CRITICAL SETS OF RANDOM LINEAR COMBINATIONS OF EIGENFUNCTIONS

LIVIU I. NICOLAESCU

ABSTRACT. Given a compact, connected Riemann manifold without boundary (M, g) of dimension m and a large positive constant L we denote by U_L the subspace of $C^\infty (M)\) spanned by eigenfunctions of the Laplacian corresponding to eigenvalues $\leq L$. We equip U_L with the standard Gaussian probability measure induced by the L^2-metric on U_L, and we denote by N_L the expected number of critical points of a random function in U_L. We prove that $N_L \sim C_m \dim U_L$ as $L \to \infty$, where C_m is an explicit positive constant that depends only on the dimension m of M and satisfying the asymptotic estimate $\log C_m \sim \frac{m^2}{2} \log m$ as $m \to \infty$.

CONTENTS

1. Introduction 1
2. An integral formula 3
3. The proof of Theorem 1.1 7
4. The proof of Theorem 1.2 10
Appendix A. Gaussian measures and Gaussian random fields 15
Appendix B. Gaussian random symmetric matrices 19
References 22

1. INTRODUCTION

Suppose that (M, g) is a smooth, compact Riemann manifold of dimension $m > 1$. We denote by $|dV_g|$ the volume density on M induced by g. For any $u, v \in C^\infty (M)$ we denote by $(u, v)_g$ their L^2 inner product,

$$(u, v)_g := \int_M u(x)v(x) |dV_g(x)|.$$

The L^2-norm of a smooth function u is then

$$\|u\| := \sqrt{(u, u)_g}.$$

Let $\Delta_g : C^\infty (M) \to C^\infty (M)$ denote the scalar Laplacian defined by the metric g. For $L > 0$ we set

$$U_L = U_L(M, g) := \bigoplus_{\lambda \in [0, L]} \ker (\lambda - \Delta_g), \quad d(L) := \dim U_L.$$

We equip U_L with the Gaussian probability measure.

$$d\gamma_L(u) := (2\pi)^{-d(L)/2} e^{-\frac{\|u\|^2}{2}} |du|.$$

2000 Mathematics Subject Classification. Primary 15B52, 42C10, 53C65, 58K05, 60D05, 60G15, 60G60.

Key words and phrases. Morse functions, critical points, Kac-Price formula, random matrices, gaussian random processes, spectral function.
For any \(u \in U_L \) we denote by \(N_L(u) \) the number of critical points of \(u \). If \(L \) is sufficiently large then \(N_L(u) \) is finite with probability 1. We obtain in this fashion a random variable \(N_L \), and we denote by \(E(N_L) \) its expectation

\[
E(N_L) := \int_{U_L} N_L(u) d\gamma_L(u).
\]

In this paper we investigate the behavior of \(E(N_L) \) as \(L \to \infty \). More precisely we will prove the following result.

Theorem 1.1. There exists a positive constant \(C = C(m) \) that depends only on the dimension of \(M \), such that

\[
E(N_L) \sim C(m) \dim U_L \quad \text{as} \quad L \to \infty.
\]

The constant \(C(m) \) can be expressed in terms of certain statistics on the space \(S_m \), the space of symmetric \(m \times m \) matrices. We denote \(d\gamma_s \) the Gaussian measure\(^1\) on \(S_m \) given by

\[
d\gamma_s(X) = \frac{1}{(2\pi)^{m(m+1)/4}} \mu_m^{-\frac{m}{2}} e^{-\frac{1}{2}(\text{tr} \ X^2 - \frac{1}{m+2} (\text{tr} \ X)^2)} 2^{\frac{1}{2}}(\frac{m}{2}) \prod_{i \leq j} dx_{ij},
\]

\[
\mu_m = 2^{\frac{m}{2}} + (m + 2)^{m-1}.
\]

Then

\[
C(m) = \left(\frac{4\pi}{m+4} \right)^{\frac{m}{2}} \Gamma\left(1 + \frac{m}{2} \right) \int_{S_m} \left| \det X \right| d\gamma_s(X) =: I_m.
\]

We can say something about the behavior of \(C(m) \) as \(m \to \infty \).

Theorem 1.2.

\[
\log C(m) \sim \log I_m \sim \frac{m}{2} \log m \quad \text{as} \quad m \to \infty.
\]

The proof of (1.1) relies on a Kac-Price type integral formula proved by the author in [15] that expresses the expected number of critical points of a function in \(U_L \) as an integral

\[
E(N_L) = \int_M \rho_L(\mathbf{x}) |dV_\mathbf{g}(\mathbf{x})|.
\]

Using some basic ideas from random field theory we reduce the large \(L \) asymptotics of \(\rho_L \) to questions concerning the asymptotics of the spectral function of the Laplacian. Fortunately, these questions were recently settled by X. Bin [4] by refining the wave kernel method of L. Hörmander, [11]. We actually prove a bit more. We show that

\[
\lim_{L \to \infty} L^{-m/2} \rho_L(\mathbf{x}) = \frac{C(m) \omega_m}{(2\pi)^m}, \quad \text{uniformly in} \ \mathbf{x} \in M,
\]

where \(\omega_m \) denotes the volume of the unit ball in \(\mathbb{R}^m \). Using the classical Weyl estimates (3.2) we see that (1.4) implies (1.1).

The equality (1.4) has an interesting interpretation. We can think of \(\rho_L(\mathbf{x}) |dV_\mathbf{g}(\mathbf{x})| \) as the expected number of critical points of a random function in \(U_L \) inside an infinitesimal region of volume \(|dV_\mathbf{g}(\mathbf{x})| \) around the point \(\mathbf{x} \). From this point of view we see that (1.4) states that for large \(L \) we expect the critical points of a random function in \(U_L \) to be uniformly distributed.

\(^1\)We refer to Appendix B for a detailed description of a 3-parameter family Gaussian measures \(d\Gamma_{a,b,c} \) on \(S_m \) that includes \(d\gamma_s \) as \(d\gamma_s = d\Gamma_{3,1,1} \).
This rather vague statement could be made more precise if we had estimates for the variance \(V(N_L) \) of \(N_L \). We are inclined to believe that as \(L \to \infty \) the ratio

\[q_L = \frac{V(N_L)}{E(N_L)} \]

has a finite limit \(q(M, g) \). Such a result would show that the random variable \(L^{-\frac{m}{2}} N_L \) is highly concentrated near its mean value.

We obtain the asymptotics of \(C(m) \) by relying on a technique used by Y.V. Fyodorov \[9\] in a related context. This reduces the asymptotics of the integral \(I_m \) to known asymptotics of the 1-point correlation function in random matrix theory, more precisely, Wigner’s semi-circle law.

The paper is structured as follows. Section 2 contains a description of the integral formula alluded to above, including several reformulations in the language of random processes. Section 3 contains the proof of the asymptotic estimate (1.1), while section 4 contains the proof of the estimate (1.2). For the reader’s convenience we have included in Appendix A a brief survey of the main facts about Gaussian measures and Gaussian processes used in the proof, while Appendix B contains a detailed description of a family of Gaussian measures on the space \(S_m \) of real, symmetric \(m \times m \) matrices. These measures play a central role in the proof of (1.1) and we could not find an appropriate reference for the mostly elementary facts discussed in this appendix.

2. A SINGLE INTEGRAL FORMULA

A key component in the proof of Theorem 1.1 is an integral formula that we proved in \[15\]. We recall it in this section, and then we formulate it in the language of random fields à la \[1\].

Suppose \(M \) is a compact manifold without boundary. Set \(m := \dim M \). For any nonnegative integer \(k \), any point \(p \in M \) and any \(f \in C^\infty(M) \) we will denote by \(j_k(f, p) \) the \(k \)-th jet of \(f \) at \(p \).

Fix a finite dimensional vector space \(U \subset C^\infty(M) \). Set \(N := \dim U \). We have an evaluation map

\[\text{ev} = \text{ev}^U : M \to U^\vee := \text{Hom}(U, \mathbb{R}), \quad p \mapsto \text{ev}_p, \]

where for any \(p \in M \) the linear map \(\text{ev}_p : U \to \mathbb{R} \) is given by

\[\text{ev}_p(u) = u(p), \quad \forall u \in U. \]

If \(k \) is nonnegative integer then we say that \(U \) is \(k \)-ample if for any \(p \in M \) and any \(f \in C^\infty(M) \) there exists \(u \in U \) such that

\[j_k(u, p) = j_k(f, p). \]

In the remainder of this section we will assume that \(U \) is 1-ample. This implies that the evaluation map \(\text{ev}^U \) is an immersion. Moreover, as explained in \[14, \S 1.2\], the 1-ampleness condition also implies that almost all functions \(u \in U \) are Morse functions and thus have finite critical sets. For any \(u \in U \) we denote by \(N(u) \) the number of critical points of \(u \).

We fix an inner product \(h(-, -) \) on \(U \) and we denote by \(\| - \|_h \) the resulting Euclidean norm. We will refer to the pair \((U, h)\) as the sample space. We set

\[S_h(U) := \{ u \in U; \quad |u|_h = 1 \}. \]

Using the metric \(h \) we can regard the evaluation map a smooth map

\[\text{ev} : M \to U. \]

\[^2 \text{In } [15] \text{ we proved that } q(S^4) \approx 0.4518. \]
We define the expected number of critical points of a function in \(U \) to be the quantity

\[
\mathcal{N}(U, h) := \frac{1}{\sigma_{n-1}} \int_{S_h(U)} \mathcal{N}(u) |dA_h(u)| = \int_U \mathcal{N}(u) \frac{|u|^2}{(2\pi)^{n-2}} |dV_h(u)|,
\]

(2.1)

where \(\sigma_{n-1} \) denotes the "area" of the unit sphere in \(\mathbb{R}^n \),

\[
\sigma_{n-1} = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}.
\]

\(|dA_h|\) denotes the "area" density on \(S_h(U) \), and \(|dV_h(u)|\) denotes the volume density on \(U \) determined by the metric \(h \). A priori, the expected number of critical points could be infinite, but in any case, it is independent of any choice of metric on \(M \).

