz that there exists an integer r = r(p) ≥ 0 such
that

∆r
p ∈ (u1,p, · · · , ut,p) = (f1,p, · · · fg,p) : (hp).

We assume r is the minimal integer with this property. We want to prove that r = 0, i.e.
1 ∈ Fp.

Assume r > 0. Then

∆p ·
(
∆r−1

p · hp
)
∈ (f1,p, · · · fg,p) =⇒ ∆r−1

p · hp ∈ (f1,p, · · · fg,p) : (∆p).

Using (10.2.1) we deduce

∆r−1
p · hp ∈∈ (f1,p, · · · fg,p) : (∆p) = (f1,p, · · · fg,p),

i.e.

∆r−1
p ∈ (f1,p, · · · fg,p) : (hp)

which contradicts the minimality of r. Hence

1 ∈ (f1,p, · · · fg,p) : (hp) =⇒ (f1,p, · · · fg,p) : (hp) = On,p.

Using Theorem 10.2.3, Proposition 10.1.12 and the extension property in Proposition
10.1.10 we deduce the following result.

Corollary 10.2.4. Suppose A is an analytic subset inside an open set U ⊂ Cn. Then the
structural sheaf OA over A is coherent as a module over itself.

Definition 10.2.5. Suppose A is an analytic subset of a complex manifold and J ⊂ OA is
an ideal sheaf. Then the variety associated to J is defined by

V (J) := {a ∈ A; f(a) = 0, ∀f ∈ Ja}.

It is easy to see that if J is a coherent ideal sheaf then the variety V (J) is an analytic
subset of A.

Proposition 10.2.6. Suppose S is a coherent sheaf on a complex manifold M . Then

supp S = V
(
Ann (S)

)
.

In particular supp S is an analytic subset.
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Proof From Oka’s theorem and Corollary 10.1.11 we deduce that the annihilator ideal
Ann (S) is coherent. In particular V := V

(
Ann (S)

)
is an analytic subset.

Let us prove that V ⊂ supp S. Let a ∈ V
(
Ann (S). We have to prove that Sa 6= 0.

Indeed, if Sa = 0 then 1 ∈ Ann (S)a but 1(a) 6= 0 so that a 6∈ V .
Conversely, assume Sa 6= 0. Then Ann (S)a  OA,a. In particular Ann (S)a lies inside

the unique maximal ideal ma ⊂ OA,a. Since

ma = {f ∈ OA,a; f(a) = 0}

we deduce a ∈ V .

Suppose (f, f#) : (X,OX ) → (Y,OY ) is a morphism of complex spaces. For any S ∈
ShOX

the higher direct images Rqf∗S are naturally sheaves of OY modules. We have the
following nontrivial result. For a proof we refer to [7, 21]

Theorem 10.2.7 (Grauert direct image). Suppose (f, f#) : (X,OX )→ (Y,OY ) is aproper
morphism of complex spaces. Then for every coherent sheaf of OX -modules S the higher
direct images Rqf∗S are coherent sheaves of OY -modules.

Corollary 10.2.8. Suppose f : (X,OX ) → (Y,OY ) is a finite holomorphic map. Then
f∗OX is a coherent sheaf of OY -modules.

10.3 Flatness

We would like to spend some time reviewing a rather mysterious algebraic condition which
lies behind many continuity results in complex geometry. For proofs and more information
we refer to [9, 24, 51].

Suppose R is a commutative ring with 1. An R-module M is called flat if for any
injective morphism of R-modules ϕ : N0 →֒ N1 the induced morphism

ϕ⊗ 1M : N0 ⊗R M → N1 ⊗R M,

is also injective. The flatness is a local condition in the sense that an R-module M is
flat if and only if its localization Mm at any maximal ideal m ⊂ R is a flat Rm-module.
Equivalently, M is flat if for any prime ideal p ⊂ R the localization Mp is a flat Rp-module.

A morphism of rings f : R→ S is called flat if S, regarded as a R-module is flat.

Proposition 10.3.1. Suppose M is an R-module. Then the following conditions are equiv-
alent.
(i) M is flat.
(ii.a) TorRk (N,M) = 0, for any R-module N and any k ≥ 1.
(ii.b) TorR1 (N,M) = 0, for any R-module N .
(iii) TorR1 (R/I,M) = 0 for any finitely generated ideal I ⊂ R.
(iv) If A = (aij) is a n×m matrix with entries in R viewed a R-linear map Rm → Rn then

~x ∈ ker
(
A⊗ 1M :Mn →Mm

)
,



The topology of complex singularities 103

if and only if there exists a m× p matrix B = (bjk) with entries in R and ~y ∈Mp such that

~x = B · ~y, A ·B = 0.

Since flatness is a local condition we only need to understand when a module over a
local ring is flat.

Theorem 10.3.2 (Infinitesimal criterion of flatness). Suppose (R,m) is a Noetherian local
ring, (S, n) is a Noetherian local R-algebra such that

mS ⊂ n,

and M is a finitely generated S-module. Then the following conditions are equivalent.
(i) M is a flat R-module.
(ii) TorR1 (R/m,M) = 0.
(iii) For every n ≥ 1 the R/mn-module M/mnM is flat.
(iv) For every n ≥ 1 the R/mn-module M/mnM is free.

Definition 10.3.3. Suppose (f, f#) : (X,RX) → (Y,RY ) is a morphism of ringed spaces.
The morphism is said to be flat at x ∈ X if the ring morphism f# : RY,f(x) → RX,x is flat.
The morphism is called flat if it is flat at every point x ∈ X.
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Chapter 11

Singularities of holomorphic

functions of two variables

To get an idea of the complexity of the geometry of an isolated singularity we consider in
greater detail the case of isolated singularities of holomorphic functions of two variables.
This is is a classical subject better which plays an important role in the study of plane
algebraic curves. For more details we refer to [12, 14, 41] from which this chapter is inspired.
We begin by considering a few guiding examples.

11.1 Examples

As we have indicated in the previous chapter, all the information about the local structure
of an analytic set near a point is entirely contained in the analytic algebra associated to
that point. In particular, if P ∈ C[z1, · · · , zn] is a polynomial such that P (0) = 0, and 0
is an isolated critical point of P , then the local structure of the hypersurface P = 0 near
0 ∈ Cn contains a lot of information about the critical point 0.

Example 11.1.1. (Nodes) Consider the polynomial P (x, y) = xy ∈ C{x, y}. Then the
origin 0 ∈ C2 is a nondegenerate critical point of P , i.e. µ(P, 0) = 1. Near 0 the hypersurface
A defined by P = 0 has the form in Figure 11.1. The analytic algebra of (A, 0) is given by

Figure 11.1: The node xy = 0 in C2.

the quotient OA,0 := C{x, y}/(xy). Note that OA,0 is not an integral domain. If we rotate
the figure by 45 degrees we see that A is a double branched cover of a line.

105
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Example 11.1.2. (Cusps) Consider the polynomials P (x, y) = y2 − x3 ∈ C{x, y}, and
Q(x, y) = y2 − x5 ∈ C{x, y}. Their zero sets V (P ) and V (Q) are depicted in Figure
11.2. This figure also shows that both curves are double branched covers of the affine line.

0

Figure 11.2: The cusps y2 = x3 in red, and y2 = x5, in blue.

The Jacobian ideal of P at 0 is J(P, 0) = (x2, y), while the Jacobian ideal of Q at 0 is
J(Q, 0) = (x4, y). We deduce that µ(P, 0) = 2 while µ(Q, 0) = 4. This shows that the
functions P and Q ought to have different behaviors near 0.

The analytic algebra of V (P ) at zero is R(P ) := C{x, y}/(y2 − x3), and the analytic
algebra of V (Q) near zero is R(Q) := C{x, y}/(y2 − x5). Both are integral domains so that
none of the them is isomorphic to the analytic algebra of the node in Figure 11.1. This
suggests that the behavior near these critical points ought to be different from the behavior
near a nondegenerate critical point.

We can ask whether R(P ) ∼= R(Q). Intuitively, this should not be the case, because
µ(P, 0) 6= µ(Q, 0). The problem with the Milnor number µ is that it is an extrinsic invariant,
determined by the way these two curves sit in C2, or equivalently, determined by the defining
equations of these two curves. We cannot decide this issue topologically because V (P ) and
V (Q) are locally homeomorphic near 0 to a two dimensional disk. We have to find an
intrinsic invariant of curves which distinguishes these two local rings.

First, we want to provide a more manageable description of these two rings. Define

ϕ3 : C{x, y} → C{t}, x 7→ t2, y 7→ t3,

and
ϕ5 : C{x, y} → C{t}, x 7→ t2, y 7→ t5.

Observe that (y2−xk) ⊂ kerϕk, k = 3, 5. Let us now prove the converse, kerϕk ⊂ (y2−xk).
We consider only the case k = 3. Suppose f(x, y) ∈ kerϕ3. We write

f =
∑

m,n≥0

Amnx
myn.

Then

0 = ϕ3(f) =
∑

m,n≥0

Amnt
2m+3n =

∞∑

k=0

( ∑

2m+3n=k

Amn

)
tk = 0. (11.1.1)

Consider the quasihomogeneous polynomial Φk =
∑

2m+3n=k Amnx
myn. We want to show

that (y2 − x3)|Φk. Set

Sk :=
{
(m,n) ∈ Z2

+; 2m+ 3n = k
}
.
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We denote by π : Z2 → Z the natural projection (m,n) 7→ m, and we set m0 = max π(Sk).
Then there exists a unique n0 ∈ Z+ such that (m0, n0) ∈ Sk. We can then represent

Sk :=
{
(m0 − 3s, n0 + 2s); 0 ≤ s ≤ ⌊m0/3⌋

}
,

and

Φk = xm0yn0

⌊m0/3⌋∑

s=0

Csu
s, u :=

y2

x3
, Cs := A(m0−3s),(n0+2s).

The condition
⌊m0/3⌋∑

s=0

Cs = 0

implies that u = 1 is a root of the polynomial p(u) =
∑

sCsu
s. Hence we have

Φk = xm0yn0(u− 1)

⌊m0/3⌋−1∑

j=0

Dju
j = (y2 − x3)

⌊m0/3⌋−1∑

j=0

Djx
m0−3jyn0+2j .

This shows that ϕ3 induces an one-to-one morphism ϕ3 : R(P )→ C{t} We denote by R2,3

its image. We conclude similarly that ϕ5 induces an one-to one morphism R(Q) → C{t}
and we denote by R2,5 its image. We will now show that the rings R2,3 and R2,5 are not
isomorphic.

Consider for k = 3, 5 the morphisms of semigroups

π2,k : (Z2
+,+)→ (Z+,+), (m,n) 7→ 2m+ kn.

The image of π2,k is a sub-semigroup of (Z+,+) which we denote by Ek. Observe that

E3 = {0, 2, 3, 4, 5, · · · }, E5 = {0, 2, 4, 5, 6, · · ·
}
.

For each f =
∑

n≥0 ant
n ∈ C{t} define e(f) ∈ Z+ by the equality

e(f) := min{n; an 6= 0}.

We get surjective morphisms of semigroups

e : (R2,k, ·)→ (Ek,+), f 7→ e(f).

Suppose we have a ring isomorphism Φ : R2,3 → R2,5. Set A = Φ(t2), B = Φ(t3), a = e(A),
and b = e(B). Observe that a, b > 0 and e(Φ(t2m+3n)) = am + bn ∈ E5. We have thus
produced a surjective morphism of semigroups

Ψ : E3 → E5, (2m+ 3n) 7→ am+ bn.

Since 2 = minE3\{0} we deduce either a = 2, or b = 2, Assume a = 2. Since Ψ is surjective,
we deduce that b = 5. To get a contradiction it suffices to produce two pairs (mi, ni) ∈ Z2

+,
i = 1, 2 such that

2m1 + 3n1 = 2m2 + 3n2 and 2m1 + 5n1 6= 2m2 + 5n2.

For example 11 = 2 · 1 + 3 · 3 = 2 · 4 + 3 · 1 but 2 · 1 + 5 · 3 = 17 6= 13 = 2 · 4 + 5 · 1.
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Exercise 11.1.1. Consider an additive sub-monoid1 S ⊂ (Z,+). Suppose that S is asymp-
totically complete, i.e. there exists ν = νS > 0 such that n ∈ S, ∀n ≥ νS.
(a) Prove that S is finitely generated.
(b) Let

r = min
{
g ∈ Z+; ∃ s1, · · · , sg ∈ S which generate S

}
.

Suppose G1 and G2 are two sets of generators such that |G1| = |G2| = r. Then G1 = G2.
In other words, S has a unique minimal set of generators. This finite set of positive integers
is therefore an invariant of S.

We have discussed Example 11.1.2 in great detail for several reasons. First, we wanted
to convince the reader that by reducing the study of the local structure of a singularity
to a purely algebraic problem does by no means lead to an immediate answer. As we
saw, deciding whether the two rings R2,3 and R2,5 are isomorphic is not at all obvious. The
technique used in solving this algebraic problem is another reason why we consider Example
11.1.2 very useful. Despite appearances, this technique works for the isolated singularities
of any holomorphic function of two variables. In the next section we describe one important
algebraic concept hidden in the above argument.

11.2 Normalizations

Suppose f ∈ C{x, y} is a holomorphic function defined in a neighborhood of 0 ∈ C such
that 0 is an isolated critical point. Assume it is an irreducible Weierstrass y-polynomial in
f ∈ C{x}[y].

Denote by Z = Z(f) the zero set of f , and by OZ,0 = C{x, y}/(f) the local ring of
the germ (Z, 0). It is an integral domain. Following Example 11.1.2, we try to embed OZ,0

in C{t}, such that C{t} is a finite OZ,0-module. More geometrically, Z is a complex 1-
dimensional analytic set in C2, better known as a plane (complex) curve . A normalization
is a then a germ of a finite map C → Z with several additional properties to be discussed
later.

Observe that when f = y2 − x3 we get such an embedding by setting x = t2, y = t3 so
that t = y/x. We see that in this case we can obtain C{t} as a simple extension of OZ,0,
more precisely,

C{t} ∼= OZ,0[y/x].

Similarly, when f = y2 − x5 we set x = t2, y = t5 so that t = y/x2, and

C{t} ∼= OZ,0[y/x
2].

Note that in both cases t is an integral element over OZ,0, i.e. it satisfies a polynomial
equation of the form

tn + an−1t
n−1 + · · ·+ a1t+ a0 = 0, ak ∈ OZ,0.

In both cases we have t2−x = 0. This shows that in both cases C{t} is a finite OZ,0-module.
To analyze the general case we need to introduce some terminology.

1An additive monoid is a commutative semigroup (S,+) with 0, satisfying the cancelation law, a + x =
b+ x ⇐⇒ a = b.
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Definition 11.2.1. Suppose R is an integral domain, and K ⊃ R is a field.

(a) An element x ∈ K is said to be integral over R over R if there exists a polynomial
P ∈ R[T ] with leading coefficient 1 such that P (x) = 0. We denote by R̃K ⊂ K the set of
integral elements in K. When K is the field of fractions Q(R) of R we write R̃ instead of
R̃Q(R).

(b) R is said to be integrally closed in K if R = R̃K . The ring R is called integrally closed,
if it is integrally closed in its field of fractions Q(R).

Exercise 11.2.1. (a) Prove that x ∈ Q(R) is integrally closed if and only if the R-module
R[x] is finitely generated.

(b) Suppose R ⊂ S as a finite extension of integral Noetherian domains (i.e. S is finitely
generated as an R-module), and K is a field containing S. If an element α ∈ K is integral
over S, then it is also integral over R.

(b) Prove that R̃ is a ring.

Exercise 11.2.2. Prove that any unique factorization domain is integrally closed.

Definition 11.2.2. The set R̃ is a subring of Q(R) called the normalization of R . Observe
that R̃ is integrally closed.

Example 11.2.3. Let f = y2 − x3 ∈ C{x, y}, and Z = {f = 0} ⊂ C2. The isomorphism
C{t} ∼= OZ,0[y/x] shows that we can view C{t} as a subring of the field of fractions of
OZ,0.

We have the following fundamental result.

Theorem 11.2.4. Suppose f ∈ C{x, y} is irreducible, f(0) = 0. Assume y is regular in
the y-direction and set Rf := C{x, y}/(f). Then the normalization R̃f of Rf is isomorphic
to C{t}.

There are several essentially equivalent ways of approaching this theorem, which state
various facts specific only to dimension 1. It is thus not surprising that the concept of
dimension should play an important role in any proof. We will present a proof which
combines ideas from [21, 41], and assumes only the geometric background presented so far.
For a more algebraic proof we refer to [41].

Sketch of proof We can assume f is a Weierstrass polynomial of degree q,

f(x, y) = yq + a1(x)y
q−1 + · · ·+ aq(x) ∈ C{x}[y], aj(0) = 0, ∀j = 1, · · · q.

Denote by Zy a small neighborhood of (0, 0) in {y = 0}, and by Zf a small neighborhood
of (0, 0) in f−1(0). The natural projection

C2 → C, (x, y) 7→ x
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induces a degree q cover πf : Zf → Zy, branched over the zero set of the discriminant ∆(x)
of f . We can assume Zy is small enough so that ∆−1(0) ∩ Zy = {0}. We set

Z∗
f := Zf \ {(0, 0)} = π−1(Z∗

y ), Z∗
y := Zy \ {0}.

Since f is irreducible we deduce Z∗
f is a connected, smooth one dimensional complex mani-

fold, and π : Z∗
f → Zx is q-sheeted connected cover of the punctured disk Z∗

y . Thus we can
find a small disk D in C centered at 0, and a bi-holomorphic map

φ : D∗ → Z∗
f

such that the diagram below is commutative

(D∗, t) Z∗
f

(Z∗
y , x)

'

'

')

πq:t7→x=tq

w

φ

[

[

[̂

πf

The holomorphic functions x, y on Zf define by pullback bounded holomorphic functions on
the punctured diskD∗, and they extend to holomorphic functions x(t), y(t) onD. Moreover,
x(t) = tq. We view the coordinate t as a bounded holomorphic function on D. It induces
by pullback via φ−1 a bounded holomorphic function t = t(x, y) on Z∗

f . We want to prove
that it is the restriction of a meromorphic function on Zf . More precisely, we want to prove
that, by eventually shrinking the size of Zf we have

t =
A(x, y)

B(x, y)
|Zf
, A,B ∈ C{x, y}.

Denote by Kx the field of meromorphic functions in the variable x, i.e. Kx is the field of
fractions of C{x}. Denote by Kf the field of fractions of Rf . Kf is a degree q extension of
Kx and in fact, it is a primitive extension. As primitive element we can take the restriction
of the function y to Zf .

For every point p ∈ Z∗
y there exists a small neighborhood Up, and q holomorphic func-

tions
rj = rj,p(x) : Up → C

such that

π−1(Up) =

q⋃

j=1

{(
x, rj(x)

)
; x ∈ Up

}
.

In particular, this means that for each x ∈ Up the roots of the polynomial

f(x, y) = yq + a1(x)y
q−1 + · · · + aq(x) ∈ C{x}[y]

are r1(x), · · · , r1(x), so that

f(x, y) =

q∏

j=1

(y − rj(x)), ∆(x) =
∏

i 6=j

(
ri(x)− rj(x)

)
=

q∏

j=1

∂yf (x, rj(x)).
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For (x, y) ∈ π−1(Up) define the Lagrange interpolation polynomial

R(x, y) := f(x, y) ·
q∑

j=1

t(x, rj(x))

∂yf(x, rj(x)) · (y − rj(x))
.

Note that R(x, y) = t(x, y), ∀(x, y) ∈ π−1(Up). Observe that ∆(x)R(x, y) is a polynomial
in y with coefficients holomorphic functions in the variable x ∈ Up. The coefficients of
this polynomial do not depend on p and are in fact bounded holomorphic functions on Z∗

y

and thus they extend to genuine holomorphic functions on Zy. We have thus proved the
existence of q holomorphic functions b1, · · · , bq on Z1 such that

∆(x)t(x, y) = yq + b1(x)y
q−1 + · · ·+ bq(x)

which shows that t ∈ Kf as claimed.

We thus get a map Φ : Rf → C{t}, defined by x 7→ tq, y = y(t). Let us first show it
is an injection. Indeed, if P (tq, y(t)) = 0 for some P ∈ C{x, y} then we deduce from the
analytical Nullstellensatz that P ∈ (f). This is also a finite map because it is quasifinite,

tq = x ∈ Φ(mRf
).

We can thus regard C{t} as a finite extension of Rf . Now observe that C{t} ⊂ Q(Rf )
because t ∈ Q(Rf ). Since C{t} is integrally closed we deduce that C{t} is precisely the
normalization of Rf .

The holomorphic map φ : D → Zf constructed above, which restricts to a biholomor-
phism φ : D∗ → Z∗

f is called a resolution of the singularity of the germ of the curve f = 0
at the point (0, 0). We have proved that we can resolve the singularities of the irreducible
germs. The reducible germs are only slightly more complicated. One has to resolve each
irreducible branch separately.

Definition 11.2.5. Suppose (C, 0) is an irreducible germ of a plane curve defined by an
equation f(x, y) = 0. Then a resolution of (C, 0) is a pair (C̃, π) where C̃ is a smooth curve
and π : C̃ → C is a holomorphic map with the following properties

(a) π−1(0) consists of a single point {p}.
(b) π : C̃ \ π−1(0)→ C \ {0} is biholomorphic.

A resolution defines a finite morphism π∗ : OC,0 → OC̃,p called the normalization and
we set

δ(C, 0) := dimCOC̃,p/π
∗OC,0.

The integer δ(C, 0) is called the delta invariant of the singularity. Later on we will
prove that it indeed is an invariant of the singularity.

Exercise 11.2.3. Prove that the polynomial y2 − x2k+1 is irreducible as an element in
C{x, y}.
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Example 11.2.6. Let C2,k denote the germ at 0 of the curve y2 − x2k+1. As in Example
11.1.2 we see that OC,0

∼= C{Sk} where Sk is the sub-monoid of (Z+,+) generated by 2 and
2k + 1, and C{Sk} ⊂ C{t} is the subring defined by

C{Sk} =
{
f =

∑

m∈Sk

amt
m
}
.

Then
δ(Ck, 0) = dimC{t}/C{Sk} = #(Z+ \ Sk) = k.

We will next present a constructive description of the resolution of an irreducible sin-
gularity based on Newton polygons, and then we will discuss a few numerical invariants of
an isolated singularity of a curve.

11.3 Puiseux series and Newton polygons

The resolution described in the proof of Theorem 11.2.4 has a very special form

x = tq, y = y(t) ∈ C{t}, f(tq, y(t)) = 0.

If we think, as the classics did, that y is an algebraic function of x implicitly defined by the
equation f(x, y) = 0, we can use the above resolution to produce a power series description
of y(x). More precisely, we set t = x1/q and we see that

y =
∑

k≥0

ykx
k/q.

Such a description is traditionally known as a Puiseux series expansion.
The above argument is purely formal, since the the function z 7→ z1/q is a multivalued

function. Denote by C((z)) the field of fractions of the ring of formal power series C[[z]]. It
can be alternatively described as the ring of formal Laurent series in the variable z. Denote
by C((z1/n)) the finite extension of C((z)) defined by

C((z1/n)) :=
C((z))[t]

(tn − z) .

Observe that if m|n then we have a natural inclusion

ınm : C((z1/m)) →֒ C((z1/n)), z1/m 7→ (z1/n)n/m,

or more rigorously,
C((z))[t]

(tm − z) →֒
C((z))[s]

(sn − z) , t 7→ sn/m.

The inductive limit of this family of fields is denoted by C〈〈z〉〉. The elements of this field
are called Puiseux-Laurent series and can be uniquely described as formal series

f =
∑

k≥d

akz
k/n, d, n ∈ Z, n > 0, g.c.d.

(
{n} ∪ {k; ak 6= 0}

)
= 1.
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Define

S(f) := {k; ak 6= 0}, oz(f) :=
minS(f)

n
.

S(f) is called the support of f , oz(f) is called the order of f and n is called the polydromy
order. We denote it by ν(f). A Puiseux series is then a Puiseux-Laurent series f such that
oz(f) ≥ 0. It is convenient to describe a Puiseux series f of polydromy order n in the form

f(z) = g(z1/n), g ∈ C[[x]].

Observe that g is uniquely determined by the identity

g(x) = f(xn).

We say that g is the power series expansion associated to f . The Puiseux series f is called
convergent if the associated power series is convergent.

Theorem 11.2.4 shows that if f ∈ C{x}[y] is a Weierstrass polynomial, irreducible as an
element in C{x, y}, then there exists a (convergent) Puiseux series y = y(x) such that

f(x, y(x)) = 0.

Moreover, the polydromy order of y(x) is equal to the y-degree of the Weierstrass polynomial
f(x, y). In particular, this means that the polynomial in y has a root in the extension C〈〈x〉〉
of Q(C{x}).

The Galois group of the extension C((x)) →֒ C((x1/n)) is a cyclic group of Gn order n.
Fix a generator ρ of Gn. Then there exists a primitive n-th root ǫ of 1 such that

(ρf)(x1/n) = f(ǫx1/n), ∀f ∈ C((x1/n)).

We conclude immediately that if f(x, y) ∈ C{x}[y] is a Weierstrass polynomial of degree
n, irreducible as an element of C{x, y}, and y ∈ C((x1/n)) is a convergent Puiseux series
resolving the singularity at 0 of f(x, y) = 0 then

f(x, y) =
∏

ǫn=1

(
y − y(ǫx1/n)

)
.

A natural question arises. How do we effectively produce a Puiseux series expansion for an
algebraic function y(x) defined by an irreducible equation f(x, y) = 0? In the remainder of
this section we will outline a classical method, based on Newton polygons.

Definition 11.3.1. Let f =
∑

α aαX
α ∈ C{x, y}, where α ∈ Z2

+, and X
α := xα1yα2 . The

the support of f is the set

S(f) :=
{
α ∈ Z2

+; aα 6= 0
}
.

Definition 11.3.2. The Newton polygon associated to S ⊂ Z2
+ is the convex hull of the set

S+Z2
+. We denoted it by Γ(S). The Newton polygon of f ∈ C{x, y} is the Newton polygon

of its support. We set Γ(f) := Γ(S(f)).
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(0,6)

(10,3)

(11,4)

(33,0)

(22,2)

(21,1)

P2

P1

(20,0)

Figure 11.3: The Newton polygon of f = y6+3x11y4+2x10y3− 3x22y2+6x21y+x33−x20.

The Newton polygon of a set S ⊂ Z2
+ is noncompact. It has finitely many vertices

P0, P1, · · · , Pr ∈ Z2
+, which we label in decreasing order of their heights, i.e. if Pi has

coordinates (ai, bi) then
b0 > b1 > · · · > bq ≥ 0.

Note that 0 ≤ a0 < a1 < · · · < aq. Define the height of a Newton Polynomial to be
ht(Γ(S)) = b0 − b1, and the width to be wd(Γ(S)) = aq − a0. A Newton polygon is called
convenient P0 is on the vertical axis, and Pr is on the horizontal axis, i.e. a1 = 0, br = 0.
In Figure 11.3 is depicted a Newton polygon with two vertices.

In general, a Newton polygon has a finite number of vertices r+1, and a finite number
of finite edges, r. It has two infinite edges, a vertical one, and a horizontal one. Note that
f is y-regular of order m (i.e. y 7→ f(0, y) has a zero of order m at y = 0) if and only if the
first vertex of its Newton polygon is the point (0,m) on the vertical axis.

The following elementary result offers an indication that the Newton polygon captures
some nontrivial information about the geometry of a planar curve.

Exercise 11.3.1. If f ∈ C{x, y} is irreducible then its Newton polygon is convenient and
has a single finite edge.

It is not always easy or practical to draw the picture of the Newton polygon of a given
polynomial, so we should have of understanding its basic geometric characteristics without
having to draw it. This can be achieved using basic facts of convex geometry.

Set V := R2, L := Z2 ⊂ V , L+ := Z2
+ ⊂ L, and denote by V ♯ the dual of V . Suppose

S ⊂ L+. The polar of Γ(S) is the convex set

Γ(S)♯ =
{
χ ∈ V ♯; 〈χ, v〉 ≥ 0, ∀v ∈ Γ(S)

}
.

The restriction of any linear functional χ ∈ Γ(S)♯ to Γ(S) achieves its minimum either at
a vertex of Γ(S) or along an entire edge of Γ(S). For uniformity, we will use the term face
to denote vertices and finite edges. A vertex is a 0-face, and an edge is a 1-face. For each
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χ ∈ Γ(S)♯ we denote by φχ the face of Γ(S) along which χ achieves its minimum. We say
that φ(χ) is the trace of χ along Γ(S). Define the supporting function of Γ(S) to be

ℓS : Γ(S)♯ → R→ R+, ℓS(χ) = min
{
〈χ, v〉; v ∈ Γ(S)

}
.

Observe that
φ(χ) =

{
v ∈ Γ(S); 〈χ, v〉 = ℓS(χ)

}
.

Two linear functionals χ1, χ2 ∈ Γ(S)♯ are called equivalent if φ(χ1) = φ(χ2). We denote by
Cχ the closure of the equivalence class of χ. We have the following elementary result.

Exercise 11.3.2. For each χ ∈ Γ(S)♯ the set Cχ is rational cone, i.e. it is a closed, convex
cone generated over R by a finite collection of vectors in the dual lattice

L♭ :=
{
χ ∈ V ♯; 〈χ, v〉 ∈ Z, ∀v ∈ L

}

Definition 11.3.3. A 2-dimensional fan is a finite collection F of rational cones in V ♯ with
the following properties.

(a) A face of a cone in F is a cone in F .
(b) The intersection of two cones in F is a cone in F .

We have the following result.

Proposition 11.3.4. Consider a set S ⊂ L+ and its Newton polygon Γ(S). Then the
collection

Φ(S) :=
{
Cχ; χ ∈ Γ(S)♯

}

is a fan.

Proof Denote by {P0, P1, · · · , Pr} the vertices of Γ(S) arranged in decreasing order of
their heights. For i = 1, · · · , r, denote by λi the line trough the origin perpendicular to
Pi−1Pi. Observe that

0 < slope (λ1) < slope (λ2) < · · · < slope (λr) <∞.

These rays partition the first quadrant V+ of V into a fan consisting of the origin, the
nonnegative parts of the horizontal and vertical axes, the parts of the rays λi inside the first
quadrant, and the angles formed by these rays. If we identify V and V ♯ using the Euclidean
metric, then we can a fan in V ♯ consisting precisely of the cones Cχ, χ ∈ Γ(S)♯. �

We see that the one dimensional cones in Φ(S) correspond to the one dimensional faces
of Γ(S) (see Figure 11.4). We denote by ∆ = ∆S the steepest 1-face of Γ(S). It is the first
1-face, counting from left to right. It corresponds to the first (least inclined) non-horizontal
ray in the associated fan.

For each 1-face φ of Γ(S), the corresponding one-dimensional cone Cφ in Φ(S) contains
an additive monoid Cφ ∩L♭ generated by the lattice vector on Cφ closest to the origin. We
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Figure 11.4: A Newton polygon (in black) and its associated fan (in red).

denote this vector by ~wφ, and we will refer to it as the weight of the one-dimensional face φ.
Observe that the face φ is the trace of ~w = (w1, w2) on Γ(S), and the coordinates (w1, w2)
are coprime integers. The quantity

d(φ) := ℓS(~wφ) = 〈~w, v〉, v ∈ φ

is called the (weighted) degree of the the face φ. The weight of Γ(S) is defined to be the
weight of the first face ∆.

Definition 11.3.5. Suppose f =
∑

α aαX
α ∈ C{x, y}, and ∆ is the first face of Γ(f). We

set

f∆ =
∑

α∈∆

aαX
α.

The function f is called nondegenerate if it is y-regular and the weight of ∆ has the form
(1, w), w ∈ Z>0.

Example 11.3.6. The Newton polygon in Figure 11.3 has an unique 1-face φ described by
the equation

φ :
x

20
+
y

6
= 1, x, y ≥ 0.

The corresponding cone in the associated fan is the ray

Cφ : y =
10

3
x, x ≥ 0.

We deduce that the weight of this face is ~w = (3, 10) and its degree is 60.
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Consider now an irreducible f ∈ C{x, y}. We assume it is a Weierstrass polynomial in
y. Its Newton polygon Γf has only one face. We denote by ~w the weight of the unique finite
1-face of ∆ and by d0 its degree. For each α ∈ L+ we denote by degw(X

α) its ~w-weighted
degree,

degw(X
α) = 〈~w, α〉 = w1α1 + w2α2.

We can write
f :=

∑

α∈L+

aαX
α

where aα = 0 if α 6∈ S(f). Then

f =
∑

d≥d0

fd, where fd :=
∑

degw α=d

aαX
α, (degw α := 〈~w, α〉).

To find a Puiseux series expansion of the algebraic function y = x(x) defined by f(x, y) = 0
we will employ a method of successive approximation. We first look for a Puiseux series of
the form

x := xw1
1 , : y = xw2

1 (a0 + y1), c0 ∈ C, y1 = y1(x1) ∈ C{x1}, y1(0) = 0.

Observe that
fd
(
xw1
1 , xw2

1 (a0 + xw2
1 y1)

)
= xd1

∑

degw α=d

aα(c0 + y1)
α2 ,

so that
f
(
xw1
1 , xw2

1 (a0 + xw2
1 y1)

)
= O(xd01 ), ∀y1.

We want to find c0 such that

f
(
xw1
1 , xw2

1 (a0 + xw2
1 y1)

)
= O(xd0+1

1 ), ∀x2.

We see that this is possible iff c0 is a root of the polynomial equation

fd0(1, c0) = f∆(1, c0) =
∑

degw α=d0

aαc
α2
0 = 0.

Now define a new function

f1(x1, y1) :=
1

xd01
f(xw1

1 , xw2
1 (c0 + y1)) ∈ C{x1, y1}.

We believe it is more illuminating to illustrate the above construction on a concrete example,
before we proceed with the next step.

