SPECTRAL SEQUENCES

and ALL THAT

Algebra Berliner

Brief Recap:

\[F : A \to B \] a left-exact functor of abelian cat's

main situation we'll have in mind:

\[A = S^h_{X} \] \[B = \text{Ab} \]

\[F = \Gamma (X, -) \to \Gamma (X, Y) \]

"global section functor"

Move on to

- Complexes of objects in an abelian cat \(C^+(A) \)

complex \(A^\bullet \in C^+(A) \) is of form \(\cdots \to A^n \to A^{n+1} \to \cdots \)

where \(A^n = 0 \) for all \(n \) suf\(f \) negative

- any object \(A \in A \) is in \(C^+(A) \) by natural inclusion \(A \to C^+(A) \)

ASSOCIATED RIGHT DERIVED FUNCTORS:

\(R^k F : A \to B \)

- replace \(A \in A \) with a complex \((I^\bullet, d) \) of injectives in \(C^+(A) \)

such that \(0 \to A \to I^\cdot \to I^\cdot \to \cdots \) \# exact

"injective resolution"

then \(R^k F(A) = \frac{\ker (F(I^k) \to F(I^{k+1}))}{\text{im} (F(I^{k-1}) \to F(I^k))} \) = \(k \)-th cohomology group of the complex \(F(I^\cdot, d) \).
A is \(F \)-acyclic if \(R^k F(A) = 0 \) \(\forall k > 0 \).

Generalized (Grothendieck) Construction

Let \(A^* \in \mathcal{C}^+(\mathcal{A}) \) (reg. \(A^* \) is a complex of sheaves)

- replace \(A^* \) with a quasi-isomorphic complex \(I^* \) (st-injective)

notation: \(A^* \cong I^* \implies q_i [\text{i.e., } H^k(A^*) \cong H^k(I^*)] \)

Then get

\[
\begin{array}{c}
A^* \\
\downarrow q_i \\
F(I^*) \\
\cong \mathbb{R}F(A^*) \text{ "derived functor" Grothendieck.}
\end{array}
\]

-the cohomology of this:

\[
R^k F(A^*) = \mathbb{R}F^k(A^*) = H^k(F(I^*)) \text{ hypercohomology.}
\]

Properties:

\(A^* \cong B^* \implies \mathbb{R}F^i(A^*) \cong \mathbb{R}F^i(B^*) \)

Fact: If \(B^* \) is \(F \)-acyclic and \(A^* \cong B^* \),

\[
\mathbb{R}F^k(A^*) \cong H^k(F(B^*))
\]

hypercoh. \((A^*) \cong \) actual coh. of \(F(B^*) \)

Special case of

\[\Pi: \text{Sh}_\mathbb{Z}(X) \to \text{Ab} \]

\(\Pi \) (\(X \)-acyclic sheaves):

- **Injective**
- **Flabby**
- **Soft**
Complexes & filtrations
- We move from \(H^*(X; F) \) to \(H^*(X; \text{complex of sheaves}) \)
 such as: Čech complex
 Dolbeault complex

To calculate \(H^* \) in coefficients \(\boxtimes \) complex of sheaves,

USE: CARTAN - EILENBERG RESOLUTIONS

\[F: A \rightarrow B \]

Let: \((C^*, D_1, D_2)\) cplx in \(C^*(A) \)

\[
\begin{array}{ccc}
C^0 & \rightarrow & C^1 & \rightarrow & C^2 & \rightarrow & \cdots \\
\rightarrow & D_1 & \rightarrow & D_1 & \rightarrow & \cdots \\
\end{array}
\]

- take injective resoln of each object \(C_i \) in \(C^* \).
- this is a really nice cplx w/ injective kernels & coboundaries
- \(D_1 \) and \(D_2 \) anticommute

We get: a DOUBLE COMPLEX, \((I^{*,*}, D_1, D_2)\)

- can condense double cplx into a regular cplx, \((E^*, d)\)

\[(E^*, d) = \text{Tot}(I^{*,*}) = \bigoplus_{r+s=k} I^{r,s} \]

\[d = D_1 + D_2 \]

\textbf{Fact:} we get quasi-iso \((C^*, D_1) \cong (E^*, D)\).

So in fact, \(R^k F(C^*, d) = H^k (F(\text{Tot} I^{*,*})) = H^k F(E^*, d) \).
- Would like to distill info of $H^k(F(Tot I'))$

- 2 ways to filter I' to get this:

- Total complex = circled parts

Filtration L^0 takes only some of total complex

Induced Decreasing Filtration (on columns) of total complex

$L^p I^K = \bigoplus_{rs = k, r \geq p} I^{r,s}$

(Total complex where all info before p^{th} col. is replaced by 0's)

- Can do analogously along rows - truncate all before q^{th} in q^{th} filtration.
A decreasing filtration on a complex K^\bullet.