The integral formula needed in the proof of Theorem 1.1 expresses \(\mathcal{N}(U, h) \) as the integral of an explicit density on \(M \). To describe this formula it is convenient to fix a metric \(g \) on \(M \). We will express \(\mathcal{N}(U, h) \) as an integral

\[
\int_M \rho_g(p) |dV_g(p)|.
\]

The function \(\rho_g \) does depend on \(g \) but the density \(\rho_g(p) |dV_g(p)| \) is independent of \(g \). The concrete description of \(\rho_g(p) \) relies on several fundamental objects naturally associated to the triplet \((U, h, g) \).

For any \(p \in M \) we set

\[
U_p^0 := \{ u \in U; \ dA(u) = 0 \}.
\]

The 1-ampleness assumption on \(U \) implies that for any \(x \in M \) the subspace \(U_p^0 \) has codimension \(m \) in \(U \) so that

\[
\dim U_p^0 = N - m.
\]

The differential of the evaluation map at \(p \) is a linear map \(A_p : T_p M \to U \), and we denote by \(J_g(p) \) its Jacobian, i.e., the norm of the induced map \(\Lambda^m : \Lambda^m T_p M \to \Lambda^m U \). Equivalently, if \((e_1, \ldots, e_m) \) is \(g \)-orthonormal basis of \(T_p M \), then

\[
J_g(p)^2 = \det \left[h(A_p e_i, A_p e_j) \right]_{1 \leq i, j \leq m}.
\]

Since \(ev^U \) is an immersion we have \(J_g(p) \neq 0, \forall x \in M \).

For any \(p \in M \) and any \(u \in U_p^0 \), the Hessian of \(u \) at \(p \) is a well defined symmetric bilinear form on \(T_p M \) that can be identified via the metric \(g \) with a symmetric endomorphism of \(T_p M \). We denote this symmetric endomorphism by \(Hess_p(u, g) \). In [15] we proved that

\[
\mathcal{N}(U, h) = (2\pi)^{-\frac{n}{2}} \int_M \frac{1}{J_g(p)} \left(\int_{U_p^0} \left| \det Hess_p(u, g) \right| \frac{|u|^2}{(2\pi)^{n-m}} |dV_h(u)| \right) |dV_g(p)|.
\]

(2.2)

This formula looks hopeless in a general context for two immediately visible reasons.

- The Jacobian \(J_g(p) \) seems difficult to compute.
- The integral \(I_p \) in (2.2) may be difficult to compute since the domain of integration \(U_p^0 \) may be impossible to pin down.
We will deal with these difficulties simultaneously by relying on some probabilistic principles inspired from [1]. For the reader’s convenience we have gathered in Appendix A the basic probabilistic notions and facts need in the sequel.

We denote by $\sigma = \sigma_U$ the pullback of the metric h on U via the evaluation map. We will refer to it as the stochastic metric associated to the sample space (U, h). It is convenient to have a local description of the stochastic metric.

Fix an orthonormal basis ψ_1, \ldots, ψ_N of U. The evaluation map $eva^U : M \to U$ is then given by

$$M \ni x \mapsto \sum_n \psi_n(x) : \psi_n \in U.$$

If $p \in M$ and U is an open coordinate neighborhood of p with coordinates $x = (x^1, \ldots, x^m)$ then

$$\sigma_p(\partial_{x^i}, \partial_{x^j}) = \sum_n \frac{\partial \psi_n}{\partial x^i}(p) \frac{\partial \psi_n}{\partial x^j}(p), \quad \forall 1 \leq i, j m. \quad (2.3)$$

Note that if the collection $(\partial_{x^i})_{1 \leq i \leq m}$ forms an g-orthonormal frame of $T_p M$ then

$$J_g(p)^2 = \det \left[\sigma_p(\partial_{x^i}, \partial_{x^j}) \right]_{1 \leq i, j \leq m}. \quad (2.4)$$

To the sample space (U, h) we associate in a tautological fashion a Gaussian random field on M as follows. The measure $d\gamma_h$ in (2.1) is a probability measure and thus $(U, d\gamma_h)$ is naturally a probability space. We have a natural map

$$\xi : M \times U \to \mathbb{R}, \quad M \times U \ni (p, u) \mapsto \xi_p(u) := u(p)$$

The collection of random variables $(\xi_p)_{p \in M}$ is a random field on M. As explained in Appendix A this is in fact a Gaussian random field.

Using the orthonormal basis (ψ_k) of U we obtain a linear isometry

$$\mathbb{R}^N \ni t = (t_1, \ldots, t_n) \mapsto u_t = \sum_k t_k \psi_k \in U,$$

with inverse $u \mapsto t_k(u) = h(u, \psi_k)$. For any $p \in M$ and any $t \in \mathbb{R}^N$ we have

$$\xi_p(u_t) = \sum_k t_k \psi_k(p).$$

The covariance kernel of this field is the function $\mathcal{E} = \mathcal{E}_U : M \times M \to \mathbb{R}$ given by

$$\mathcal{E}(p, q) = \mathcal{E}(\xi_p, \xi_q) = \sum_{j, k=1}^N \left(\int_{\mathbb{R}^N} t_j t_k d\gamma_N(t) \right) \psi_j(p) \psi_k(q)$$

$$\quad = \sum_{k=1}^M \psi_k(p) \psi_k(q), \quad (2.5)$$

where $d\gamma_N$ is the canonical Gaussian measure on \mathbb{R}^N.

If $p \in M$ and U is an open coordinate neighborhood of p with coordinates $x = (x^1, \ldots, x^m)$ such that $x(p) = 0$, then we can rewrite (2.3) in terms of the covariance kernel alone

$$\sigma_p(\partial_{x^i}, \partial_{x^j}) = \frac{\partial^2 \mathcal{E}(x, y)}{\partial x^i \partial y^j}|_{x=y=0}. \quad (2.6)$$

Note that for any vector field X determines a new Gaussian random field on M, the derivative of u along X. We obtain Gaussian random variables

$$u \mapsto Xu(p), \quad u \mapsto Yu(p),$$
The last equality justifies the attribute stochastic attached to the metric σ.

We denote by ∇ the Levi-Civita connection of the metric g. The Hessian of a smooth function $f : \to \mathbb{R}$ with respect to the metric g is the symmetric $(0,2)$-tensor $\nabla^2 f$ on M defined by the equality
\[
\nabla^2 f(X,Y) := XY f - (\nabla_X Y)f, \quad \forall X,Y \in \text{Vect}(M).
\]

If p is a critical point of f then ∇^2_pf is the usual Hessian of f at p. More generally, if (x^1, \ldots, x^m) are g-normal coordinates at p then
\[
\nabla^2_pf(\partial_{x^i}, \partial_{x^j}) = \partial^2_{x^ix^j}f(p), \quad \forall 1 \leq i, j \leq m.
\]

For any $p \in M$ and any $f \in C^\infty(M)$ we identify using the metric g_p the bilinear form ∇^2_pf on T_pM with an element of $S(T_pM)$, the vector space of symmetric endomorphisms of the Euclidean space (T_pM, g_p). For any $p \in M$ we have two random Gaussian vectors
\[
U \ni u \mapsto \nabla^2_pu \in S(T_pM), \quad U \ni u \mapsto du(p) \in T^*_xM.
\]

Note that the expectation of both random vectors are trivial while (2.6) shows that the covariance form of $du(p)$ is the metric σ_p.

To proceed further we need to make an additional assumption on the sample space U. Namely, in the remainder of this section we will assume that it is 2-ample. In this case the map
\[
U \ni u \mapsto \nabla^2_pu \in S(T_pM)
\]
is surjective so the Gaussian random vector ∇^2_pu is nondegenerate. A simple application of the co-area formula shows that the integral I_p in (2.2) can be expressed as a conditional expectation
\[
I_p = E\left(|\det \nabla^2_pu| \mid du(p) = 0 \right).
\]

The covariance form of the pair of random variables ∇^2_pu and $du(p)$ is the bilinear map
\[
\Omega : S(T_pM)^\vee \times T_pM \to \mathbb{R},
\]
\[
\Omega(\xi, \eta) = E\left(\langle \xi, \nabla^2_pu \rangle \cdot \langle du, \eta \rangle \right), \quad \forall \xi \in S^\vee_m, \quad \eta \in T_pM.
\]

Using the natural inner products on $S(T_pM)$ and T_pM defined by g_p we can regard the covariance form as a linear operator
\[
\Omega_p : T_pM \to S(T_pM).
\]

Similarly, we can identify the covariance forms of ∇^2_pu and du with symmetric positive definite operators
\[
S\nabla^2_pu : S(T_pM) \to S(T_pM)
\]
and respectively
\[
S_{du(p)} : T_pM \to T_pM.
\]

Using the regression formula (A.4) we deduce that
\[
E\left(|\det \nabla^2_pu| \mid du(p) = 0 \right) = E(|\det Y_p|),
\]

where $Y_p : U \to S(T_pM)$ is a Gaussian random vector with mean value zero and covariance operator
\[
\Xi_p = \Xi_{Y_p} := S\nabla^2_pu - \Omega_p^{-1} \Omega_p^{\dagger} : S(T_pM) \to S(T_pM).
\]

When Ξ_p is invertible we have
\[
E(|\det Y_p|) = (2\pi)^{-\frac{\dim S(T_pM)}{2}} (\det \Xi_p)^{-\frac{1}{2}} \int_{S(T_pM)} |\det Y| e^{-\frac{\langle Y, \Xi_p^{-1} Y \rangle}{2}} dV_g(Y). \quad \text{(2.10)}
\]
Observing that
\[J_g(p) = (\det S_{dU(p)})^{\frac{1}{2}}, \]
we deduce that when \(U \) is 2-ample we have
\[N(U, h) = \frac{1}{(2\pi)^m} \int_M (\det S_{dU(p)})^{-\frac{1}{2}} E(|\det Y_p|) |dV_g(p)|, \]
where \(Y_p \) is a Gaussian random symmetric endomorphism of \(T_p M \) with expectation 0 and covariance operator \(\Xi_p \) described by (2.9).