Example 11.3.7. Consider the Weierstrass polynomial

f(x, y) = y6 + 3x11y4 + 2x10y3 − 3x22y2 + 6x21y + x33 − x20 ∈ C{x}[y]

with elementary Newton polynomial depicted in Figure 11.3. The weight of the unique
finite 1-face is according to Example 11.3.6, ~w = (3, 10), and its degree is 60. Then

f∆ = f60(x, y) := y6 + 2x10y3 − x20.
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so that f∆(1, y) = y6 + 2y3 − 1. It has six roots determined by

r3 = −1±
√
2.

Pick one of them, and denote it by c0. Then

1

x60
f
(
x3, x10(c0 + y)

)

= (c0 + y)6 + 3x13(c0 + y)4 + 2(c0 + y)3 − 3x26(c0 + y)2 + 6x13(c0 + y) + x39 − 1

= y6 + 6c0y
5 +

(
3x13 + 15c20

)
y4 +

(
12c0x

13 + 2 + 20c30

)
y3

+
(
15c40 + 6c0 + 18c20x

13 − 3x26
)
y2 +

(
6c50 + 6c20 + 12c30x

13 − 6c0x
26
)
y

+(13c40 + 6c0)x
13 − 3c20x

26 + x39.

This looks ugly! However, here is a bit of good news. The height of the Newton polygon of
f1 is substantially smaller. It is equal to one, and it is due to the presence of the nontrivial
monomial (6c50 + 6c20)y which shows that the multi-exponent (0, 1) lies in the support of
f1. Let us phrase this in different terms. The condition that (0, 1) ∈ S(f1) is equivalent
to ∂f1

∂y (0, 0) 6= 0. Using the holomorphic implicit function theorem we deduce that we can
express y as a holomorphic function of x, y = y1(x). Note that y1(x) vanishes up to order
13 at x = 0, i.e. it has a Taylor expansion of the form

y1(x) = c1x
13 + higher order terms.

We now have a Puiseux expansion

x = x31, y = x101 (c0 + y1(x1)) = c0x
10
1 + c1x

23
1 + · · ·

All the other monomials arising in the power series expansion of y1(x1) can be (theoretically)
determined inductively from the implicit equation f1(x1, y1) = 0. Practically, the volume
of computation can be overwhelming.

The above example taught us some valuable lessons. First, the passage from f to f1
reduces the complexity of the problem (in a sense yet to be specified). We also see that
once we reach a Newton polygon of height one the problem is essentially solved, because we
can invoke the implicit function theorem. The transformation f 7→ f1 produces a hopefully
simpler curve gem (C1, 0) and holomorphic map (C1, 0) 7→ (C, 0).

Let us formalize this construction. Denote by R{x, y} the set of holomorphic functions
f ∈ C{x, y} y-regular. Define a multivalued transformation

P : R{x, y} ∋ f 7→ P(f) ⊂ R{x1, y1}

where

f̂(x1, y1) ∈ P(f)⇐⇒ f̂(x1, y1) =
1

xd01
f(xw1

1 , xw2
1 (r + y1))

where r ∈ C is a root of the polynomial equation

f∆(1, r) = 0

We first need to show that P is well defined.
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Lemma 11.3.8. Let f ∈ R{x, y} be y-regular of order m. Then deg f∆(1, y) = m and any
f̂ ∈ Pf is y1-regular of order m1 ≤ m, where m1 is the multiplicity of the root r of the
degree m polynomial f∆(1, y) ∈ C[y]. Moreover, m1 = m iff f∆(1, y) = c(y − r)m in which
case the weight (w1, w2) of ∆ is nondegenerate, i.e. w1 = 1.

Proof Denote by ~w = (w1, w2) the weight of Γ(f) and by d0 the weighted degree of f∆.
Denote by P and Q the endpoints of the first edge ∆ of Γ(f), P = P (0,m) and Q = Q(a, b),
b < m. Pick a root r of f∆(1, y) = 0 and set

f̂(x1, y1) =
1

xd01
f(xw1

1 , xw2
1 (r + y1)).

We write
f =

∑

d≥d0

fd(x, y),

where fd ∈ C[x, y], degw fd = d. Then

1

xd01
f(x1, x

w2
1 (r + y1)) = f∆(1, r + y1) +

∞∑

k=1

xk1fd(1, r + y1).

On the other hand

f∆(1, y) = c
m∏

j=1

(y − rj), c ∈ C∗

so that, if r is a root of of f∆(1, y) of multiplicity m1 we get

f∆(1, r + y1) = cym1
1

m∏

j=m1+1

(y1 + r − rj).

The lemma is now obvious.

The above lemma shows that for every y-regular germ f there exists k0 > 0 such that
for all k ≥ k0 all the germs g ∈ Pk(f) are nondegenerate. To understand what is happening
let us consider a few iterations fn 7→ fn+1 ∈ P(fn), n = 0, 1.

f1(x1, y1) =
1

xd01
f(xw11

1 , xw21
1 (y1 + r1))

We can formally set x1 = x1/w11 and

y = xw21/w11(y1 + r1).

At the second iteration we get x2 = x
1/w12

1 = x1/w11w12 and

y1 = x
w22/w12

1 (y2 + r2) =⇒ y = xw21/w11

(
xw22/w11w12(y2 + r2) + r1

)

= r1x
w21/w11 + r2x

w21
w11

+
w22

w11w12 + y2x
w21
w11

+
w22

w11w12 .
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In the limit we will obtain a power series of the form

y =

∞∑

k=1

rkx
ak ,

where the rational exponents ak are determined inductively from

ak+1 = ak +
w2(k+1)

w1(k+1)
· 1

w11w12 · · ·w1k

where ~wk = (w1k, w2k) is the weight of fk. For k ≥ k0 we have w1k = 1 so that the
denominators of the exponents ak will not increase indefinitely. In the limit we obtain a
formal Puiseux series y = y(x) ∈ C((x1/N )) which solves

f(x, y(x)) = 0.

Assume for simplicity that f is irreducible in C{x, y}. Then we can write

f(x, y) =

N−1∏

k=0

(y − y(ǫx)), ǫ = exp(
2πi

N
).

On the other hand, we know that f(x, y) admits a convergent Puiseux series expansion
which must coincide with one of the formal Puiseux expansions y(ǫx). This shows that all
the Formal Puiseux expansions must be convergent, and in particular, any formal Puiseux
expansion obtained my the above iterative method must be convergent.

Example 11.3.9. Consider the germ f(x, y) = y3 − x5 − x7. It has weight ~w = (3, 5) and

f∆ = y3 − x5, degw f∆ = 15

so that f∆(1, y) = y3 − 1, which has r1 = 1 as a root of multiplicity 1. Then

f1(x1, y1) =
1

x151
f(x31, x

5
1(1 + y1)) = (1 + y1)

3 − 1− x61 = y31 + 3y21 + y1 − x61.

The germ f1 has weight (1, 6) and

(f1)∆ = y1 − x61, degw = 6.

The degree 1-polynomial f1(1, y1) = y1 − 1 has only one root r2 = 1, and we can define

f2(x2, y2) =
1

x62
f1(x2, x

6
2(1 + y2)) =

1

x62

{(
1 + x62(1 + y2)

)3
− 1− x62

}

= 3(1 + x62)y2 + 3x62(1 + y2)
2 + x122 (1 + y2)

3 − 1.

In this case ~w = (1, 6), (f2)∆ = 3y2 − 3x62, so we can take y2 = x62(1 + y3). We deduce

y2 = x62(1 + y3), y1 = x62(1 + y2), x2 = x1 =⇒ y1 = x61 + x121 y3

y = x51(1 + y1), x1 = x1/3 =⇒ y = x5/3 + x2+5/3 + x4+5/3y3 = x5/3 + x11/3 + x17/3y3.
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The above computations suggest that computing the whole Puiseux series expansion
may be a computationally challenging task. A natural question arises.

How many terms of the Puiseux series do we need to compute to capture all the relevant
information about the singularity?

The term “relevant information” depends essentially on what type of questions we are
asking. There are essentially two types of questions: topological and analytical (geometri-
cal).

Definition 11.3.10. Consider two irreducible Weierstrass polynomials fi ∈ C{x}[y], i =
0, 1, such that f0(0, 0) = 0. Set Ci := {fi = 0}.
(a) The germ (C0, 0) is topologically equivalent to (C1, 0) if there exist neighborhoods Ui of
0 in C2 and a homeomorphism

Φ : U0 → U1

such that Φ(C0 ∩ U0) = C1 ∩ U1.

(b) The germ (C0, 0) is analytically equivalent to (C0, 0) if the local rings OC0,0 and OC1,0

are isomorphic.

Using Exercise 9.2.1 we deduce that the germs Ci are analytically equivalent if and only
if there exist neighborhoods Ui of 0 in C2 and a biholomorphic map Ψ : U0 → U1 such that

Ψ(C0 ∩ U0) = C1 ∩ U1.

Before we explain how to extract the relevant information (topological and/or analytic)
we want to discuss some arithmetical invariants of Puiseux series. Fix an irreducible Weier-
strass polynomial f ∈ C{x}[y] and Puiseux series expansion

x = tN , y(t) =
∑

k>0

akt
k

Define the set of exponents of f by

E1 = E1(f) :=
{ k
N

; ak 6= 0
}
⊂ 1

N
Z>0.

Let κ1 := minE1 \ Z. We write

κ1 :=
n1
m1

, (m1, n1) = 1.

We then define

E2 = E1 \
{ q

m1
; q ∈ Z+

}

and, if E2 6= ∅ we set κ2 =
r2
m1

= minE2,

r2 =
n2
m2
∈ Q>0, m2 > 1, (n2,m2) = 1.
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If the pairs (m1, n1), · · · (mj , nj) have been selected then define

Ej+1 = E1 \
{ q

m1 · · ·mj
; q ∈ Z+

}
.

If Ej+1 = ∅ we stop, and if not, we set κj+1 = minEj+1

κj+1 = rj+1 ·
1

m1 · · ·mj
, rj+1 =

nj+1

mj+1
, mj+1 > 1, (nj+1,mj+1) = 1.

The process stops in g <∞ steps because (m1 · · ·mj)|N , ∀j. The sequence

{
(m1, n1), (m2, n2), · · · , (mg, ng)

}

called the sequence of Puiseux pairs of f . The integerm1 · · ·mg coincides with the polydromy
of N of the Puiseux series expansion. Define the characteristic exponents of E1 by

k0 = k0(E1) := m1 · · ·mg, kj = kj(E1) := k0 · κj = n1 · · ·njmj+1 · · ·mg, j = 1, · · · g.
(11.3.1)

The Puiseux series expansion can be obtained by applying Newton’s algorithm so we can
write

y(x) =
L∑

k=1

ckx
rk , L ∈ Z+ ∪∞, ck ∈ C∗, rk ∈ Q>0,

where

rk = rk−1 +
w2k

w1k
· 1

w11 · · ·w1(k−1)
, rk−1 =

αk−1

w11 · · ·w1(k−1)
, gcd(w1k, w2k) = 1.

There are only finitely many w1j > 1. The Puiseux pairs are exactly the pairs (w1j , nj)
such that w1j > 1, where

nj = αj−1w11 · · ·w1(j−1)w1j + w2j.

We have the following classical result.

Theorem 11.3.11. Suppose fi(x, y), i = 0, 1, are two irreducible Weierstrass polynomials
in y. Set Ci := {fi = 0} ⊂ C2. Then the germs (Ci, 0) are topologically equivalent if and
only if they have the same sequences of Puiseux pairs.

This theorem essentially says that if we want to extract all the topological information
about the singularity we only need to perform the Newton algorithm until w11 · · ·w1m = N ,
whereN is the poydromy order of the Puiseux expansion. If f is a Weierstrass y-polynomial,
then N = degy f .

We refer to [12] for a detailed, clear and convincing explanation of the geometric intuition
behind this fact. We content ourselves with a simple example which we hope will shed some
light on the topological information carried by the Puiseux pairs.
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Example 11.3.12. (Links of singularities of plane curves.) Consider the singular
plane curve

C =
{
(x, y) ∈ C2; y2 = x3

}
,

It has a single Puiseux pair (2, 3). The link of the singularity at (0, 0) is by definition

KC = KC,r := C ∩ ∂Br

where Br is the sphere of radius r centered at the origin. We will see later in Chapter 12
that for all sufficiently small r the link is a compact, smooth one-dimensional submanifold
of the 3-sphere ∂Br. In other words, KC is a link, which has as many components as
irreducible components of the germ of C at (0, 0). In our case the germ of C at the origin
is irreducible so that KC is a knot. Its isotopy type is independent of r and thus can be
viewed as a topological invariant of the singularity.

To understand this knot consider the polydisk

D2
r =

{
(x, y) ∈ C2; |x| ≤ r2, |y| ≤ r3

}
.

Note that ∂D2
r is homeomorphic to the 3-sphere and it describes an explicit decomposition

of the 3-sphere as an union of two (linked) solid tori

∂D2
r = Hx ∪Hy =

(
∂Dx

r2 ××D
y
r3

)
∪
(
Dx

r2 × ∂D
y
r3

)

:= {|x| = r2, |y| ≤ r3} ∪ {|x| ≤ r2, |y| = r3}.
The core of Dx

r2 is an unknot K0 situated in the plane y = 0, parametrized by

S1 ∋ ζ 7→ (rζ, 0).

One can show that the knot C∩∂Dr is isotopic to C∩∂Br. Moreover there is an embedding

φ : {|z| = r} ⊂ C∗ → ∂Br, z 7→ (x, y) = (z2, z3)

whose image is precisely the link of the singularity. It lies on the torus

Tr = ∂Dx
r2 × ∂D

y
r3
.

and carries the homology class

2[∂Dx
r2 ] + 3[∂Dy

r3
] ∈ H1(Tr,Z).

We say that it is a (2, 3)-torus knot. It is isotopic to the trefoil knot depicted in Figure 12.1.
Observe that this link is completely described by the Puiseux expansion corresponding to
this singularity. More generally, the link of the singularity described by yp = xq, gcd(p, q) =
1, is a (p, q)-torus knot.

Suppose now that we have a singularity with Puiseux series

y = x3/2 + x7/4.
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Then the Puiseux pairs are (2, 3), (2, 7). To construct its link consider a polydisk

D2 = {(x, y) ∈ C2; |x| ≤ r, |y| ≤ s}.

so that ∂D decomposes again into an union of solid tori

∂D2 = Hx ∪Hy, Hx = {|x| = r} × {|y ≤ s}, Hy = {|x| ≤ r} × {|y| = s}.

We will use the Puiseux expansion to describe the link as an embedding S1 → Hx. Consider
the map

φ : S1 = {|z| = r1/4} → C2, z 7→ (x, y) = (z4, z7 + z7).

Observe that if r3/2 + r7/4 ≤ s, then φ(S1) ⊂ Hx and the image of φ is precisely the link of
the singularity.

To understand the knot φ(S1) we will adopt a successive approximations approach. Set

φ1, φ2 : S
1 → Hx, φ1(z) = (z2, z3), φ2(z) = φ1(z

2) + (0, z7) = φ(z).

The image of φ1 is a (2, 3)-torus knotK1. We see that for r≪ 1 we have |φ2(z)−φ1(z2)| ≪ 1
and the image of φ is a knot which winds around K1 2 times in one direction and 7 times
in the other direction. Here we need to be more specific abound the winding. This can be
unambiguously defined using the cabling operations on framed knots.

A framing of a knot K is a homotopy class of nowhere vanishing sections ~ν : K → νK ,
where νK → K is the normal bundle of the embedding K →֒ S3. We can think of ~ν as
a vector field along K which is nowhere tangent to K. As we move around the knot the
vector ~ν describes a ribbon bounded on one side by the knot, and on the other side by the
parallel translation of the knot K 7→ K + ~ν given by the vector field ~ν.

Alternatively, we can think of the translate K+~ν as lieing on the boundary of a tubular
neighborhood UK of the knot in S3. Topologically, UK is a solid torus and the cycles K
and K + ~ν carry the same homology class in H1(UK ,Z). They define a generator of this
infinite cyclic group. We denote it by λK and we call it the longitude of the framed knot.

The boundary ∂UK of this tubular neighborhood carries a canonical 1-cycle called the
meridian of the knot, µK . It is a generator of the kernel of the inclusion induced morphism

i∗ : H1(∂UK ,Z)→ H1(UK ,Z).

Since this kernel is an infinite cyclic group, it has two generators. Choosing one is equiv-
alent to fixing an orientation. In this case, if we orient K, then the meridian is oriented
by the right hand rule. Once we pick a framing ~ν of a knot we have an integral basis of
H1(∂UK ,Z), (µK , λK). We thus have a third interpretation of a framing, that of a com-
pletion of µK to an integral basis of H1(∂UK ,Z). In particular, we see that each framing
defines a homeomorphism

UK → S1 ×D2, K → S1 × {0}, µK 7→ {1} × ∂D2, λK 7→ S1 × {1}.

This homeomorphism is unique up to an isotopy.
If (K,~ν) is a framed knot then a (p, q)-cable of K is a knot disjoint from K, situated in a

tubular neighborhood UK of K, and which is homologous to q[µK ] + p[λK ] in H1(∂UK ,Z).
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Each knot bounds a (Seifert) surface in S3, and a tubular neighborhood of a knot inside
this surface is a ribbon, and thus defines a framing, called the canonical framing. This is
not the only way to define framings. Another method, particularly relevant in the study of
singularities, goes as follows.

Suppose (K0, ~ν0) is a framed knot, so that we can identify a tubular neighborhood UK0

with S1×D2. Denote by π the natural (radial) projection S1×D2 7→ S1 ×{0}. A cable of
K0 is a knot K with the following properties.

• K ⊂ UK0 and K ∩K0 = ∅.
• The restriction π : K → K0 is a regular cover, of degree k > 0.

Fix a thin tubular neighborhood UK of K contained in UK0 = S1 × D2. Then UK

intersects each slice St = {t} × D2, t ∈ S1, in k-disjoint disks, ∆1, · · · ,∆k, centered at
p1(t), · · · , pk(t). Fix a vector u ∈ D2 and then parallel transport it at each of the points
p1(t), · · · , pk(t), t ∈ S1 as in Figure 11.5. In this fashion we obtain a smooth vector field
along K which is nowhere tangent to K. Its homotopy class is independent of the choice u.
In this fashion we have associated a framing to each cable of a framed knot. In H1(∂UK0 ,Z)
we have an equality

[K] = q[µK0 ] + kλK0 .

We have thus shown that the cable of a framed knot is naturally framed itself.

1

∆

∆

∆

2

3

K

K

K

u

u

u

Figure 11.5: A punctured slice

Suppose we are given two vectors ~m,~n ∈ Zr such that gcd(mi.ni) = 1, ∀i = 1, · · · , r.
An iterated torus knot of type (~m;~n) is a knot K such that there exist framed knots
K0, · · · ,Kr−1,Kr = K with the following properties.

•K0 is the unknot with the obvious framing.
• Ki is the (mi, ni)-cable of Ki−1 equipped with the framing described above.

If (C, 0) is the germ at 0 of a planar (complex) curve, and its Puiseux pairs are
(m1, n1), · · · , (mr, nr) then the link C ∩Br(0) is an iterated torus knot of the type

(
m1, · · · ,mr; n1, · · · , nr

)
.

In particular, for the singularity given by the Puiseux series t 7→ (t4, t6 + t7) the link is an
iterated torus of type (2, 2; 3, 7). The link of the singular germ y5 = x3 is the (3, 5)-torus
knot depicted in Figure 11.6.



126 Liviu I. Nicolaescu

Figure 11.6: A (3, 5)-torus knot generated with MAPLE.

The Puiseux expansion (x(t), y(t)) produces an embedding

Rf := C{x, y}/(f)→ C{t}.

We have a morphism of semigroups

ordt :
(
C{t}∗, ·

)
→
(
Z≥0,+

)

uniquely defined by

ordt(t
k) = k, ordt(u) = 0, ∀u ∈ C{t}, u(0) 6= 0.

The image of R∗
f in Z≥0 is a monoid Of ⊂ (Z≥0,+). Define the conductor

c(f) := min
{
n; n+ Z≥0 ⊂ Of )

}
.

Of is called the semigroup associated to the singularity of a plane curve.

Example 11.3.13. (a) Consider again the polynomial f Example 11.3.7. Then

E1 =
{10

3
,
23

3

}
∪A

where
A ⊂

{m
3
; m ≥ 23}

Then κ1 =
10
3 so that (m1, n1) = (3, 10),

E2 =
{23

3

}
∪
(
A \

{n
3
; n ∈ Z+

})
= ∅
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It is now clear that k0 = 3 and k1 = 10. Of contains the semigroup 〈3, 10〉+ generated by
3, 10 and it happens that A ⊂ 〈3, 10〉+. Hence

Of =
{
3, 6, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, · · ·

}
.

Hence c(f) = 18.

(b) Consider the polynomial f = y3 − x5 − x7 in Example 11.3.9. Then

E1(f) =
{5
3
,
11

3

}
∪A, A ⊂ 1

3
(17 + Z+).

Then k0 = 3, κ1 = 5
3 so that (m1, n1) = (3, 5) and k1 = 5. The semigroup generated by 3

and 5 is
〈3, 5〉+ =

{
3, 5, 6, 8, 9, 10, 11, · · ·

}

This shows Of = 〈3, 5〉+ and c(f) = 8.

Let us say a few words about analytical equivalence which is a rather subtle issue. More
precisely we have the following result of Hironaka.

Theorem 11.3.14. Suppose we are given two irreducible germs of plane curves with Puiseux
expansions

C1 : t 7→ (tn1 ,
∑

j≥1

ajt
j), C2 : t 7→ (tn2 ,

∑

j≥1

bjt
j).

Then the two germs are analytically equivalent if and only if

n1 = n2, δ(C1, 0) = δ(C2, 0) =: δ,

and

aj = bj , ∀j = 1, · · · , 2δ.

We see that the analytical type is determined by a discrete collection of invariants and
a continuous family of invariants. Later in this chapter we will see that the Puiseux pairs
determine the delta -invariant, and the semigroup Of as well. To see this we need a new
technique for understanding singularities.

11.4 Very basic intersection theory

We interrupt a bit the flow of arguments to describe a very important concept in algebraic
geometry, that of intersection number. We will consider only a very special case of this
problem, namely the intersection problem for plane algebraic curves.

Suppose we have two irreducible holomorphic functions f, g ∈ C{x, y} defined on some
open neighborhood U of the origin, such that f(0, 0) = g(0, 0) = 0. In other words, the
curves

Cf : {f = 0} and Cg : {g = 0}
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intersect at (0, 0) (and possibly other points). We want to consider only the situation when
(0, 0) is an isolated point of the intersection. This means, that there exists a ball Br in C2

centered at (0, 0) such that the origin is the only intersection point inside this ball. We can
rephrase this as follows. Consider the holomorphic map

F : U ⊂ C2 → C2, (x, y) 7→ (f(x, y), g(x, y)).

Then Cf ∩Cg = F−1(0) and saying that (0, 0) is an isolated intersection point is equivalent
to the fact that the origin is an isolated zero of F . Using Proposition 9.2.19 we deduce the
following fact.

Proposition 11.4.1. The origin is an isolated intersection point if and only if

µ(Cf ∩ Cg, 0) := dimCC{x, y}/(f, g) <∞.

The integer µ(Cf ∩ Cg, 0) is called the multiplicity of the intersection Cf ∩ Cg at the
origin, or the local intersection number of the two curves at the origin. If C and D are two
plane curves such that C ∩D is a finite set we define the intersection number of C and D
to be

C ·D =
∑

p∈C∩D

µ(C ∩D, p).

The intersection number generalizes in an obvious fashion to curves on smooth surfaces. To
justify this terminology we consider a few examples.

If two distinct lines L1, L2 intersect at the origin it is natural to consider their intersection
number to be zero. By changing coordinates it suffices to assume L1 is the x-axis an L2 is
the y-axis. Then

C{x, y}/(x, y) = C
so that µ(L1 ∩ L2, 0) = 1 which agrees with the geometric intuition.

Suppose that Cf and Cg intersect transversally at the origin, meaning that the covectors
df(0, 0) and dg(0, 0) are linearly independent over C. In particular, the origin is a smooth
point on each of the curves Cg and Cf . Then the inverse function theorem implies that we
can find a holomorphic change of coordinates near the origin such that f = x and g = y.
(Geometrically, this means that the curves are very well approximated by their tangents at
the origin.) In this case it is natural to say that the origin is a simple (multiplicity one)
intersection point. This agrees with the above algebraic definition.

Let us look at more complicated situations. Suppose

Cf : y = 0, Cg : y = x2.

Thus Cf is the x axis, and Cg is a parabolla tangent to this axis at the origin. In this case
we should consider the origin to be a multiplicity 2 intersection point. This choice has the
following “dynamical” interpretation (see Figure 11.7).

To justify this choice consider the curve Cg,ε given by y = x2 − ε, 0 < |ε| ≪ 1. It
intersects the x axis at two points P±

ε which converge to the origin as ε→ 0.
This dynamical description is part of a more general principle called the conservation

of numbers principle.
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y=0

y= x


y= x


2


2
 − ε

Figure 11.7: A dynamical computation of the intersection number

Theorem 11.4.2. There exist ε > 0 and r > 0 such that for any two functions fε, gε
holomorphic in a ball Br of radius r centered at the origin of C2 such that

sup
p∈Br

(
|f(p)− fε(p)|+ |g(p) − gε(p)|

)
< ε

we have

µ(Cf ∩ Cg, 0) =
∑

p∈Cfε∩Cgε∩Br

µ(Cfε ∩ Cgε , p).

We do not present here a proof of this result since we will spend the next two chapters
discussing different proofs and generalizations of this result.

The intersection number is particularly relevant in the study of the monoid determined
by an isolated singularity. More precisely, we have the following result.

Proposition 11.4.3 (Halphen-Zeuhten formula). Suppose f, g ∈ C{0, 0} are two irreducible
holomorphic functions defined on a neighborhood U of 0 ∈ C2 such that f is a y-Weierstrass
polynomial of degree n and the origin is an isolated point of the intersection Cf ∩ Cg.
Consider a Puiseux expansion of the germ (Cf , 0),

π : t 7→ (x, y) = (tn, χ(t)), χ(t) ∈ C{t}.

Then

µ(Cf ∩ Cg, 0) = ordtπ
∗(g) = ordtg(t

n, χ(t)).

Proof π is a resolution morphism

π : (C̃f , 0) ∼= (C, 0)→ Cf

where C̃f is a smooth curve. We have the commutative diagram

C{t} ∼= OC̃f ,0
OC̃f ,0

∼= C{t}

OCf ,0 OCf ,0

w

×π∗(g)

u

y

π∗

w

×g

u

y

π∗
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Then

ordtπ
∗(g) = dimC coker (×π∗(g)), µ(Cf ∩ Cg, 0) = dimC coker(×g).

The equality dimcoker(×g) = dim coker(×π∗(g)) follows from the following elementary
linear algebra result.

Lemma 11.4.4. Suppose V is a vector space, U ⊂ V is a subspace and T : V → V is
a linear map such that T (U) ⊂ U . Then there exists a natural isomorphism coker T →
coker T |U .

Proof of the lemma We think of T : V → V as defining a co-chain complex

KV : 0→ V
T→ V → 0→ 0 · · · .

Then H0(KV ) = kerT = 0 (since f and g are irreducible), H1(KV ) = coker T . The
condition T (U) ⊂ U implies that

KU : 0→ U
T→ U → 0→ 0 · · ·

is a subcomplex of KV . Moreover the quotient complex is KV /KU is irreducible. The
lemma now follows from the long exact sequence determined by

0→ KU → KV → KV /KU → 0.

Proposition 11.4.3 has the following consequence.

Corollary 11.4.5. Suppose f ∈ C{x, y} is an irreducible Weierstrass y-polynomial such
that f(0, 0) = 0. Then the monoid Γf determined by the germ (Cf , 0) can be described as

Of =
{
µ(Cf ∩ Cg, 0); g ∈ C{x, y}, g(0, 0) = 0, g 6∈ (f)

}
.

Traditionally, the intersection numbers are defined in terms of resultants. We outline
below this method since we will need it a bit later. For more details we refer to [12].

Recall (see [47, IV,§8], or [70, §27]) that if f and g are polynomials in the variable y
with coefficients in the commutative ring R then their resultant is a polynomial Rf,g in
the coefficients of f and g with the property that Rf,g ≡ 0 if and only if f and g have a
nontrivial common divisor. More precisely, if

f =

n∑

k=0

aky
k, an 6= 0, g =

m∑

j=1

bjy
j, bm 6= 0,
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then Rf,g is described by the determinant of the (m+ n)× (m+ n) matrix




an an−1 · · · a0 0 0 · · · · · ·
0 an · · · a1 a0 0 · · · · · ·
...

...
...

...
...

...
...

...
0 · · · · · · an an−1 · · · · · · a0
bm bm−1 · · · b0 0 0 · · · · · ·
0 bm · · · b1 b0 0 · · · · · ·
...

...
...

...
...

...
...

...
0 · · · · · · 0 bm bm−1 · · · b0




Suppose now that f, g are Weierstrass y-polynomials,

f =
n∑

k=0

ak(x)y
k, an(0) 6= 0, g =

m∑

j=1

bj(x)y
j , bm(0) 6= 0,

Their resultant of f and g is then a holomorphic function of x

Rf,g ∈ C{x}.

We then have the following result

Proposition 11.4.6. Let Cf := {f = 0}, Cg := {g = 0}. Then

µ(Cf ∩ Cg, O) = ordxRf,g(x).

Exercise 11.4.1. Prove Proposition 11.4.6. (Hint: Use Halphen-Zheuten formula.)

11.5 Embedded resolutions and blow-ups

The link of an irreducible germ (C, 0) of plane curve is a circle so its topology is not very
interesting. However, the link is more than a circle. It is a circle together with an embedding
in S3. As explained above, the topological type of this embedding completely determines
the topological type of the singularity. This suggests that the manner in which (C, 0) sits
inside (C2, 0) carries nontrivial information. The resolution of singularities by Puiseux
expansion produces a smooth curve C̃ and a holomorphic map π : C̃ → C. Topologically,
the smooth curve C̃ is uninteresting. All the topological information is contained in the
holomorphic map π. We want now to describe another method of resolving the singularity
which produces an embedded resolution.

More precisely, an embedded resolution of the curve C →֒ C2 is a triplet (X, C̃, π) where
X is a smooth complex surface, C̃ ⊂ X is a smooth curve, π : X → C2 is a holomorphic map
such that π(C̃) = C, the induced map π : C̃ → C is a resolution of C and the set π−1(0) is
a curve in X with only mild singularities (nodes). We will produce embedded resolutions
satisfying a bit more stringent conditions using the blowup construction in Chapter 3.
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We recall that if M is a smooth complex surface and p ∈ M then the blowup of M at
p is a smooth complex surface M̃p together with a holomorphic map β = βp : M̃p → M
(called the blowdown map) such that

β : M̃p \ β−1(p)→M \ {p}

is biholomorphic and there exists a neighborhood Ũp of Ep := β−1(p) in M̃p biholomorphic
to a neighborhood Ṽ of P1 inside the total space of the tautological line bundle τ1 → P1

such that the diagram below is commutative.

(Ũp, Ep) (Ṽ ,P1)

(Up, p) (V, 0)

w

u

βp

u

β1

w

where Up := β(Up) is a neighborhood of p in M and V = β1(Ṽ ) is a neighborhood of the
origin in C2. This implies that we can find local coordinates z1, z2 on Up ⊂M , and an open
cover Ũp

Ũp = Ũ1
p ∪ Ũ2

p

with the following properties.

• zi(p) = 0, i = 1, 2.

• There exists coordinates u1, u2 on Ũ i
p, i = 1, 2 such that

Ũ i
p ∩Ep = {ui = 0}

• Along Ũ1
p the blowdown map β has the description

(u1, u2) 7→ (z1, z2) = (u1, u1u2).

• Along Ũ2
p the blowdown map β has the description

(u1, u2) 7→ (z1, z2) = (u1u2, u2).

We will sometime denote the blowup of M at p by

(M,p) 99K M̃.

The proper transform of C is the closure in M̃ of β−1(C \ {0}).

Example 11.5.1. Consider again the germ f(x, y) = y3−x5−x7 we analyzed in Example
11.3.9. We blowup C2 at the origin and we want to describe the proper transform of the
curve C defined by f = 0. Conside the blowup (C2, O) 99K M , denote by Ĉ the proper
transform of C, and by U a neighborhood of the exceptional divisor E. We have an open
cover of U by coordinate chartes

U = U1 ∪ U2
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We denote by (u, v) the coordinates on U1 so that x = u, y = uv, E ∩ U1 = {u = 0}. Then
we have

β∗f(u, uv) = (uv)3 − u3 − u5 = u3(v3 − 1− u2).
This shows that the part of Ĉ in U1 intersects the exceptional divisor E in three points
Pk(uk, vk), k = 0, 1, 2 given by

uk = 0, vk = exp(
2πik

3
), k = 0, 1, 2.

Moreover
µ(Ĉ ∩ E,Pk) = 1,

and each of the points Pk are smooth points of the curve Ĉ (see Figure 11.8).
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Figure 11.8: Blowing up y3 = x5 + x7

On the chart U2 we have

β∗f(uv, v) = v3 − (uv)5 − (uv)7 = v3(1− u5v2 − u5v4)

Clearly Ĉ ∩E ∩ U2 = ∅. This shows that

Ĉ ·E = 3.

To explain some of the phenomena revealed in the above example we need to introduce
a new notion.

Definition 11.5.2. Suppose C is a plane curve defined near O = (0, 0) ∈ C2 by an equation
f(x, y) = 0, where f ∈ C{x, y}, f(0, 0) = 0. The multiplicity of O on the curve C is the
integer eC(O) defined by

eC(O) = min
k≥1

{
fk(x, y) 6= 0

}
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where fd(x, y) denotes the degree d homogeneous part of f . The principal par fe(x, y),
e = eC(O) decomposes into linear factors

fe =

e∏

j=1

(ajx+ bjy).

and the lines Lj described by ajx + bjy = 0 are called the principal tangents of C at O.