To compute the above integral we choose normal coordinates \((x_1, \ldots, x^n)\) near \(p \) and thus we can orthogonally identify \(T_p M \) with \(\mathbb{R}^m \). We can view the random variable \(\nabla^2_{\xi} u \) as a random variable
\[H^P: U \rightarrow S_m := \mathbb{S}(\mathbb{R}^m), \quad U \ni u \mapsto H^P(u) \in S_m, \quad H^P_i(u) = \partial^2_{x_i x_j} u(p), \]
and the random variable \(dU(p) \) as a random variable
\[D^P: U \rightarrow \mathbb{R}^m, \quad u \mapsto D^P u \in \mathbb{R}^m, \quad D^P_i u = \partial_{x_i} u(p). \]
The covariance operator \(S_{dU(p)} \) of the random variable \(D^P \) is given by the symmetric \(m \times m \) matrix with entries
\[\sigma_p(\partial_{x_i}, \partial_{x_j}) = \frac{\partial^2 \mathcal{E}(x, y)}{\partial x^i \partial y^j}|x=y=0. \]
To compute the covariance form \(\Sigma_{H^P} \) of the random matrix \(H^P \) we observe first that we have a canonical basis \((\xi_{ij})_{1 \leq i \leq j \leq m} \) of \(S^\vee_m \) so that \(\xi_{ij} \) associates to a symmetric matrix \(A \) the entry \(a_{ij} \) located in the position \((i, j)\). Then
\[(\Sigma_{H^P})_{ij, kl} = E(\ H^P_{ij}(u), H^P_{kl}(u) \) = E(\ \partial^2_{x_i x_j} u(x) \partial^2_{x_k x_l} u(x) \) \]
\[= \sum\limits_{n=1}^{N} \partial^2_{x_i x_j} \psi_n(x) \partial^2_{x_k x_l} \psi_n(x) = \frac{\partial^4 \mathcal{E}(x, y)}{\partial x^i \partial x^j \partial y^k \partial y^l}|x=y=0. \]
Similarly we have
\[\Omega(\xi_{ij}, \partial_{x_k}) = E(\partial^2_{x_i x_j} u(p), \partial_{x_k} u(p) \) = \frac{\partial^3 \mathcal{E}(x, y)}{\partial x^i \partial x^j \partial y^k}|x=y=0. \]
To identify \(\Omega \) with an operator it suffices to observe that \((\partial_{x_k}) \) is an orthonormal basis of \(T_p M \), while the collection \(\{\xi_{ij}\}_{1 \leq i, j \leq m} \subset S^\vee_m \)
\[\xi_{ij} = \begin{cases} \xi_{ij}, & i = j \\ \sqrt{2} \xi_{ij}, & i < j \end{cases} \]
is an orthonormal basis of \(S^\vee_m \). If we denote by \(\hat{\xi}_{ij} \) the dual orthonormal basis of \(S_m \), then
\[\Omega \partial_{x_k} = \sum_{1 \leq i, j} \Omega(\xi_{ij}, \partial_{x_k}) \hat{\xi}_{ij}. \]

3. The proof of Theorem 1.1

We fix an orthonormal basis of \(L^2(M, g) \) consisting of eigenfunctions \(\Psi_n \) of \(\Delta_g \),
\[\Delta_g \Psi_n = \lambda_n \Psi_n, \quad n = 0, 1, \ldots, \quad \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n \leq \cdots. \]
The collection \(\{\Psi_n\}_{n \leq L} \) is therefore an orthonormal basis of \(U_L \) so that the covariance kernel of the Gaussian field determined by \(U_L \) is
\[\mathcal{E}_L(p, q) = \sum_{\lambda_n \leq L} \Psi_n(p) \Psi_n(q). \]
This function is also known as the spectral function associated to the Laplacian. Observe that

\[\int_M \mathcal{E}_L(p, p) |dV_g(p)| = \dim U_L. \]

In the groundbreaking work [11], L. Hörmander used the kernel of the wave group \(e^{it\sqrt{-\Delta}} \) to produce refined asymptotic estimates for the spectral function. More precisely he showed (see [11] or [12, §17.5])

\[\mathcal{E}_L(p, p) = \frac{\omega_m}{(2\pi)^m} L^\frac{m}{2} + O(L^{\frac{m-1}{2}}) \quad \text{as} \quad L \to \infty, \]

(3.1)

uniformly with respect to \(p \in M \). Above, \(\omega_m \) denotes the volume of the unit ball in \(\mathbb{R}^m \). This implies immediately the classical Weyl estimates

\[\dim U_L \approx \frac{\omega_m}{(2\pi)^m} \text{vol}_g(M) L^\frac{m}{2}. \]

(3.2)

Recently (2004), X. Bin [4] used Hörmander’s approach to produce substantially refined asymptotic estimates of the behavior of the spectral function in a infinitesimal neighborhood of the diagonal.

To formulate these estimates we set \(\lambda := L^\frac{1}{2} \). Fix a point \(p \) and normal coordinates \(x = (x^1, \ldots, x^m) \) at \(p \). Note that \(x(p) = 0 \). For any multi-indices \(\alpha, \beta \in \mathbb{Z}_{\geq 0}^m \) we set

\[\mathcal{E}_L^{\alpha, \beta}(p) := \frac{\partial^{\alpha+\beta} \mathcal{E}(x, y)}{\partial x^\alpha \partial y^\beta} \bigg|_{x=y=0} \]

X. Bin proved that for any multi-indices \(\alpha, \beta \in \mathbb{Z}_{\geq 0}^m \) we have

\[\mathcal{E}_L^{\alpha, \beta}(p) = C_m(\alpha, \beta) \lambda^{m+|\alpha+|\beta|} + O\left(\lambda^{m+|\alpha+|\beta|} \right) \]

(3.3)

where

\[C_m(\alpha, \beta) = \begin{cases}
0, & \alpha - \beta \notin (2\mathbb{Z})^m \\
\left(\frac{-1}{(2\pi)^m}\right)^{|\alpha+|\beta|} \int_{B^m} x^{\alpha+\beta} |dx|, & \alpha - \beta \in (2\mathbb{Z})^m,
\end{cases} \]

(3.4)

and \(B^m \) denotes the unit ball

\[B^m = \{ x \in \mathbb{R}^m; \ |x| = 1 \}. \]

The estimates (3.3) are uniform in \(p \in M \). Using (A.6) we deduce (compare with (B.13))

\[\frac{1}{(2\pi)^m} \int_{B^m} x^{2\alpha+2\beta} |dx| = \frac{1}{(4\pi)^\frac{m}{2} \Gamma(1 + \frac{m}{2})} \int_{\mathbb{R}^m} x^{\alpha+\beta} e^{-|x|^2 / \pi} |dx|. \]

We set

\[K_m = C_m(\alpha, \alpha), \quad |\alpha| = 1, \]

so that

\[K_m = \frac{1}{(4\pi)^\frac{m}{2} \Gamma(2 + \frac{m}{2})} \int_{\mathbb{R}^m} x^1 e^{-|x|^2 / \pi} |dx| = \frac{1}{2(4\pi)^\frac{m}{2} \Gamma(2 + \frac{m}{2})}. \]

For any \(i \leq j \) define \(\alpha_{ij} \in \mathbb{Z}^m \) so that

\[x^{\alpha_{ij}} = x_i x_j. \]

For \(i \leq j \) and \(k \leq j \) we set

\[C_m(i, j; k, \ell) = C_m(\alpha_{ij}, \alpha_{k\ell}) = \frac{1}{(4\pi)^\frac{m}{2} \Gamma(3 + \frac{m}{2})} \int_{\mathbb{R}^m} x_i x_j x_k x_\ell e^{-|x|^2 / \pi} |dx|. \]
For \(i < j \) we have
\[
C_m(i, i; j, j) = \frac{1}{(4\pi)^{m/2} \Gamma(3 + \frac{m}{2})} \int_{\mathbb{R}^m} x_i^2 x_j^2 e^{-|x|^2} |dx| = \frac{1}{4(4\pi)^{m/2} \Gamma(3 + \frac{m}{2})} =: c_m.
\]
Finally
\[
C_m(i, i; i, i) = \frac{1}{(4\pi)^{m/2} \Gamma(3 + \frac{m}{2})} \int_{\mathbb{R}^m} x_i^4 e^{-|x|^2} |dx| = \frac{3}{4(4\pi)^{m/2} \Gamma(3 + \frac{m}{2})} = 3c_m,
\]
and
\[
C_m(i, j; i, j) = C_m(i, i; j, j),
\]
We denote by \(\sigma^L \) the stochastic metric on \(M \) determined by the sample space \(U_L, L \gg 0 \). As explained in the previous section the covariance form of the random vector \(U_L \ni \mathbf{u} \mapsto d\mathbf{u}(p) \in T_p^*M = \sigma^L_p \), and from (3.3) we deduce
\[
\sigma^L_p(\partial_{x^i}, \partial_{x^j}) = \frac{\partial^2 \mathcal{E}_L(x, y)}{\partial x^i \partial y^j} \bigg|_{x=y=0} = K_m \lambda^{m+2} \delta_{ij} + O(\lambda^{m+1})
\]
\[
= K_m \lambda^{m+2} g_p(\partial_{x^i}, \partial_{x^j}) + O(\lambda^{m+1}) \text{ as } L \to \infty, \text{ uniformly in } p. \tag{3.5}
\]
In particular, if \(S^L_{du(p)} \) denotes the covariance operator of the random vector \(d\mathbf{u}(p) \), then we deduce from the above equality that
\[
S^L_{du(p)} = K_m \lambda^{m+2} \mathbb{1}_m + O(\lambda^{m+1}), \text{ uniformly in } p, \tag{3.6}
\]
and invoking (2.11) we deduce
\[
J_g^L(p) = \left(\det S^L_{du(p)} \right)^{\frac{1}{2}} = K_m^\frac{m}{2} \lambda^{\frac{m(m+2)}{2}} + O(\lambda^{\frac{m(m+2)}{2} - 1}), \text{ uniformly in } p. \tag{3.7}
\]
Denote by \(\Sigma^L_{HP} \) the covariance form of the random matrix
\[
U_L \ni \mathbf{u} \mapsto \nabla^2_{\mathbf{u}} \mathbf{u} \in S(T_p^*M) = S_m.
\]
Using (2.13) and (3.3) we deduce
\[
\Sigma^L_{HP} = c_m \lambda^{m+4} \Sigma_{3,1,1} + O(\lambda^{m+3}), \text{ uniformly in } p, \tag{3.8}
\]
where the positive definite, symmetric bilinear form \(\Sigma_{3,1,1} : S^\vee_m \times S^\vee_m \to \mathbb{R} \) is described by the equalities (B.2a) and (B.2b). We denote by \(\Gamma_{3,1,1} \) the centered Gaussian measure on \(S_m \) with covariance form \(\Sigma_{3,1,1} \).

The equality (2.14) coupled with (3.3) imply that the covariance operator \(\Omega^L_p \) satisfies
\[
\Omega^L_p = O(\lambda^{m+2}), \text{ uniformly in } p. \tag{3.9}
\]
Using (3.6), (3.8) and (3.9) we deduce that the covariance operator \(\Xi^L_p \) defined as in (2.9) satisfies the estimate
\[
\Xi^L_p = c_m \lambda^{m+4} \hat{Q}_{3,1,1} + O(\lambda^{m+2}), \text{ as } L \to \infty, \text{ uniformly in } p, \tag{3.10}
\]
where \(\hat{Q}_{3,1,1} \) is the covariance operator associated to the covariance form \(\Sigma_{3,1,1} \) and it is described explicitly in (B.3). If we denote by \(d\Gamma_L \) the Gaussian measure on \(S_m \) with covariance operator \(\Xi^L_p \), we deduce that
\[
d\Gamma_L(Y) = \frac{1}{(2\pi)^{Nm/2} (\det \Xi^L_p)^{\frac{1}{2}}} e^{-\frac{\langle Y, Y \rangle}{2}} \cdot 2^{\frac{m}{2}} \prod_{i \leq j} dy_{ij},
\]
where
\[N_m = \dim S_m = \frac{m(m + 1)}{2}. \]

Let us observe that \(|dY|\) is the Euclidean volume element on \(S_m\) defined by the natural inner product on \(S_m\), \((X, Y) = \text{tr}(XY)\). We set
\[c_L := c_m \lambda^{m+4}, \quad Q_p^L = \frac{1}{c_L} \Xi_p^L. \]

Using (A.7) we deduce that
\[
\frac{1}{(2\pi)^{\frac{N_m}{2}} (\det \Xi_p^L)^{\frac{1}{2}}} \int_{S_m} |\det Y| e^{-\frac{(\Xi_p^L Y, Y)}{2}} |dY| = \frac{(c_L)^m}{(2\pi)^{\frac{N_m}{2}} (\det Q_p^L)^{\frac{1}{2}}} \int_{S_m} |\det Y| e^{-\frac{(Q_p^L Y, Y)}{2}} |dY|.
\]

From the estimate (3.10) we deduce that
\[Q_p^L \to \hat{Q}_{3,1,1} \text{ as } L \to \infty, \text{ uniformly in } p. \]

We conclude that
\[E(\det Y_p) = \int_{S_m} |\det Y| d\Gamma_L(Y) \sim c_m^\frac{m}{2} \lambda^{m(m+4)/2} \int_{S_m} |\det Y| d\Gamma_{3,1,1}(Y). \quad (3.11) \]

The measure \(d\Gamma_{3,1,1}\) is described explicitly in (B.11), more precisely
\[d\Gamma_{3,1,1}(Y) = \frac{1}{(2\pi)^{\frac{N_m}{2}} \sqrt{\mu_m}} \cdot e^{-\frac{1}{4} \left(\text{tr} Y^2 - \frac{1}{m+2} (\text{tr} Y)^2 \right)} |dY|,
\]
where \(\mu_m\) is given by (B.12). Using (2.12), (3.7) and (3.11) we deduce that
\[E(N_L) \sim \left(\frac{c_m}{K_m} \right)^{\frac{m}{2}} \lambda^{\frac{m(m+4)}{2} - \frac{m(m+2)}{2}} \text{vol}_p(M) \int_{S_m} |\det Y| d\Gamma_{3,1,1}(Y)
\]
\[\sim \left(\frac{c_m}{K_m} \right)^{\frac{m}{2}} \left(\frac{2\pi}{\omega_m} \right)^m \dim U_L. \quad (3.2)
\]

Observe that
\[\frac{c_m}{K_m} = \frac{\Gamma(2 + \frac{m}{2})}{2\Gamma(3 + \frac{m}{2})} = \frac{1}{m+4}, \quad \omega_m = \frac{\pi^m}{\Gamma(1 + \frac{m}{2})}, \quad \frac{2\pi^m}{\omega_m} = (4\pi)^{\frac{m}{2}} \Gamma \left(1 + \frac{m}{2} \right).
\]

This completes the proof of (1.1) and (1.4). \(\Box\)

4. THE PROOF OF THEOREM 1.2

We begin by describing the large \(m\) behavior of the integral
\[I_m := \frac{1}{(2\pi)^{\frac{m(m+1)}{4}} \sqrt{\mu_m}} \int_{S_m} |\det X| e^{-\frac{1}{4} \left(\text{tr} X^2 - \frac{1}{m+4} (\text{tr} X)^2 \right)} |dX|. \]

We follow the strategy in [9]; see also [8, §1.5]. Recall first the classical equality
\[\int_{\mathbb{R}} e^{-\left(at^2 + bt + c \right)} |dt| = \left(\frac{\pi}{a} \right)^{\frac{1}{2}} e^{\frac{b^2}{4a}} \Delta = b^2 - 4ac, \quad a > 0,
\]
which follows from the well known identity
\[at^2 + bt + c = a \left(t - \frac{b}{2a} \right)^2 - \frac{\Delta}{4a}. \]
For any real numbers u, v, w, we have
\[
(u^2 + v \text{tr}(X + wt1_m))^2 = (u + mw^2)^2 + 2vw \text{tr} X + v \text{tr} X^2
\]
\[= a(u, v, w)^2 + b(u, v, w)t + c(u, v, w).\]

We seek u, v, w such that
\[
b^2 - 4ac = -\frac{1}{4} \left(\text{tr} X^2 - \frac{1}{m + 2} (\text{tr} X)^2 \right).
\]

We have
\[
b^2 - 4ac = \frac{v^2 w^2}{u + mw^2} (\text{tr} X)^2 - \frac{v}{u + mw^2} \text{tr} X^2
\]
This implies
\[
v = \frac{1}{4}, \quad \frac{v^2 w^2}{u + mw^2} = \frac{1}{4(m + 2)}.
\]

We deduce
\[
v w^2 = \frac{1}{(m + 2)}, \quad v = \frac{1}{4} (u + mw^2) \iff u = 4v - mw^2.
\]

Hence
\[
w^2 = \frac{1}{v(m + 2)}, \quad u = 4v - \frac{m}{v(m + 2)}.
\]

We choose $v = \frac{1}{2}$ so that
\[
w^2 = \frac{2}{m + 2}, \quad u = 2 - \frac{2m}{m + 2} = \frac{4}{m + 2}, \quad a(u, v, w) = 4v = 2,
\]
\[e^{-\frac{1}{4} (\text{tr} X^2 - \frac{1}{m + 2} (\text{tr} X)^2)} = \left(\frac{2}{\pi} \right)^{\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{ut^2}{m + 2}} e^{-\frac{1}{2} \text{tr} (X + t \sqrt{\frac{2}{m + 2} 1_m})^2} dt
\]
\[= \left(\frac{2(m + 2)}{\pi} \right)^{\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{1}{2} \text{tr} (X + \sqrt{2} 1_m)^2} e^{-s^2}ds = \left(\frac{m + 2}{2} \right)^{\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{1}{2} \text{tr} (X - s 1_m)^2} \cdot \frac{e^{-2s^2}}{\sqrt{\frac{\pi}{2}} ds}.
\]

Hence
\[
I_m = \left(\frac{m + 2}{2\pi} \right)^{\frac{1}{2}} \left(m + \frac{1}{4} \right) \sqrt{\mu_m} \cdot \left(\int_{\mathbb{S}_m} \left| \det X | e^{-\frac{1}{2} \text{tr} (X - s 1_m)^2} |dX| \right) d\gamma(s)
\]
\[= A_m \int_{\mathbb{S}_m} \left(\int_{\mathbb{S}_m} \left| \det (x 1_m - Y) | e^{-\frac{1}{2} \text{tr} Y^2} |dY| \right) d\gamma(x).
\]