Exercise 11.5.1. Prove that

eC(O) = min
D

µ(C ∩D,O),

where the minimum is taken over all the plane curves D such that O is an isolated point of
the intersection C ∩D.

For example, the multiplicity of O on the curve C : {y3 = x5+x7} is 3. The multiplicity
can be determined from Puiseux expansions.

Proposition 11.5.3. Suppose C is a plane curve such that the germ (C, 0) is irreducible.
If C admits near 0 the Puiseux expansion

x = tn, y = atm + · · · , a 6= 0,

then

eC(0) = min(m,n).

Exercise 11.5.2. Prove Proposition 11.5.3.

The computation in Example 11.5.1 shows that

eC(O) = Ĉ ·E.

This is a special case of the following more general result

Proposition 11.5.4. Suppose C is a plane curve. Denote by C̄ the proper transform of C
in the blowup at C2 at 0, and by E the exceptional divisor. Then

eC(0) = C̄ · E =
∑

p∈Ĉ∩E

µ(C̄ ∩ E, p).

Exercise 11.5.3. Prove Proposition 11.5.4.

The computations in Example 11.5.1 show something more, namely that the proper
transform of a plane curve is better behaved than the curve itself. The next results is a
manifestation of this principle.
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Proposition 11.5.5. Suppose f ∈ C{x, y} is a holomorphic function such that O is a point
of multiplicity m > 0 on the curve C = {f = 0}. Then the proper transform of C intersects
the exceptional divisor at precisely those points in P1 corresponding to the principal tangents.
In particular, the blowup separates distinct principal tangents.

To formulate our next batch of results we need to introduce some terminology.

Definition 11.5.6. (a) If M̃p is the blow-up of the smooth complex surface M at the point
p, then the exceptional divisor E →֒ M̃p is called the first infinitesimal neighborhood of p.
(b) An iterated blowup of M is a a sequence of complex manifolds

M0,M1, · · · ,Mk

with the following properties

• M =M0.
•Mi is the blowup ofMi−1 at a point pi−1, i = 1, · · · , k−1. We denote by Ei the exceptional
divisor in Mi.
• pi ∈ Ei, ∀i = 1, · · · , k − 1.

We will denote the iterated blowups by

(M0, p0) 99K (M1, p1) 99K · · · 99K (Mk−1, pk−1) 99K Mk.

A point pk which lies on the exceptional divisor of the last blowup is said to be situated in
the k-th infinitesimal neighborhood of p0.

Given a plane curve through O ∈ C2, and an iterated blowup

(C2, O) 99K (M1, p1) 99K · · · 99K Mk

we get a sequence of proper transforms C(1) = Ĉ, C(j) = Ĉ(j−1), j = 2, · · · , k. The points
C(j) ∩ Ej are called j-th order infinitesimal points of the germ (C,O). To minimize the
notation, we will denote by Ej all the proper transforms of Ej in Mj+1,Mj+2, · · · ,Mk.

Suppose f ∈ C{x, y} is irreducible and O is a point on f = 0 of multiplicity N . Then,
after a linear change of coordinates we can assume that f is a Weierstrass polynomial in y
such that degy f = N .

Proposition 11.5.7. Suppose f ∈ C{x, y} is an irreducibe Weierstrass y-polynomial, and
degy f = N = eC(O), C = {f = 0}. Assume that near O the cuve C is tangent at O to the
x-axis, so that it has the Puiseux expansion

y = y(x) =
∑

j≥N

ajx
j/N .

Then the proper transform C̄ of C intersects the exceptional divisor at a single point p and
the germ (C̄, p) is irreducible. Moreover, with respect to the coordinates (u, v) near p defined
by u = x, v = y/x we have p = (0, aN ) and the germ (C̄, p) has the Puiseux expansion

v − aN =
∑

j>N

aju
(j−N)/N . (11.5.1)
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Proof The fact that C̄ intersects the exceptional divisor at a single point is immediate:
the germ (C, p) being irreducible has a unique principal tangent at p. The expansion (11.5.1)
follows immediately from the equality v = y/x. The irreducibility follows from the Puiseux
expansion (11.5.1).

Suppose now that C ⊂ C2 is a plane curve such that the germ (C,O) is irreducible. We
can choose linear coordinates on C2 such that near O the curve C has a Puiseux expansion

x = tp; y = atq + · · · , p = eC(O) < q.

After 1-blowup the proper transform C(1) will intersect the exceptional divisor at a point
p1 and the germ (C(1), p1) has a Puiseux expansion

x = tp, y = atq−p + · · · .

In particular, we deduce
eC(1)

(p1) = min{(q − p), p}.
If q−p < p we conclude that the infinitesimal point p1 has strictly smaller multiplicity than
O. In general, we have

q = pm+ r, 0 ≤ r < p

Blowing up m times we deduce that C(m) intersects the m-th infinitesimal neighborhood of
O at a point pm and

eC(m)
(pm) = r < p.

We conclude that by performing an iterated blowup we can reduce the multiplicity. In par-
ticular, we can perform iterated blowups until some infinitesimal point of C has multiplicity
one. We can thus conclude that there exists an iterated blowup with respect to which the
proper transform of C is smooth.

We want to show there is a more organized way of doing this provided we require a few
additional conditions. The next example will illustrate some things we would like to avoid.

Example 11.5.8. Consider the curve y4 = x11. The singular point O has multiplicity 4.
By making the changes in coordinates

x→ x, y → xy

we deduce that the proper transform of C after the first blowup has the local description
near the first order infinitesimal point p1 = (0, 0) given by

x4(y4 − x7) = 0.

The exceptional divisor E1 has the equation x = 0 so the multiplicity of p1 is 4. We
blowup again, and using the same change in coordinates as above we deduce that the new
exceptional divisor is described by x = 0, and the second total transform of C takes the
form

x4(y4 − x3) = 0.
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Figure 11.9: Resolving y4 = x11 by an iterated blowup.

Hence the second proper transform of C is given by

C(2) : y4 − x3 = 0.

The second order infinitesimal point p2 on C has coordinates (0, 0) so that it has multiplicity
3. To understand the proper transform of E1 we need to use the other change in coordinates

x→ xy, y → y

in which the exceptional divisor is described by y = 0. In these coordinates proper transform
of E1 is described by x = 0 and intersects E2 at ∞. We can also see this in Figure 11.9.
The curves C(1) and E1 have no principal tangents in common so a blowup will separate
them.

We perform the change in coordinates x → xy, y → y near p2, i.e. we blow up for the
third time at p2. The exceptional divisor E3 is described by y = 0, and the total transform
of C(2) is given by y3(y − x3) = 0 so that 3rd proper transform of the curve C has the
description

C(3) : (y − x3) = 0

near the third infinitesimal point p3 = (0, 0). The total transform of E2 is described by
xy = 0 so that the proper transform is given by x = 0 and intersects E3 at p3 which is a
nonsingular point of C(3).
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Figure 11.9 describes various transformations as we perform the blowups. As we have
mentioned, C(3) is already smooth but the situation is not optimal. More precisely, three
different curves intersect on the third infinitesimal point p3. It will be very convenient to
avoid this situation. We can separate E3 and E2 by one blowup (see Figure 11.10).
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Figure 11.10: Improving the resolution of y4 = x11.

We perform the change in coordinates

x→ x, y → xy.

The exceptional divisor E4 is given by x = 0, the proper transform of E3 is described by
y = 0, and C(4)is given by

y = x2.

Still, the situation is not perfect because C(4), E3 and E4 have a point in common, p4 We
blowup at p4 using the change in coordinates

x→ x, y → xy.
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E3 and E4 separate but now the proper transform C(5) goes through the intersection point
of E5 and the (second order) proper transform of E3. Moreover, near the fifth order in-
finitesimal point p5 the curve C(5) has the linear form. A final blowup will separate C(5),
E3 and E5 (see Figure 11.10).

Motivated by the above example we introduce the following concept.

Definition 11.5.9. Let (C, 0) ⊂ (C2, 0) be an irreducible germ of plane curve. An iterated
blowup

(C2, 0) 99K (M1, p1) 99K · · · 99K (Mn−1, pn−1) 99K Mn

is called a standard resolution of (C, 0) if either (C, 0) is smooth and n = 0 or for k =
1, · · · , n− 1 either

(a) C(k) ⊂Mk has one singular point pk or
(b) C(k) is smooth but the intersection with Ek at pk is not transverse or
(c) C(k) is smooth, intersects Ek transversally at pk, but does intersect (also at pk) some
other Ej, j < k, and
(d) Cn is smooth and intersects En transversally, and intersects no other Ek.

We denote by ek the multiplicity of C(k) at pk,

ek = eC(k)
(pk).

We also set e0 := eC(O). The sequence (e0, e1, · · · , en−1) is called the multiplicity sequence
of the resolution.

The multiplicity sequence is nonincreasing and the last term is equal to 1. To simplify
the description of a multiplicity sequence we will use the notation

(ap11 , · · · , apkk ) := (a1, · · · , a1︸ ︷︷ ︸
p1

, a1, · · · , a2︸ ︷︷ ︸
p2

, · · · , ak, · · · ak︸ ︷︷ ︸
pk

)), a1 > · · · > ak = 1.

One can show that the number pk of times the multiplicity 1 appears in the sequence is
equal to ak−1, the smallest multiplicity > 1. For this reason we can simplify the notation
even more an write

(ap11 , · · · , a
pk−1

k−1 ) = (ap11 , · · · , a
pk−1

k−1 , 1
ak−1), a1 > · · · > ak−1 > 1.

Arguing as in Example 11.5.8 one can prove that each irreducible germ of planar curve
admits a standard resolution. In this example we have constructed a standard resolution of
the germ y4 = x11. The multiplicity sequence is (4, 4, 3, 1, 1, 1) = (42, 3, 13) = (42, 3).

This example shows that the multiplicity sequence can be determined from the Puiseux
series. In fact, the multiplicity sequence completely determines the topological type of a
singularity. More precisely, we have the following result.

Theorem 11.5.10 (Enriques-Chisini). The Puiseux pairs are algorithmically determined
by the multiplicity sequence, and conversely, the multiplicity sequence can be determined
from the Puiseux series.
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For a tedious but fairly straightforward proof of this result we refer to [12, Sec. 8.4,
Them. 12] or [41, Thm. 5.3.12]. We include below the algorithm which determines the
multiplicity sequence from the Puiseux pairs. Suppose the Puiseux pairs are

(m1, n1), · · · , (mg, ng).

Form the characteristic exponents

k0 = m1 · · ·mg = N,
kj
k0

=
nj
mj
· 1

m1 · · ·mj−1
⇐⇒ kj = nj ·mj+1 · · ·mg.

Perform the sequence of Euclidean algorithms, i = 1, · · · , g for χi
1 and qi1,

χi
1 = µi1 · qi1 + qi2

qi1 = µi2 · qi2 + qi3
...

...
...

qiℓ(i)−1 = µiℓ(i) · qiℓ(i)

where χ1
1 = k1, q

1
1 = k0 = N ,

χi
1 = ki − ki−1, qi1 = qi−1

ℓ(i−1), i = 2, · · · , g.

Then in the multiplicity sequence the multiplicity qij appears µij times, i = 1, · · · , q, j =
1, · · · ℓ(i).

Example 11.5.11. (a) Consider the germ given by the Puiseux expansion

y = x11/4

In this case there is only one Puiseux pair, (4, 11). The characteristic exponents are

k0 = 4, k1 = 11.

We have
11 = 2 · 4 + 3, 4 = 1 · 3 + 1, 3 = 3 · 1.

We conclude that the multiplicity sequence is (42, 3, 13) as seen before from the standard
resolution.

(b) Consider the germ with Puiseux expansion

y = x3/2 + x7/4.

Its Puiseux pairs are (2, 3), (2, 7). Using the equality (11.3.1) we deduce that the charac-
teristic exponents are

k0 = 4, k1 = 6, k2 = 21.

Then χ1
1 = k1 = 6, q11 = 4,

6 = 1 · 4 + 2, 4 = 2 · 2.



The topology of complex singularities 141

Hence ℓ(1) = 2, χ2
1 = 15, q21 = q12 = 2

15 = 7 · 2 + 1, 2 = 2 · 1.

We deduce ℓ(2) = 3. The multiplicity sequence is (4, 29, 12).

The standard resolution of an irreducible germ can be geometrically encoded by the
resolution graph.. Suppose

(C, 0) 99K (M1, p1) 99K · · · 99K (Mn−1, pn−1) 99KMn

is the standard resolution. Then the resolution graph has n + 1 vertices, 1, · · · , n, ∗. Two
vertices i < j are connected if the divisors Ei and Ej intersect. Finally, we connect n and
∗ since Ĉ intersects En.

From Figure 11.10 we deduce that the resolution graph of the singularity y4 = x11 is the
one depicted in Figure 11.11. One can prove (see [12, 41]) that the resolution graph can be

*


1


2


3
6


5


4


Figure 11.11: The resolution graph of y4 = x11.

algorithmically constructed from the multiplicity sequence, and conversely, the multiplicity
sequence completely determines the resolution graph.

Example 11.5.12. Let us compute the resolution graph and the multiplicity sequence is
a less obvious example. Consider the germ at 0 ∈ C2 of the planar curve described by

(y2 − x3)2 − 4x5y − x7 = 0.

The singular point has multiplicity 4. We blow up the point. Using the change in variables
x→ x, y → xy we get as total transform

(x2y2 − x3)2 − 4x6y − x7 = x4
{
(y2 − x)2 − 4x2y − x3

}
= 0

Thus the proper transform is defined by

C(1) : (y2 − x)2 − 4x2y − x3 = 0.
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It intersects the exceptional divisor E1 = {x = 0} at p1 = (0, 0) which has multiplicity
2 and principal tangent x = 0. Blowing up p1 we obtain after the substitutions x → xy,
y → y that the second proper transform is described by

C(2) : (y − x)2 − 4x2y − x3y = 0.

This intersects the exceptional divisor E2 = {y = 0} at p2 = (0, 0) which has multiplicity
2. It has only one principal tangent y = x. The proper transform of E1 is given by x = 0.

We next blowup p2. We change the coordinates so that the principal tangent of C(2)

becomes the new x axis. Thus we make the change in variables

x→ x, → y + x.

In these new coordinates we have

C(2) : y2 − 4x2y − 4x3 − x3y − x4 = 0, E2 := {y + x = 0}, E1 = {x = 0}.

Using the substitutions x→ x, y → xy we deduce that the third proper transform is given
by

C(3) : y2 − 4xy − 4x− x2y − x2 = 0, E3 = {x = 0}.
C(3) intersects E3 at p3 = (0, 0) which is a point with multiplicity 1 and and principal
tangent E3.

E E

E

E

E

E

E

EE
E

E

E

E
E

E

1 1

1 1

1

2

2 2

2

3

3

3 4

4

5

C

CC

C
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(2)
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(5)

Figure 11.12: Resolving the singularity of (y2 − x3)2 − 4x5y − x7 = 0.

We blowup p3. Using the change in variables x→ xy, y → y we deduce

C(4) : y − 4xy − 4x− x2y2 − x2y = 0, E4 := {y = 0}.
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C(4) intersects E4 at p4 = (0, 0). This is a smooth point with tangent y = 4x. E3 also
intersects E4 in p4. We need a final blowup to separate E3 and E4. In Figure 11.12 we
have depicted this sequence of blowups. Figure 11.13 describes the resolution graph of this
singularity. The multiplicity sequence of this singularity is

(e0, e1, e2, e3, e4) = (4, 2, 2, 1, 1).

*

1 3 2

5 4

Figure 11.13: The resolution graph of (y2 − x3)2 − 4x5y − x7 = 0.

Suppose (C, 0) →֒ (C2, 0) is a germ of plane curve defined by the equation f = 0.
Assume for simplicity that it is irreducible. Consider the standard resolution

(C, 0) →֒ (C2, 0)
π−1
1
99K (M1, p1)

π−1
2
99K · · · 99K (Mn−1, pn−1)

π−1
n
99K (M,pn).

We denote by Ei the exceptional divisor of the blowup Mi
πi−→Mi−1 and we set

π := π1 ◦ · · · ◦ πn :Mn → C2.

The total transform of (C, 0) is the divisor Ĉ on Mn defined by the equation

f ◦ π = 0.

We would like describe how one can compute the total transform of C. If we denote by C̄
the proper transform of C in the standard resolution then

Ĉ = C̄ +

n∑

i=1

miEi,

where mi is the order of vanishing of f ◦ π along Ei. Thus the total transform is uniquely
determined by the integers mi. We begin with an elementary yet fundamental fact.

Lemma 11.5.13. Suppose (S, 0) →֒ (C2, 0) is a germ of curve. Denote by π :M → C2 the
blowup of C2 at zero and by E the exceptional divisor. Then the total transform of C is the
related to the proper transform via the equality

Ŝ = S̄ + eC(0)E,

where we recall that eS(0) denotes the multiplicity of S at 0.
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Proof It suffices to assume that (CS, 0) is irreducible since we have the equalities

Ŝ1 ∪ S2 = Ŝ1 ∪ Ŝ2, S1 ∪ S2 = S̄1 ∪ S̄2

and
eS1∪S2(0) = eS1(0) + eCS2(0).

Suppose then (S, 0) is irreducible and described by the equation f = 0. We decompose f
into homogeneous components

f = fe + fe+1 + · · · , e := eC(0).

Since the germ f is irreducible we deduce that fe has the form fe = ℓe, where ℓ is a linear
homogeneous polynomial in two variables x, y. Via a linear change in coordinates we can
assume ℓ(x, y) = y so that

f = ye + fe+1(x, y) + · · ·
To find the total transform of f = 0 we use the change in coordinates

x→ x, y → xy,

in which the exceptional divisor is given by x = 0. Then

f ◦ π(x, y) = f(x, xy) = xeye + fe+1(x, xy) + · · · = xe
(
ye + xfe+1(1, y) + · · ·

)

from which we see that f ◦ π vanishes to order e along the exceptional divisor E.

We now return to our original problem. For k = 1, · · · , n we set

Pk := π1 ◦ · · · ◦ πk :Mk → C2
0, fk = f ◦ Pk.

The closure of P−1
k (C \ 0) in Mk is the k-th proper transform of C and we will denote it

by C̄k. The k-th total transform is the divisor Ĉk on Mk defined by fk = 0. Using Lemma
11.5.13 we deduce that mi, the order of vanishing of f ◦ π along Ei is given by

mi = eĈi
(pi−1) =: êi.

We proceed to determine the integers êi by descending induction, in the process obtaining
a linear recurrence relation between the orders of vanishing mi and the multiplicities ei of
the points pi.

For every 2 ≤ k ≤ n the exceptional divisor Ek intersects at most two proper transforms
of exceptional divisors Ej . We denote them by Ej(k), EJ(k), j(k) ≤ J(k). Note that we
always have the equality J(k) = k − 1. Then

(Ĉk−1, pk) = (C̄k−1, pk−1) ∪ (Ej(k), pk−1) ∪ (Ek−1, pk).

We set ek := eC̄k−1
(pk−1) and we deduce

mk = êk := ek +





mk−1 if j(k) = J(k) = k − 1, k > 1
mk−1 +mj(k) if j(k) < J(k) = k − 1, k > 1

0 if k = 1
. (11.5.2)
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Consider the vectors

~e :=



e1
...
en


 , ~m :=



m1
...
mn


 .

Observe that ~e is precisely the multiplicity sequence. We will refer to ~m as the (order of)
vanishing sequence. Following [14, §4.5] we introduce the lower triangular incidence matrix

A = (akj)1≤k,j≤n, akj =

{
1 if j ∈ {j(k), J(k)}
0 if j 6∈ {j(k), J(k)}

We can rewrite the equalities (11.5.2) succinctly as

~e =
(
1−A

)
~m. (11.5.3)

Observe that since A is lower triangular it is nilpotent we have det(1−A) = 1 so 1−A ∈
SLn(Z), i.e. the above system has a unique integral solution

~m = (1−A)−1~e =

n∑

j=0

Aj~e.

The incidence matrix is easily obtained from the resolution graph where we remove the
dotted edge. The numbers j(k) and J(k) can be constructed by descending induction.
First let us introduce a notation.

k  j
def⇐⇒ j ∈ {j(k), J(k)}.

We say that j is proximate to k. For k = n we have n  j if and only j is a neighbor of
the n-th vertex. To find j such that (n − 1)  j we blow down En. The resolution graph
then changes as follows.

Remove the edge(s) connecting the n-th vertex to its neighbors. If the n-th vertex has
only one neighbor then we are done. If the n-th vertex has two neighbors, then after its
removal we connect its neighbors by an edge. We obtain a new graph with one less vertex
and (n− 1) j if and only if j is a neighbor of (n− 1) in the new graph. Next, iterate this
procedure and we conclude by setting {j(1), J(1)} = ∅.

Example 11.5.14. (a) Consider the situation in Example 11.5.8. In that case we have

~e =




4
4
3
1
1
1



.

Upon inspecting the resolution graph in Figure 11.11 (or better yet Figure 11.10) we deduce

6 3, 5, 5 3, 4, 4 3, 2, 3 2, 2 1.
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From (11.5.3) we deduce the system





m1 = 4
m2 −m1 = 4
m3 −m2 = 3

m4 −m3 −m2 = 1
m5 −m4 −m3 = 1
m6 −m5 −m3 = 1

=⇒ ~m =




4
8
11
20
32
44



.

(b)Consider the situation in Example 11.5.12. In that case we showed

~e =




4
2
2
1
1



.

Upon investigating the resolution graph, or better yet Figure 11.12, we deduce

5 4, 3, 4 3, 3 1, 2, 2 1.

From (11.5.3) we deduce the system




m1 = 4
m2 −m1 = 2

m3 −m1 −m2 = 2
m4 −m3 = 1

m5 −m3 −m4 = 1

=⇒ ~m =




4
6
12
13
26



.

The matrix P = 1 − A is a complete topological invariant of the singularity and it
is called the proximity matrix . We saw that this matrix together with the multiplicity
sequence (ei) completely determines the vanishing sequence ~m and viceversa, the proximity
matrix, together with the vanishing sequence determines the multiplicity sequence. We
want to explain (without proof) how the proximity matrix alone, determines the multiplicity
sequence ~e.

Start again with the germ of curve (C, 0) ⊂ (C2, 0). The germ is represented by a curve
{P (x, y) = 0} defined in a tiny open ball B centered at 0. Denote by π : M → C2 a good
resolution of the germ. Set X = π−1(B). X is a 4-manifold with boundary ∂B ∼= S3. The
components {Ei}1≤i≤n of the exceptional divisor E form an integral basis of the second
homology group Λ := H2(X,Z) so we have a canonical isomorphism Λ ∼= Zn. We assume
that the components Ei are labelled as before, by the moment they first appear during the
iterated blow-up process. This group is equipped with a nondegenerate intersection form

Q : Λ× Λ→ Z, (x, y) 7→ x · y.

It is negative definite and using the above isomorphism Λ ∼= Zn we have the equality

Q = −P tP.
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If ~m is the vanishing sequence we deduce from the equality of divisors

(f ◦ π) =
∑

i

miEi + (f̄)

that ( n∑

i=1

mi[Ei]
)
· [Ei] =

{
0 if i < n
−1 if i = n

.

If we denote by ~c ∈ Λ the vector

~c =




0
...
0
1




so that the previous equality can be written as

Q · ~m = −~c⇐⇒ P tP ~m = ~c⇐⇒ P t~e = ~c

Put it differently, the multiplicity sequence is the last column of the (P t)−1, or equivalently,
the last row of P−1. We claim that the last row of P−1 uniquely determines P . To see how,
we need to use the equality

P−1 = 1+A+A2 + · · ·+A−n, (11.5.4)

and a bit of combinatorics.

The combinatorics comes in the guise of the proximity graph. It is an oriented graph
with vertices Ei we have an edge (or arrow) starting at Ek and ending at Ej if and only if
Ej is proximate to Ek, or in our notation k  j. We know that k  (k−1) and from every
vertex there are at most two outgoing edges. A branching vertex is a vertex with precisely
two such outgoing edges. We will refer to the arrows k  (k − 1) as straight arrows. A
jumping arrow is an arrow k  j such that k− j > 1. Its length is the integer δ(k) = k− j.

To visualize a proximity graph we use the following simple procedure. Arrange the
vertices Ek on a labels in decreasing order of their labels. Hence the rightmost vertex is 1,
and the leftmost vertex is n. Then connect the vertices according to the proximity relation.
The two top graphs depicted in Figure 11.14 are the proximity graphs corresponding to the
resolution of y4 = x11 and (y2− x3)2 − 4x5y− x7 = 0 with multiplicity sequences (4, 32, 13)
and respectively (4, 22, 12).

If we denote by Xkj the (k, j)-entry in the matrix P−1 we deduce from the equality
(11.5.4) that Xkj is the number of oriented paths connecting k to j in the proximity graph.
In particular the entriesXnj in the last row describe the number of oriented paths connecting
the last vertex to the vertex j.

The proximity matrix is completely determined by the proximity graph and conversely
the proximity graph is completely determined by the matrix P . As in Figure 11.14 we
decorate the vertices k < n with the integer ek which is equal to the number of oriented
paths form the vertex n to the vertex k. The decoration of the vertex n is 1.
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1 1 1 3 3 4

1  1 2 2 4

1 5 10 15 25 50 100

Figure 11.14: Proximity graphs.

The combinatorial problem we want to solve is the following. Suppose we erase the
arrows of the proximity graph but we keep the decorations of the vertices. Using this
numerical information reconstruct the arrows of the proximity graph. This decorated graph
is uniquely determined by a few elementary properties. To formulate them, divide the set
of vertices into strings of vertices, so that one string contains all the vertices with a given
decoration. Next, color in red the first vertex in a string. We will refer to the other vertices
as black.

P0. Two vertices are connected by at most one edge and any two consecutive vertices are
connected by a unique (straight) arrow

P1. There are at most two outgoing edges originating at the same vertex of the graph.

P2. If k is a branching vertex and k  j is a jumping arrow then for every vertex ℓ between
k and j there is an arrow from ℓ to j.

P3. If ek = ek−1 then there is no jumping arrow ending at k − 1. In particular, there is no
jumping arrow ending at a black vertex.

P4 Every red vertex has at least one incoming jumping arrow. The number of incoming
jumping arrows is in fact one less than the length of the longest incoming jumping arrow.

To recover the proximity graph from the multiplicity sequence we proceed inductively,
from red vertex to red vertex and describe the arrows that end at each of them. Suppose
we have constructed the incoming arrows for the first r − 1 red vertices and we want to
describe the arrows that end at the r-th red vertex. Denote this r-th vertex by j.

According to property P2, the longest arrow which ends at j completely determines all
the arrows ending at j. Suppose this longest arrow is k  j. Then, according to P1, no
vertex between k and j is a previously produced branching vertex. This implies that there
exists at most one red vertex strictly between k and j. The position of k is then determined
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by the requirement that the number of paths from n to j, including the newly added arrows
as well, is equal to ej .

More precisely, if there is no red vertex between k and j then the corresponding number
of paths is ek · (k − j). If there is a red vertex ℓ between k and j, then necessarily ℓ is the
red vertex which precedes the red vertex j and k is the vertex that precedes ℓ. The number
of paths connecting n to the red vertex j is eℓ · (ℓ− j) + ek.

The last graph in Figure 11.14 describes the proximity graph of the multiplicity sequence
(1002, 504, 252, 15, 10, 52 , 15). For simplicity, we have not included the straight arrows and
the decorations of the black vertices. As explained in [12, p. 517], this multiplicity sequence
is obtained by resolving the plane curve germ which has the Puiseux series expansion

y = x250/100 + x375/100 + x390/100 + x391/100.
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Chapter 12

The link and the Milnor fibration

of an isolated singularity

In this chapter we will enter deeper into the structure of an isolated singularity and we will
introduce several very useful topological invariants.

12.1 The link of an isolated singularity

Suppose f ∈ C{z1, · · · , zn} is a holomorphic function defined on an open neighborhood of
0 in Cn such that f(0) = 0, 0 is a critical point of f of finite multiplicity, i.e.

µ := dimCOn/J(f) <∞

where we recall that J(f) ∈ On denotes the Jacobian ideal of f , i.e. the ideal generated
by the first order partial derivatives of f . According to Tougeron theorem we may as well
assume that f is a polynomial of degree ≤ µ+ 1 in the variables z1, · · · , zn.

The origin of Cn is an isolated critical point of f and, according to the results in Chapter
10, for every sufficiently small r > 0 and every generic small vector ~ε = (ε1, · · · , εn) ∈ Cn

the perturbation

g = f +
1

2

∑

j

εjz
2
j : Br := {|z| ≤ r} → Dρ := {|w| ≤ ρ}

has exactly µ, nondegenerate critical points p1, · · · , pµ and the same number of critical
values, w1, · · · , wµ, that is g is a Morse function. Moreover, the generic fiber Fg = g−1(w),
0 < |w| ≪ 1 is a smooth manifold with boundary. We can now invoke the arguments in
Chapter 7 (proof the Key Lemma) to conclude that if we set

Xg := g−1
(
Dρ

)
∩Br

then Fg ⊂ Xg and

Hk(Xg, Fg;Z) ∼=
{

0 k 6= n
Zµ k = n

. (12.1.1)

151
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We can actually produce a basis of Hn(Xg, Fg;Z) by choosing a point • on ∂Dρ and joining
it by non-intersecting paths u1, · · · , uµ inside Dρ, to the critical values w1, · · · , wµ. Each
critical point pj generates a vanishing cycle ∆j thought as a cycle in the fiber over •. By
letting this vanishing cycle collapse to the critical point pj along the path uj we obtain the
thimble Tj ∈ Hn(Xg, Fg). Clearly, the special form of g played no special role. Only the
fact that g is a morsification of f is relevant. To proceed further we need the following
consequence of Sard theorem.

Lemma 12.1.1. There exists r0 > 0 such that, for all r ∈ (0, r0], the restriction of the
function

ν : Cn → R, ~z 7→ |~z|2

to f−1(0) ∩ (Br \ 0) has no critical points.

If we set
Lr(f) := f−1(0) ∩ ∂Br = ν−1(r2) ∩ f−1(0)

we deduce that Lr(f) ∼= Lr0(f). This diffeomorphism is given by the descending gradient
flow of ν along f−1(0). For this reason we will set

Lf := Lr(f), 0 < r ≪ 1.

This smooth manifold is called the link of the isolated singularity of f at 0. It has codi-
mension 2 in the sphere ∂Br and thus is a manifold of dimension (2n− 1). The function f
defines a natural family of neighborhoods of Lr(f) →֒ ∂Br,

Ur,c(f) := {~z ∈ ∂Br; |f(~z)| ≤ c}, 0 < δ ≪ 1.

Ur,c could be regarded as a fattening of the link Lr(f). We have the following result ([56,
Thm. 2.10])

Theorem 12.1.2. For 0 < r ≪ 1 the intersection of the singular fiber with the closed ball
Br is homeomorphic to a cone over the link of the singularity.

Example 12.1.3. (a) If n = 2 and f = f(z1, z2) then Lf is a one dimensional submanifold
of the 3-dimensional sphere ∂Br, i.e a knot or a link in the 3-sphere ∂Br. The (knots) links
obtained in this fashion are called algebraic knots (links). For example, if f = z21 + z32 , then
Lf is the celebrated trefoil knot (see Figure 12.1). It also known as a torus (2, 3)-knot. To
visualize consider the line

ℓ2,3 = {3y = 2x} ⊂ R2

and project it onto the torus R2/Z2. It goes 2-times in one angular direction and 3 times
the other.

(b) If n = 3 and f(z1, z2, z3) = za11 + za22 + za33 then the link of f at zero is a 3-manifold.
It is usually denoted by Σ(a1, a2, a3) and is referred to as a Brieskorn manifold. If the
exponents ai are pairwise coprime, then Σ(a1, a2, a3) is a homology sphere. For example
Σ(2, 3, 5) is known as the Poincaré sphere. It was the first example of 3-manifold with the
same homology as the 3-sphere but not diffeomorphic to it.
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Figure 12.1: Two equivalent diagrams for the trefoil knot

12.2 The Milnor fibration

Let us now return to the general situation. Since 0 is an isolated critical point, there exists
ε0 > 0 such that all the values 0 < |w| < ε0 are regular values of f . Restriction of f to the
sphere ∂Br vanishes in the complement of the link Lr(f) ⊂ ∂Br and thus defines a smooth
map

Θ = Θf,r : ∂Br \ Lr(f)→ S1, p 7→ 1

|f(p)|f(p).

We have the following important result.

Theorem 12.2.1 (Milnor fibration theorem. Part I). There exists r0 = r0(f) > 0 such
that for all r ∈ (0, r0) the map Θf,r has no critical points and defines a fibration

Θf,r : ∂Br \ Lr(f)→ S1

called the Milnor fibration. Its fiber is a real, 2n − 2-dimensional manifold called the
Milnor fiber. We will denote it by Φr(f).

Remark 12.2.2. Let 〈•, •〉 denote the Hermitian inner product on Cn, conjugate linear in
the second variable,

〈~u,~v〉 =
n∑

j=1

uj v̄j.

We can think of Cn as a real vector space as well. As such, it is equipped with a real inner
product

(•, •) = Re 〈•, •〉.



154 Liviu I. Nicolaescu

Any (complex) linear functional L : Cn → C has a Hermitian dual L† ∈ Cn uniquely
determined by the requirement

〈v, L†〉 = L(v), ∀v ∈ Cn.

The real part of L defines a (real) linear functional ReL : Cn → R. It has a dual L♭ ∈ Cn

with respect to the real metric uniquely defined by the condition

(v, L♭) = Re L(v), ∀v ∈ Cn.

It is easy to see that L♭ = L†.

Proof of the Milnor fibration theorem We follow closely [56, Chap. 4]. Define the
gradient of a holomorphic function h(z1, · · · , zn) to be the dual of the differential df with
respect to the canonical Hermitian metric on Cn. More precisely

∇h := (dh)† =
( ∂h
∂z1

, · · · , ∂h
∂zn

)
.

By definition,

dh(v) = 〈v,∇h〉, ∀v ∈ Cn.

Let us first explain how to recognize the critical points of Θ.

Lemma 12.2.3. The critical points of Θf,r are precisely those points ~z ∈ ∂Br \Lr(f) such
that the complex vectors

i∇ log f and ~z

are linearly dependent over R.

Proof of Lemma 12.2.3 ~z ∈ ∂Br \ Lr(f) is a critical point of f if and only if the
differential dΘ vanishes along T~z∂Br, i.e.

dΘ(v) = 0, ∀v ∈ Cn such that Re〈~z, v〉 = 0.

If we locally write

f = |f | exp(iθ)
then we can identify

Θ = θ = −i
(
log f − log(|f |)

)
.

Since |f |2 = f f̄ we deduce

d|f | = 1

2|f | (d|f |
2) =

1

2|f |(f̄ df + fdf̄)

and

dθ = −i
(
d log f − d log |f |

)
= −i

(df
f
− d|f |
|f |
)
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= −i
(
df

f
− 1

2

(df
f

+
df̄

f̄

))
=

1

2

(
−idf

f
+

(
−idf

f

))
= −Re(id log f).

Hence dΘ(v) = 0 for all v ∈ Cn such that Re〈v, ~z〉 = 0 implies that (id log f)♭, the dual of
Re (id log f) with respect to the real inner product on Cn is colinear to ~z. Lemma 12.2.3
is now a consequence of Remark 12.2.2.

To prove Milnor fibration theorem we first need to show that if |~z| is sufficiently small
then the vectors i∇ log f and ~z are linearly independent over R. We will rely on the following
technical result.

Lemma 12.2.4. Suppose ~z : [0, ε)→ Cn is a real analytic path with ~z(0) = 0 such that for
all t > 0 f(~z(t)) 6= 0 and ∇ log f(~z(t)) is a complex multiple of ~z(t)

∇ log f(~z(t)) = λ(t)~z(t), λ(t) ∈ C∗.

Then

lim
tց0

λ(t)

|λ(t)| = 1.

Proof of Lemma 12.2.4 We have the Taylor expansions

~z(t) =
∑

ν≥ℓ0

~zνt
ν , ~zℓ0 6= 0

f(~z(t) =
∑

ν≥m0

aνt
ν , am0 6= 0

and
∇f(~z(t)) =

∑

ν≥n0

~uνt
ν , ~un0 6= 0.

The equality ∇ log f(~z(t)) = λ(t)~z(t) is equivalent to

∇f(~z(t)) = λ(t)~z(t)f̄(~z(t)).

Using the above Taylor expansions we get

∑

ν≥n0

~uνt
ν = λ(t) ·

(∑

ν≥ℓ0

~zνt
ν
)
·
( ∑

µ≥m0

āµt
µ
)

We deduce that λ(t) has a Laurent expansion near t = 0

λ(t) = tr0
(∑

k≥0

λkt
k
)
,

where
r0 := n0 −m0 − ℓ0, ~un0 = λ0ām0~zℓ0 .

Thus, as tց 0 we have λ ≈ λ0tr0 and we need to show that λ0 is real and positive.
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Using the identity

df

dt
=
〈~z(t)
dt

,∇f(~z(t))
〉
=
〈~z(t)
dt

, λ(t)~z(t)f̄(~z(t))
〉

we obtain

(m0am0t
m0−1 + · · · ) =

〈(
ℓ0~zℓ0t

ℓ0−1 + · · ·
)
,
(
λ0~zℓ0 ām0t

r0+ℓ0+m0 + · · ·
)〉

so that

m0am0 = ℓ0|~zℓ0 |2am0 .

This shows λ0 ∈ (0,∞) as claimed.

Lemma 12.2.5. There exists ε0 > 0 such that for all ~z ∈ Cn \ f−1(0) with |~z| < ε0 the
vectors ~z and ∇ log f(~z) are either linearly independent over C or

∇ log f(~z) = λ~z,

where the argument of the complex number λ ∈ C∗ is in (−π/4, π/4).

Proof of Lemma 12.2.5 Set

Z :=
{
|~z| ∈ Cn; ~z and ∇ log f(~z) are linearly dependent over C

}
.

The above linear dependence condition can be expressed in terms of the 2× 2 minors of the
2× n matrix obtained from the vectors ~z and ∇ log f(~z) = 1

f̄
(∇f). Thus Z is a closed, real

algebraic subset of Cn.

A point ~z ∈ Cn \ f−1(0) belongs to Z if and only if there exists λ ∈ C∗ such that

∇f(~z) = λf̄(~z)~z.

Taking the inner product with f̄(~z)~z we obtain

µ(~z) :=
〈
∇f(~z), f̄(~z)~z

〉
= λ|f̄(~z)|2.

This shows that λ has the same argument as µ(~z). Since

| arg(ζ)| < π/4⇐⇒ Re
(
(1± i)ζ

)
> 0

we set

Ξ± :=
{
~z; Re ( (1± i)µ(~z) ) < 0

}
, Ξ := Ξ+ ∪ Ξ−.

Assume 0 is an accumulation point of W := Z ∩ Ξ (or else there is nothing to prove). Set
W± := Z ∩ Ξ±.
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The Curve Selection Lemma in real algebraic geometry1 implies that there exists a real
analytic path ~z(t), 0 ≤ t < ε such that ~z(0) = 0 and either ~z(t) ∈ W+ for all t > 0 or
~z(t) ∈ W− for all t > 0. In either case we obtain a contradiction to Lemma 12.2.4 which
implies that

lim
tց0

arg µ(~z(t)) = 0

while | arg µ(~z(t))| > π/4.
This contradiction does not quite complete the proof of Lemma 12.2.5. It is possible

that the set Z \ f−1(0) contains points ~z arbitrarily close to 0 such that either µ(~z) = 0 or
| arg µ(~z)| = π/4. In this case we reach a contradiction to Lemma 12.2.4 using the Curve
Selection Lemma for the open set in the algebraic variety

Re ( (1 + i)µ(~z) )Re ( (1− i)µ(~z) ) = 0

defined by the polynomial inequality |f(~z)|2 > 0.

We have thus proved that

Θf,r : ∂Br \ Lr(f)→ S1, ~z 7→ 1

|f(~z)|f(~z)

has no critical points.
We could not invoke Ehresmann fibration theorem because ∂Br \Lr(f) is not compact.

Extra work is needed.

Lemma 12.2.6. For all r > 0 sufficiently small there exists a vector field v tangent to
∂Br \ f−1(0) such that

ζ(z) := 〈v(~z), i∇ log f(~z)〉 6= 0 and | arg ζ(~z)| < π/4. (12.2.1)

Proof The vector field will be constructed from local data using a partition of unity.
Consider ~z0 ∈ ∂Br \ f−1(0). We distinguish two cases.

A. The vectors ~z0 and ∇ log f(~z0) are linearly independent over C. In this case the linear
system 




〈
v, ~z0

〉
= 0

〈
v, i∇ log f(~z0)

〉
= 1

has a solution v = v(~z0). The first equation guarantees that Re〈v, ~z0〉 = 0 so that v is
tangent to ∂Br.

1
Curve Selection Lemma: Suppose V ⊂ Rm is a real algebraic set and U ⊂ Rm is described by finitely

many inequalities,
U = {x ∈ Rm; g1(z) > 0, · · · , gk(x) > 0}

where gi are real polynomials. If 0 is an accumulation point of U ∩ V then we can reach o following a
real analytic path. This means there exists a real analytic curve p : [0, 1) → Rn such that p(0) = 0 and
p(t) ∈ U ∩ V for all t > 0.
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B. ∇ log f(~z0) = λ~z0, λ ∈ C. In this case we set v(~z0) := i~z0. Clearly Re〈v, ~z0〉 = 0 and,
according to Lemma 12.2.5, the complex number

〈
v, i∇ log f(~z0)

〉
=
〈
i~z0, i∇ log f(~z0)

〉
= λ̄|~z0|2

has argument less than π/4 in absolute value.

Extend v(~z0) to a tangent vector field u~z0 defined along a tiny neighborhood U~z0 of ~z0
in ∂Br \ f−1(0) and satisfying the (open) condition (12.2.1). Choose a partition of unity
(ηk) ⊂ C∞

0 (∂Br \ f−1(0)) subordinated to the cover (U~z) and set

v :=
∑

k

ηku~zk .

This vector field satisfies all the conditions listed in Lemma 12.2.6.

Normalize

w(~z) :=
1

Re〈v(~z), i∇ log f(~z)〉v(~z).

The vector field satisfies two conditions.

• The real part of the inner product

〈
w(~z), i∇ log f(~z)

〉
(12.2.2)

is identically 1.

• The imaginary part satisfies

∣∣∣Re
〈
w(~z),∇ log f(~z)

〉∣∣∣ < 1. (12.2.3)

(This follows from the argument inequality (12.2.1).)

Lemma 12.2.7. Given any ~z0 ∈ ∂Br \ f−1(0) there exists a unique smooth path

γ : R→ ∂Br \ f−1(0)

such that

γ(0) = ~z0,
dγ

dt
= w(γ(t)).

In other words, all the integral curves of w exist for all moments of time.

Proof Denote by γ the maximal integral curve of w starting at ~z0. Denote its maximal
existence domain by (T−, T+). To show that T± = ±∞ we will argue by contradiction.
Suppose T+ < ∞. This means that as t ր T+ the point γ(t) approaches the frontier of
∂Br \ f−1(0),or better yet

|f(γ(t))| ց 0⇐⇒ log |f(γ(t))| ց −∞⇐⇒ Re log f(γ(t))ց −∞. (12.2.4)
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On the other hand,

d

dt
Re log f(γ(t)) = Re

〈dγ
dt
,∇ log f

〉
= Re

〈
w(γ(t)),∇ log f

〉 (12.2.3)
> −1

so that
Re log f(γ(t)) > Re log f(~z0)− t.

This contradicts the blow-up condition (12.2.4) and concludes the proof of Lemma 12.2.7.

Suppose γ(t) is an integral curve of w. We can write

f(γ(t)) = |f(γ(t))| exp(iθ(t))

and
dθ(t)

dt
=

1

i

d

dt
log f(γ(t)) = Re〈dγ

dt
, i∇ log f(γ)〉 (12.2.2)= 1.

Hence θ(t) = t + const and thus the path γ(t) projects under Θr to a path which winds
around the unit circle in the positive direction with unit velocity. Clearly the point γ(t)
depends smoothly on the initial condition ~z0 := γ(0) and we will write this as

γ(t) = Ht(~z0).

Ht is a diffeomorphism of ∂Br \ f−1(0) to itself, and mapping the fiber Θ−1
r (eiθ) diffeomor-

phically onto Θ−1
r (ei(θ+t)). This completes the proof of the Fibration Theorem.

Example 12.2.8. (Working example. Part I.) Consider the function f(x, y) = y2−x5.
By resolving the singularity at (0, 0) we obtain a two dimensional manifold X (which is an
iterated blowup of C2 and a map f̂ : X → C which satisfies all the above conditions. We
want to determine all the relevant invariants.

By using the substitution x→ x, y → xy we see that

f = (y2 − x5)→ f1 = x2(y2 − x3)

where the exceptional divisor E1 is given by x = 0. f1 has order 2 along E1. Next we make
the substitution x→ x, y → xy to get

f1 → f2 = x4(y2 − x)

where the exceptional divisor E2 is given by x = 0. f2 has order 4 along E2. The substitution
x 7→ xy, y → y leads to

f2 → f3 = y5x4(y − x)
where the exceptional divisor E3 is given by y = 0. f3 has order 5 along E3 A final blowup
x 7→ x, y → xy leads to

f3 → f̂ = f4 = y5x10(y − 1)

where E4 is described by x = 0. f̂ has order 10 along E4. These transformations are depicted
in Figure 12.2 where we have also kept track of the multiplicities of the exceptional divisor.
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Figure 12.2: The resolution of singularity y2 = x5

We denote by Ĉ the proper transform of the germ C = {y2 − x5 = 0}. In this case we can
take ν = 4 and set

Dj = Ej , 1 ≤ j ≤ 4, D0 = Ĉ.

Then DJ = ∅ if |J | ≥ 3 and the only nonempty DJ with |J | = 2 correspond to

J = {1, 2}, {2, 4}, {3, 4}, {0, 4}.

In all these cases DJ consists of a single point.

Example 12.2.9. (Working Example. Part II.)Consider n = 2 and f : C2 → C, is the
resolution of y2 − x5 we described in Example 12.2.8 (see Figure 12.3). Then ν = 5 with
Dk = Ek, 1 ≤ k ≤ 4, D5 = Ĉ. The simplicial complex K is precisely the resolution graphs
of the singularity depicted in Figure 12.4.

There are 4 crossings and near them f is equivalent to one of the monomials

z21z
4
2 , z41z

5
2 , z51z

10
2 , z101 z2.

D†
1 is a sphere E1 with one hole, D†

2 is the sphere E2 with two holes, D†
3 is the sphere E3

with one hole, D†
4 is the sphere E4 with three holes, and D†

5 is a disk with one hole. We
can now reconstruct St, 0 < t ≪ 1. Consider small closed polydisks ∆1, · · · ,∆4 centered
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Figure 12.3: Dissecting the resolution of y2 − x5 = 0.
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Figure 12.4: The resolution graph of y2 − x5 = 0.

at the crossing points as depicted in Figure 12.3. We begin by considering one by one each
the five pieces SI , |I| = 1.

• k = 1. S†
1 is a m1 = 2-cover of D†

1. Thus S
1
t is a disjoint union of two disks.

• k = 2. S†
2 is a m2 = 4-cover of the sphere with two holes D†

2. It thus consists of 1, 2
or 4 distinct cylinders. It must consist of two cylinders to be attached inside ∆1 to the
boundaries of the two disks which form S†

1.

• k = 3. S3
t is a m3 = 5-cover of the sphere with one hole D†

3. It is thus the disjoint union
of five disks.

• k = 4. S†
4 is a m4 = 10-cover of the sphere E4 with three holes. Moreover its Euler

characteristic is ten times the Euler characteristic of the twice punctured disk so that
χ(S†

4) = −10.
• k = 5. S†

5 is diffeomorphic to the disk Ĉ with a hole around the intersection point with
E4. It is thus a disk.

There are four pieces SI , |I| = 2, which we label by Cj = St ∩ ∆j , j = 1, · · · , 4. C1

consists of gcd(2, 4) = 2 cylinders. C2 consists of gcd(4, 10) = 2 cylinders, C3 consists of

one cylinder while C4 consists of gcd(10, 5) = 5 cylinders. The boundary of S†
3 consists of

three parts. A part to be connected with the two cylinders forming C2, a part to be glued
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Figure 12.5: Reconstructing the Milnor fiber.

with the disk S5
t and a part to be glued with the five cylinders forming C4. We obtain the

situation depicted in Figure 12.5. Observe that the genus of St is 2 = (2−1)(5−1)
2 , that is

half the Milnor number of the singularity y2 − x5 = 0. This is not an accident.

As one can imagine, the situation in higher dimensions will be much more complicated.
Even the determination of the multiplicities of the divisors Di is much more involved. We
will have more to say about this when we discus toric manifolds.

Exercise 12.2.1. Consider the an irreducible germ C of planar curve with an isolated
singularity at (0, 0), denote by ΓC its resolution graph and by V (C) the set of its vertices.
To each v ∈ V (C) it corresponds a component of the exceptional divisor with multiplicity
m(v). Prove that the Euler characteristic of the Milnor fiber is given by the formula

∑

v∈V (C)

m(v) ·
(
2− deg(v)

)
.

We now return to the general situation. We want to explain how we can obtain infor-
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mation about the monodromy. First, define a map

Φ : H→ Qν =
{
(ρ0, · · · , ρν) ∈ Rν+1

+ ;

ν∑

i=0

ρi

}

by setting

ρi =
1

ν + 1
(1−mi log ri).

Choose a partition of unity (φi)0≤i≤ν of Qν subordinated to the open cover

ν⋃

i=0

{
ρi > 0

}

The functions τi = φi ◦ Φ define a partition of unity of H subordinated to the open cover⋃ν
i=0Ni.

Now we use the identifications µI : UI → NI . The bundle EI |DI
is equipped with a

natural periodic R-action described as follows. If

x = (⊕i∈Ivi, p) ∈ EI,p, , vi ∈ Li,p, p ∈ Di, t ∈ R

then

exp(it) · x =
(
⊕i∈I exp(

2πit

mi
)vi, p

)
∈ EI,p.

Now set w(t) = exp(2πit) and

W k =
⋃

|I|≥k

NI .

define

FI,t : S̄I \W|I|+1 → S̄I,w(t) \W |I|+1

so that if x = µI(⊕i∈Ivi, p) ∈ SI

FI,t(x) = µI

(
⊕i∈I exp(

2πitτi(x)

mi
)vi, p

)
∈ EI,p. (12.2.5)

Let us observe that whenever I ⊂ J we have

FI,t(x) = FJ,t(x)

for every x in the overlap OI,J = (S̄I \W|I|+1) ∩ S̄J . Indeed on the overlap we have rk = e,
∀k ∈ J \ I so that τk(x) = 0 for all k ∈ J \ I. This shows we have a well defined map

Ft : X1 → Xw(t)

The geometric monodromy is the map F1.
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Example 12.2.10. (Working example. Part III.) We continue to look at the situation

explained in Example 12.2.9. Each of the pieces S†
k is a cyclic cover of D†

k of degree mk. In
the interior of Sk† the action of Ft generates the action of the cyclic deck groups of these
covers. We consider the two cases separately.

• S†
1, m1 = 2. F1 flips the two connected components of S†

1.

• S†
2, m2 = 4. F1 interchanges the two components of S†

2 but its action in the interior is
not trivial (see Figure 12.6).

• S†
3, m3 = 5. F1 cyclically permutes the five components C1, · · · , C5 but the transition

Ci → Ci+1 is followed by a 2π/5 rotation of the disk Ci+1 (see Figure 12.6
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Figure 12.6: The action of F1 on S†
2, S

†
3 and S†

0.

• S†
4, m4 = 10. S†

4 is a 10-fold cover of the twice punctured disk D†
4 which has three

boundary components which we label by γ2, γ3, γ5 (see Figure 12.7). γk is covered by

S†
4 ∩ S†

k, k = 2, 3, 5. The fundamental group of this twice punctured disk is a free group on
two generators γ2, γ3. We have a monodromy representation

φ : π1(D
†
4)→ Aut (S†

4
λ4→ D†

4)
∼= Z/10Z.
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We identify this automorphism group with the group of 10-th roots of 1. Fix a primitive
10-th root ζ of 1. Since S†

4 ∩ S†
2 has two components we deduce

φ(γ2) = ζ5.

We conclude similarly that φ(γ3) = ζ2. Since γ5 = γ3γ2 we deduce φ(γ5) = ζ7) so that
φ(γ5) is a generator of the group of deck transformations of the covering λ4. This also helps

to explain the action of F1 on S†
5 depicted at the bottom of Figure 12.6.
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γ
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5

3

Figure 12.7: S†
4 is a cyclic 10-fold cover of the twice punctured disk D†

4.

The most complicated to understand is the action of the deck group of λ4. To picture
it geometrically it is convenient to remember that it is part of the general fiber of the map
f(x, y) = y2 − x5,

Xε :=
{
(x, y) ∈ C2, y2 − x5 = ε, , |x|2 + |y|2 ≤ 1

}
.

We already know its is a Riemann surface of genus 2 with one boundary component

∂Xε =
{
(x, y) ∈ Xε, |x|2 + |y|2 = 1

}

The boundary is a nontrivially embedded S1 →֒ S3 and in fact it represents the (2, 5)-torus
knot (see Figure 12.8). There is a natural action of the cyclic group C10 := Z/10Z on Xε

given by

ζ · (x, y) = (ζ2x, ζ5y).

The points on the surface where x = 0 or y = 0 have nontrivial stabilizers. The hyperplane
x = 0 intersects the surface in two points given by

y2 = ε.

The stabilizers of these points are cyclic groups of order 5. The hyperplane y = 0 intersects
the surface in 5 points given by

x5 = ε.
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Figure 12.8: A (2, 5)-torus knot and its spanning Seifert surface.

The stabilizers of these points are cyclic groups of order 2. Now remove small C10-invariant
disks centered at these points. The Riemann surface we obtained is equivariantly diffeomor-
phic to S†

4. To visualize it is convenient to think of Xε as a Seifert surface of the (2, 5)-torus
knot. It can be obtained as follows (see [63] for an explanation).

Consider two regular 10-gons situated in two parallel horizontal planes in R3 so that the
vertical axis is a common axis of symmetry of both polygons. Assume the projections of
their vertices on the xy-plane correspond to the 10-th roots of 1 and the 180◦ rotation about
the y-axis interchanges the two polygons. Label the edges of both of them with numbers
from 1 to 10 so that the edges symmetric with respect to the xy-plane are labeled by
identical numbers. We get five pairs of parallel edges (drawn in red in Figure 12.8) labeled
by identical pairs of even numbers. To each such pair attach a band with a half-twist as
depicted in Figure 12.8. Remove a small disk from the middle of each of the attached
twisted bands and one disk around the center of each of the polygons. We get a Riemann
surface with the desired equivariance properties.

Denote by Z[C10] the integral group algebra of C10,

Z[C10] ∼= Z[t]/(t10 − 1).

The Abelian group G := H1(S
†
4) has a natural Z[C10]-module structure. To describe it we
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follow a very elegant approach we learned from Frank Connolly. Denote by M the algebra
Z[C10] as a module over itself. Also we denote by M0 the trivial Z[C10]-module Z.

First recall that G is the abelianization of π1(S
†
4). S†

4 is a 10-fold cover of the twice

punctured disk D†
4 and thus π1(S

†
4) is the kernel of the morphism

φ : π1(D
†
4)→ C10, γ2 7→ ζ5, γ3 7→ ζ2.

π1(D
†
4) is a free group of rank 2 generated by γ2 and γ3. We want to pick a different set of

generators
x = γ2γ3, y = γ2x

5.

They have the property that φ(y) = 1 and φ(x) is the generator ρ = ζ7 of C10. Then

K := ker φ is a free group of rank rankZH1(S
†
4) = 11. As generators of K we can pick

a = x10, bj = xjyx10−j, j = 0, · · · , 9.

From the short exact sequence

1 →֒ K = 〈a; bj, j = 0, · · · , 9〉 →֒ π1(D
†
4) = 〈x, y〉։ C10 ։ 1.

we deduce that C10 acts on K by conjugation. For every k ∈ K we denote by [k] its image
in the abelianization K/[K,K] = G. Observe that

ρ · [a] = [x · x10 · x−1] = [a],

and
ρ · [bj] = [x · xjyx10−jx−1] = bj+1, ∀j = 0, · · · , 8.

Finally
ρ · b9 = [x10y] = [x10yx10x−10] = [a] + [b0]− [a] = [b0].

This shows that G is isomorphic as a Z[C10]-module to M0 ⊕M .
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Chapter 13

The Milnor fiber and local

monodromy

We continue to use the notations in the previous chapter.

13.1 The Milnor fiber

We want to first show that the function

|f | : ∂Br \ f−1(0)→ R

has no critical values accumulating to zero. In fact, a much more precise statement is true.
For each angle θ ∈ [−π, π] we denote by Φr(θ) = Φr(f, θ) the fiber of Θf,r over eiθ. We
recall that

Ur,c(f) = {|f | < c} ∩ ∂Br,

is a tubular neighborhood of the link Lr(f) = f−1(0) ∩ ∂Br.

Proposition 13.1.1. Fix an angle θ ∈ [−π, π].There exists r0 > 0 with the following
property. For every 0 < r < r0 there exists c = c(r) > 0 such that

Φr,c(θ) := Φr(θ) ∩
{
|f | > c

}
= Φr(f) \ Ur,c(f)

is diffeomorphic to the Milnor fiber.

Proof We will prove a slightly stronger result namely that for every sufficiently small r
there exists c = c(r, θ) > 0 such that the function |f | : Φr(f, θ)→ R+ has no critical values
< c(r). Then the diffeomorphism in the proposition is given by the gradient flow of |f |.

We first need a criterion to recognize the critical points of |f |, or which is the same, the
critical points of log |f |.

Lemma 13.1.2. Fix an angle θ ∈ [−π, π]. The critical points of log |f | along the Milnor
fiber Φr(θ) are those points ~z such that ∇ log f(~z) is a complex multiple of ~z.

169
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Proof Set h(~z) := log |f(~z)| = Re log f(z). Observe that for every vector ~v ∈ Cn we
have

dh(~v) = Re〈~v,∇ log f(~z)〉.
Thus ~z is critical for h restricted to the Milnor fiber if and only if ∇ log f(~z) is orthogonal
to the tangent space T~zΦ of Φr(θ) at ~z. The fiber is described as the intersection of two
hypersurfaces {

|~z| = r
}
∩Θ−1

f,r(θ)

so that the orthogonal complement is of T~zΦ in Cn is spanned (over R) by ∇|~z|2 and
∇Θr = i∇ log f(z). Thus ~z is a critical point if and only if there exists a linear relation
between the vectors ~z, ∇ log f(z) and i∇ log f(~z). This proves Lemma 13.1.2.

As in the previous chapter, set

Z :=
{
~z and ∇ log f(~z) are linearly dependent over C

}
, Zθ := Z ∩Φr(θ).

Both Z and Zθ are real algebraic varieties and we have to show that Z∩ f−1(0) contains no
accumulation points of Zθ. We argue by contradiction. If ~z0 ∈ Z∩f−1(0) is an accumulation
point of Zθ then there would exist a real analytic path ~z : [0, ε) → Z such that ~z(0) = ~z0
and ~z(t) ∈ Zθ, ∀t > 0. Clearly log |f(~z)|is constant along this path so that |f(z)| is constant
as well. This constant can only be |f(~z0)| = 0 which is clearly impossible: |f | > 0 on Φr(θ).
This concludes the proof of Proposition 13.1.1.

The Milnor fiber can be given a simpler description, which will show that it is equipped
with a natural complex (even Stein) structure.

Proposition 13.1.3. Consider a very small complex number c = |c|eiθ 6= 0. The intersec-
tion of the hypersurface f−1(c) with the small open ball Br,

Mr(f) =Mr,c(f) := f−1(c) ∩Br

is diffeomorphic to the portion Φr,|c|(θ) ⊂ Φr(θ) of the Milnor fiber.

Proof Using the same local patching argument as in the proof of Lemma 2.6 of Lecture
11 we can find a vector field v(~z) on B̄r \ f−1(0) so that the Hermitian inner product

〈
v(~z),∇ log f(~z)

〉
∈ R+, ∀~z ∈ B̄r \ f−1(0) (13.1.1)

and the inner product

Re
〈
v(~z), ~z

〉
> 0 (13.1.2)

has positive real parts. Now consider the flow determined by this vector field,

d~z

dt
= v(~z)

on B̄r \ f−1(0). The condition

〈d~z
dt
,∇ log f(~z)

〉
∈ R+
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shows that the argument of f(~z(t)) is constant and that |f(~z)| is monotone increasing
function of t. The condition

2Re
〈d~z
dt
, ~z(t)

〉
=
d|~z(t)|2
dt

> 0

guarantees that t 7→ |~z(t)| is strictly increasing.
Thus, starting at any point ~z of B̄r \ f−1(0) and following the flow line starting at ~z

we travel away from the origin, in a direction increasing |f |, until we reach a point ~ζ on
∂Br \ f−1(0) such that

arg f(~z) = arg(~ζ).

The correspondence
~z 7→ ~ζ

provides the diffeomorphism f−1(c) ∩Br 7→ Φr,|c|(arg c) claimed in the proposition.

Definition 13.1.4. Fix a sufficiently small number ε > 0. A (ε-) Milnor vector field for
f is a vector field on Bρ0 which

(a) satisfies (13.1.1) on Bρ0 and
(b) both conditions (13.1.1) and (13.1.2) on Bρ0 ∩ {|f | > ε}.

The above proof shows that f admits Milnor vector fields.

Corollary 13.1.5. ([56, Milnor]) For sufficiently small c > 0 the fibration

Br ∩ f−1(∂Dc)→ ∂Dc :=
{
ceiθ; |θ| ≤ π

}
, ~z 7→ f(~z)

is diffeomorphic to the Milnor fibration

∂Br \ f−1(Dc)→ S1, ~z 7→ 1

|f(~z)|f(~z).

We thus see that the Milnor fibration is a fibration over S1 with fibers manifolds with
boundary. Such a fibration is classified by a gluing diffeomorphism

Γf : Φr(f)→ Φr(f).

Theorem 13.1.6. (Milnor fibration theorem. Part II) Suppose f ∈ C[z1, · · · , zn] is
a polynomial such that 0 ∈ Cn is an isolated singularity of the hypersurface

Zf := f−1(0) ⊂ Cn,

i.e. f(0) = 0, df(0) = 0. Denote by µ the Milnor number of this singularity. Then there
exist ρ0 > 0, ε0 > 0 and δ0 > 0 with the following properties.

(a) f has no critical values 0 < |w| < ε0 and every morsification g of f such that

sup
~z∈Bρ0

|f(~z)− g(~z)| < δ0
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has exactly µ critical points p1, · · · , pµ ∈ Bρ0(0) ⊂ Cn and exactly µ critical values wj =
f(pj), |wj | < ε0.
(b) For every 0 < ε < ε0 and 0 < r < ρ0 the fibrations

f : f−1(∂Dε) ∩ B̄r → ∂Dε, Θf,r : ∂Br \ f−1(Dε)→ S1

are isomorphic.
(c) If w ∈ Dε \ {0} is a regular value of g then the Milnor fiber Mr,w(g) = g−1(w) ∩ Br of
g is diffeomorphic to Mr(f)
(d) The Milnor number µ = µ(f, 0) is equal to the middle Betti number of the Milnor fiber.
More precisely,

Hk(Mr(f),Z) ∼=





Zµ k = n− 1(= 1
2 dimRMr(f))

0 k 6= n− 1
(13.1.3)

Proof Part (a) is essentially the content of Chapter 10.
(b) The isomorphism

f : f−1(∂Dε) ∩ B̄r → ∂Dε ⇐⇒ Θf,r : ∂Br \ f−1(Dε)→ S1

follows from Corollary 13.1.5.
(c) This follows from the fact that g approximates f very well and thus the regular fibers
of g ought to approximate well the regular fibers of f .
(d) To prove this define as in the beginning of Chapter 11

Xr(g) := g−1(D̄ε) ∩ B̄r, Xg := Xρ0(g), Mg :=Mρ0(g).

Then

Hk(Xg,Mg;Z) ∼=
{

0 k 6= n
Zµ k = n

. (13.1.4)

Next, observe the following fact.

Lemma 13.1.7. The manifold with corners Xg is contractible.

Sketch of proof The idea of proof is quite simple. Since g is very close to f we deduce
that Xr(g) is homotopic to Xr(f) for all r ≤ ρ0. Next, using the backwards flow of a Milnor
vector field v(~z) of f , we observe that Xρ0(f) is homotopic to Xr(f) so that

Xρ0(g) ≃ Xr(g), ∀r < ρ0.

We can choose r > 0 sufficiently small so that g has at most one critical point in Br and,
in case it exists it is the origin and is nondegenerate. By choosing Br even smaller we can
use Morse lemma to change the coordinates so that g is a polynomial of degree ≤ 2. The
contractibility of Xr(g) now follows from the local analysis involved in the Picard-Lefschetz
formula (see Chapter 7).

The equality (13.1.3) now follows from (13.1.4), the contractibility of Xg and the long
exact sequence of the pair (Xg,Mg).
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13.2 The local monodromy, the variation operator and the

Seifert form of an isolated singularity

The above results show that the Milnor fibration, is a fibration in manifolds with boundary
Mr(f) classified by a gluing map Γf . The total space of the boundary fibration is the
intersection of the hypersurface. This extends to a fibration

Yc := {|f | = c}

with the sphere ∂Br. The Milnor fibration is then simply described by the map f . Because
|f | |∂Br does not have critical values accumulating at zero we deduce that this fibration
extends to a fibration over a small disk

Θf,r :=
{
|~z| = r; |f(~z)| ≤ c

}(
= Ur,c(f) ∩ ∂Br

)
→
{
|w| ≤ c

}
, ~z 7→ f(~z).

Thus the fibration f : Yc → {|w| = c} is trivializable

Ur,c(f) ∩ ∂Br
∼= {|w| ≤ c} × L(f)

so that the restriction of Γf is homotopic to the identity. For simplicity we assume

Γf |∂Mr(f)≡ 1.

Definition 13.2.1. The local monodromy of the isolated singularity of f at 0 is the
automorphism

(Γf )∗ : Hn−1(Mr(f),Z)→ Hn−1(Mr(f),Z),

induced by the gluing map Γf . Whenever no confusion is possible, we will write Γf instead
of (Γf )∗.

Suppose z ∈ Hn−1(Mr(f), ∂Mr(f);Z is a relative cycle. Since Γf acts as 1 on ∂Mr(f)
we deduce that

∂(1− Γf )z = 0

so that z − Γfz ∈ Hn−1(Mr(f);Z) . The morphism

Hn−1(Mr(f), ∂Mr(f);Z) 7→ Hn−1(Mr;Z), z 7→ z− Γfz

is called the variation operator of the singularity and is denoted by varf . We see that
the Picard-Lefschetz formula is nothing but an explicit description of the variation operator
of the simplest type of singularity.

Before we proceed further we need to discuss one useful topological invariant, namely,
the linking number. (For more details we refer to the classical [49].)

Suppose a and b are (n− 1)-dimensional cycles inside the (2n− 1)-sphere ∂Br. (When
n = 1 we will assume the cycles are also homotopic to zero.) We can then choose a n-chain
A bounding a. The intersection number A · b is independent of the choice of A. The
resulting integer is called the linking number of a and b and is denoted by lk(a,b).