For any $O(n)$ invariant function $f : \mathbb{S}_n \to \mathbb{R}$ we have a Weyl integration formula (see [2, 8, 13]).
\[
\int_{\mathbb{S}_n} f(X)|dX| = \frac{1}{2^n} \int_{\mathbb{R}^n} f(\lambda)|\Delta_m(\lambda)| |d\lambda|,
\]
where
\[
\Delta_n(\lambda) := \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i),
\]
and the constant Z_n is defined by the equality

$$Z_n = \frac{\int_{\mathbb{R}^n} e^{-\frac{1}{2}|\lambda|^2} |\Delta_m(\lambda)| \ |d\lambda|}{\int_{\mathbb{R}^n} e^{-\frac{1}{2}trX^2} |dX|}.$$

The denominator is equal to $(2\pi)^{\frac{\dim S_n}{2}}$ while the numerator is given by ([13, §17.6])

$$\int_{\mathbb{R}^n} e^{-\frac{1}{2}|\lambda|^2} |\Delta_m(\lambda)| \ |d\lambda| = 2^{\frac{3n}{2}} \prod_{j=1}^{n} \Gamma\left(1 + \frac{j}{2}\right),$$

so that

$$Z_n = \frac{2^{\frac{3n}{2}} \prod_{j=1}^{n} \Gamma\left(1 + \frac{j}{2}\right)}{(2\pi)^{\frac{\dim S_n}{2}}}. \quad (4.1)$$

Now observe that for any $\lambda_0 \in \mathbb{R}$ we have

$$f_m(\lambda_0) = \frac{1}{Z_m} \int_{\mathbb{R}^m} e^{-\frac{1}{2}|\lambda|^2} \prod_{j=1}^{n} |\lambda_j - \lambda_0||\Delta_m(\lambda)| \ |d\lambda|$$

$$= e^{\frac{1}{2}x_3 \lambda_3} \int_{\mathbb{R}^m} e^{-\frac{1}{2}\sum_{i=1}^{m} \lambda_i^2} |\Delta_{m+1}(\lambda_0, \lambda_1, \ldots, \lambda_m)| \ |d\lambda_1 \cdots d\lambda_m|$$

$$= e^{\frac{1}{2}x_3 \lambda_3} \frac{1}{Z_{m+1}} \int_{\mathbb{R}^m} e^{-\frac{1}{2} \sum_{i=1}^{m+1} \lambda_i^2} |\Delta_{m+1}(\lambda_0, \lambda_1, \ldots, \lambda_m)| \ |d\lambda_1 \cdots d\lambda_m|.$$

The function $\rho_m(x) = nR_m(x)$ is known in random matrix theory as the 1-point correlation function of the Gaussian orthogonal ensemble of symmetric $n \times n$ matrices, [6, §4.4.1], [13, §4.2]. We conclude that

$$I_m = \frac{A_m Z_{m+1}}{Z_m} \int_{\mathbb{R}} R_{m+1}(x) e^{-\frac{x^2}{2}} d\gamma(x) = \frac{A_m Z_{m+1}}{Z_m} \int_{\mathbb{R}} R_{m+1}(x) \sqrt{\frac{2}{\pi}} e^{-\frac{3x^2}{2}} dx.$$

We have

$$Z_{m+1} \over Z_m = \frac{2^{\frac{3}{2}} \Gamma\left(m + \frac{3}{2}\right)}{2^{m+1} \cdot 2^{m+1}} ,$$

$$\sqrt{\frac{2}{\pi}} A_m Z_{m+1} = \frac{2^{\frac{3}{2}} \Gamma\left(m + \frac{3}{2}\right)}{2^{2m+1} \cdot 2^{m+1}} \times \sqrt{\frac{2}{\pi}} \times \frac{(m + 2)^{\frac{3}{2}}}{2^{\frac{1}{2}}(2\pi)^{\frac{m(m+1)}{4}}} \sqrt{\mu_m}$$

$$= \frac{\Gamma\left(m + \frac{3}{2}\right)}{2^{m-1} \sqrt{\pi}} \times \frac{1}{2^{m(m+1)} \cdot 2^{m+1} \cdot \frac{1}{4} (m + 2)^{\frac{m-2}{2}}} = \frac{\Gamma\left(m + \frac{3}{2}\right)}{\sqrt{\pi} 2^{m^2 + \frac{1}{2} (m + 2)^{\frac{m-2}{2}}}}.$$

We deduce

$$I_m = \frac{\Gamma\left(m + \frac{3}{2}\right)}{\sqrt{\pi} 2^{m^2 + \frac{1}{2} (m + 2)^{\frac{m-2}{2}}} \int_{\mathbb{R}} R_{m+1}(x) e^{-\frac{3x^2}{2}} dx$$

$$= \frac{\Gamma\left(m + \frac{3}{2}\right)}{\sqrt{\pi} 2^{m^2 + \frac{1}{2} (m + 2)^{\frac{m-2}{2}}}} \int_{\mathbb{R}} \rho_{m+1}(x) e^{-\frac{3x^2}{2}} dx.$$

(4.2)
To proceed further we use as guide Wigner’s theorem, [2, Thm. 2.1.1] stating that the sequences of probability measures $\bar{\rho}_n(x)dx$,

$$\bar{\rho}_n(x) := \frac{1}{\sqrt{n}} \rho_n(\sqrt{n}x),$$

converges weakly to the semi-circle probability measure $^3\rho(x)dx$,

$$\rho(x) = \frac{1}{\pi} \begin{cases} \sqrt{2 - x^2}, & |x| \leq \sqrt{2} \\ 0, & |x| > \sqrt{2}. \end{cases}$$

(4.3)

We deduce

$$\int_\mathbb{R} \rho_n(x)e^{-\frac{x^2}{2}}dx = n \int_\mathbb{R} \rho_n(\sqrt{n}s)e^{-\frac{3ns^2}{2}}|ds| = n^\frac{3}{2} \int_\mathbb{R} e^{-\frac{3ns^2}{2}} \bar{\rho}_n(s)ds$$

$$= \left(\frac{2\pi}{3} \right)^{\frac{1}{2}} n\int_\mathbb{R} \frac{(3n)^{\frac{1}{2}}e^{-\frac{3ns^2}{2}}}{(2\pi)^{\frac{3}{2}}} \cdot \bar{\rho}_n(s)ds. \tag{4.4}$$

We observe that the Gaussian measures $w_n(s)ds$ converge to the Dirac delta measure concentrated at the origin. The correlation $\rho_n(x)$ in terms of Hermite polynomials, [13, Eq. (7.2.32) and §A.9],

$$\rho_n(x) = \sum_{k=0}^{n-1} \psi_k(x)^2 + \frac{n}{2} \int_\mathbb{R} \varepsilon(x - t)\psi_n(t)dt + \alpha_n(x), \tag{4.5}$$

where

$$\psi_n(x) = \frac{1}{(2^n n! \sqrt{\pi})^{\frac{1}{2}}} e^{-\frac{x^2}{2}} H_n(x), \quad H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}),$$

$$\alpha_n(x) = \begin{cases} 0, & n \in 2\mathbb{Z} + 1, \\ \frac{\psi_n(x)}{\int_k \psi_n(x)dx}, & n \in \mathbb{Z}, \end{cases}$$

and

$$\varepsilon(x) = \begin{cases} \frac{1}{2}, & x > 0 \\ 0, & x = 0, \\ -\frac{1}{2}, & x < 0. \end{cases}$$

From the Christoffel-Darboux formula [16, Eq. (5.5.9)] we deduce

$$\pi^{\frac{1}{2}} e^{x^2} \sum_{k=0}^{n-1} \psi_k(x)^2 = \sum_{k=1}^{n-1} \frac{1}{2^k k!} H_k(x)^2 = \frac{1}{2^n (n-1)!} \left(H'_n(x)H_{n-1}(x) - H_n(x)H'_n(x) \right)$$

Using the recurrence formula $H'_n(x) = 2xH_n(x) - H_{n+1}(x)$ we deduce

$$H'_n(x)H_{n-1}(x) - H_n(x)H'_n(x) = H^2_n(x) - H_{n-1}(x)H_{n+1}(x)$$

and

$$k_n(x) = \frac{e^{-x^2}}{2^n (n-1)! \pi^{\frac{1}{2}}} \left(H^2_n(x) - H_{n-1}(x)H_{n+1}(x) \right).$$

3The difference between our definition (4.3) of the semicircle measure and the one in [2, Thm. 2.1.1] is due to the fact that the covariances of our random matrices differ by a factor from those in [2]. Our conventions agree with those in [13].
We set
\[\bar{k}_n(x) := \frac{k_n(\sqrt{n}x)}{\sqrt{n}}. \]
The integrals entering into the definition of \(\ell_n \) in (4.4) can be given a more explicit description using the generating function, [16, Eq. (5.5.6)],
\[\sum_{n=0}^{\infty} H_n(x) \frac{w^n}{n!} = e^{2wx-w^2}. \]
Using the refined asymptotic estimates for Hermite polynomials [7] and [16, Thm.8.22.9, Thm.8.91.3] we deduce that
\[\lim_{n \to \infty} \int_{\mathbb{R}} (\bar{\rho}_n(s) - \rho(x)) w_n(s) ds = 0. \]
On the other hand,
\[\lim_{n \to \infty} \int_{\mathbb{R}} \rho(s) w_n(s) ds = \rho(0) = \frac{\sqrt{2}}{\pi}. \]
Using the above equality in (4.2) and (4.4) we deduce that
\[I_m \sim \frac{2\Gamma(m + \frac{3}{2})}{\pi 2^{m^2+m-1}(m + 2)^{\frac{m^2}{2}}} \quad \text{as} \quad m \to \infty. \]
We now invoke Stirling’s formula to conclude that
\[\Gamma(m + \frac{3}{2}) \sim \sqrt{2\pi} \left(m + \frac{3}{2} \right)^{m + \frac{1}{2}} e^{-m - \frac{3}{2}} \]
\[\sim \sqrt{2\pi} m^{m+\frac{1}{2}} \left(m + \frac{3}{2m} \right)^{\frac{m}{2}} e^{-m - \frac{3}{2}} \sim \sqrt{2\pi} \left(\frac{m}{e} \right)^m. \]
We have
\[(m + 2)^{\frac{m^2}{2}} = m^{m^2} \left(m + \frac{2}{m} \right)^{\frac{m^2}{2}} \sim m^{\frac{m^2}{2}} e. \]
Thus
\[\log I_m \sim \frac{m - 3}{2} \log m \sim \frac{m}{2} \log m, \quad \text{as} \quad m \to \infty. \quad \text{(4.6)} \]
From (1.2) we deduce that
\[\log C(m) = \log I_m + \frac{m}{2} \log 4\pi + \log \Gamma \left(1 + \frac{m}{2} \right) - \frac{m}{2} \log(m + 4). \]
Stirling’s formula and (4.6) imply that
\[\log C(m) \sim \log I_m \quad \text{as} \quad m \to \infty. \]
This proves (1.3). □