174 Liviu I. Nicolaescu

The computation of the linking number can be alternatively carried as follows. Choose
two n-chains A and B bounding a and b, which, except their boundaries, lie entirely inside
Br. We then have

lk(a,b) = (−1)nA ·B.
In particular, we deduce

lk(a,b) = (−1)nlk(b,a).
To prove the first equality is suffices to choose the chains A and B in a clever way.

Choose B as the cone over b centered at 0

B =
{
t~z; ~z ∈ b, t ∈ [0, 1]

}
.

Next, choose a chain A0 ⊂ ∂Br bounding a and then define

A =
{1
2
~z; ~z ∈ A0

}
∪
{
t~z; ~z ∈ a, t ∈ [

1

2
, 1]
}

(see Figure 13.1.)

A B


a

Figure 13.1: Linking numbers

Fix a sufficiently small number ε > 0 and set for simplicity

Φr(θ) := Θf,r(e
it) ∩ {|f | ≥ ε}, T := {|f | ≤ ε} ∩ ∂Br.

Consider a family of diffeomorphisms of

Yt : Φr(0)→ Φr(2πt), t ∈ [0, 1]

which lifts the homotopy t 7→ exp(2πit), Y0 ≡ 1 and agrees with a fixed trivialization of the
boundary fibration. Observe two things.

• Y1 can be identified with Γf .
• If a, b ∈ Hn−1(Φr(0);Z) then Y1/2 ∈ Φr(π) and thus the cycles a and Y1/2b in ∂Br are
disjoint.
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Definition 13.2.2. The Seifert form of the singularity f is the bilinear form
Lf on Hn−1(Φr(0);Z) defined by the formula

Lf (a,b) = lk(a, Y1/2b).

Proposition 13.2.3. Consider two cycles a ∈ Hn−1(Φr(0), ∂Φr(0);Z) and b ∈ Hn−1(Φr(0);Z).
Then

Lf (varf (a), b) = a · b
where the dot denotes the intersection number of (n−1)-cycles inside the (2n−2)-manifold
Φr(0).







Υ

1/2

ta (a)

L (f)r

Figure 13.2: The variation operator

Proof Consider the map

Y : [0, 1] × a→ ∂Br, (t, ~z) 7→ Yt(~z).

The image of Y is an n-chain C ⊂ ∂Br whose boundary consists of two parts: the variation
of a

varf (a) = Y1a− a,

which lies inside Φr(0), and the cylinder Y ([0, 1]×∂a), which lies entirely inside on ∂T (see
Figure 13.2). We have a natural identification

∂T ∼= {|w| ≤ ε} × Lr(f)

obtained by fixing a trivialization of the boundary of the Milnor fibration. Note that Yt(∂a)
corresponds via this identification to the cycle {εe2πit} × ∂a. Now flow this cycle along the
radii to the t-independent cycle {0} × ∂a.
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We thus have extended the cylinder Y ([0, 1] × a) to a chain A in ∂Br whose boundary
represents varf (a) ⊂ Φr(0). The intersection of the chain A with Y1/2b is the same as the
intersection of the cycles Y1/2a and Y1/2b in the fiber Φr(π). Hence

Lf

(
varf (a,b)

)
= (Y1/2(a) · Y1/2b)Φr(π) = (a · b)Φr(0).

Proposition 13.2.4. The Seifert form is nondegenerate, i.e. it induces an isomorphism
from Hn−1(Φr(0);Z) to its dual.

Proof The Alexander duality theorem (see [49]) asserts that the linking pairing

lk : Hn−1(Φr(0),Z) ×Hn−1(∂Br \ Φr(0);Z)→ Z

is a duality, (i.e. nondegenerate). A bit of soul searching shows that the middle fiber Φr(π)
is a deformation retract of ∂Br \ Φr(0). Consequently, we have an isomorphism

Hn−1(∂Br \ Φr(0);Z) ∼= Hn−1(Φr(π);Z).

The proposition now follows from the fact that Y1/2 induces an isomorphism

Hn−1(Φr(0);Z)→ Hn−1(Φr(π);Z).

By Poincaré-Lefschetz duality, the intersection pairing

Hn−1(Φr(0), ∂Φr(0);Z)×Hn−1(Φr(0);Z)→ Z

is nondegenerate. Proposition 13.2.3, 13.2.4 have the following remarkable consequence.

Corollary 13.2.5. The variation operator of the singularity f is an isomorphism of ho-
mology groups

Hn−1(Φr(0), ∂Φr(0);Z)→ Hn−1(Φr(0);Z).

Moreover
Lf (a, b) = (var−1

f a) · b, ∀a,b ∈ Hn−1(Φr(0)). (13.2.1)

Corollary 13.2.6. For a,b ∈ Hn−1(Φr(0);Z)

a · b = −Lf (a,b) + (−1)nLf (b,a).

Proof Observe first that

varfa · varfb+ a · varfb+ varfa · b = 0. (13.2.2)

If we set a0 := varfa, b0 := varfb we deduce

a0 · b0 = −var−1
f a0 · b0 − a0 · var−1

f b0
(13.2.1)

= −Lf(a0,b0) + (−1)nLf (b0,a0).
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13.3 Picard-Lefschetz formula revisited

We want to outline a computation the variation operator of the simplest singularity,

f = z21 + · · · + z2n.

The answer is the Picard-Lefschetz formula discussed in great detail in Chapter 7 using a
more artificial method.

The Milnor fibration of this quadratic singularity is given by the formula

∂Br \
{∑

j

z2j = 0
}
∋ ~z 7→ 1

|∑j z
2
j |
∑

j

z2j .

The vanishing cycle corresponds in the fiber Φr(0) to the cycle ∆ defined by the equations

∑

j

z2j = 1, Im zj = 0.

We have
var−1∆ ·∆ = lk(∆, Y1/2∆) = L(∆,∆) = (−1)nA ·B

where A and B are cycles in Br with boundaries ∆ and respectively Y1/2∆. To calculate
the linking number lk(∆, Y1/2∆) it is possible to use the family of diffeomorphisms

Ψt : Φr(0)→ Φr(2πt), (z1, · · · , zn) 7→ (eπitz1, · · · , eπitzn).

The reason is very simple. Ψ1/2∆ and Y1/2∆ are homologous inside the Milnor fiber Φr(1/2)
so that they have the same linking number with ∆.

The cycle Ψ1/2∆ is determined by the equations

∑

j

z2j = −1, Re zj = 0.

We can take as A and B the chains determined by the equation Im zj and respectively
Re zj = 0. Their intersection is ±1 with the sign which can be determined following the
rules in Chapter 7.
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Chapter 14

The monodromy theorem

The Picard-Lefschetz formula explains the topological implications of a nondegenerate crit-
ical point of a holomorphic function. In this chapter we want to approach the general case
and try to understand the monodromy of such a critical point. The description will be in
terms of a resolution of that singularity. Our presentation is greatly inspired from the work
of H. Clemens [17, 18, 19] and N. A’Campo, [1].

14.1 Functions with ordinary singularities

Suppose P ∈ C[z0, z1, · · · , zn] is a polynomial in n+1-variables such that the origin 0 ∈ Cn+1

is an isolated critical point. Set Z0 = {P = 0} ⊂ Cn+1. A famous result of H. Hironaka
[37] (see the nice presentations [5] in [35] for very readable accounts of this deep theorem)
implies that P admits a good embedded resolution of singularities. This means that there
exists an open polydisk

Dr :=
{
~z ∈ Cn+1; 0 < |zk| < r ≪ 1, k = 0, · · · , n

}
, (14.1.1)

a closed analytic subset E ⊂ Dr such that Z0 ∩ Z0 = {0}, a n + 1-dimensional complex
manifold X, and a proper map π : X → Dr with the following properties.

• The restriction of π to X \ {π−1(E)} is a biholomorphism onto Dr \ E. π−1(E) is called
the exceptional locus.
• The divisor X0 = {P ◦ π = 0} is normal crossings divisor,, i.e. ,for every point p ∈ X0

we can find local coordinates (x0, · · · , xn) in a neighborhood Up of p in X and nonnegative
integers ν0, · · · , νn such that

P ◦ π |Up= xν00 · · · xνnn .

• Define the proper transform of Z0 as the closure Ẑ0 of π−1(Z0 \ E) in X. Then Ẑ0 is a
smooth divisor.

The composition f := P ◦ π : X → C is now a holomorphic function on the complex
manifold X such that the fiber f−1(0) has better controlled singularities. Note that for any
t ∈ C, 0 < |t| ≪ 1 the fibers f−1(t) and P−1(t) are diffeomorphic. As t → 0 the Milnor
fiber “collapses” onto the singular fiber f−1(0) and thus we can expect that this singular

179
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fiber carries a considerable amount of information about the generic nearby fibers. This is
the type of problem we intend to address in this chapter.

Suppose X is an (open) complex manifold of complex dimension n + 1, ∆ is an open
disk in C centered at 0, and f : X → ∆ with the following properties.

• 0 ∈ ∆ is the unique critical value of f . Set Xt := f−1(t).

• Consider the decomposition X0 =
⋃s

j=0Dj with the following property. For j > 0 the
component Dj is a smooth and irreducible hypersurface, while D0 coincides with the proper
transform Ẑ0. It has as many irreducible components as the germ at 0 of f−1(0). Since π
is proper we deduce that for j > 0 the component Dj must be compact.

For any set S ⊂ X we define

IS :=
{
i; Di ∩ S 6= ∅

}
.

For simplicity we set Ix = I{x}, ∀x ∈ X.

• For any subset I ⊂ 0, s := {0, 1, · · · , s} the divisors {Di}i∈I intersect transversely. We set

DI :=
⋂

i∈I

Di, X
(k)
0 =

⋃

|I|>k

DI .

Note that DI is either empty, or it is a codimension |I| complex submanifold of X. We
obtain a filtration of X0 by closed subsets

X0 = X
(0)
0 ⊃ X(1)

0 ⊃ · · · ⊃ X(n)
0 . (14.1.2)

For any point p ∈ X(k)
0 \X

(k+1)
0 , p ∈ Di1 ∩ · · ·Dik there exists an open coordinate neighbor-

hood Up ⊂ X and local coordinates (u1, · · · , un+1) and positive integers m1, · · · ,mk such
that ui(p) = 0, ∀1 ≤ i ≤ n+ 1 and

f |Up= um1
1 · · · umk

k , Dij ∩ Up = {uj = 0}.

For 0 < r ≪ 1 we set

Yr := {p ∈ X; |f(p)| < r} =
⋃

|t|<r

Xt, ∂Yr := {p ∈ X; |f(p)| = r}.

We would like to explicitly construct a continuous map

c : ∂Yr → X0

and an explicit homeomorphism µ : Xr → Xr representing the monodromy of the fibration

{
|f | = r

} f−→
{
|t| = r

}

such that the diagram below is commutative

Xr Xr

X0

w

µ

[

[℄

c
�

��

c



The topology of complex singularities 181

The cohomological information about µ will be obtained by analyzing the Leray spectral
sequence of the collapsing map c. The map c is often referred to as the Clemens collapse
map. We will use a few basic facts about subanalytic sets which we survey below. For more
details we refer to [4, 38], [42, Chap. VIII].

Suppose X is a real analytic manifold. A subset S ⊂ X is called subanalytic at x ∈ X
if there exists an open neighborhood U of x ∈ X, compact manifolds Yi, Zi, 1 ≤ i ≤ N and
morphisms

fi : Yi → X, gi : Zi → X

such that

S ∩ U = U ∩
n⋃

i=1

fi(Yi) \ gi(Zi).

If S is analytic at each point x ∈ X, one says that Z is subanalytic in X.
The subanalytic sets behave nicely with respect to the set theoretic operations. We list

below some of the most useful properties.

• If S ⊂ X is subanalytic then so is its closure, its interior, its complement and any of its
connected components. Moreover the collection of connected components is locally finite1.

• The union and the intersection of two subanalytic sets is subanalytic.

• Suppose f : X → Y is a morphism. If S ⊂ Y is subanalytic then f−1(S) is subanalytic.
If f is proper and T ⊂ X is subanalytic then so is its image f(T ) ⊂ Y .

• Every close subanalytic subset S ⊂ Y is the image of a manifold X via a proper morphism
f : X → Y .

• (Triangulation theorem) If X =
⊔

α∈AXα is a locally finite partition of X by subanalytic
subsets then there exists a simplicial complex S and a homeomorphism t : |S| → X with
the following properties.

(i) For every simplex σ of S the image t(int |σ|) is a subanalytic submanifold of X.
(ii) The image of the interior of any simplex |σ| via t is entirely contained in a single

stratum Xα.

The pair (S, t) is called a subanalytic triangulation subordinated to the subanalytic partition⊔
α∈AXα. In the sequel we will omit t from notations.

• Every subanalytic set is Whitney stratifiable. The local triviality of Whitney stratification
implies that every compact subanalytic set is locally contractible and thus an ENR.

14.2 The collapse map

To construct the collapse map we begin by constructing a more explicit homotopic model
of ∂Yr following the very elegant approach in [1]. First, we slightly redefine X. We would
like to regard it as a compact manifold with boundary and we set

X = π−1(Dr/2) (14.2.1)

1A family of subsets of a topological space is called locally finite if every point of the space has a
neighborhood which intersects only finitely many sets of the family.
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In particular, the Milnor fiber will be a compact manifold with boundary. Let

Σ =
{
I ⊂ 0, s; DI 6= ∅

}
.

Consider the Euclidean space Rs+1 with standard basis e0, e1, · · · , es. We think of Σ as a
simplicial complex embedded in Rs+1 with vertices e0, · · · , es and a k-face ∆I spanned by
{ei : i ∈ I}, for each subset I ⊂ 0, s such that |I| = k + 1 and DI 6= ∅.

Remark 14.2.1. If n = 1 so that f is a polynomial in two complex variables z0, z1 we can
identify the simplicial complex Σ with the resolution graph described in Chapter 11.

Consider the subanalytic set

X̂0 =
⋃

I∈Σ

DI ×∆I ⊂ X × Rs+1.

Observe that we have a natural projection

ρ : X̂0 → X0

induced by the natural projection X × Rs+1 ։ X. For x ∈ X0 we define

Ix :=
{
i = 0, 1, · · · , s; x ∈ Di

}

and set

∆x := ∆Ix, ω(x) := |Ix| = dim∆x + 1, ωf := sup
x∈X0

ω(x).

ωf is the largest number of the divisors (Di)0≤i≤s that have a point in common. In particular

ωf ≤ min(n+ 1, s + 1).

Observe that

ρ−1(x) = {x} ×∆x.

We denote the points in ∆x by vectors

~w = (wi)i∈I ∈ [0, 1]Ix ,
∑

i∈Ix

wi = 1.

Note that a point x̂ ∈ X̂0 can be described as a pair

x̂ = (x, ~w), x = ρ(x̂), ~w ∈ ∆x.

Example 14.2.2. Let us visualize the above constructions over the reals when f : R2 → R,
f(x, y) = xy, X0 = {f = 0}. Then X̂0 is depicted in Figure 14.1.
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y

x

Figure 14.1: Resolving a real normal crossings divisor

Denote by Ti a tubular neighborhood of Di →֒ X. ∂Ti is the total space of a circle
bundle πi : ∂Ti → Di. Denote by βi : Zi−→X the real oriented blow-up of X along Di.
This is rigorously defined as follows. Fix a Riemann metric g on X. If Ti is sufficiently
small the function

di : X → R, di(x) := distg(x,Di)
2

is smooth on Ti. Denote by β : S1X → X the unit sphere bundle of TX. We have a section
of S1X over Ti \Di defined by

νi(x) =
1

|∇gdi|
∇gdi.

We denote by T̂i the closure in S1X |Ti of the graph of the section νi. We have a natural
projection

βi : T̂i → Ti

which is a diffeomorphism away from Di. Then

Zi :=
(
T̂i ⊔X

)
/ ≈, t̂ ≈ x⇐⇒ βi(t̂) = x, x ∈ Ti \Di.

Zi is a smooth manifold with boundary

Ni = ∂Zi
∼= −∂Ti.

A point ν ∈ Ni can be described as an equivalence class of real analytic paths

ν : [0, 1] → X

such that ν(0) ∈ Di and ν̇(0) 6∈ Tp(0)Di. Two such paths ν0(t) and ν1(t) will be considered
equivalent if

ν0(0) = ν1(0) = p0 and ∃a0, a1 ∈ (0,∞) : a0ν̇0(0) − a1ν̇1(0) ∈ Tp0Di.

Let β : Z → X denote the fiber product of the blowups βi : Ẑi → X over X. Z is a smooth
manifold with corners and β is a diffeomorphism outside X0. The boundary

∂Z := β−1(X0) =: N.

is a manifold with corners. N is homeomorphic to the boundary of any small regular
neighborhood of X0 →֒ X.



184 Liviu I. Nicolaescu

Example 14.2.3. To visualize β : N → X0 we analyze a simple situation where X0 ⊂ C3

is given by the equation
f(z1, z2, z3) = z1z2z3 = 0.

We can topologically identify N with the real hypersurface

|f | = 1.

Consider the descending gradient flow Ψt : C3 → C3 of the function

d := |f |2.

Set
zk = rke

iθk .

Then the descending gradient flow is described by the system of o.d.e.’s

ṙk = −2f

rk
, θ̇k = 0, k = 1, 2, 3.

We deduce that for any j, k = 1, 2, 3 we have

dr2j
dt

=
dr2k
dt

= −4f =⇒ d

dt
(r2j − r2k) = 0 =⇒ r2j − r2k = const.

We can now identify β the asymptotic limit map

π∞ : {|f | = 1} → X0 = {|f | = 0}, {|f | = 1} ∋ ~z 7−→ lim
t→∞

Ψt~z

If ~z = (z1, z2, z3) ∈ {|f | = 1} then ~ζ = π∞(~z) is the unique point on X0 satisfying the
conditions

|ζj |2 − |ζk|2 = |zj |2 − |zk|2, ∀j, k = 1, 2, 3

and if ζj 6= 0
arg ζj = arg zj.

For example if 0 < r1 < r2 < r3 and r1r2r3 = 1 then

π∞(r1e
iθ1 , r2e

iθ2 , r3e
iθ3) = (0, ρ2e

iθ2 , ρ3e
iθ3), ρ2k = r2k − r21.

If 0 < r1 = r2 < r3 then

π∞(r1e
iθ1 , r2e

iθ2 , r3e
iθ3) = (0, 0, ρ3e

iθ3).

One can visualize this map as follows. Consider the one-dimensional foliation of C3 \ X0

defined by the equations

r21 − r2j = const, θk = const., j = 2, 3, k = 1, 2, 3.

Through every point ~z ∈ {|f | = 1} passes a single curve C~z of this foliation. Then π∞(~z)
is the intersection of X0 with the closure of C~z in C3. In Figure 14.2 we depicted the
two-dimensional real counterpart of this construction.
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xy=1

Figure 14.2: Visualizing β.

Define N̂ as the fiber product over X0 of the maps ρ : X̂0 and β : N → X0. We obtain
a Cartesian diagram

N̂ N

X̂0 X0

\

\

\

\℄

c

u

β̂

w

ρ̂

u

β

w

ρ

.

The composition

c = ρ ◦ β̂ = β ◦ ρ̂

will be the collapse map. We now proceed to the construction of a more transparent
homotopic model for the monodromy.

Consider the real oriented blowup ∆̂ → ∆ of center 0 ∈ C of the unit disk ∆ ⊂ C. We
have a diffeomorphism

∆̂ ∼= [0, 1] × S1

and a blow-up map

π∆ : ∆̂→ ∆, [0, 1] × S1 ∋ (r, θ) 7−→ reiθ.

We now form the diagram

Z \N ∆̂ \ π−1
∆ (0)

X \X0 ∆ \ 0
u

β

w

f̌

u

π∆

w

f

where the map f̌ is defined by

f̌ = π−1
∆ ◦ f ◦ β : Z \N → ∆̂ \ π−1

∆ (0), p 7−→ (|f(p)|, f(p)|f(p)|).
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The map f̌ extends by continuity to a map

f̌ : Z → ∆̂.

We denote by Θf the restriction of f̌ to N so that

Θf : N → π−1
∆ (0) ∼= S1.

We have a commutative diagram

N̂ N S1

X̂0 X0

[

[

[

[℄

c

u

β̂

w

ρ̂

u

β

w

Θf

w

ρ

For every i = 0, 1, · · · , s the blowup projection βi : Ni = ∂Zi → Di defines a principal
S1-bundle

βi : Ni → Di.

As such it is equipped with a natural S1-action and in particular with a R-action

Ψ : R×Ni → Ni

which for simplicity we denote by

(t, νi)
Ψ7−→ t+ νi.

Now define

Γi : R×Ni → Ni, (t, ν) 7−→ Γi(t, νi) :=
t

mi
+ νi,

where mi ∈ Z>0 is the multiplicity of f along Di. The flows Γi define a flow on the part

Ṅ which projects via β to the smooth part Ẋ0 = X
(1)
0 \ X(2)

0 of X0. Since N̂
ρ̂→ N is a

homeomorphism above Ṅ we can regard Ṅ as a subset of N̂ as well. This flow does not
extend to N but it extends to a flow on N̂ .

Let x ∈ X0. We have natural identifications

β−1(x) ∼=
∏

i∈I

β−1
i (x), ρ−1(x) = ∆x.

so that
c−1(x) ∼= ρ−1(x)× β−1(x) ∼= ∆x ×

∏

i∈I

β−1
i (x).

Given
ν̂ = (wi, νi)i∈Ix ∈ c−1(x) ∼= ∆x ×

∏

i∈I

β−1
i (x)

we define

Γt(ν̂) = (wi,Γ
i(wit, νi))i∈Ix = (wi,

wit

mi
+ νi)i∈Ix ∈ c−1(x).
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Denote by Ξt the obvious R-action on S1. For every t ∈ R we have the following commutative
diagrams

N̂ N̂

X̂0

[

[℄

β̂

w

Γt

�

�� β̂
u

w

u

w

(14.2.2)
We set

F̂ :=
{
ν̂ ∈ N̂ ; Θ̂f (ν̂) = 1 ∈ S1

}
.

We deduce from the above commutative diagrams that Γ2π induces a continuous map

µ : F̂ → F̂

such that c◦µ = c. This will be our homotopic representative for the geometric monodromy.
Let us prove this claim. We begin by showing that F is homotopic to the Milnor fiber of f .

Lemma 14.2.4. The map
f̌ : Z → ∆̂

is a locally trivial fibration.

Proof Since f̌ is proper (due to the definition (14.2.1)) and the fibers are subanalytic and
thus Whitney stratifiable, will use the local criterion in [66, Cor. 6.14] for recognizing a
locally trivial fibration. More precisely, we have to show that f̌ is locally a projection, i.e.
for every p ∈ Z we can find a neighborhood V and a homeomorphism

h : V → S × f̌(V ), S = topological space,

such that the diagram below is commutative.

V S × f̌(V )

f̌(V )

'

'

'

')

f̌

w

h

[

[

[̂
projection

This is clearly the case for p ∈ Z \N since on that part f̌ is a submersion. For p ∈ N we
will use the special description of f in local coordinates. Let

x := β(p) ∈ X0, Ix = {i0, i1, · · · , ik}.

We can then find holomorphic coordinates u0, u1 · · · , un in a neighborhood U of x ∈ X such
that

f |U= u
mi0
0 · · · umik

k , uj(x) = 0, ∀j = 0, 1, · · · , n.
Set uj = rje

iθj . Near p ∈ N we have coordinates

(uj)j>k, (ri, θi)i≤k ∈ [0, 1] × S1.
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In these coordinate N is described by
∏k

i=0 ri = 0. Near p the map f̌ has the local descrip-
tion

f̌(rj , θj) = (

k∏

j=0

r
mij

j ,

k∑

j=0

mijθj) ∈ [0, 1] × S1.

We can now check that this map is a projection in a neighborhood of p.
We deduce that Θf : N → S1 is isomorphic to the Milnor fibration. The composition

Θ̂f : N̂
ρ̂−→ N

Θf−→ S1

is a homotopy fibration (it has the homotopy lifting property ) isomorphic to the Milnor
fibration. We deduce that F̂ = {Θ̂f = 1 ∈ S1} is homotopic2 to the Milnor fiber and that
indeed µ is homotopic to the geometric monodromy.

Consider the collapse map

c : F̂ →֒ N̂
β̂−→ X̂0

ρ−→ X0.

Denote by C = SC the constant sheaf with stalk C on the topological space S. The Leray
spectral sequence of the collapse map c (see [28, II.§4.17]) converges to H•(F,C) and its
E2-term is

Ep,q
2 = Hp(X0, R

qc∗C)

where Rqc∗C is the sheaf associated to the presheaf

X0 ⊃ U 7−→ Hq(c−1(U) ∩ F̂ ,C).

Moreover,
(Rqc∗CF̂ )x

∼= Hq(c−1(x) ∩ F̂ ,C), ∀x ∈ X0.

Let us describe the structure of F̂x := c−1(x) ∩ F̂ . Assume Ix = {i0, · · · , ik}.
As in the proof of Lemma 14.2.4 we can then find holomorphic coordinates u0, u1 · · · , un

in a neighborhood U of x ∈ X such that

f |U= u
mi0
0 · · · umik

k , uj(x) = 0, ∀j = 0, 1, · · · , n.

Set uj = rje
iθj ,

dx := gcd(mi0 , · · · ,mik), mx = lcm(mi0 , · · · ,mik).

Using the diagram (14.2.2) we deduce

F̂x
∼= ∆x ×

{
p ∈ β−1(x); Θf (p) = 1 ∈ S1,

}
.

The fiber β−1(x) is a (k + 1)-dimensional torus with angular coordinates (θi)0≤i≤k. Along
this torus the map Θf has the description

(θ0, · · · , θk) 7−→
k∑

j=0

mijθj mod 2πZ ∈ S1.

2F is in fact simple homotopic to the Milnor fiber.
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We deduce that {Θf = 1 ∈ S1} ∩ β−1(x) is a disjoint union of dx tori of dimension k,

T(x, ℓ) = {(θi) ∈ (R/2πZ)k+1;
k∑

j=0

mijθj ∈ 2πℓ+ 2πdxZ
}
, ℓ = 1, · · · , dx.

Hence

F̂x
∼=

dx⋃

ℓ=1

∆x × T(x, ℓ).

In particular we deduce

Hq(F̂x,C) = 0, ∀q > k =⇒ Hq(F̂x,C) = 0, ∀q > dimΣ. (14.2.3)

Let
q = (~w, (θi)) ∈ F̂x.

For every integer m we have

µm(q) = (~w, θi +
2wimπ

mi
) ∈ F̂x.

In particular if we set µx := µ |F̂x
we deduce

µmx
x (q) ∈ ∆x × T(x, ℓ).

Moreover, the induced morphism (µ∗x)
mx acts trivially on H•(∆x × T(x, ℓ),C).

Now, let
m = lcm(m0, · · · ,ms).

We deduce that for every x ∈ X0 we have

(µ∗x)
m = 1H•(F̂x,C)

.

Now we need to describe an explicit procedure of obtaining the Leray spectral sequence of
the map c : F̂ → X0.

First, let 0 → C  G• denote the Godement resolution of the sheaf C. Each of the
sheaves G• is a constant sheaf on F̂ and in particular for every µ-invariant open set V ⊂ F̂
we have an induced morphism of complexes

µ∗ : (G•(V ), d)→ (G•(V ), d).

In particular we can regard (G•(V ), d) as a C[v]-module, where the action of the formal
variable v is given by µ∗. For every open set U ⊂ X0 the open set c−1(U) ⊂ F̂ is µ invariant
and we deduce that we can regard the complex c∗G

• as a complex of C[v]-modules. Since the
Godement resolution is flabby we deduce that the sheaves of C[v]-modules c∗G

• are flabby.
In particular, they determine a flabby resolution of the sheaf of C[v]-modules c∗C. The
cohomology groups of F̂ with coefficients in C are the hypercohomology groups of the com-
plex of C[v]-modules c∗G

•. The Leray spectral sequence is precisely the hypercohomology
spectral sequence (see [13] or [27, III.7] for more details).
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The upshot of this algebraic digression is that we can find a filtered complex of C[v]-
modules such that the corresponding spectral sequence converges to the C[v]-moduleH•(F̂ ,C)
and whose E2-term is described by the C[v]-modules

Ep,q
2 = Hp(X0, R

qc∗ F̂C).

From the above topological considerations we deduce that the action of vm on Rqc∗ F̂C is
given by the identity. Additionally, the equality (14.2.3) implies that

Ep,q
2 = 0, ∀q > dimΣ.

Hence we conclude that there exists a decreasing filtration of C[v]-modules

H•(F̂ ,C) = E0 ⊃ · · · ⊃ EdimΣ ⊃ EdimΣ+1 = 0

such that on each of the C[v]-modules Er/Er+1 we have vm = 1.
Consider now the linear operator L = vm − 1 : E0 → E0. We deduce that each of the

subspaces Er is L-invariant and moreover

L(Er/Er+1) = 0⇐⇒ L(Er) ⊂ Er+1.

In particular, we deduce that
Lωf = LdimΣ+1 = 0,

i.e. the Jordan cells of L have dimension at most ωf . We have thus proved the following
result.

Theorem 14.2.5 (The monodromy theorem). Let

m = lcm(m0, · · · ,ms)

and ωf denote the largest number of the divisors D0,D1, · · · ,Ds that have nontrivial overlap.
Then (

(µ∗)m − 1
)ωf

= 1.

14.3 A’Campo’s Formulæ

The setup described above can be used to produce a formula of Norbert A’Campo [1] for
the Euler characteristic of the Milnor fiber in terms of the multipicities mi and the Euler
characteristic of the divisors Di. Before we present this formula we need a brief digression
in the world of sheaves.

Suppose X is a locally compact space and S →֒ X is a closed subset. For every sheaf F
of C-vector spaces on X we denote by FS the sheaf defined by the presheaf

X ⊃ U 7−→ FS = F(S ∩ U).

If we denote by FS(x) the stalk of FS at x ∈ X then

FS(x) ∼=
{

F(x) if x ∈ S
0 if x 6∈ S
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Note that we have a natural morphism of sheaves F−→FS . This is an epi-morphism and
we set

FX\S := ker(F → FS).

Thus, we have a short exact sequence of sheaves

0→ FX\S → F → FS → 0. (14.3.1)

Recall that a family of supports on X is a collection Φ of closed subsets of X satisfying the
following conditions.

• Any finite union of sets in Φ is a set in Φ.
• Any closed subset of a set in Φ is a set in Φ.
• Every set in Φ admits a neighborhood which is a set in Φ.

For example the collection of all the compact subsets of X or the collection of all closed
subsets of X are families of supports. For every family of supports on X, every sheaf of
C-vector spaces F, and every open set U ⊂∈ X we set

ΓΦ(U,F) =
{
s ∈ Γ(U,F); supp s ∈ Φ

}
.

ΓΦ is a left exact functor from the Abelian category ShC(X) of sheaves of C-vector spaces
on X to the Abelian category VectC of C-vector spaces. The right derived functors of ΓΦ

are denoted by H•
Φ. When Φ is the collection of all closed (resp. compact) subsets of X we

will write H•(X,−) (resp. H•
c (X,−)).

If A ⊂ X is locally closed and Φ is a family of supports on X then we set

Φ|A :=
{
S ⊂ A; S ∈ Φ

}
.

If S is a closed subset of X, F ∈ ShC(X) and Φ is a family of supports on X we have an
isomorphism [28, II.4.10]

H•
Φ|S(S,F |S) ∼= H•

Φ(X,FS), H•
Φ|X\S(X \ S,F |X\S) ∼= H•

Φ(X,FX\S)

In particular, we deduce

H•
c (S,F |S) ∼= H•

c (X,FS), H•(S,F |S) ∼= H•(X,FS),

H•
c (X \ S,F |X\S) ∼= H•

Φ(X,FS).

In particular, if X is compact and F = C = XC is the constant sheaf with stalk C on X we
deduce

H•(S,C) ∼= H•(X,CS), H•
c (X \ S,C) ∼= H•(X,CS) (14.3.2)

If S and X \ S are locally contractible then (see [11, III§1] or [67, Chap. 6§9]) then the
groups H•(S,C) (resp. H•

c (X \ S,C)) coincide with the usual singular cohomology groups
with complex coefficients (and resp. compact supports). Using this fact we deduce from
the short exact sequence (14.3.1) that if X is a compact subanalytic set and S is a closed
subset we have

χ(X) = χ(S) + χc(X \ S), (14.3.3)
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where χc denotes the Euler characteristic of the compactly supported cohomology. Using
the above identity we deduce that if X is a compact subanalytic set and

X = X(0) ⊃ X(1) ⊃ · · · ⊃ X(k) ⊃ X(k+1) = ∅

is a decreasing filtration by closed subanalytic sets then we deduce

χ(X) = χc(X) = χc(X
(0) \X(1)) + χc(X

(1) \X(2)) + · · ·+ χc(X
(k) \X(k+1)). (14.3.4)

We apply these considerations to the homotopy Milnor fiber F̂ and a carefully chosen
decreasing filtration by closed subanalytic subsets.

Consider again the Clemens collapse map c : F̂ → X0. Recall the decreasing filtration
by closed sets (14.1.2)

X0 = X
(0)
0 ⊃ X(1)

0 ⊃ · · · ⊃ X(n)
0 ,

where
X

(j)
0 =

⋃

|I|>j

DI .

This shows that X
(j)
0 is a closed subanalytic subset of X0. We will refer to X

(1)
0 as the

crossing locus since it consists of the points x ∈ X0 which belong to at least two of the
divisors Di. We will denote it by cr (X0). Now set

F̂ (j) := c−1(X
(j)
0 ).

Since c is an analytic map the sets F̂ (j) are subanalytic. The equality (14.3.4) implies

χ(F ) =
n∑

j=0

χc(F̂
(j) \ F̂ (j+1)).

The restriction of the collapse map c to F̂ (j) \ F̂ (j+1) is a locally trivial fibration over

X
(j)
0 \X

(j+1)
0 with fiber over x of the form

F̂x
∼= ∆j × union of dx tori of dimension j.

We deduce that
χc(F̂x) = χ(F̂x) = 0, ∀x ∈ cr (X0).

From the Leray spectral sequence with compact supports (see [22, §2.3] or [28, II.§4.17] )
we deduce that for every locally trivial fibration of ENR spaces

S →֒ E → B

with compact fiber S and connected base B we have

χc(E) = χ(S) · χc(B).

In particular we deduce
χc(F̂

(j) \ F̂ (j+1)) = 0, ∀j ≥ 2
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so that
χ(F̂ ) = χc

(
F (0) \ F̂ (1)

︸ ︷︷ ︸
:=S

)
.

For every i = 0, 1, · · · , s we set

Ḋi := Di \ cr (X0), Si = c−1(Ḋi) ∩ S).

Si is a mi : 1 cover of Ḋi and thus it is an open subset of S. Since Si ∩ Sj = ∅ for i 6= j we
deduce

χc(F̂ ) = χc(S) =
s∑

i=0

χc(Si) =
s∑

i=0

miχc(Ḋi).

If i > 0, Ḋi is a noncompact manifold without boundary and so by Poincaré duality we
deduce

χc(Di) = χ(Di).

On the other hand, Ḋ0 is homeomorphic to f−1(0) \ 0. Hence

χc(Ḋ0) = χc(f
−1(0) \ 0) = χc(f

−1(0)) − χ(point).

The singular fiber f−1(0) is contractible since according to Theorem 12.1.2 it is homeomor-
phic to the cone over the link of the singularity. We deduce

χc(Ḋ0) = 0.

Putting together the above facts we deduce the following result.

Theorem 14.3.1 (A’Campo). Let

Ḋi := Di \ cr (X0).

Then

χ(F ) =

s∑

i=1

miχ(Ḋi).

Example 14.3.2. Consider the plane curve germs

(C1, 0) : (f1 = y4 − x11 = 0, 0), (C2, 0) : (f2 = (y2 − x3)2 − 4x5y − x7 = 0, 0).

The singular fiber in the resolution of C1 is depicted in Figure 14.3(a) and the resolution
graph of C2 is depicted in Figure 14.3(b).

In either case each of the compact divisors is a complex projective line CP1 ∼= S2. For
each vertex i 6= ∗ of either of these graphs the corresponding punctured divisor Ḋi is the
the sphere S2 punctured in as many points as the degree of the vertex i in the resolution
graph. In particular we deduce that the vertices of degree 2 do not contribute anything to
the Euler characteristic of the Euler fiber. For the first curve we have

χ1 = χ(f1 = ε) = m1 +m3 −m6 = 1− µ1, µ1 = Milnor number of (f1, 0),
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Figure 14.3: The resolutions graphs of C1 and C2

while for the second curve we have

χ2 = χ(f2 = ε) = m1 +m2 +m4 −m3 −m5 = 1− µ2, µ2 = Milnor number of (f2, 0).

The multiplicities mi for these germs were determined in Example 11.5.14 and we deduce

χ1 = 4 + 11− 44 = −29 =⇒ µ1 = 30, χ2 = 4 + 6 + 13− 12− 26 = −15 =⇒ µ2 = 16.

These results are in perfect agreement with our earlier computations.



Chapter 15

Toric resolutions

We have seen that a detailed knowledge of an embedded resolution of a polynomial leads
to a wealth of topological information about the singularity. Finding a resolution of the
singularity is never a simple task. In this chapter we describe a simple yet generic situation
when such a resolution can be characterized fairly explicitly in terms of some very basic
arithmetic invariant of the polynomial, its Newton diagram. This technique which relies on
toric varieties was pioneered by Khovanski and Varchenko and leads to very surprising in-
formation on the Milnor number and the monodromy of an isolated singularity of a complex
polynomial.

15.1 Affine toric varieties

A toric variety is a complex variety X together with an open and dense embedding (C∗)n →֒
X such that the natural action of Tn = (C∗)n on itself extends to an action on X. Note
that this implies dimCX = n.

This very efficient definition hides the rich structure underlying a toric variety. To
describe the general procedure of producing toric varieties we need to introduce some no-
tations. Consider first the lattice X of characters

X := Hom(Tn,C∗).

If we chose coordinates ~z = z1, z2, · · · , zn on Tn then a character χ is uniquely determined
by a vector ~ν = (χ1, · · · , χn) ∈ Zn via the equality

χ(~z) = zχ1
1 · · · zχn

n =: ~zχ.

We have a tautological morphism Tn → Hom(X,C∗) which associates to ~z ∈ Tn the mor-
phism

X ∋ χ 7→ ~zχ ∈ C∗.

By Pontryagin duality this tautological morphism is an isomorphism.
Another important invariant associated to Tn is the lattice of weightsW := Hom(C∗,Tn).

We have a natural pairing

X×W→ Z ∼= Hom(C∗,C∗), X×W ∋ (χ,ϕ) 7→ 〈χ,ϕ〉 = χ ◦ ϕ : C∗ ϕ→ Tn χ→ C∗.

195
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This is a perfect pairing, i.e. the induced map X→ Hom(W,Z) is an isomorphism.
To work with toric varieties we need turn the above constructions up-side-down. We

start with a lattice W we set X = Wv := HomZ(W,Z) and we form the torus

TW := Hom(X,C∗).

Thus X will be the lattice of characters of TW while W will be the lattice of weights. When
choosing bases in W and X we will think of the weights (i.e. vectors in W) as column vectors
while the characters (i.e. the vectors in X = Wv) as row vectors. We will denote by

〈•, •〉 : X×W→ Z, (χ, ~w) 7→ 〈χ, ~w〉

the natural pairing.
Any ~w ∈W defines a morphism t~w : C∗ → TW as follows. First, use the identification

C∗ ∼= Hom(Z,C∗).

For every t ∈ Hom(Z,C∗) we define t~w ∈ Hom(X,C∗) ∼= TW by the composition

t~w : X
~w−→ Z

t−→ C∗.

If we use choose a Z-basis (~e1, · · · , ~en) of the lattice of characters X we obtain local coordi-
nates ~z = (z1, · · · , zn) on TW defined by

zk(ϕ) = ϕ(~ek), ∀ϕ ∈ Hom(X,C∗).

If (~e1, · · · , ~en) denotes the dual basis of the lattice of weights W and t denotes the local
coordinate on C∗, then we can identify ~w ∈W with the column vector

~w =



w1

...
wn


 =

∑

i

wi~ei ∈ Zn ∼= W, then t~w =



tw

1

...
tw

n


 ∈ (C∗)n ∼= TW.

The composition C∗ t~w−→ TW

χ−→ C∗ takes the simple form t 7→ t〈χ,~w〉.

Example 15.1.1 (Affine algebraic toric varieties). We will use the well known corre-
spondence between affine varieties and finitely generated C-algebras. This correspondence
associates to each affine variety X the ring C[X] of regular functions on X. Conversely,
to every finitely generated C-algebra R we associate the variety X = Specmax(R) whose
points are identified with the maximal ideals of R. A left action of a torus Tn on X induces
a right action by pullback on C[X]. Thus, to construct an affine toric variety we need to
produce a finitely generated C-algebra of dimension n together with an action of Tn on it.

Consider a n-dimensional lattice X with dual W = Xv and form the complex torus
TW = Hom(X,C∗). Suppose S ⊂ X is a finitely generated semigroup, 0 ∈ S. We denote by
C[S] the group algebra of S consisting of polynomials

P =
∑

χ∈S

cχT
χ, Tχ · Tχ′

= Tχ+χ′

.
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If we choose a Z-basis of X we get coordinates ~z on TW and we can identify C[S] with
a subalgebra of the ring of Laurent polynomials C[z1, z

−1
1 , · · · , zn, z−1

n ]. In particular we
deduce that C[S] is an affine domain. We denote by XS the associated affine variety.

To find its dimension it suffices to find the dimension of one of its Zariski open sets.
Denote by XS the sublattice of X spanned by S. Let d = dimQXS ⊗ Q. The group
algebra C[XS ] is isomorphic to the ring of Laurent polynomials C[ζ1, ζ

−1
1 , · · · , ζd, ζ−1

d ] and
in particular it has dimension d.

On the other hand, if we denote by χ1, · · · , χg the generators of S then we deduce that
C[XS ] can be regarded as the ring of regular functions on the open set

D(Tχ1) ∩ · · · ∩D(Tχg) =
{
p ∈ XS ; Tχk(p) 6= 0, ∀k = 1, · · · , g

}
.

The (closed) points of the affine variety XS can be identified with the maximal ideals of
C[S], i.e. with the morphisms of C-algebras

p : C[S]→ C, C[S] ∋ f 7→ f(p).

Note that the induced map

(S,+) ∋ χ 7→ Tχ(p) ∈ (C, ·)

is a morphism of semigroups. Conversely, every morphism of semigroups

µ : (S,+)→ (C, ·), χ 7→ µχ

defines a morphism of C-algebras C[S]→ C by the rule

∑

χ∈S

aχT
χ 7−→

∑

χ∈S

aχµ
χ.

Note that TW = Hom(Wv,C∗) acts on XS by the rule

TW ×XS ∋ (~z, µ) 7→ ~zµ, (~zµ)χ = ~zχ · µχ.

If we denote by µS the point (semigroup morphism) defined by

µχS = 1, ∀χ ∈ S

we deduce that the TW-orbit of µS is open and dense.

Consider for example the monoid S ⊂ (Z≥0,+) generated by 2, 3. Then

C[S] =
∑

s∈S

ast
s.

If we set x = t2, y = t3 we deduce C[S] ∼= C[x, y]/(x3 − y2). Note that C[S] is not normal.

The morphisms of semigroups S → C are parametrized by pairs of complex numbers
(x, y) such that

x3 = y2.
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To such a pair of numbers we associate the semigroup morphism

2m+ 3n 7−→ xmyn.

Note that if 2m′ + 3n′ = 2m+ 3n then

m′ −m
3

=
n− n′

2
= k ∈ Z.

Hence

m′ = m+ 3k, n′ = n− 2k, xm
′

yn
′

= xmyn
(
x3y−2

)k
= xmyn.

In the sequel we would like to work exclusively with normal toric varieties. We describe
below a characterization of the normal affine toric varieties.

For every submonoid of a lattice X we denote by XS the sublattice spanned by S and
by CS the convex hull of S in X⊗ R. Set

S̃ = CS ∩WS .

For a proof of the following result we refer to [39, 43].

Theorem 15.1.2 (Hochster). Suppose S is a finitely generated submonoid of the lattice X.
The normalization of the ring C[S] is the ring C[S̃].

Definition 15.1.3. A submonoid S of a lattice X is called normal if it is finitely generated
and S̃ = S.

Exercise 15.1.1. Suppose S is a finitely generated submonoid of the lattice X. Prove that
S is normal if and only if it is saturated, i.e. if n~λ ∈ S for some ~λ ∈ W and n ∈ Z>0 then
~λ ∈ S.

Definition 15.1.4. Suppose X is a lattice. A convex cone C ⊂ X ⊗ R is called rational
polyhedral if there exist ~w1, · · · , ~wN ∈ Xv such that

C =
{
~λ ∈W⊗ R; 〈~wj , ~λ〉 ≥ 0, j = 1, · · · , N

}

Proposition 15.1.5. Suppose X is a lattice. A submonoid S ⊂ X is normal if and only if
it is a rational polyhedral monoid, i.e. there exists a rational polyhedral cone C ⊂ XS ⊗ R
such that

S = XS ∩ C.

Exercise 15.1.2. Prove the above proposition.
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Remark 15.1.6 (A short trip in convex geometry). Let us recall some notion of convex
geometry. Suppose V is a finite dimensional real vector space. We denote by V ∗ is dual. A
hyperplane H in V is a codimension one affine subspace. It can be described as a level set
of a linear functional ω ∈ V ∗. A (closed) half-space is a region in V described by a linear
inequality

{ω ≥ c} =
{
v ∈ V ; 〈ω, v〉 ≥ c}, (ω ∈ V ∗).

A convex polyhedral cone (c.p. cone for brevity) is a convex set described as a finite
intersection of half-spaces containing the origin. Every c.p. cone is finitely generated i.e.
there exists a finite set of vectors F ⊂ C such that

C =
{∑

~v∈F

t~v~v; t~v ≥ 0, ∀~v ∈ F
}

For every set A ⊂ V we denote by Lin (A) the linear span of A. For every c.p. cone C we
set

dimC = dimLin(C).

A c.p. cone is called simplicial if it is generated by dimC-vectors. For every c.p. cone C
we define its relative interior (denoted by relint(C)) to be the interior of C with respect to
the topology induced from Lin(C).

A supporting hyperplane of a set A ⊂ V is a hyperplane {ω = c} with the property

A ∩ {ω = c} 6= ∅, A ⊂ {ω ≥ c}.

We will refer to {ω ≥ c} as a supporting half-space. The Hahn-Banach separation theorem
implies that every closed convex set is equal to the intersection of all its supporting half-
spaces.

For every convex cone C ⊂ V we define its polar to be the set

Cv =
{
ω ∈ V ∗; C ⊂ {ω ≥ 0}

}
.

We set
C⊥ :=

{
ω ∈ V ∗; C ⊂ {ω = 0}

}
.

If we identify V with its bidual V ∗∗ we have the equality

C = (Cv)v.

We also have the following relationships

(C1 ∩ C2)
v = Cv

1 + Cv

2 , (C1 + C2)
v = Cv

1 ∩ Cv

2 . (15.1.1)

All the above equalities follow from the Hahn-Banach separation theorem.
Farkas theorem states that the polar of a c.p. cone is a c.p. cone.
A face of a c.p. cone C is a c.p. cone obtained by intersecting C with a supporting

hyperplane. We will use the notation C ′ � C to indicate that C ′ is a face of the c.p. cone
C. Every c.p. cone C has a unique minimal face which is a linear subspace. It is usually
called the cospan of C and denoted by cospan(C). A facet is a face of dimension dimC−1.
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The c.p. cone is said to have an apex if the minimal face is zero dimensional, i.e. it is the
origin.

We denote by F(C) the set of faces of C. The correspondence

F(C) ∋ F 7→ F⊥ ∩ Cv

defines an order reversing bijection ΞC : F(C)→ F(Cv). Its inverse is ΞCv .

Suppose S →֒ S′ are two normal submonoids of the lattice X defined by the convex
rational polyhedral cones C ⊂ C ′. We obtain an inclusion

C[S] →֒ C[S′]

and thus a morphism of affine varieties XS′ → XS . This morphism is TXv-equivariant,
TXv = Hom(X,C∗).

Example 15.1.7. Suppose S′ ⊂ Z2 is the monoid

S′ = Z≥0 × Z≥0

and S ⊂ S′ is the monoid corresponding to the cone C spanned by the vectors B = (2, 1)
and C = (1, 2) (see Figure 15.1).

A

B

C

Figure 15.1: Two normal submonoids in Z2.

Then S is generated by the vectors A = (1, 1), B and C and satisfy a unique relation

3A = B + C.

We deduce that XS is the hypersurface in the affine space C3 with coordinates (a, b, c)
described by the equation

a3 = bc.

XS′ is the affine plane C2 with coordinates (x, y) and the map XS′ → XS is described by

(x, y)
Φ7−→ (a, b, c) = (xy, x2y, xy2).
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Note that the map Φ is not one-to-one. More precisely

Φ−1(0, 0, 0) = {xy = 0} = x− axis ∪ y − axis.

Proposition 15.1.8. Suppose S ⊂ Ŝ ⊂ X are two normal monoids such that XS = XŜ = X.
The following statements are equivalent.

(a) The induced map
Φ : X̂ = XŜ → XS = X

is an open embedding.
(b) There exists u ∈ S \ 0 such that

Ŝ = Z≥0 · (−u) + S = Z · u+ S.

Proof (a) ⇒ (b). For every point µ̂ ∈ X̂ , i.e. a morphism of semigroups

µ̂ : (Ŝ,+)→ (C, ·),

we define its support to be

supp µ̂ :=
{
χ ∈ Ŝ; µ̂χ = 0

}
.

Note first that supp µ̂ is a saturated sub-monoid of Ŝ. Moreover, it has the propriety that

χ1 + χ2 ∈ supp µ̂, χ1, χ2 ∈ Ŝ =⇒ χ1, χ2 ∈ supp µ̂.

We deduce suppµ must be a face of the cone Ĉ = CŜ . Conversely for every face F̂ of Ĉ

we can find a canonical point µF̂ such that suppµF̂ = F̂ . More precisely

µχ
F̂
=

{
1 if χ ∈ F̂
0 if χ 6∈ F̂

We set C = CS . Observe that for every face F̂ of Ĉ, F̂ ∩ C is a face of C and we have

Φ(µF̂ ) = µF̂∩C ∈ X.

In particular, we deduce that if F̂1 and F̂2 are distinct faces of Ĉ then F̂1 ∩ C and F̂2 ∩ C
are distinct faces of C. Denote by F̂min the unique minimal face (cospan) of Ĉ. Observe
that

F̂min = Lin(F̂min).

We want to show that
Lin(F̂min ∩ C) = Lin(F̂min) = F̂min. (15.1.2)

We argue by contradiction. Suppose there exists

χ0 ∈ X ∩
(
F̂min \ Lin(F̂min ∩ C)

)
.
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Fix t0 ∈ C∗ \ {1} and denote by G ⊂ X ∩ F̂min the Abelian group generated by F̂min ∩ C
and χ0. Consider ζ ∈ Hom(G,C∗) defined by

ζ |F̂min∩C
= 1, ζχ0 = t0.

Since C∗ is an injective Z-module we can extend ζ to a morphism ζ : X∩ F̂min → C∗. Define
a morphism of semigroups ζ̃ : Ŝ → (C, ·) by setting

ζ̃(χ) =

{
ζχ if χ ∈ F̂min

0 if χ ∈ Ŝ \ F̂min

Observe that

ζ̃ 6= µF̂min
, Φ(ζ̃) = ζ̃ |S= µF̂min

|S= Φ(µFmin).

This contradiction proves (15.1.2).

Since the correspondence F̂ 7→ F̂ ∩ C is order preserving we deduce from (15.1.2) and
the equality dimXS = dimXŜ that

dim F̂ = dim F̂ ∩ C, for all faces F̂ of Ĉ.

In other words, every face of Ĉ contains a unique face of C of the same dimension.

We claim that

Ĉ = F̂min + C.

The inclusion F̂min + C ⊂ Ĉ is obvious. If Ĉ \ (F̂min + C) 6= ∅ then we would be able to
find a face F̂ of Ĉ with the property

F̂ ! F̂min, F̂ ∩ C = F̂min

which contradicts the injectivity of Φ.

Observe now that

F̂min + C = R≥0 · (−u) + C, ∀u ∈ (F̂min ∩ C) \ 0.

In particular, if we choose u ∈ S ∩ F̂min we deduce

Ŝ ⊃ Z≥0(−u) + S = Zu+ S.

Conversely, let χ̂ ∈ Ŝ. Then there exist a, b ∈ Q≥0 and χ ∈ S such that

χ̂ = −au+ bχ.

Hence for any integer n > a we have

χ̂+ nu ∈ X ∩C = S =⇒ χ̂ ∈ Z · u+ S.

To prove the reverse implication observe that in this case we have

C[Ŝ] = C[S, u−1]
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so that the variety X̂ is the principal open set D(T u) = {p ∈ X; T u(p) 6= 0}.

We would like to understand the orbit structure of an affine toric variety. Consider a n-
dimensional lattice W with dual X = Wv. Fix a n-dimensional rational c.p. cone C ⊂ X⊗R.
We set S = X∩C, X = XS , TW = Hom(X,C∗). As we have seen in the proof of Proposition
15.1.8 every face F of C determines a canonical point µF on X defined by

Tχ(µF ) =

{
1 if χ ∈ F
0 if χ ∈ S \ F .

We denote by [µF ] the TW-orbit of µF , and XF := X ∩ LinF and WF = (XF )
v ⊂W. Then

X/XF and W/WF are free Abelian groups

XF
∼= (W/WF )

v, (X/XF ) ∼= (WF )
v,

and we have a split short exact sequence

0→ XF → X→ X/XF → 0. (15.1.3)

Dualizing we get a split short exact sequence

1→ TWF
→ TW → TW/WF

→ 1. (15.1.4)

The torus TWF
is the stabilizer of µF and we deduce that the orbit [µF ] is biholomorphic

to TW/WF
. In particular

dimC[µF ] = dimR LinF.

Note that a splitting of (15.1.3) defines a holomorphic splitting of (15.1.4). For every face
F we fix once and for all a holomorphic splitting

sF ∈ Hom(TW/WF
,TW). (15.1.5)

Proposition 15.1.9.

X =
⋃

F≺C

[µF ].

Proof We only have to establish the inclusion ”⊂”. Consider a point µ ∈ X. We can
identify it with a semigroup morphism

µ : (S,+)→ (C, ·).

Its support suppµ = {χ ∈ S; µ(χ) 6= 0} is a face F of C. We will prove that µ ∈ [µF ].
Let XF = X ∩ LinF . The semigroup morphism

µ : S ∩ F → (C∗, ·)

extends to a group morphism µ : XF → C∗. Using the injectivity of C∗ as a Z-module we
can extend this group morphism to a group morphism

~z ∈ Hom(X,C∗) = TW.



204 Liviu I. Nicolaescu

Then µ = ~z · µF .

To complete the picture of the TW-action we need to understand how the various orbits
fit together, i.e. we need to understand their closures (in the usual topology). We have the
following result.

Proposition 15.1.10.
µ ∈ [µF ′ ]⇐⇒ ∃F ≺ F ′ : µ ∈ [µF ].

Proof We begin by proving the implication ⇒. Using the Curve Selection Lemma we
deduce that there exists a holomorphic curve

γ : D→ X, γ(0) = µ, γ(D∗) ⊂ [µF ′ ] = TW/WF ′
.

Using the splitting sF ′ we obtain a holomorphic map

~ζ : D∗ → TW

such that ~ζ(t) · µF ′ = γ(t) and
lim
t→0

~ζ(t) · µF ′ = µ.

We deduce that for every χ ∈ F ′ the limit

lim
t→0

~ζ(t)χ = lim
t→0

Tχ(~ζ(t) · µF ′)

exists and it is finite. For every χ ∈ S ∩F ′ we denote by ω(χ) ∈ Z≥0 the order of vanishing
at 0 of the function

t 7→ Tχ(~ζ(t) · µF ′)

Note that ω(χ+ χ′) = ω(χ) + ω(χ′). We extend ω to a linear functional

ω ∈ Hom(XF ,Z) ∼= WF →֒W.

Thus we can assume that ω is the restriction of a weight ~w ∈W, i.e.

ω(χ) = 〈χ, ~w〉, ∀χ ∈ S ∩ F ′.

Since ~w |F ′≥ 0 we deduce that {~w = 0} is a supporting hyperplane of F ′. In particular
F = {~w = 0} ∩ F ′ is a face of F ′. It is now clear that

µ = lim
t→0

~ζ(t) · µF ′ ∈ [µF ], F ≺ F ′.

The opposite implication follows by observing that

F ≺ F ′ =⇒ µF ∈ [µF ′ ].

To see this choose a supporting hyperplane {~w = 0} of F ′ such that F = {~w = 0} ∩ F ′.
The weight defines a one-parameter subgroup t~w : C∗ → TW and

µF = lim
t→0

t~w · µF ′.
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We want to investigate the nature of the singularities of an affine toric variety. Suppose
X is a n-dimensional lattice and C ⊂ V = X⊗R is a rational c.p. cone of the same dimension
as X. Set S = C ∩X. Denote by Fmin its minimal face. It is a linear subspace of V and we
set

dmin = dimFmin, Wmin = W ∩ Fmin, Vred := V/Fmin.

The quotient X/Xmin is a lattice in Vred which we denote by Xred We denote by π the
natural projection V → Vred and we set

Cred = π(C), Sred = Cred ∩Wred.

Then Cred is a rational c.p. cone with an apex. The projection π induces a surjective
morphism of C-algebras C[S]→ C[Sred] and thus a closed embedding

Xred = XSred
→֒ X = XS .

The short exact sequence

0→ Xmin → X→ Xred → 0

is split since Xred is a free Abelian group. By choosing a splitting of the above sequence we
obtain an isomorphism

C[S] ∼= C[Sred]⊗ C[Xmin] =⇒ X ∼= Xred × Tdmin .

This shows that all the singularities ofX are due to singularities ofXred. Thus to understand
the singularities of an affine toric variety it suffices to consider only the case when C = Cred,
i.e. C has an apex. In this case one can show (see [20, §3.3] or [26, §2.1]) the following.

Proposition 15.1.11. Xred is nonsingular if and only if there exists a Z-basis {ei}i∈I of
W which generates Sred.

In general the structure of the singularities can be quite complicated. For now we
content ourselves with a simple but very suggestive example.

Example 15.1.12 (Toric quotient singularities). Consider two lattices i : W →֒ W0

such that H := W/W0 is a finite Abelian group. Set

X0 = Hom(W0,Z), X = Hom(W,Z).

Observe that the dual map iv : X0 → X is an injection. Fix a Z-basis {e1, · · · , en; n =
dimX} of X, denote by {e1, · · · , en} the dual basis of W, denote by C ⊂ X ⊗ R = X0 ⊗ R
the cone spanned by these vectors and then set

S = C ∩ X, S0 = C ∩ X0, X = XS , X0 = XS0 .

Note that C[S] ∼= C[x1, · · · , xn] is a finite extension of the C-algebra C[S0] and thus we
have a finite map

Cn ∼= X → X0.
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We would like to understand explicitly this map.
We denote by Ĥ the Pontryagin dual of H, Ĥ := Hom(H,C∗). Note that every u ∈

X = Hom(W,Z) extends uniquely to a Z-linear map û : W0 → Q such that û(W) ⊂ Z. We
obtain in this fashion a character

χu : W0/W→ C∗, ~w 7→ exp
(
2πi〈û, ~w〉

)
.

Note that when u ∈ X0 ⊂ X then χu ≡ 1. The correspondence X ∋ u 7→ χu ∈ Ĥ thus
descends to a morphism X/X0 → Ĥ which can be easily seen to be an isomorphism. We
can rephrase this as a nondegenerate pairing

q : X/X0 ×W0/W→ C∗.

By dualizing the short exact sequence 0 → X0 → X → Ĥ → 0 we obtain the short exact
sequence

1→ H → TW → TW0 → 1

from which we deduce that

~zχ = 1, ∀~z ∈ H ⊂ TW ⇐⇒ χ ∈ X0. (15.1.6)

Since H is a subgroup of TW it acts in a natural fashion on X. We want to prove that
the image of C[S0] in C[S] coincides with the subring C[S]H of H-invariant elements of
C[S]. Let

f =
∑

χ∈S

aχT
χ ∈ C[S].

Then f is H-invariant if and only if

aχ = ~ζχaχ, ∀~ζ ∈ H, ∀χ.

Using (15.1.6) we deduce that
∑

χ∈S aχT
χ is H-invariant iff χ ∈ X0 when aχ 6= 0 and thus

C[S0] ∼= C[S]H .

Hence X0
∼= Cn/H.

15.2 Toric varieties associated to fans

Consider a n-dimensional lattice W. We will regard it as the lattice of weights of the
complex torus

TW = Hom(X,C∗), X = Wv.

X is therefore the lattice of characters of TW. Set

WR = W⊗ R, XR = X⊗ R.

We will identify X∗
R with WR and W∗

R with XR.
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A fan (or a W-fan) is a finite collection E of c.p. cones in WR satisfying the following
conditions.

• Each cone in E is rational with respect to W.
• Every cone in E has an apex.
• If σ is a cone in E and τ is a face of σ then τ is also in E.
• If σ, σ′ ∈ E then σ ∩ σ′ ≺ σ, σ′.

We will sometime refer to the cones of a fan as its faces. The subset of E consisting
of its k-dimensional faces is denoted by E(k). For every cone σ ∈ E we denote by ∂kσ the
collection of its k-dimensional faces. We define the support |E| ⊂WR of the fan E to be the
union of all the cones (faces) in E. For a cone σ ∈ E we set

Sσ := σv ∩ X, Xσ := XSσ .

Observe that if τ ≺ σ then Sτ ⊃ Sσ and we have a map

Iστ : Xτ → Xσ.

Clearly we have
Iσϕ = Iστ ◦ Iτϕ, ∀ϕ ≺ τ ≺ σ.

We obtain in this fashion an inductive family {Xσ}σ∈E of affine toric varieties. The toric
variety associated to the fan E will be the inductive limit of this family. We will denote it
by X(E).

To prove that this inductive limit exists as a topological space we need to investigate
the maps

Iστ : Xτ → Xσ, τ ≺ σ.
Equivalently, we need to investigate the inclusion

σv ∩ X →֒ τ v ∩X.

Observe that there exists χ0 ∈ (relint σv) ∩ X such that

τ = σ ∩ {〈•, χ0〉 = 0}.

Then
τ v = σv + {〈•, χ0〉 = 0}v = σv + Rχ0 = σv + R≥0(−χ0)

We deduce that
τ v ∩ X = σv ∩X+ Z≥0(−χ0).

As we have seen in Proposition 15.1.8 this means thatXτ can be identified with the principal
open set

{Tχ0 6= 0} ⊂ Xσ

so that the map Iστ is a TW-equivariant open embedding. Thus we can identify Xτ with
an open subset of Xσ . The inductive limit is then

X =
(⊔

σ∈E

Xσ

)
/ ∼,
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where

Xτ ∋ p ∼ q ∈ Xσ ⇐⇒ ∃ϕ ∈ E, ∃r ∈ Xϕ : ϕ ≺ τ, σ, p = Iτϕ(r), q = Iσϕ(r).

Equip X with the quotient topology. We have natural embeddings Iσ : Xσ →֒ X. A set
U ⊂ X is open if and only if I−1

σ (U) is open in Xσ (with respect to the Euclidean topology.
In general a gluing construction can produce very bad spaces. Take for example the

space X obtained by gluing two copies of the line C along C∗ using the identity map 1C∗ .
Equivalently, X is the inductive limit of the family

X0 = C
∗, X1 = X2 = C,

where the injection X0 → Xi is the canonical inclusion C∗ →֒ C. The origin in 0 ∈ Xi

defines a point xi ∈ X. We have x1 6= x2 but these two points cannot be separated by
open neighborhoods. We want to show that this kind of pathology does not occur in the
inductive limits constructed with the aide of fans.

Lemma 15.2.1. (a) For every σ, τ ∈ E the image of the diagonal inclusion

∆στ : Xσ∩τ → Xσ ×Xτ , x 7→ (Iσ,σ∩τ (x), Iτ,σ∩τ (x)

is closed with respect to the product Euclidean topology on Xσ ×Xτ .

(b) X is a Hausdorff space.

Proof (a) We will prove a stronger result, namely that the image of ∆στ is Zariski closed1

in Xσ×Xτ . This is equivalent to showing that the induced morphism between the algebras
of regular functions

Φ : C[Xσ]⊗C C[Sτ ]→ C[Sσ∩τ ]

is surjective. Let us first describe this morphism. We have

C[Xσ]⊗C C[Sτ ] =
{ ∑

(χ,λ)∈(σv×τ v)∩(X×X)

aχλU
χSλ; aχλ 6= 0 for only finitely many (χ, λ)

}
.

The morphism Φ is given by

∑

(χ,λ)∈(σv×τ v)∩(X×X)

aχλU
χSλ 7−→

∑

(χ,λ)∈(σv×τ v)∩(X×X)

aχλT
χ+λ

Using (15.1.1) we deduce (σ∩ τ)v = σv+ τ v which implies immediately that Φ is surjective.

(b) It suffices to prove that the diagonal ∆X ⊂ X×X is closed with respect to the product
topology on X ×X. Let (x1, x2) ∈ X ×X \∆X , i.e. x1 6= x2. Then there exist σi ∈ E and
yi ∈ Xσi such that xi = Iσi(yi). Using (a) we can find open neighborhoods Ui of yi ∈ Xσi

such that U1 × U2 does not intersect the image of the diagonal map

∆σ1σ2 : Xσ1∩σ2 → Xσ1 ×Xσ2 .

1We want to point out that the Zariski topology on Xσ ×Xτ is not the product of the Zariski topologies
on Xσ and Xτ .
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Then Iσ1(U1)× Iσ2(U2) ⊂ X ×X does not intersect the diagonal ∆X , i.e.

xi ∈ Iσi(Ui) and Iσ1(U1) ∩ Iσ2(U2) = ∅.

The structural sheaves on Xσ can be glued together to a sheaf OX on X and the
resulting ringed space (X,OX ) is a complex analytic variety which we denote by X(E).
From Proposition 15.1.11 we deduce that X(E) is smooth if and only if every cone σ in the
fan E is generated by a finite collection weights which is part of a Z-basis of W. Motivated
by this we will say that a cone σ ⊂WR is regular simplicial if it is generated by a part of a
Z-basis of W. If all the cones in E are regular simplicial (resp. simplicial) we say that E is
regular simplicial (resp. simplicial)

Let us describe the orbit structure on X(E). For every σ ∈ E and for every face τ ≺ σ
we obtain a face σv ∩ τ⊥ of σv and thus a point

xστ := µσv∩τ⊥ ∈ Xσ.

More precisely, xστ is defined by the semigroup morphism

xστ : σv ∩W→ (C, ·), xχστ =

{
1 if χ ∈ σv ∩ τ⊥
0 if χ ∈ σv \ τ⊥.

The face σvmin = σv ∩ σ⊥ is the minimal face (cospan) of σv and we set

xσ = xσσ = µσv

min
.

It is now easy to check that

Iστxτ = xστ , Iστxτϕ = Iστ Iτϕxϕ = xσϕ.