APPENDIX A. GAUSSIAN MEASURES AND GAUSSIAN RANDOM FIELDS

For the reader’s convenience we survey here a few basic facts about Gaussian measures. For more details we refer to [5]. A **Gaussian measure** on \(\mathbb{R} \) is a Borel measure \(\gamma_{m,\sigma} \) of the form
\[\gamma_{m,\sigma}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}} \, dx. \]
The scalar \(m \) is called the **mean** while \(\sigma \) is called the **standard deviation**. We allow \(\sigma \) to be zero in which case
\[\gamma_{m,0} = \delta_m = \text{The Dirac measure on} \mathbb{R} \text{ concentrated at} m. \]
Suppose that \(V \) is a finite dimensional vector space. A **Gaussian measure** on \(V \) is a Borel measure \(\gamma \) on \(V \) such that, for any \(\xi \in V^\vee \), the pushforward \(\xi_*(\gamma) \) is a Gaussian measure on \(\mathbb{R} \),
\[\xi_*(\gamma) = \gamma_{m(\xi),\sigma(\xi)}. \]
One can show that the map \(V^\vee \ni \xi \mapsto m(\xi) \in \mathbb{R} \) is linear, and thus can be identified with a vector \(m_\gamma \in V \) called the **barycenter** or **expectation** of \(\gamma \) that can be alternatively defined by the equality
\[m_\gamma = \int_V v d\gamma(v). \]
The Gaussian measure \(\gamma \) is uniquely determined by its Fourier transform \(\hat{\gamma} : V^\vee \to \mathbb{R} \),
\[\hat{\gamma}(\xi) = e^{im(\xi)-\frac{1}{2}\sigma(\xi)^2}. \]
Moreover, there exists a nonnegative definite, symmetric bilinear map
\[\Sigma : V^\vee \times V^\vee \to \mathbb{R} \]
such that
\[\sigma(\xi)^2 = \Sigma(\xi,\xi), \quad \forall \xi \in V^\vee. \]
The form \(\Sigma \) is called the **covariance form** and can be identified with a linear operator \(S : V^\vee \to V \) such that
\[\Sigma(\xi,\eta) = \langle \xi, S\eta \rangle, \quad \forall \xi,\eta \in V^\vee, \]
where \(\langle -, - \rangle : V^\vee \times V \to \mathbb{R} \) denotes the natural bilinear pairing between a vector space and its dual. The operator \(S \) is called the **covariance operator** and it is explicitly described by the integral formula
\[\langle \xi, S\eta \rangle = \Lambda(\xi,\eta) = \int_V \langle \xi, v - m_\gamma \rangle \langle \eta, v - m_\gamma \rangle d\gamma(v). \]
The Gaussian measure is said to be **nondegenerate** if \(\Sigma \) is nondegenerate, and it is called **centered** if \(m = 0 \). A nondegenerate Gaussian measure on \(V \) is uniquely determined by its covariance form and its barycenter.

Example A.1. Suppose that \(U \) is an \(n \)-dimensional Euclidean space with inner product \(\langle -, - \rangle \). We use the inner product to identify \(U \) with its dual \(U^\vee \). If \(A : U \to U \) is a symmetric, positive definite operator, then
\[d\gamma_A(x) = \frac{1}{(2\pi)^{\frac{1}{2}} \sqrt{\det A}} e^{-\frac{1}{2}(A^{-1}u,u)} |du| \]
(A.1)
is a centered Gaussian measure on \(U \) with covariance form described by the operator \(A \). □
If V is a finite dimensional vector space equipped with a Gaussian measure γ and $L : V \to U$ is a linear map then the pushforward $L_{\ast} \gamma$ is a Gaussian measure on U with barycenter

$$m_{L_{\ast} \gamma} = L(m_\gamma)$$

and covariance form

$$\Sigma_{L_{\ast} \gamma} : U^\vee \times U^\vee \to \mathbb{R}$$

given by

$$\Sigma_{L_{\ast} \gamma}(\eta, \eta) = \Sigma_\gamma(L^\vee \eta, L^\vee \eta), \quad \forall \eta \in U^\vee,$$

where $L^\vee : U^\vee \to V^\vee$ is the dual (transpose) of the linear map L. Observe that if γ is nondegenerate and L is surjective, then $L_{\ast} \gamma$ is also nondegenerate.

Suppose (S, μ) is a probability space. A Gaussian random vector on (S, μ) is a (Borel) measurable map

$$X : S \to V, \quad V \text{ finite dimensional vector space}$$

such that $X_{\ast} \mu$ is a Gaussian measure on V. We denote this measure by γ_X and by Σ_X (respectively S_X) its covariance form (respectively operator),

$$\Sigma_X(\xi_1, \xi_2) = E(\langle \xi_1, X - E(X) \rangle \langle \xi_2, X - E(X) \rangle).$$

Note that the expectation of γ_X is precisely the expectation of X. The random vector is called nondegenerate if the Gaussian measure γ_X is such.

Suppose that $X_j : S \to V_1$, $j = 1, 2$, are two Gaussian random vectors such that the direct sum

$$X_1 \oplus X_2 : S \to V_1 \oplus V_2$$

is also a Gaussian random vector with associated Gaussian measure

$$\gamma_{X_1 \oplus X_2} = p_{X_1 \oplus X_2}(x_1, x_2) |dx_1| |dx_2|.$$

We obtain a bilinear form

$$\text{cov}(X_1, X_2) : V_1^\vee \times V_2^\vee \to \mathbb{R}, \quad \text{cov}(X_1, X_2)(\xi_1, \xi_2) = \Sigma(\xi_1, \xi_2),$$

called the covariance form. The random vectors X_1 and X_2 are independent if and only if they are uncorrelated, i.e.,

$$\text{cov}(X_1, X_2) = 0.$$

We can form the random vector $E(X_1 | X_2)$, the conditional expectation of X_1 given X_2. If X_1 and X_2 are independent then

$$E(X_1 | X_2) = E(X_1),$$

while at the other end, we have

$$E(X_1 | X_1) = X_1.$$

To find the formula in general we fix Euclidean metrics $(-, -)_V$ on V. We can then identify $\text{cov}(X_1, X_2)$ with a linear operator $\text{Cov}(X_1, X_2) : V_2 \to V_1$, via the equality

$$E(\langle \xi_1, X_1 \rangle \langle \xi_2, X_2 \rangle) = \text{cov}(X_1, X_2)(\xi_1, \xi_2)
= \langle \xi_1, \text{Cov}(X_1, X_2)\xi_2 \rangle,
\quad \forall \xi_1 \in V_1^\vee, \quad \xi_2 \in V_2^\vee,$$

where $\xi_2^\bot \in V_2$ denotes the vector metric dual to ξ_2. The operator $\text{cov}(X_1, X_2)$ is called the covariance operator of X_1, X_2. If X_2 is nondegenerate, then we have the regression formula

$$E(X_1 | X_2) = \text{Cov}(X_1, X_2)S^{-1}_{X_2}(X_2 - E(X_2)) + E(X_1). \quad (A.2)$$

To prove this we follow the elegant argument in [3, Prop. 1.2]. Observe first that it suffices to prove that it suffices to prove the equality in the special case when $E(X_1) = 0$ and $E(X_2) = 0$, which is
what we will assume in the sequel. We seek a linear operator \(C : V_2 \to V_1 \) such that the random vector \(Y = X_1 - CX_2 \) is independent of \(X_2 \). If such an operator exists then

\[
E(X_1|X_2) = E(Y|X_2) + E(CX_2|X_2) = E(Y) + CX_2 = CX_2.
\]

Since the random vector \(X_1 - CX_2 \) is Gaussian the operator \(C \) must satisfy the constraint

\[
cov(X_1 - CX_2, X_2) = 0 \iff Cov(X_1 - CX_2, X_2) = Cov(X_1, X_2) - Cov(CX_2, X_2)
\]

To find \(C \) we note that

\[
\langle \xi_1, Cov(CX_2, X_2)\xi_2 \rangle = E\left(\langle \xi_1, CX_2 \rangle \langle \xi_2, X_2 \rangle \right) = E\left(\langle C^\vee \xi_1, X_2 \rangle \langle \xi_2, X_2 \rangle \right) = \Sigma_{X_2}(C^\vee \xi_1, \xi_2) = \langle \xi_1, C\Sigma_{X_2} \xi_2 \rangle
\]

Hence identifying \(V_2 \) with \(V_2^\vee \) via the Euclidean metric \((-,-)_{V_2}\), we can regard \(\Sigma_{X_2} \) as a linear, symmetric nonnegative operator \(V_2 \to V_2 \), and we deduce

\[
Cov(CX_2, X_2) = C\Sigma_{X_2} = Cov(X_1, X_2),
\]

which shows that

\[
C = Cov(X_1, X_2)S_{X_2}^{-1}.
\]

The conditional probability density of \(X_1 \) given that \(X_2 = x_2 \) is the function

\[
p_{X_1|X_2=x_2}(x_1) = \frac{p_{X_1\oplus X_2}(x_1, x_2)}{\int_{V_1} p_{X_1\oplus X_2}(x_1, x_2)|dx_1|}.
\]

For a measurable function \(f : V_1 \to \mathbb{R} \) the conditional expectation \(E(f(X_1)|X_2 = x_2) \) is the (deterministic) scalar

\[
E(f(X_1)|X_2 = x_2) = \int_{V_1} f(x_1)p_{X_1|X_2=x_2}(x_1)|dx_1|.
\]

Again, if \(X_2 \) is nondegenerate, then we have the regression formula

\[
E(f(X_1)|X_2 = x_2) = E\left(f(Y + Cx_2) \right)
\]

where \(Y : \mathcal{S} \to V_1 \) is a Gaussian vector with

\[
E(Y) = E(X_1) - CE(X_2), \quad S_Y = S_{X_1} - Cov(X_1, X_2)S_{X_2}^{-1} Cov(X_2, X_1),
\]

and \(C \) is given by (A.3).