We obtain a collection of distinguished points {xσ; σ ∈ E} ⊂ X. We denote by Oσ the
TW-orbit of xσ and by Ōσ its closure in X(E). Observe that

dimOσ = dimW− dimσ.

If τ ≺ σ then σv ∩ σ⊥ ≺ σv ∩ τ⊥ so that

Oσ ⊂ Ōτ .

Thus the incidence relation between the TW orbits determines the incidence relation between
the cones in the fan E. The minimal cone in E, is the origin 0. We deduce that the orbit
of x0 is open and dense in X and in particular X is a toric variety. Note that we have the
following equalities

Ōσ =
⋃

τ≻σ

Oτ , Xσ =
⋃

τ≺σ

Oτ . (15.2.1)

We can now explain the roles of the cones in the fan. Let σ ∈ E and ~w ∈ relint σ. We obtain
a one parameter subgroup t~w of TW. Observe that

t~w · x0 = t~w · xσ0 ∈ Xσ, ∀t ∈ C∗.
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More precisely t~w · x0 has ”coordinates”

Tχ(t~w · x0) = t〈χ,~w〉, ∀χ ∈ σv ∩X.

Observe that 〈χ, ~w〉 ≥ 0, ∀χ ∈ σv ∩X and we conclude

lim
t→0

t~w · x0 = xσ.

Reversing this argument we deduce the following result.

Proposition 15.2.2.
~w ∈ relint σ ⇐⇒ lim

t→0
t~w · xσ0 = xσ.

Similarly, if τ ≺ σ and ~w ∈ relint σ then

lim
t→0

t~w · xτ = xσ.

Example 15.2.3 (The star of a face). Suppose E is a fan in WR = W ⊗ R and σ is a
face of E. The star of σ in E is the collection of all the cones in E which contain σ as a face.
We will denote it by St(σ) or St(σ,E). The equality (15.2.1) can be rephrased as

Ōσ =
⋃

τ∈St(σ)

Oτ .

Ōσ is a toric variety and we want to describe explicitly a fan Eσ such that

Ōσ = X(Eσ).

Consider the lattice
Xσ = σ⊥ ∩ X.

Then
Xv

σ
∼= W/Wσ, Wσ := (W ∩ Linσ).

We set V = WR, Vσ = V/Linσ and we denote by πσ the natural projection

πσ : V → Vσ.

Note that
Vσ = Hom(Xσ ,R) ∼= Xv

σ ⊗ R.
For τ ≻ σ we set τσ := πσ(τ) ⊂ Vσ. Then

τ vσ = τ v ∩ σ⊥.

Note that τ vσ is a face of τ v. The collection {τσ ; τ ∈ St(σ)} is a fan in Vσ which we denote
by Eσ. For every τ ∈ St(σ) we have a natural closed embedding

Ψτ : Xτσ → Xτ
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defined by the surjective morphism of C-algebras

C[τ v ∩ X]→ C[τ vσ ∩ Xσ] = C[τ
v ∩ σ⊥ ∩ X]

Tχ 7−→
{
Tχ if χ ∈ τ vσ
0 if χ ∈ σv \ τ vσ

.

Observe that

Ψτ (xτσ ) = xτσ, Ψτ (Oτσ ) = Oτ .

The maps Ψτ fit together to a closed embedding

X(Eσ) →֒ X(E)

whose image is precisely Ōσ.

For every τ ∈ St(σ) the intersection Ōσ ∩Xτ is a subvariety described by the ideal Iτσ
generated by the monomials

{
Tχ; χ ∈ (τ v \ τ vσ) ∩ X

}
.

Note that

χ ∈ τ v \ τ vσ ⇐⇒ 〈χ, ~u〉 ≥ 0, ∀~u ∈ τ, 〈χ,~v〉 > 0, ∀~v ∈ relint σ.

Exercise 15.2.1. Suppose E is a W-fan, σ ∈ E and ~w ∈ W. Then limt→0 t
~w · xσ exists if

and only if ~w belongs to one of the cones in St(σ).

Suppose we are given a morphism of lattices Φ : W0 →W1. We obtain a morphism

Φv : X1 → X0, Xi = Wv

i ,

and a holomorphic morphism

Φc : TW0 → TW1 .

We say that Φ defines a morphism between fans Ei in Wi, i = 0, 1 if for every cone σ0 ∈ E0

there exists a cone σ1 ∈ E1 such that

Φ(σ0) ⊂ σ1.

We obtain a morphism of monoids

Φv : σv1 ∩ X1 → σv0 ∩ X0

and thus a morphism of affine varieties

Xσ0

Φσ0−→ Xσ1 →֒ X(E1).
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The morphism Φσ0 is independent of the choice of σ1 ⊃ Φ(σ0). Moreover, for every τ0 ≺ σ0
we have a commutative diagram

Xσ0 X(E1)

Xτ0

w

Φσ0

u

y

Iσ0τ0

�

�

�

�

��

Φτ0

From the universality property of the inductive limit we deduce that Φ induces a map

Φ : X(E0)→ X(E1).

For a proof of the following fact we refer to [26, §2.4].

Proposition 15.2.4. The map Φ : X(E0)→ X(E1) is proper if and only if

|E0| = Φ−1(|E1|).

Corollary 15.2.5. X(E) is compact if and only if |E| = W⊗ R.

A subdvision of a W-fan E is a W-fan E′ such that every cone in E is a union of cones in
E′, i.e.

σ =
∑

σ′∈E′, σ′⊂σ

σ′, ∀σ ∈ E.

The induced map X(E′)→ X(E) is birational because it is proper and maps the open dense
orbit of X(E′) biholomorphically onto the open dense orbit of X(E). For a proof of the
following result we refer to [25, VI.8].

Theorem 15.2.6. Any W-fan E admits regular simplicial subdivisions E′. For such a
subdivision the associated variety X(E′) is smooth and the induced birational map

X(E′)։ X(E)

is a resolution of the singularities of X(E).

Example 15.2.7. Suppose W0 is a n-dimensional lattice. We set as usual X0 = Wv

0. Fix
n linearly independent primitive weights ~w1, · · · , ~wn ∈ W0, denote by W ⊂ W0 the finite
index sublattice spanned by these vectors and by σ the simplicial cone spanned by these
vectors. We denote by E the fan determined by σ and its faces. We would like to determine
the structure of X(E).

We can regard the ordered collection (~w1, · · · , ~wn) as defining a one-to-one linear map

W : Zn →W0, ~δi 7→ ~wi,



The topology of complex singularities 213

where (~δ1, · · · , ~δn) is the canonical basis of Zn and (~δ1, · · · , ~δn) the dual basis in (Zn)v. We
obtain by duality linear maps

W v : X0 → (Zn)v, W ∗ : X0 ⊗ R→ (Zn)v ⊗ R.

We denote by Rn
+ ⊂ (Zn)v⊗R the canonical positive orthant, i.e. the c.p. cone spanned by

(δi). Then

σv = (W ∗)−1Rn
+, Sσ = σv ∩ X0.

To obtain a concrete description we need to fix a Z-basis (~e1, · · · , ~en) of W0. We denote by
(~e1, · · · , ~en) the dual basis of X0. Using these bases we can view the weights ~wi as column
vectors

~wi =
∑

j

wj
i~ej =



w1
i
...
wn
i


 .

The linear operatorW is then described by the matrix (also denoted byW ) which has ~wi as
its columns. This weight matrix determines the (row) vectors ~χj ∈ X0⊗Q via the equalities

〈~χj , ~wi〉 = δji .

In other words the collection {~χj}1≤j≤n is the dual Q-basis of {~wi}. The vectors ~χj are
described by the rows of the matrix W−1.

Denote by X ⊂ X0 ⊗ Q the lattice spanned by the vectors ~χj. Note that X ∼= Wv and
X0 ⊂ X. We denote by X

+
R the cone in X⊗R spanned by ~χj and we set X+ = X ∩X

+
R . We

deduce

σv = X+
R , Sσ = X0 ∩ X+

R .

The toric affine variety XX+ defined by the C-algebra C[X+] is isomorphic to Cn. The basis
~χj of X defines coordinates (z1, · · · , zn) on XX+ . Moreover the torus TW is identified with
the torus

{z1 · · · zn 6= 0} ⊂ XX+.

As explained in Example 15.1.12 the variety Xσ is the quotient of XX+ with respect to the
natural action of H = W0/W. We want to describe this action explicitly in terms of the
matrix W . The group H has the presentation

H = 〈~e1, · · · , ~en| ~wi =
∑

j

wj
i~ej = 0, i = 1, · · · , n〉.

The action of H on XX+ is induced from the action of TW on XX+ via the natural inclusion
H →֒ Hom(X,C∗) = TW given by

~ei 7→ ζi ∈ Hom(X,C∗), ζχi = exp(2πi〈χ,~ei〉), ∀χ ∈ X.

If we use the coordinates ~z = (z1, · · · , zn) on TW, where for every ϕ ∈ Hom(X,C∗) we have

zk(ϕ) = ϕ(~χk)
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then the coordinates of ζi ∈ TW are

zk(ζi) = ζi(~χ
k) = exp(2πi〈~χk, ei〉).

Note that 〈~χk, ~ei〉 is the i-th coordinate of the vector ~χk ∈ X0 ⊗Q with respect to the dual
basis (~ei) of X0. Hence

~ei 7→




exp(2πi〈~χ1, ~ei〉)
...
...

exp(2πi〈~χn, ~ei〉



∈ (C∗)n.

Note that the column vector 


〈~χ1, ~ei〉
...
...

〈~χn, ~ei〉




is precisely the i-th column of W−1. This fact can be given the symbolic description

~ek 7−→ exp(2πi × k-th column of W−1).

Example 15.2.8. Suppose W0 is the standard n-dimensional lattice Zn and E is a regular
simplicial W0-fan such that all its maximal (with respect to inclusion) cones are n dimen-
sional. We denote by E(n) this collection of maximal cones. For every cone σ ∈ E we denote
by ∂1σ the set of its 1-dimensional faces. For ρ ∈ ∂1σ we denote by ~wρ the primitive vector
on ρ ∩W. Every cone σ ∈ E(n) the collection

{
~wρ; ρ ∈ ∂1σ

}

is a basis of W0. This defines an isomorphism

Wσ : Z∂1σ →W0.

Fix a labelling ∂1σ
∼→ {1, 2, · · · , n} so that we can write

{
~wρ; ρ ∈ ∂1σ

}
= {~w(σ)1, · · · , ~w(σ)n}.

Denote by (~δ1, · · · , ~δn) the standard basis of W0. We think of ~w(σ)i as column vectors and
we can identify Wσ as before with the matrix whose columns are ~w(σ)i,

Wσ = [w(σ)ji ]1≤i,j≤n.

Note that Wσ ∈ GLn(Z). Set as usual X0 = Wv

0
∼= Zn. We introduce an order relation on

Rn,
~x ≥ ~y ⇐⇒ xi ≥ yi, ∀j.



The topology of complex singularities 215

The positive orthant Rn
+ is then described by the inequality ~x ≥ ~0. By duality we obtain a

linear map

W ∗
σ : X0 ⊗ R→ (Rn)v ∼= Rn, χ 7→ χ ·Wσ =

(
〈χ, ~w(σ)1〉, · · · , 〈χ, ~w(σ)n〉

)
.

Above, we think of χ as a row vector. Then

Sσ =
{
χ ∈ X0; χ ·Wσ ≥ 0} =

(
(W ∗

σ )
−1Rn

+

)
∩ X0.

Denote by (~δi) the canonical basis of X0. We obtain an isomorphism Ψσ : Xσ → Cn

described by the map

C[X+
0 ]→ C[Sσ], T

~δi 7→ si = T
~δi·W−1

σ ∈ C[Sσ], i = 1, · · · , n.

The functions si define coordinates on Xσ . The last equality is best understood if we
introduce the formal column vectors

log ~s =




log s1
...

log sn


 , log ~z =




log z1
...

log zn


 , zi = T

~δi .

The isomorphism Ψσ can be formally described as

log ~z =Wσ log~s⇐⇒ zj =
n∏

k=1

s
wj

k
k .

If τ ∈ E(n) is another maximal cone in E then we have another isomorphism Ψτ : Xτ → Cn

described by

ti = T
~δi·W−1

τ ∈ C[Sτ ], i = 1, · · · , n⇐⇒ log~t =W−1
τ · log ~T .

We deduce
log~t =W−1

τ ·Wσ · log~s⇐⇒ ti = ~s
~δi·W−1

τ Wσ .

Note that ~δi ·W−1
τ Wσ is the i-th row on W−1

τ Wσ.
The columns of W−1

τ · Wσ have a simple meaning. The j-th column consists of the
coordinates of ~w(σ)j with respect to the Z-basis ( ~w(τ)i )1≤i≤n.

The smooth affine varieties Xσ, σ ∈ E(n) form an open cover of X(E) and the isomor-
phisms Ψσ define local charts while the equalities

ti = ~s
~δiW−1

τ Wσ , i = 1, · · · , n

describe the transition from the σ-chart to the τ -chart. We see that in this case a fan
provides a combinatorial way of describing an atlas for the smooth manifold X(σ). Also
notice that the transition maps are given by monomials.

We can describe the action of the torus TW0
∼= (C∗)n in the local coordinates ~s on Xσ.

If
~z ∈ Hom(X0,C

∗), χ 7→ ~zχ,
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then
~z · (s1, · · · , sn) = (~z

~δ1·W−1
σ s1, · · · , ~z~δ

n·W−1
σ · sn).

In other words, the action of the torus TW0 is described by the rows of W−1
σ , the inverse of

the weight matrix.
Suppose ω ∈ W0 is an arbitrary weight vector. We denote by tω the one parameter

subgroup of TW it defines. We would like describe its action using the coordinates ~s on Xσ.
From the equality tω · Tχ = t〈χ,ω〉Tχ we deduce

tω · (s1, · · · , sn) = (t〈
~δ1·W−1

σ ,ω〉s1, · · · , t〈~δ
n·W−1

σ ,ω〉sn).

Observe that the numbers 〈~δi ·W−1
σ , ω〉 are the coordinates of ω with respect to the basis

of W defined by the columns of Wσ.
Consider for example the lattice W0 = Z2 with standard basis {~δ1, ~δ2}. Denote by E

the W0-fan consisting of the cones σ, τ and all their faces, where σ is spanned by ~δ1 and
~δ1 + ~δ2, and τ is spanned by ~δ1 + ~δ2 and ~δ2. Set X = X(E). Then

Wσ =

[
1 1
0 1

]
, Wτ =

[
1 0
1 1

]
.

Using the equalities

~δ1 = 1 · (~δ1 + ~δ2)− 1 · ~δ2, ~δ1 + ~δ2 = 1 · (~δ1 + ~δ2)− 0 · ~δ2
we deduce

W−1
τ ·Wσ =

[
1 1
−1 0

]
.

The transition maps are given by

t1 = s1s2, t2 = s−1
1 .

Using the computations in Example 3.1.2 we deduce that the manifold thus obtained is the
blow-up of the plane with coordinates (x, y) at the origin. The blow-down map is described
by

{x = s2, y = s1x = s1s2}, {x = t1t2, y = t1}.
The exceptional divisor is the closure of the orbit Oτ .

The action of the torus T2 = (C∗)2 on X1 is described by the rows of

W−1
1 =

[
0 −1
1 1

]
.

More precisely
(u, v) · (s1, t1) = (v−1s1, uvt1), ∀(u, v) ∈ (C∗)2.

More generally, the blowup of Cn at the origin is described by the simplicial fan consisting
of all the cones generated by subfamilies of

{
~δ1, · · · , ~δn, ~δ

}
⊂ Zn,

where ~δi denotes the canonical basis of Zn and ~δ = ~δ1 + · · ·+ ~δn.
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Example 15.2.9. Let us consider a simple 3-dimensional fan E consisting of two 3-dimensional
cones and their faces. More precisely, denote by (~δi)1≤i≤3 the canonical integral basis of

W = Z3, and set ~e = ~δ1 + ~δ2. The cones are

σ1 = span (~δ1, ~e, ~δ3), σ2 = span (~e,~δ2, ~δ3).

As in the previous example we obtain two weight matrices corresponding to the two coor-
dinate charts Xi = Xσi . They are

W1 =




1 1 0
0 1 0
0 0 1


 , W2 =




1 0 0
1 1 0
0 0 1


 .

The change in coordinates X1 − − > X2 is given by the matrix W21 = W−1
2 W1 which

expresses the columns of W1 in terms of the columns of W2. We have

~δ1 = ~e− ~δ2, ~δ2 = ~δ2, ~δ3 = ~δ3

so that

W21 =




1 0 0
−1 1 0
0 0 1


 .

If we denote by (si, ti, ui) the coordinates on Xi we have the transition law





s2 = s1
t2 = s−1

1 t1
u2 = u1

.

Note that E can be described as the product of two fans: the one dimensional fan E3 ⊂
Lin(~δ3) generated by ~δ3 and the two-dimensional fan E12 in Lin(~δ1, ~δ2) generated by (~δ1, ~e, ~δ2).
One can check immediately that

X(E) ∼= X(E3)×X(E12) ∼= C× Ĉ2
0,

where Ĉ2
0 denote the blow-up of C2 at the origin, or equivalently, the total space of the

tautological line bundle over CP1.
Denote by E0 the fan consisting of the cone spanned by (~δ1, ~δ2, ~δ3) and its faces. Its

associated toric manifold is X0
∼= C3. The fan E is a subdivision of E0 so we have an

equivariant holomorphic map
π : X → C3.

In the above coordinates it is given by





z1 = s1t1
z2 = t1
z3 = u1

,





z1 = s2
z2 = s2t2
z3 = u2

X is precisely is the blowup of C3 along the subvariety {z1 = 0} ∩ {z2 = 0}.
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Example 15.2.10. Let W0 = Z2 ∼= X0 = Wv

0 and consider the W0-fan E depicted in on
the top of Figure 15.2. It consists of the origin O of W0 and the cones

σ1 = ∠(AOC), σ2 = ∠(COB), τ = R≥0
~OC, τ1 = R≥0

~OA, τ2 = R≥0
~OC

The bottom half of Figure 15.2 depicts the dual picture in X0 and we have

σv1 = ∠(A′OC1), σv2 = ∠(B′OC2).

More precisely

σv1 =
{
χ = (χ1, χ2) ∈ Z2; χ1 ≥ 0, 3χ1 + 4χ2 ≥ 0

}

σv2 =
{
χ = (χ1, χ2) ∈ Z2; χ2 ≥ 0, 3χ1 + 4χ2 ≥ 0

}

O

A'

B'

O A

B
C

C

C

1

2

3

4

Figure 15.2: A 2-dimensional fan and its polar.

The generators of σv1 ∩ X0 are depicted in blue in Figure 15.2 and are

~e1 = (0, 1), ~e2 = (1, 0), ~e3 = (2,−1), ~e4 = (3,−2), ~e5 = C1 = (4,−3).

They satisfy the relations

2~ei = ~ei−1 + ~ei+1.

Thus Xσ1 is the affine variety described by the C-algebra

C[x1, · · · , x5]/(x2i − xi−1xi+1, i = 2, 3, 4)
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Note that it is a complete intersection. We can provide an alternate description using the
considerations in Example 15.2.7. Set for simplicity

~w1 =

[
1
0

]
∈W0, ~w2 =

[
3
4

]
∈W0.

Let ~f1, ~f2 ∈ X0 ⊗Q such that

〈~fj, ~wi〉 = δij .

If we think of ~fj as row vectors then ~f1, ~f2 are the rows of the matrix

W−1 =

[
1 3
0 4

]−1

=
1

4

[
4 −3
0 1

]
.

Hence
~f1 =

1

4
~e5, ~f2 =

1

4
~e1.

Denote by X ⊂ X0 ⊗ Q the lattice spanned by ~f1, ~f2. Then W = Xv can be identified
with the sublattice of W0 spanned by ~w1 and ~w2. The group H = W0/W and it has the
presentation

H = 〈g1, g2| g11 = 1, g31g
4
2 = 1〉 = 〈g| g4 = 1〉.

Set

ρ = exp(
2πi

4
) = i.

The group H embeds in the torus

TW = {(z1, z2) ∈ C2; z1z2 6= 0}

via the map

g 7→ (ρ−3, ρ) = (ρ, ρ).

The group H acts on C2 by

g(z1, z2) = (ρz1, ρz2).

Topologically, Xσ1 is a cone over the lens space L(4, 1).

Using the identities

~e5 = 4~f1, ~e1 = 4~f2, ~e2 = ~f1 + 3f2, ~e3 = 2~f1 + 2~f2, ~e4 = 3~f1 + ~f2

we deduce that the subring C[z1, z2]H is generated by the monomials

E1 = z42 , E2 = z1z
3
2 , E3 = z21z

2
2 , E4 = z31z2, E5 = z41

and we obtain as expected

C[z1, z2]
H ∼= C[E1, · · · , E5]/(E

2
i − Ei−1Ei+1, i = 2, 3, 4).

The point xσ1 is the H-orbit of (0, 0) ∈ C2.
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Arguing in a similar fashion we deduce that Xσ2 is the quotient of C2 modulo the action
of G = Z/3 described by

ζ · (z1, z2) = (ζz1, ζ
2z2), ζ = e

2πi

3 .

As generators of the ring of invariants C[s1, s2]G we can pick

Y1 = s31, Y2 = s1s2, Y3 = s32

satisfying the unique relation
Y 3
2 = Y1Y3.

Equivalently, we observe that the semigroup σv2 ∩ X0 is generated by

~h1 = (1, 0), ~h2 = (−1, 1), ~h3 = (−4, 3).

The vectors ~h2 and ~h3 are depicted in green in the bottom half of Figure 15.2. Observe that

~h1 + ~h3 = 3~h2

so that Xσ2 can be identified with the A2-hypersurface

{y32 = y1y3} ⊂ C3.

The point xσ2 has coordinates yi = 0.
The affine variety Xτ is isomorphic to C× C∗. Observing that

τ v = σv1 + R≥0(−~e5)

we deduce that Xτ embeds in Xσ1 as the principal open set x5 6= 0.
The monoid τ v ∩ X0 is generated by

~e5 = (4,−3), −~e5, ~e4 = (3,−2).

Correspondingly we get two coordinates t1 (corresponding to ~e5) and t2 (corresponding to
~e4). The distinguished point xτ has coordinates t1 = 1 and t2 = 0. If we use the canonical
coordinates ~ζ = (ζ1, ζ2) on the torus TW0

induced by the canonical basis of W0 then the
action of TW0

on Xτ is defined by

~ζ · (t1, t2) = (ζ41ζ
−3
2 t1, ζ

3
1ζ

−2
2 t2).

Using the relations
xi−1 = x2ix

−1
i+1

we deduce that the open embedding Iσ1τ : Xτ →֒ Xσ1 is described in coordinates as

x5 = t1, x4 = t2, x3 = t22t
−1
1 , x2 = x23x

−1
4 = t32t

−2
1 , x1 = x22x

−1
3 = t42t

−3
1 .

In particular we deduce that the image of the orbit Oτ in Xσ is (C∗×0)/H ⊂ C2/H = Xσ1 .
As t1 → 0 the point Iσ1τ (t1, 0) approaches the origin of C2/H.
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Similarly, Xτ embeds in Xσ2 as the principal open set {y3 6= 0}. Using the same
coordinates t1, t2 on Xτ and the equality ~h2 = −~e5 + ~e4 we deduce that the embedding
Iσ2τ : Xτ →֒ Xσ2 is described in coordinates by

y3 = t−1
1 , y2 = t2t

−1
1 , y1 = x2 = t32t

−2
1 .

The image of the orbit Oτ in Xσ2 = C2/G is (0× C∗)/G. As t1 →∞, the point Iσ2τ (t1, 0)
approaches the origin of C2/G.

Observe that our fan E is a subdivision of the fan Ê consisting of the cone

σ0 =
{
(x, y) ∈ R2 ∼= W0 ⊗ R; x, y ≥ 0

}

and all of its faces. In particular we have a TW0-equivariant map

Φ : X(E)→ X(Ê)

which we would like to describe. Since

X(E) = Xσ1 ∪Xσ2

it suffices to understand the restrictions Φ |Xσi
, i = 1, 2.

The inclusion σ1 ⊂ σ0 induces an inclusion σv0 ⊂ σv1 and thus a map

C[σv0 ∩ X0]→ C[σv1 ∩ X0]

The semigroup σv0 ∩ X0 is freely generated by

~v1 = (1, 0) = ~e4, ~v2 = (0, 1) = ~e5.

The vectors v1, v2 define coordinates z1, z2 on Xσ0 and the map Xσ1 → Xσ0 is given by

~x = (x1, · · · , x5) 7−→ ~z = ~z(~x), z1 = x2, z2 = x1.

Note that the preimage Z1 of (0, 0) in Xσ1 via Ψ is described by

x2 = x3 = x4 = x5 = 0

and it coincides with the image in Xσ1 of the second coordinate axis in C2 via the identifi-
cation

Xσ1
∼= C2/H.

This preimage intersects the open set Xτ precisely along the orbit Oτ .
Arguing in a similar fashion we deduce that the map Xσ2 → Xσ0 is defined by

z1 = y1, z2 = y2

The preimage Z2 of (0, 0) in Xσ2 is given by y1 = y2 = 0. It intersects Xτ as expected along
the orbit Oτ and we deduce

Ψ−1(0, 0) = Ōτ
∼= CP1.
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15.3 The toric variety determined by the Newton diagram

of a polynomial

Suppose f ∈ C[z1, · · · , zn] is a polynomial in n-complex variables such that f(0) = 0 and
0 ∈ Cn is an isolated critical point of f . Denote by X the lattice Zn, by (~δi) the canonical
basis of X, and by (~δj) the dual basis of W = Xv = Hom(X,Z). We set

XR = X⊗ R ∼= Rn, WR = W⊗ R

X+
R =

{
(x1, · · · , xn) ∈ XR; xi ≥ 0, ∀i = 1, · · · , n

}
, X+ = X ∩ X+

R .

W+
R = {(t1, · · · , tn) ∈WR; ti ≥ 0, ∀i}.

The polynomial f is described as a sum

f =
∑

~α∈X+

a~α~z
~α.

We set
supp(f) =

{
~α ∈ X+; a~α 6= 0

}
.

In the sequel we will assume that f is convenient, that is its support intersects all the
coordinate axes of X. In other words, for every i = 1, · · · , n there exists mi ∈ Z>0 and
ai ∈ C∗ such that aiz

mi
i is a monomial of f .

The (local) Newton polyhedron of f , denoted by Γ+
f , is the convex hull of the union of

affine cones ⋃

~α∈supp(f)

(~α+ X+
R ).

The Newton polyhedron is the intersection of finitely many supporting half-spaces of the
type {

~x ∈ XR; 〈~x, ~w〉 ≥ r
}
, ~w ∈W, r ∈ Q.

A face of the Newton polyhedron is the intersection of a supporting hyperplane and the
polyhedron. Faces are of two types: compact and non-compact. Since the polynomial is
convenient all the noncompact faces are contained in some coordinate plane. The Newton
diagram of f is the union of all compact faces. We will denote the Newton diagram of f by
Γ = Γ(f). The top half of Figure 15.3 depicts the Newton polyhedron of a polynomial in
two variables x, y of the form

f = ax5 + bx3y + cxy2 + dy5 + higher degree monomials inside the Newton polyhedron.
(15.3.1)

The Newton diagram is depicted in red while the noncompact faces are drawn in green.
For every compact face ∆ of the Newton diagram Γ we set

f∆ :=
∑

~α∈∆

a~α~z
~α.

The Newton diagram of f determines a W-fan EΓ called the conormal fan of Γ. It is
constructed as follows.
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Figure 15.3: A Newton diagram and its conormal fan.

To every face ∆ of Γ+
f we associate its conormal cone C∆ ⊂ W+

R consisting of weights

~w ∈ W+
R conormal to ∆. This means that ∆ is contained in a hyperplane determined by

~w and the Newton polyhedron is contained in the upper half-space determined by that
hyperplane. In other words ~w defines a supporting hyperplane for the Newton polyhedron
which contains the face ∆. More formally

C∆Γ =
{
~w ∈W+

R ; ∃t ∈ R : ∆ ⊂ { 〈•, ~w〉 = t }, Γ+
f ⊂ { 〈•, ~w〉 ≥ t }

}
.

EΓ consists of all the cones C∆, where ∆ is a face of the Newton diagram. The toric variety
associated to f is the toric variety determined by the fan EΓ.

Note that every face ∆ of the Newton diagram determines a natural function on C∆Γ
called ∆-mass, denoted by m∆ and defined by

m∆ : C∆ → [0,∞), m∆(~w) = 〈χ, ~w〉 for some (any) χ ∈ ∆.

For every face ∆ of Γ, and every ~w ∈ C∆Γ ∩ X the polynomial f∆ is ~w-homogeneous, i.e.

∃p ∈ Z≥0 : f∆(t
~w · ~z) = tpf∆(~z), ∀~z ∈ Cn, t ∈ C∗.

The exponent p is called the ~w-degree of f∆. It is equal to m∆(~w).
The mass functions m∆ determine a mass function

m = mf : |EΓ| → [0,∞), m(~w) = m∆(~w), ∀~w ∈ C∆Γ ∈ EΓ.

Equivalently
m(~w) = inf

{
〈χ, ~w〉; χ ∈ Γ+

f

}
.



224 Liviu I. Nicolaescu

The mass function m is completely determined by the vertices of the Newton diagram.
More precisely

m(~w) = min
{
〈v, ~w〉; v is a vertex of Γ+

f

}
.

Example 15.3.1. Consider the fan Ê depicted in Figure 15.4. It consists of five regular
simplicial two-dimensional cones σ1, · · · , σ5 and their faces. This fan is a regular simplicial
subdivision of the conormal fan depicted in Figure 15.4. It support is the positive quadrant
of R2 and thus we have a birational map

π : X(Ê)→ C2.

We would like to understand the smooth manifold X(E), the projection π and the pullback
f ◦ π of a generic polynomial f ∈ C[x, y] described the equality (15.3.1).

σ σ

σ

σ

σ
1

2

3

4

e

e
e

e

e

e

1

2

3

4 5

5

6

Figure 15.4: A regular simplicial resolution of a conormal fan.

Let us first describe the structure ofX = X(Ê). We use the strategy outlined in Example
15.2.8. Set Xi = Xσi , Xij = Xi ∩ Xj etc. Each Xi defines a coordinate chart on X. To
understand these charts we need to find the weight matrices Wi corresponding to the cones
σi. We have

W1 =

[
1 3
0 1

]
, W2 =

[
3 2
1 1

]
, W3 =

[
2 1
1 1

]
, W4 =

[
1 1
1 2

]
, W5 =

[
1 0
2 1

]
.

The coordinate transition Xi → Xj is described by the matrix Wji := W−1
j Wi. If we set

Ti =Wi+1,i =W−1
i+1Wi we deduce

Wji = Tj−1 · · · Ti, ∀1 ≤ i < j ≤ 5.

We identify each Wi with a basis of Z2. We deduce that Ti describes the coordinates of the
vectors in Wi with respect to the basis Wi+1. Using the identities

~e1 = ~e2 − ~e3, ~e2 = 2~e3 − ~e4, ~e3 = 3~e4 − ~e5, ~e4 = ~e5 − ~e6,
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we deduce

T1 =

[
1 1
−1 0

]
, T2 =

[
2 1
−1 0

]
, T3 =

[
3 1
−1 0

]
, T4 =

[
1 1
−1 0

]
.

To describe the coordinate transitions Xi → Xi+1 we use the following convention.

• (u, v) are the coordinates on Xi+1 and (s, t) are the coordinates on Xi.

The transition rules are

(s, t)
T17−→ (u, v) = (st, s−1), (s, t)

T27−→ (u, v) = (s2t, s−1),

(s, t)
T37−→ (u, v) = (s3t, s−1), (s, t)

T47−→ (u, v) = (st, s−1).

Set
Yi := Xi ∪Xi,i+1 Xi+1 = C

2 ∪Ti C
2.

Using the computations in Example 3.1.2 we deduce2 that Yi is the total space of a line
bundle over CP1. If we denote by τ the tautological line bundle over CP1 and by Tk the
total space of τ⊗k we deduce

Y1 ∼= Y4 ∼= T1, Y2 ∼= T2, Y3 ∼= T3.

The zero sections of the above line bundles can be visualized by the closure of the orbits
corresponding to the 1-dimensional faces of the fan. In our case these are the rays generated
by the vectors ~e2, · · · , ~e5. We denote these orbits by O2, · · · ,O5. Observe that

Oi+1 ⊂ Xi ∩Xi+1.

In Xi the orbit Oi+1 is described by the equation t = 0 while the orbit Oi is described by
s = 0.

Denote by πi the restriction of π : X → C2 to Xi. If we denote by (x, y) the coordinates
on C2 and by (s, t) the coordinates on Xi then Πi can be described symbolically

[
log x
log y

]
=Wi ·

[
log s
log t

]
.

We deduce the following equalities

(s, t)
π17−→ (x, y) = (st3, t), (s, t)

π27−→ (x, y) = (s3t2, st)

(s, t)
π37−→ (x, y) = (s2t, st), (s, t)

π47−→ (x, y) = (st, st2)

(s, t)
π47−→ (x, y) = (s, s2t).

Hence if we let f = ax5 + bx3y + cxy2 + dy5 we deduce

f ◦ π1 = a(st3)5 + b(st3)3t+ c(st3)t2 + dt5 = t5
(
as5t10 + bs3t4 + cs+ d

)
︸ ︷︷ ︸

=:f1

2Be aware that the coordinates (s, t) in Example 3.1.2 are the coordinates (t, s) in the present example.
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f ◦ π2 = a(s3t2)5 + b(s3t2)3st+ c(s3t2)(st)2 + d(st)5 = s5t4
(
as10t4 + bs5t3 + c+ dt

)
︸ ︷︷ ︸

=:f2

,

f ◦ π3 = a(s2t)5 + b(s2t)3st+ c(s2t)(st)2 + d(st)5 = s4t3
(
as6t2 + bs3t+ c+ dst2

)
︸ ︷︷ ︸

=:f3

f ◦ π4 = a(st)5 + b(st)3(st2) + c(st)(st2)2 + d(st2)5 = s3t5
(
as2 + bs2 + c+ ds2t5

)
︸ ︷︷ ︸

=:f4

f ◦ π5 = as5 + bs3(s2t) + cs(s2t)2 + d(s2t)5 = s5
(
a+ bt+ ct2 + ds5t5

)
︸ ︷︷ ︸

=:f5

.

From the above descriptions we can read the multiplicity mi of f ◦π along Ōi, i = 2, · · · , 5.
We have

m2 = 5, m3 = 4, m4 = 3, m5 := 5.

Note that for generic a, b, c, d, the strict transforms Ci := {fi = 0}, i = 1, · · · , 5, intersect
the divisors Ōj transversally.

Denote by E0 the fan described by the positive orthant

W+
R =

{
(t1, · · · , tn) ∈WR; ti ≥ 0

}

and all of its faces. Suppose f ∈ C[X+] is a convenient polynomial. We denote by Ef its
associated conormal fan and set Xf = X(Ef ). Ef is a subdivision of E0.

Consider a regular simplicial subdivision Ê of Ef . Set X̂ = X(Ê). We want to investigate
the resulting birational map

π : X̂ → X(E0) = C
n.

For each cone σ ∈ Ê and each nonnegative integer k we denote by ∂kσ the finite set consisting
of its k-dimensional faces. As we have shown in Example 15.2.8 every top dimensional cone
σ ∈ Ê determines an open set X̂σ ⊂ X̂ and an isomorphism

Ψσ : X̂σ → C∂1σ

which we interpret as defining coordinates ~y = ~y(σ) = (yρ)ρ∈∂1σ on X̂σ . Denote by πσ the

restriction of π to X̂σ .

Using the primitive lattice vectors along the 1-dimensional faces of σ we obtain an
isomorphism

W =W (σ) : Z∂1σ →W ∼= Zn.

For every ρ ∈ ∂1σ, the ρ-th column of W , denoted by ~wρ, consists of the coordinates of the
primitive vector in W∩ ρ. We denote by ~wi the i-th row of W . Using the coordinates ~y(σ)
we can describe πσ as

zi = ~y ~wi
=
∏

ρ∈∂1σ

y
wi

ρ
ρ , 1 ≤ i ≤ n.
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Next observe that

f(πσ(~y)) =
∑

χ∈supp f

aχ~z
χ =

∑

χ∈supp f

aχ

n∏

i=1

( ∏

ρ∈∂1σ

y
wi

ρ
ρ

)χi =
∑

χ∈supp f

aχ
∏

ρ∈∂1σ

y
〈χ,~wρ〉
ρ

Since Ê is a subdivision of Ef and σ is top dimensional we can find a vertex χσ of the Newton
diagram Γ(f) such that for any ρ ∈ ∂1σ the weight ~wρ is conormal to χσ, ~wρ ∈ CχσΓf . We
deduce that for every ρ we have

〈χ, ~wρ〉 ≥m(~wρ), ∀χ ∈ supp f

with equality if χ = χσ. Moreover since the vectors {~wρ; ρ ∈ ∂1σ} form a basis of WR we
deduce that

χ = χσ ⇐⇒ 〈χ, ~wρ〉 = m(~wρ), ∀ρ ∈ ∂1σ.
Hence

f̂σ = f(πσ(~y)) =
∏

ρ∈∂1σ

y
m(~wρ)
ρ ·

∑

χ∈supp f

aχ
∏

ρ∈∂1σ

y
〈χ,~wρ〉−m(~wρ)
ρ

︸ ︷︷ ︸
=:f̄σ

, f̄σ(0) = aχσ 6= 0.

We deduce that the order of vanishing of f ◦ π along the component of the exceptional
divisor described by yρ = 0 is precisely m(~wρ).

The hypersurface {f̄σ = 0} describes the proper transform in the coordinate chart X̂σ of
the hypersurface Zf = {f = 0} with respect to the birational map π : X̂ → Cn. To ease the
notational burden we will write f̄ instead of f̄σ, when no confusion is possible. We would
like to understand the intersection of this strict transform with the exceptional divisor. It
is now time to introduce an important nondegeneracy condition.

Definition 15.3.2. The polynomial f is called Newton nondegenerate if for every face ∆
of the Newton diagram Γf the polynomials

zi
∂f∆
∂zi

, i = 1, 2, · · · , n

have no common zero in {z1 · · · zn 6= 0}.

Note that for every face τ ≺ σ of the top dimensional cone σ ∈ E the orbit Oτ is
described in the chart X̂σ by the equation

∏

ρ∈∂1τ

yρ = 0,
∏

γ∈∂1σ\∂1τ

yγ 6= 0.

Note that since f̄σ(0) 6= 0, the strict transform {f̄ = 0} does not contain the fixed point xσ.

Lemma 15.3.3. If f is Newton nondegenerate then for every face τ � σ the strict transform
{f̄ = 0} intersects the orbit Oτ transversally.
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Proof It suffices to show that the differential forms

df̄ , {dyρ; ρ ∈ ∂1τ}

are linearly independent along Oτ ∩ {f̄ = 0}. Equivalently, this means that for every point
y ∈ Oτ ∩ {f̄ = 0} there exists γ ∈ ∂1σ \ ∂1τ such that

∂f̄

∂yγ
(y) 6= 0.

The intersection of the hyperplanes

{
χ ∈ XR; 〈χ, ~wρ〉 = m(~wρ)

}
, ρ ∈ ∂1τ

is a face ∆τ of the Newton diagram which contains χσ. Then

f̄ |Oτ=
∑

χ∈∆τ

aχ
∏

γ∈∂1σ\∂1τ

y
〈χ−χσ , ~wγ〉
γ

This is precisely the strict transform f̄∆τ of the quasihomogeneous polynomial f∆τ . For
simplicity we set ∆ = ∆τ .

Consider the one parameter groups

t
~δi · (z1, · · · , zn) = (tδ

1
i z1, · · · , tδ

n
i zn).

Then for any polynomial g we have

Dig :=
d

dt
|t=1 g(t

~δi~z) = zi
∂g

∂zi
.

For a general one parameter subgroup t~w we have

D~w :=
d

dt
|t=1 g(t

~w~z) =
∑

i

wiDig =: 〈Dg, ~w〉.

For every γ ∈ ∂1σ \ ∂1τ and we have

∂

∂yγ
f̄∆ =

1

yγ
Dγ f̄∆.

Hence, it suffices to prove that for every y ∈ Oτ ∩ {f̄∆ = 0} there exists γ ∈ ∂1σ \ ∂1τ such
that

Dγ f̄∆(y) 6= 0.

Consider the embedding Φτ : Oτ → Cn described by

zi = ~ζ ~w
i
=
∏

ρ∈∂1σ

ζ
wi

ρ
ρ ,
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where

~ζ = (~ζγ)γ∈∂1σ,
~ζγ =

{
yγ if γ ∈ ∂1σ \ ∂1τ
1 if γ ∈ ∂1τ .

We freely regard ~ζ as coordinates on Oτ . Then we have

Φ∗
τ (f∆) =

~ζ ~m · f̄∆ |Oτ ,
~ζ ~m =

∏

γ∈∂1σ\∂1τ

ζ
m(~wγ)
γ .

and for every γ ∈ ∂1σ\∂1τ the action of the one parameter subgroup tδγ on Oτ is transported
by Φτ to the action of the one parameter subgroup t~wγ on Cn, that is

Φ∗
τD~wγ

= DγΦ
∗
τ .

Hence
Φ∗
τ (D~wγf∆) = Dγ(Φ

∗
τf∆) =

(
Dγ

~ζ ~m )f̄∆ + ~ζ ~m
(
Dγ f̄∆ |Oτ

)
.

Thus along Oτ ∩ {f̄∆ = 0} we have

Φ∗
τ (D~wγf∆) =

~ζ ~m
(
Dγ f̄∆ |Oτ

)
, ∀γ ∈ ∂1σ \ ∂1τ. (15.3.2)

For every ρ ∈ ∂1τ the polynomial f∆ is ~wρ-homogeneous and thus we have the Euler
identities

D~wρf∆ = 〈Df, ~wρ〉 = m(~wρ)f, ∀ρ ∈ ∂1τ.

Suppose ~ζ ∈ Oτ ∩ {f̄ = 0} and ~z = Φτ (~ζ). Then f∆(~z) = 0 and
∏
zi 6= 0. Thus at ~z we

have
D~wρ

f∆(~z) = 0, ∀ρ ∈ ∂1τ. (15.3.3)

The collection of weights {~wρ; ρ ∈ ∂1σ} is a Z-basis of W so that the derivatives Dif∆(~z),
i = 1, · · · , n are uniquely and linearly determined by the derivatives D~wρ

f∆(~z). According
to the Newton nondegeneracy condition at least one of the Dif∆(~z) is nonzero, so that at
least one of γ ∈ ∂1σ such thatD~wγf∆(~z) 6= 0. The equality (15.3.3) implies that γ ∈ ∂1σ\∂1τ
while the identity (15.3.2) implies

Dγ f̄∆(~ζ) 6= 0.

This concludes the proof Lemma 15.3.3.

Using the definition of a good embedded resolution on page 179 we deduce the following
result.

Proposition 15.3.4. Suppose f is a convenient Newton nondegenerate polynomial in n-
variables. The holomorphic map determined by a regular simplicial subdvision Êf of the
conormal fan Ef associated to f is a good embedded resolution of f .

Denote by π the toric birational map X(Ê) → X(E) in the above proposition. We
would like to better understand the structure of its exceptional divisor D = π−1(0) and the
structure of the total transform Ẑf = {f ◦ π = 0}.

As before, for every top dimensional cone σ of Êf we obtain a coordinate chart πσ :

X̂σ → Cn, and coordinates (yρ)τ∈∂1σ. For each ρ ∈ ∂1τ we denote by ~wρ the primitive
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vector on ρ ∩W. In this coordinate chart the exceptional divisor {πσ = 0} is described by
the system of monomial equations

∏

ρ∈∂1σ

y
wi

ρ
ρ , ∀i = 1, · · · , n.

We can be much more specific about the nature of this divisor by taking advantage the
special nature of the fan Ef , as the conormal fan of a local Newton polyhedron. Again, we
denote by E0 the fan consisting of the cone W+

R and all of its faces. We will refer to it as
the coordinate fan. We will refer to the faces of the coordinate fan as coordinate faces.

For every set I ⊂ {1, 2, · · · , n}, we denote Ī its complement {1, · · · , n} \ I and we set

X
+
I =

{
(x1, · · · , xn) ∈ X

+
R ; xj = 0, ∀j ∈ I

}
,

W+
I =

{
(t1, · · · , tn) ∈W+

R ; tk = 0, ∀k ∈ Ī}.
Note that the correspondence I 7→ X

+
I is decreasing, while the correspondence F 7→W

+
F is

increasing.

Every top dimensional cone σ of Êf is contained in a top dimensional cone σ̃ of Ef which
is the conormal cone of a vertex χ(σ) =

(
χ(σ)1, · · ·χ(σ)n

)
of the Newton diagram

σ̃ = Cχ(σ).

For every lattice point χ ∈ X we set

Iχ := {i; χi = 0}.

For example, in Figure 15.5 we have

IA = {1, 2}, IB = {1}.

Set for simplicity Iσ = Iχ(σ). Using the definition of Γ+
f as the convex hull of supp(f) +

X+ we deduce that W+
Iσ

is a face of the conormal cone Cχ(σ). In fact W+
Iσ

contains any

coordinated face which is also a face of Cχ(σ). Note that the mass of any ~w ∈W+
Iσ

is zero.

Definition 15.3.5. A face σ of a fan F in W is called massless if mf (~w) = 0 for all ~w ∈ σ.

Note that if σ is a cone of Ef and mf (~w) = 0 for some ~w ∈ relint σ then mf (~w) = 0 for
all ~w ∈ σ, i.e. σ is massless. We see that any massless face of E is a coordinate face and
W+

Iσ
is the maximal massless face of Cχ(σ). Conversely, every coordinate face of positive

codimension is a massless face of Ef .

In Figure 15.5 we identified X = W using the canonical Euclidean metric on R3. The
coordinate fan is depicted with dotted lines. The conormal cone of A has the quadrant O12
as a maximal massless face, while the conormal cone of B has the ray O1 as a maximal
massless face.
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Figure 15.5: A 3-dimensional Newton polyhedron.

Definition 15.3.6. A fan Ẽ in W+ is called f -convenient if the following conditions hold.

(a) Ẽ is a subdivison of the conormal fan.

(b) If σ is a cone of Ẽ and mf (~w) = 0 for some ~w ∈ relint σ then σ is massless.

(c) Every massless face of Ẽ is a coordinate face.

(d) Every coordinate face is a massless face of Ẽ.

The above discussion shows that the conormal fan Ef is f -convenient.

The conormal E = Ef fan has another remarkable property. To formulate it we need
some additional notation.

Consider a massless face ϕ = W+
I of E, I ⊂ {1, · · · , n}. If we denote by WI the sublattice

spanned by W ∩W+
I we deduce that WI is a primitive sublattice and moreover, we have a

natural identification

WĪ
∼= W/WI .

The star of the face W
+
I in E is a fan St(WI ,E) in W/WI . Recall that

f =
∑

χ∈supp f

aχ~z
χ.

We set

fI =
∑

χ∈X+
I

aχ~z
χ = f(z1, · · · , zn) |{zi=0, i∈I} .

We can identify the dual lattice Xv

I = Hom(XI ,Z) with the quotient lattice W/WI
∼= WĪ .

We denote by Γ+
I (f) the Newton polyhedron of fI . The fan E = Ef has the reproducing

property meaning the following.

• For every massless face ϕ = W+
I of E the fan St(W+

I ,E) in W/WI is a fI -convenient
subdivision of the conormal fan EfI .
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• If ϕ is massless, ϕ ≺ σ, ~w ∈ σ ∩W is a weight and if we denote by [~w]I or [~w]ϕ its image
in W/WI then we have the equality

mΓ(~w) = mΓI
([~w]I).

Definition 15.3.7. A fan E inW is called f -perfect, if it is a regular simplicial subdivision of
Ef which is f -convenient, reproducing and all the stars St(W+

I ,E) are regular simplicial.

One can show that we can find f -perfect fans.
Denote by {~δ1, · · · , ~δn} the canonical basis of X and by {~δ1, · · · , ~δn} the dual basis of

W. Suppose Ê is a f -perfect subdivision of Ef , σ is a top dimensional cone and πσ : X̂σ →
Cn is the associated coordinated chart. Denote by ~wρ the primitive vectors along the 1-
dimensional faces of σ and by σ0 the maximal massless face of σ. σ0 has the form W+

Iσ
for

some Iσ ⊂ {1, · · · , n}. The collection (~wρ)ρ∈∂1σ is a Z-basis of W. The primitive vectors

~wρ corresponding to the 1-dimensional faces of σ0 are precisely ~δi, i ∈ Iσ. For the other
vectors we have ~wρ ∈ IntW+

R , i.e.

~wρ =
n∑

i=1

wi
ρ
~δi, wi

ρ > 0.

It follows that in this chart the exceptional divisor is described by the equation

∏

ρ∈∂1σ\∂1σ0

yρ = 0.

The total transform of f is given by

f̂σ = f ◦ πσ =
( ∏

ρ∈∂1σ

y
m(~wρ)
ρ

)
· f̄σ =

( ∏

ρ∈∂1σ\∂1σ0

y
m(~wρ)
ρ

)
· f̄σ. (15.3.4)

15.4 The zeta-function of the Newton diagram

To define the zeta function of a Newton diagram we need to make a small detour and discuss
about volumes.

Suppose X is a n dimensional lattice and set V = X⊗R. Set detV := WnV . A density
on V is a function

ρ : detV → R+

with the property that ρ(tω) = |t|ρ(ω). A density defines in a standard fashion a Lebesgue
measure dρ on V and thus a Lebesgue integral. The lattice X induces a density ρX on V
characterized by the condition

ρX(e1 ∧ · · · ∧ en) = 1, for any basis e1, · · · , en of X.

Suppose now that V is also equipped with an Euclidean metric g. This defines a measure
|dvg| and we have the equality

|dvg| = ωXdρX, (15.4.1)
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where ωX is the Euclidean volume of a paralelipiped spanned by the vectors in a basis of X.

Suppose ~w ∈ Hom(X,Z) is a primitive linear function, i.e. it defines a surjection X→ Z.
Then ker ~w is a sublattice in X and we have the split exact sequence

0→ ker ~w→ X→ Z→ 0.

We then have a density on ker ~w ⊗ R induced by the lattice ker ~w. We denote the corre-
sponding measure by dρker ~w. We obtain by parallel transport a measure in all the level sets
of ~w which we denote by the same symbol. From the above (split) short exact sequence we
obtain an infinitesimal Fubini identity

dρX = dρker ~w ⊗ |d~w|. (15.4.2)

On the other hand, the Euclidean metric g induces a metric gw on (ker ~w)⊗R. If we denote
by |~w| the Euclidean length of ~w we obtain another Fubini identity

|dvg| = |dvgw | ⊗
|d~w|
|~w| .

We can choose an integral basis (e1, · · · , en) of X such that (e1, · · · , en−1) is an integral
basis of ker ~w and ~w(en) = 1. Then |dvgw |(e1 ∧ · · · ∧ en−1) = ωker ~w and we deduce

ωker ~w = |~w|ωX.

For a region R ⊂ X we set

volX(R) :=

∫

R
dρX

and for a region S contained in a level set of ~w = c we set

volX/~w(S) =

∫

S
dρker ~w.

Consider again the standard fan E0 consisting of the positive orthant ξ0 := W+
R and all of

its faces. ∂kξ0 will denote the set of its k-dimensional faces. For every ϕ ∈ ∂kξ0 we denote
by Xϕ the sub-lattice Xϕ = LinZ(ϕ∩X) and by Γϕ the intersection of the Newton diagram
Γf with Xϕ⊗R. Note that Xϕ is a primitive sub-lattice and we have a split exact sequence
of lattices

0→ Xϕ → X→ X/Xϕ → 0

For every face F ∈ Γf there exists a primitive vector ~wF ∈ Wϕ := Hom(Xϕ,Z) and a
non-negative integer mF such that

F =
{
χ ∈ Xϕ ∩ Γ+

f ; 〈χ, ~wF 〉 = mF

}
.

The weight ~wF and the multiplicity mF are uniquely determined by F if dimF = k − 1.
We set

vF :=

{
(k − 1)! · volXϕ/~wF

(F ) if dimF = k − 1

0 if dimF < k − 1
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and we define

ZΓ
k (s) =

∏

ϕ∈∂kξ0

∏

F∈Γϕ

(
1− smF

)vF , ẐΓ
k (s) =

∏

ϕ∈∂kξ0

∏

F∈Γϕ

(
smF − 1

)vF

For every face F ∈ Γϕ we denote by (0F ) the ”pyramid” with apex 0 and base F . Using
the Fubini identity (15.4.2) we obtain the equality

mF · vF = k! · volXϕ(0F ).

Now define

ZΓ(s) =

n∏

k=1

(
ZΓ
k(s)

)(−1)k−1

=

∏
i≥0 Z

Γ
1+2i(s)∏

i≥1 Z
Γ
2i(s)

,

χΓ = degs Z
Γ(s) =

n∑

k=1

(−1)k−1 degZΓ
k (s) =

∑

F∈Γf

(−1)dimFmF vF .

15.5 Varchenko’ Theorem

Suppose f ∈ C[z1, · · · , zn] is a Newton nondegenerate, convenient polynomial with an iso-
lated critical point at the origin. We will use the following notations.

• Γ = Γ+
f denotes the Newton polyhedron of f .

• Zf = {f = 0} is the singular fiber of f and Z̃f = {f = ε} is the Milnor fiber of f .

• Ẑf = {f ◦ π = 0} is the total transform of f with respect to a good embedded resolution
π : X → Cn. Under the same assumption we denote by f̄ the strict transform of f , we set
Z̄f := {f̄ = 0} and we denote by Ef the exceptional divisor

Ef = Ẑf \ Z̄f = Ẑf ∩ {f̄ 6= 0}.

• χf is the Euler characteristic of the Milnor fiber of f .

• For any fan E and any nonnegative integer we denote by E(k) the set of the k-dimensional
faces of E.

Theorem 15.5.1 (A.Varchenko).

χf = χΓ =
∑

F∈Γf

(−1)dimF (dimF + 1)! vol (0F ), (15.5.1)

where vol (0, F ) denotes the volume of the pyramid with vertex 0 and base F and the sum-
mation is carried over the faces of the Newton diagram which are maximal amongst the
faces contained in a coordinate cones.

Example 15.5.2. Before we present a proof its best to illustrate this theorem on an ex-
ample. Consider the polynomial f in (15.3.1) with Newton polyhedron depicted in Figure
15.6.
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Figure 15.6: A two-dimensional example.

In the two dimensional coordinate cone there are two maximal faces of dimension one
of the Newton diagram, the segments AB and BC. We have

vol (OAB) =
5

2
, vol (OBC) = 5.

Observe that 2!vol (OAB) is equal to the two dimensional volume of the parallelogram
spanned by OA and OB.

In the one dimensional coordinate cones there are two maximal faces of dimension zero,
the vertices A and C. We have

vol (OA) = 5, vol (OC) = 5.

The Euler characteristic of the Milnor fiber of f is then

χf = 5 + 5− 2 · 5
2
− 2 · 5 = −5.

The Milnor number is µ(f, 0) = 1− χf = 6.

Proof of Varchenko’s theorem We follow the original strategy in [69]. To compute χf

we will use the A’Campo formula in Theorem 14.3.1. Fix a f -perfect subdivision Ê of the
conormal fan Ef . For every face τ ∈ Ê we denote by τ0 the maximal massless face of τ .

τ0 corresponds to a coordinate face W+
Iτ
. For every massless face W+

I we denote by ÊI the

(regular) fan St(W+
I ,E) in W/WI .

The projection π : X̂ → Cn is a good embedded resolution of f . Set as usual f̂ = f ◦ π.
For every positive integer m we denote by Zm the subset of the exceptional divisor Ef with
the property that p ∈ Zm if and only if there exist holomorphic functions h, u defined in a
neighborhood of p such that

h(p) = 0, u(p) · dh(p) 6= 0, f̂ |U= hm · u.

The A’Campo formula can be rephrased as

χf =
∑

m

m · χ(Zm).



236 Liviu I. Nicolaescu

The manifold X̂ decomposes as a disjoint union of TW-orbits

X̂ =
⋃

τ∈Ê

Oτ .

Then (see [26, p. 141-141] for a proof)

χ(Zm) =
∑

τ

χ(Zm ∩ Oτ ).

Hence

χf =
∑

M,τ

m · χ(Zm ∩ Oτ ). (15.5.2)

We need to understand the structure of Zm ∩ Oτ .

Fix a face τ of Ê and a top dimensional face σ such that τ ≺ σ. From (15.2.1) we deduce
that Oτ ⊂ X̂σ. Moreover, if we denote by (yρ)ρ∈∂1σ the coordinates on the chart X̂σ then
we obtain the following description of Oτ

yρ = 0, ∀ρ ∈ ∂1τ,
∏

r∈∂1σ\∂1τ

yr 6= 0.

τ so that in X̂σ we have the equality

f̂σ =
∏

ρ∈∂1σ\∂1σ0

y
m(~wρ)
ρ f̄σ.

Note that

p ∈ Zm ∩ Oτ if and only if yρ(p) = 0, ∀ρ ∈ ∂1τ, f̄σ(p) 6= 0

and there exists a unique ρ = ρp ∈ ∂1σ \ ∂1σ0 such that yρ(p) = 0 and m(~wρ) = m. We can

identify ρp with a 1-dimensional cone in the fan St(τ0, Ê). We are now ready to rephrase
(15.5.2) in a more computationally friendly form.

Let I ⊂ {1, 2, · · · , n} =: Cn. For every 1-dimensional face ρ of the fan ÊI = St(W+
I , Ê)

we denote by m(I, ρ) the ΓI -mass of the the unique primite weight ~wI,ρ along ρ. The
face ρ determines a TW/WI

-orbit OI,ρ and we denote by χ(I, ρ) the Euler characteristic of
OI,ρ ∩ {f̄I = 0}. Then

χ
(
OI,ρ \ {f̄I = 0}

)
= χ(OI,ρ)− χ

(
{f̄I = 0}

)
= −χ(I, ρ).

The A’Campo formula can now be rewritten as

χf = −
∑

I⊂Cn

∑

ρ∈Ê
(1)
I

m(I, ρ)χ(I, ρ).

Note that in the above sum the massless faces ρ ∈ ÊI do not contribute anything. Varchenko’s
formula (15.5.1) is now an immediate consequence following key result whose proof is pre-
sented in the next chapter.
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Lemma 15.5.3 (Koushnirenko). Suppose I ⊂ Cn, |I| := n− k and ρ is a one-dimensional
face of ÊI which lies in the interior of (W/WI)⊗R. Denote by FI,ρ the face of the Newton
diagram ΓI ⊂ XI defined by the supporting hyperplane

〈χ, ~wI,ρ〉 = m(I, ρ).

Then

χ(I, ρ) = (−1)kvFI,ρ
= (−1)k · (k − 1)! ·

{
0 if dimFI,ρ < (k − 1)

volXI/~wI,ρ
FI,ρ if dimFI,ρ = k − 1

.
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Chapter 16

Cohomology of toric varieties

We would like to enter deeper into the structure of a toric variety. This will require consid-
erably more mathematical background in algebraic geometry.

239
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Chapter 17

Newton nondegenerate

polynomials in two and three

variables

We would like to investigate in greater detail the toric techniques in the case of polynomials
in three complex variables.

17.1 Regular simplicial resolutions of 3-dimensional fans

Suppose L is the 3-dimensional lattice Z3. We set L+ = Z3
≥0, Λ = Hom(L,Z) and E is a

fan in Λ such that

|E| = Λ+ :=
{
~w ∈ Λ; 〈χ, ~w〉 ≥ 0, ∀χ ∈ L+

}
.

We would like to describe an algorithm for producing a regular simplicial resolution of E.
First a some terminology. For a collection of vectors W ⊂ Λ we denote by Z〈W 〉 the

sublattice of Λ spanned by W . We denote by Z〈W 〉+ the supset of Z〈W 〉 consisting of
linear integral combinations of vectors in W with non-negative coefficients. We set

ΛW := Λ ∩Q〈W 〉, Λ+
W = Q〈W 〉+ so that Z〈W 〉 ⊂ ΛW , Z〈W 〉+ ⊂ Λ+

W .

We define detW to be the order of the torsion part of the Abelian group Λ/Z〈W 〉. The
collection W is called primitive if it is linearly independent over Z and detW = 1. Note
that any primitive family W can be extended to an integral basis of Λ.
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cocycle condition, 16
complex space, 93

holomorphic map, 93
conductor, 126
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cospan, 199

critical point, 2, 13, 169

isolated, 86, 87, 108

Jacobian ideal, 151

Jacobian ideal of, 73

Milnor number of, 9, 73, 86, 171

multiplicity of, 9

nondegenerate, 3, 12

critical value, 2

crossing locus, 192

curve

class of, 6

complex, 5, 10, 22

cubic, 7

pencil, 26

degree of, 6

plane, 105, 108, 111, 123, 128

cusp, 106

cycle

effective, 44

invariant, 39

primitive, 44

vanishing, 39, 50, 63, 177

thimble of, 50, 61

dimension, 81

discriminant

locus, 67, 82

divisor, 19, 25, 65, 143

effective, 20

exceptional, 21

normal crossings, 179

principal, 19

dual of

curve, 6

line bundle, 18

projective space, 5

ENR, 32, 181

equivalence

analytical, 121

topological, 121, 122

Euler characteristic, 10, 161

exceptional

locus, 179

face, see c.p. cone
massless, 230

facet, 199
fan, 115, 207

conormal, 222
morphism, 211
regular simplicial, 209
simplicial, 209
support of, 207

fiber-first convention, 32, 54

fibration, 31, 67
homotopy lifting property, 47, 188
Lefschetz, 33

five lemma, 39
formula

genus, 12, 29, 36
global Picard-Lefschetz, 63
Halphen-Zeuthen, 129
Picard-Lefschetz, 172, 173, 177
global, 62

global, 68
local, 56

germ, 69, 78
analytic, 77
irreducible, 77
reducible, 77

dimension of, 81
equivalent, see equivalence

gluing cocycle, see line bundle
Grassmannian, 65

Hessian, 2
Hodge theory, 42
homology equation, 88
Hopf surface, 44
hyperplane, 5
hypersurface, 5

ideal
maximal, 102
prime, 102

infinitesimal
neighborhood, 135
point, 135

integral
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domain, 106, 108
element, 109

intersection form, 40, 64
intersection number, 128
isomorphism

adjunction, 79, 80

Jacobian ideal, see critical point
jet, 87

Key Lemma, 34, 36, 38, 47, 63
knot, 123

algebraic, 152
cable, 124
cabling of, 124
framed, 124
iterated torus, 125
longitude of, 124

meridian of, 124
trefoil, 152

Koszul relations, 99
Kronecker pairing, 40, 55

Lefschetz decomposition, 45
lemma

curve selection, 157, 204
Gauss, 76

Hadamard, 70
Morse, 48, 86, 172
Nakayama, 70

line bundle
associated to a divisor, 20
base of, 15
dual of, 18
holomorphic, 15
hyperplane, 20
local trivialization, 16
morphism of, 19

natural projection of, 15
section of, 16
tautological, 17, 20
tensor product, 18
total space of, 15
trivial, 15

linear system, 25
base locus of, 25, 33

linking number, 173

manifold

algebraic, 4, 33

modification of, 25

Brieskorn, 152

complex, 1

blowup of, 21, 29

orientation, 2

map

blowdown, 18, 21, 132

degree of, 10, 13

holomorphic, 2, 5, 80

finite, 80

ideal of, 72

local algebra of, 72

multiplicity of, 72

regular point of, 2

regular value of, 2

critical value of, 2

Morse, 3, 27, 36, 47

variation, 54, 55

holomorphic

critical point of, 2

map

holomorphic

infinitesimally finite, 72

Milnor

fiber, 153, 169, 188

fibration, 153

number, 9, 73, 86, 194

module

flat, 102

free, 103

monodromy, 53, 63, 67, 187, 188

group, 63

local, 50, 53, 173

geometric, 163

group, 62

monoid, 108

asymptotically complete, 108

normal, 198

rational polyhedral, 198

saturated, 198

morsification, 152, 171
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multiplicity sequence, 139

Newton

diagram, 222

conormal fan, 222

local polyhedron, 222

nondegenerate, 227

Newton polygon, 112

convenient, 114

face, 114

degree of, 116

weight of, 116

height, 114

width, 114

node, 105

normalization, 108, 111

pencil, 25

Lefschetz, 27, 33, 67

monodromy group, 62

monodromy of, 61

Poincaré

dual, 39

duality, 32, 40, 68, 193

sphere, 152

Poincaré-Lefschetz duality, 55, 176

polydromy order, 113

Pontryagin duality, 195

presheaf, 77

stalk, 78

principal tangent, 134, 137

principal tangents, 134, 136

projection, 5, 13

axis of, 27

center of, 5

screen of, 27

projective space, 3

proper transform, 21, 132, 136, 143

proximity, 146

proximity graph, 147

Puiseux

expansion, 112, 113, 126, 129, 135

pairs, 122, 125, 127

series, 113, 117, 123, 125

Puiseux-Laurent series, 112

rational cone, 115

regular point, 2

regular value, 2

resolution, 111

embedded, 131

standard, 139

resolution graph, 141, 182

resultant, 130

ring, 69

factorial, 75

flat morphism, 102

ideal

radical of, 85

ideal of, 69

integrally closed, 109

local, 69, 70

localization, 92

Noetherian, 75

spectrum of, 92

ring normalization of, 109

ringed space, 91

local, 92

morphism of, 92

ringed spaces

morphism

flat, 103

sheaf, 77

coherent, 93

finite type, 93

ideal, 80

morphism, 77

image, 79

kernel of, 79

quotient, 79

relationally finite, 93

structural, 80, 92

singularity

delta invariant, 111, 127

isolated, 86, 151, 171

link of, 123, 152, 193

resolution of, 111, 129

Seifert form of, 175

variation operator of, 173

space
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complex, 93

locally contractible, 32

spectral sequence

Leray, 181, 188

standard fiber, 31

subanalytic set, 181, 187

sublattice, 198

submanifold, 4

submersion, 31, 51

supports

family of, 191

theorem

A’Campo, 193, 235

Alexander duality, 176

analytical Nullstellensatz, 85, 86, 101

Chow, 5

Ehresmann fibration, 31, 35, 37, 47,
51, 157

Enriques-Chisini, 139

excision, 32, 37, 48

Farkas, 199

general Weierstrass, 72

Grauert direct image, 102

Hahn-Banach, 199

Hilbert basis, 76

Hodge-Lefschetz, 20

implicit function, 4, 75

Künneth, 33

Krull intersection, 84

Lefschetz

hard, 42, 44, 63

hypersurface section, 37, 39, 43

local parametrization, 81

Milnor fibration, 153, 171

monodromy, 190

Noether normalization, 81

Oka, 98

Oka-Cartan, 100

Riemann-Hurwitz, 11, 36

Sard, 4, 152

Tougeron, 9, 48, 87, 151

universal coefficients, 40

Varchenko, 234

weak Lefschetz, 40, 41, 64

Weierstrass division, 73
Weierstrass preparation, 69, 74, 75,

98
Zariski, 65

thimble, see cycle
total transform, 143
transporter ideal, 97

vanishing sequence, 145
Veronese embedding, 27

Weierstrass
polynomial, 74, 83, 98, 109, 113,

117, 122, 130
Whitney stratifiable, 181, 187

Zariski topology, 92
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