Let us point out that if \(X : \mathcal{S} \to U \) is a Gaussian random vector and \(L : U \to V \) is a linear map, then the random vector \(LX : \mathcal{S} \to V \) is also Gaussian. Moreover

\[
E(LX) = LE(X), \quad \Sigma_{LX}(\xi, \xi) = \Sigma_X(L^\vee \xi, L^\vee \xi), \quad \forall \xi \in V^\vee,
\]

where \(L^\vee : V^\vee \to U^\vee \) is the linear map dual to \(L \). Equivalently,

\[
S_{LX} = LS_XL^\vee.
\]

A random field (or function) on a set \(T \) is a map

\[
\xi : T \times (\mathcal{S}, \mu) \to \mathbb{R}, \quad (t, s) \mapsto \xi_t(s)
\]

such that

- \((\mathcal{S}, \mu)\) is a probability space, and
- for any \(t \in T \) the function \(\xi_t : \mathcal{S} \to \mathbb{R} \) is measurable, i.e., it is a random variable.
Thus, a random field on T is a family of random variables ξ_t parameterized by the set T. For simplicity we will assume that all these random variables have finite second moments. For any $t \in T$ we denote by μ_t, the expectation of ξ_t. The covariance function or kernel of the field is the function $C_\xi : T \times T \to \mathbb{R}$ defined by

$$C_\xi(t_1, t_2) = E((\xi_{t_1} - \mu_{t_1})(\xi_{t_2} - \mu_{t_2})) = \int_S (\xi_{t_1}(s) - \mu_{t_1})(\xi_{t_2}(s) - \mu_{t_2}) \, d\mu(s).$$

The field is called Gaussian if for any finite subset $F \subset T$ the random vector

$$S \in s \mapsto (\xi_t(s))_{t \in F} \in \mathbb{R}^F$$

is a Gaussian random vector. Almost all the important information concerning a Gaussian random field can be extracted from its covariance kernel.

Here is a simple method of producing Gaussian random fields on a set T. Choose a finite dimensional space U of real valued functions on T. Once we fix a Gaussian measure $d\gamma$ on U we obtain tautologically a random field

$$\xi : T \times U \to \mathbb{R}, \ (t, u) \mapsto \xi_t(u) = u(t).$$

This is a Gaussian field since for any finite subset $F \subset T$ the random vector

$$\Xi : U \to \mathbb{R}^F, \ u \mapsto (u(t))_{t \in F}$$

is Gaussian because the map Ξ is linear and thus the pushforward $\Xi_*d\gamma$ is a Gaussian measure on \mathbb{R}^F. For more information about random fields we refer to [1, 3, 10].

In the conclusion of this section we want to describe a few simple integral formulas.

Proposition A.2. Suppose V is an Euclidean space of dimension N, $f : U \to \mathbb{R}$ is a locally integrable, positively homogeneous function of degree $k \geq 0$, and $A : U \to U$ is a positive definite symmetric operator. Denote by $B(U)$ the unit ball of V centered at the origin, and by $S(U)$ its boundary. Then the following hold

$$\frac{1}{\pi^\frac{N}{2}} \int_{B(U)} |f(u)| \, du = \frac{1}{\Gamma\left(1 + \frac{k+N}{2}\right)} \int_U f(u) e^{-|u|^2/\pi} \, du. \quad (A.6)$$

$$\int_U f(u) d\gamma_{t,A}(u) = t^\frac{k}{2} \int_U f(u) d\gamma_A(u) \ \forall \ t > 0, \quad (A.7)$$

where $d\gamma_A$ is the Gaussian measure defined by (A.1).

Proof. We have

$$\int_{B(U)} |f(u)| \, du = \int_0^1 t^{k+N-1} \left(\int_{S(U)} f(u) |dA(u)| \right) = \frac{1}{k+N} \int_{S(U)} f(u) |dA(u)|.$$

On the other hand

$$\frac{1}{\pi^\frac{N}{2}} \int_U f(u) e^{-|u|^2/\pi} \, du = \frac{1}{\pi^\frac{N}{2}} \left(\int_0^\infty t^{k+N-1} e^{-t^2/2} \, dt \right) \int_{S(U)} f(u) |dA(u)|$$

$$= \frac{1}{\pi^\frac{N}{2}} \Gamma\left(\frac{k+N}{2} \right) \left(\frac{k+N}{2} \right)^\frac{k+N}{2} \int_{B(U)} f(u) |du|$$

$$= \frac{1}{\pi^\frac{N}{2}} \Gamma\left(\frac{1 + k+N}{2} \right) \int_{B(U)} f(u) |du|.$$

This proves (A.6). The equality (A.7) follows by using the change in variables $u = t^\frac{1}{2} v$. \qed
APPENDIX B. GAUSSIAN RANDOM SYMMETRIC MATRICES

We want to describe in some detail a 3-parameter family of centered Gaussian measures on S_m, the vector space of real symmetric $m \times m$ matrices, $m > 1$.

For any $1 \leq i \leq j$ define $\xi_{ij} \in S_m^\vee$ so that for any $A \in S_m$

$$\xi_{ij}(A) = a_{ij} = \text{the } (i, j)\text{-entry of the matrix } A.$$

The collection $(\xi_{ij})_{1 \leq i \leq j \leq m}$ is a basis of the dual space S_m^\vee. We denote by $(E_{ij})_{1 \leq i \leq j}$ the dual basis of S_m. More precisely, E_{ij} is the symmetric matrix whose (i, j) and (j, i) entries are 1 while all the other entries are equal to zero. For any $A \in S_m$, we have

$$A = \sum_{i \leq j} \xi_{ij}(A) E_{ij}.$$

The space S_m is equipped with an inner product

$$(-, -) : S_m \times S_m \to \mathbb{R}, \quad (A, B) = \text{tr}(AB), \quad \forall A, B \in S_m.$$

This inner product is invariant with respect to the action of $SO(m)$ on S_m. We set

$$\hat{E}_{ij} := \begin{cases} E_{ij}, & i = j \\ \frac{1}{\sqrt{2}} E_{ij}, & i < j. \end{cases}$$

The collection $(\hat{E}_{ij})_{i \leq j}$ is a basis of S_m orthonormal with respect to the above inner product. We set

$$\hat{\xi}_{ij} := \begin{cases} \xi_{ij}, & i = j \\ \sqrt{2} \xi_{ij}, & i < j. \end{cases}$$

The collection $(\hat{\xi}_{ij})_{i \leq j}$ the orthonormal basis of S_m^\vee dual to (\hat{E}_{ij}).

To any numbers a, b, c satisfying the inequalities

$$a - b, c, a + (m - 1)b > 0. \quad (B.1)$$

we will associate a centered Gaussian measure $\Gamma_{a,b,c}$ on S_m uniquely determined by its covariance form

$$\Sigma = \Sigma_{a,b,c} : S_m^\vee \times S_m^\vee \to \mathbb{R}$$

defined as follows:

$$\Sigma(\xi_{ii}, \xi_{ii}) = a, \quad \Sigma(\xi_{ii}, \xi_{jj}) = b, \quad \forall i \neq j, \quad (B.2a)$$

$$\Sigma(\xi_{ij}, \xi_{ij}) = c, \quad \Sigma(\xi_{ij}, \xi_{k\ell}) = 0, \quad \forall i < j, k \leq \ell, (i, j) \neq (k, \ell). \quad (B.2b)$$

To see that $\Sigma_{a,b,c}$ is positive definite if a, b, c satisfy (B.1) we decompose S_m^\vee as a direct sum of subspaces

$$S_m^\vee = D_m \oplus \emptyset_m,$$

$$D_m = \text{span } \{ \xi_{ii}; 1 \leq i \leq m \}, \quad \emptyset_m = \text{span } \{ \xi_{ij}; 1 \leq i < j \leq m \}, \quad \dim \emptyset_m = \binom{m}{2}.$$

With respect to this decomposition, and the corresponding bases of these subspaces the matrix $Q_{a,b,c}$ describing $\Sigma_{a,b,c}$ with respect to the basis (ξ_{ij}) has a direct sum decomposition

$$Q_{a,b,c} = G_m(a, b) \oplus c I_m(\frac{m}{2}),$$

where $G_m(a, b)$ is the $m \times m$ symmetric matrix whose diagonal entries are equal to a while all the off diagonal entries are all equal to b.

The the spectrum of $G_m(a, b)$ consists of two eigenvalues: $(a - b)$ with multiplicity $(m - 1)$ and the simple eigenvalue $a - b + mb$. Indeed, if C_m denotes the $m \times m$ matrix with all entries equal to 1, then $G_m(a, b) = (a - b) I_m + bC_m$. The matrix C_m has rank 1 and a single nonzero eigenvalue equal
to \(m \) with multiplicity 1. This proves that \(Q_{a,b,c} \) is positive definite since its spectrum is positive. We denote by \(d\Gamma_{a,b,c} \) the centered Gaussian measure on \(S_m \) with covariance form \(\Sigma_{a,b,c} \).

Since \(S_m \) is equipped with an inner product we can identify \(\Sigma_{a,b,c} \) with a symmetric, positive definite bilinear form on \(S_m \). We would like to compute the matrix \(\tilde{Q} = \tilde{Q}_{a,b,c} \) that describes \(\Sigma_{a,b,c} \) with respect to the orthonormal basis \(\{ \tilde{E}_{ij} \}_{1 \leq i \leq j} \). We have

\[
\tilde{Q}(\tilde{E}_{ii}, \tilde{E}_{ii}) = Q(\tilde{\xi}_{ii}, \tilde{\xi}_{ii}) = a, \quad \tilde{Q}(\tilde{E}_{ii}, \tilde{E}_{jj}) = b, \quad \forall i \neq j,
\]

\[
\tilde{Q}(\tilde{E}_{ij}, \tilde{E}_{ij}) = Q(\tilde{\xi}_{ij}, \tilde{\xi}_{ij}) = 2Q(\tilde{\xi}_{ii}, \tilde{\xi}_{ii}) = 2c, \quad \forall i < j,
\]

Thus

\[
\tilde{Q}_{a,b,c} = G_m(a, b) \oplus 2c \mathbb{I}_{\binom{m}{2}}. \tag{B.3}
\]

If \(| - |_{a,b,c} \) denotes the Euclidean norm on \(S_m \) determined by \(\Sigma_{a,b,c} \) then for

\[
A = \sum_{i \leq j} a_{ij} E_{ij} = \sum_i a_{ii} \tilde{E}_{ii} + \sqrt{2} \sum_{i < j} a_{ij} \tilde{E}_{ij},
\]

we have

\[
|A|_{a,b,c}^2 = a \sum_i a_{ii}^2 + 2b \sum_{i < j} a_{ii} a_{jj} + 4c \sum_{i < j} a_{ij}^2
\]

\[
= (a - b - 2c) \sum_i a_{ii}^2 + b \left(\sum_i a_{ii} \right)^2 + 2c \left(\sum_i a_{ii}^2 + 2 \sum_{i < j} a_{ij}^2 \right)
\]

\[
= (a - b - 2c) \sum_i a_{ii}^2 + b (\text{tr} A)^2 + 2c \text{ tr} A^2.
\]

Observe that when

\[
a - b = 2c \tag{B.4}
\]

we have

\[
|A|_{a,b,c}^2 = b (\text{tr} A)^2 + 2c \text{ tr} A^2 \tag{B.5}
\]

so that the norm \(| - |_{a,b,c} \) and the Gaussian measure \(d\Gamma_{a,b,c} \) are \(\text{SO}(m) \)-invariant. Let us point out that the space \(S_m \) equipped with the Gaussian measure \(d\Gamma_{2,0,1} \) is the well known \(\text{GOE} \), the Gaussian orthogonal ensemble.

To obtain a more concrete description of \(\Gamma_{a,b,c} \) we first identify \(\Sigma_{a,b,c} \) with a symmetric operator

\[
\tilde{Q}_{a,b,c} : S_m \to S_m.
\]

Using (B.3) we deduce that

\[
\tilde{Q}_{a,b,c} = G(a, b) \oplus 2c \mathbb{I}_{\binom{m}{2}}.
\]

Observe that

\[
\det \tilde{Q}_{a,b,c} = (a - b) (a + (m - 1)b)^{m-1} \binom{m}{2}, \tag{B.6}
\]

and

\[
\tilde{Q}_{a,b,c}^{-1} = \tilde{Q}_{a', b', c'} = G_m(a', b') \oplus 2c' \mathbb{I}_{\binom{m}{2}}, \tag{B.7}
\]

where \(2c' = \frac{1}{2c} \) and the real numbers \(a', b' \) are determined from the linear system

\[
\begin{cases}
 a' - b' = \frac{1}{a-b} \\
 a' + (m-1)b' = \frac{1}{a+(m-1)b}.
\end{cases} \tag{B.8}
\]
We then have
\[
d\Gamma_{a,b,c}(X) = \frac{1}{(2\pi)^{m(m+1)/4}} \left(\det \hat{Q}_{a,b,c} \right)^{\frac{3}{2}} e^{-\frac{1}{2} \hat{(Q}_{a,b,c}^{-1} X, X)} 2^{\frac{m}{2}} \prod_{i<j} dx_{ij}, \tag{B.9}
\]
where
\[
(\hat{Q}_{a,b,c}^{-1} X, X) = \left(a' - b' - \frac{1}{2c} \right) \sum_i x_i^2 + b'(\text{tr} X)^2 + \frac{1}{2c} \text{tr} X^2. \tag{B.10}
\]
The special case \(b = c > 0, a = 3c \) is particularly important for our considerations. We denote by \((-,-)_c\) and respectively \(d\Gamma_c\) the inner product and respectively the Gaussian measure on \(S_m \) corresponding to the covariance form \(\Sigma_{3c,c,c} \).

If we set \(\hat{Q}_c := \hat{Q}_{3c,c,c} \) then we deduce from (B.7) that
\[
\hat{Q}_c^{-1} = \hat{Q}_{a',b',c'} = G_m(a', b') \oplus \mathbb{I} \left(\begin{smallmatrix} \frac{1}{2c} \\ 2 \end{smallmatrix} \right)
\]
where
\[
\begin{cases}
a' - b' = \frac{1}{2c} = 2c' \\
a' + (m-1)b' = \frac{1}{(m+2)c}.
\end{cases}
\]
We deduce
\[
m b' = \frac{1}{m+2} - \frac{1}{2c} = - \frac{m}{2c(m+2)} \Rightarrow b' = - \frac{1}{2c(m+2)}.
\]
Note that the invariance condition (B.4) \(a' - b' = 2c' \) is automatically satisfied so that
\[
(\hat{Q}_c^{-1} X, X) = \frac{1}{2c} \text{tr} X^2 - \frac{1}{2c(m+2)} (\text{tr} X)^2.
\]
Using (B.6) and (B.9) we deduce
\[
d\Gamma_c(X) = \frac{1}{(2\pi c)^{m(m+1)/4} \sqrt{\mu_m}} \cdot e^{-\frac{1}{2} \left(\text{tr} X^2 - \frac{1}{m+2} (\text{tr} X)^2 \right)} 2^{\frac{m}{2}} \prod_{i<j} |dx_{ij}|, \tag{B.11}
\]
where
\[
\mu_m := 2^{m+1} (m+2)^{-m+1}. \tag{B.12}
\]
The inner product \((-,-)_c\) has the alternate description
\[
(A, B)_c = I_c(A, B) := 4c \int_{\mathbb{R}^m} (Ax, x)(Bx, x) \frac{e^{-|x|^2}}{\pi^m} |dx|, \quad V, A, B \in S_m. \tag{B.13}
\]
To verify (B.13) it suffices to show that
\[
I_c(E_{ii}, E_{ii}) = 3c, \quad I_c(E_{ij}, E_{jj}) = c, \quad I_c(E_{ij}, E_{ij}) = 4c, \quad \forall 1 \leq i < j \leq m,
\]
\[
I_c(E_{ij}, E_{k\ell}) = 0, \quad \forall 1 \leq i < j \leq m, \quad k \leq \ell, \quad (i,j) \neq (k,\ell).
\]
To achieve this we need to use the classical identity
\[
\int_{\mathbb{R}^m} x_1^{2p_1} \cdots x_m^{2p_m} e^{-|x|^2} |dx| = \prod_{k=1}^{m} \int_{\mathbb{R}} x_k^{2p_k} e^{-t^2} dt_k = \prod_{k=1}^{m} \Gamma \left(p_k + \frac{1}{2} \right).
\]
Observe that
\[
\int_{\mathbb{R}^m} (E_{ii} x, x)(E_{jj} x, x) \frac{e^{-|x|^2}}{\pi^m} |dx| = \int_{\mathbb{R}^m} x_i^2 x_j^2 \frac{e^{-|x|^2}}{\pi^2} |dx|
\]
\[\pi^{-\frac{n-m}{2}} \Gamma \left(\frac{1}{2} \right)^{m-2} \begin{cases} \Gamma \left(\frac{5}{2} \right) \Gamma \left(\frac{1}{2} \right), & i = j, \\ \Gamma \left(\frac{3}{2} \right)^2, & i \neq j \end{cases} \begin{align*} = & \frac{1}{4} \times \begin{cases} 3, & i = j \\ 1, & i \neq j \end{cases} \end{align*} \]

Next, if \(i < j \) we have
\[
\int_{\mathbb{R}^m} (E_{ij}(x,x))(E_{ij}(x,x)) e^{-|x|^2} \frac{1}{\pi^{\frac{n}{2}}} |dx| = 4 \int_{\mathbb{R}^m} x_i^2 x_j^2 e^{-|x|^2} \frac{1}{\pi^{\frac{n}{2}}} |dx| = 1.
\]

Finally, if \(i < j, k \leq \ell \) and \((i,j) \neq (k,\ell) \), then the quartic polynomial
\[
(E_{ij}(x,x))(E_{k\ell}(x,x))
\]
is odd with respect to a reflection \(x_p \mapsto -x_p \) for some \(p = \{i,j,k,\ell\} \) and thus
\[
\int_{\mathbb{R}^m} (E_{ij}(x,x))(E_{k\ell}(x,x)) e^{-|x|^2} \frac{1}{\pi^{\frac{n}{2}}} |dx| = 0.
\]

REFERENCES

E-mail address: nicolaescu.1@nd.edu
URL: http://www.nd.edu/~lnicolae/