- Decreasing family of subcomplexes of K^\bullet.
- Uses differential of K^\bullet restricted together.

\[L^p K^k \rightarrow L^p K^{k+1} \]

$(K^\bullet, L) = \text{cplx equipped w/ decr\y filtration } L$.

Filtrations & Cohomology

We begin with:

- Object C \(\rightarrow \) \{ resolution of C \}

- Complex C^\bullet \(\rightarrow \) \{ $q-i$ complex I^\bullet \}

Now:

- Filtered complex (A^\bullet, L) \(\rightarrow \) \{ filtered cohomology of (A^\bullet, L) \}

When we filter cplx, use natural filtering of cohomology.

Define pth filtration of $H^\bullet(A^\bullet)$:

\[L^p H^i(A^\bullet) = \text{Im}(H^i(L^p(A^\bullet)) \rightarrow H^i(A^\bullet)) \]

(Im of cohom of pth filt into cohom of A^\bullet).
To understand "filtered cohomology," we want to know:

\[\text{Gr}_p^L H^i(A) = \frac{L^p H^i(A)}{L^{p+1} H^i(A)} \]

the \(p \)-th graded object associated to \(H^i(A) \)

Understanding/knowing these = "knowing" \(H^i(A) \)

New goal: Calculate cohomology of a filtered complex.

Technique: Spectral Sequences

\[\text{Spec Seq} = \text{a series of double complexes } E_r^{i,j} \text{' (page up)} \]

with \(E_r^{i,j} = H^i(E_r^{i,j-1}) \) taken w.r.t \(dr \)

\(dr \) is of bi-degree \(\downarrow \text{down left} \uparrow \text{right up} \)

i.e. on \(E_r^{i,j} \):

so for \(E_3^{p,q} \), take \(\ker (d_3 \text{ coming out of } E_2^{p,q}) \)

\[\text{Im (} d_3 \text{ going into } E_2^{p,q} \text{)} \]

- Same idea holds in general.
to be a spectral sequence, we also define specifically what we plug in for \(E_0 \):

\[
E_0^{p,q} = \text{Gr}_p^L A^{p+q} = \frac{L^p(A^{p+q})}{L^{p+1}(A^{p+q})}
\]

"\(\text{Gr}_p \) graded obj. associated to \(A^{p+q} \)

- third condition: "it converges to \(H^-(A^\cdot) \)"

\[
E_\infty^{p,q} = \text{Gr}_p^L H^{p+q}(A^\cdot)
\]

meaning, when \(E_r^{p,q} \) "stabilizes":

\[
E_r^{p,q} = E_{r+1}^{p,q} = E_{r+2}^{p,q} = \cdots = E_\infty^{p,q}
\]

this happens at some \(r \), possibly a different \(r \) for varying \((p, q)\).

Example of resolution \(\rightarrow \) spectral seq:

let \((C^\cdot, d)\) = complex

- then the Cartan-Eilenberg resol'n is injective.

- columns will be exact because that's the property of a resolution.

\[
\Rightarrow \text{we put in } L^r(I^{\cdot, k}) = \bigoplus_{r+s = k} L^s p
\]

for filtration.
So E_0 page has input

$$E_0^{p,q} = \text{Gr}_p^{L} (I^{p+q}) = L^p (I^{p+q}) / L^{p+1} (I^{p+q})$$

= \underbrace{\bigoplus_{r + s = p + q, r \geq p} I^{r,s}}_{\text{obj. of } (\text{Tot } I)^{p+q} \text{ from } p \text{ on}}

= \underbrace{\bigoplus_{r + s = p + q, r \geq p+1} I^{r,s}}_{\text{obj. of } (\text{Tot } I)^{p+q} \text{ from } (p+1) \text{ on}}

= \text{objects of } (\text{Tot } I)^{p+q} \text{ in col } p = I^{p,q}

$$d_0 = (-1)^p D_2.$$

$E_1^{p,q} = H^q_D(I^{p,*})$

$$d_1 = (D^*_1) \phi : H^q_D(I^{p,*}) \to H^q_D(I^{p+1,*})$$

But exactness $\Rightarrow H^q_D(I^{p,*}) = 0$ except at $q = 0$.

Thus $E_2^{p,q} = H^p_{D^*_1} H^q_D(I^{*,*})$

differentials are 0 (must be) because all maps come from $\partial_0 / \partial_0 + 0$.

$$E^{p,q}_\infty = \text{Gr}_p^{L} H^{p+q}(C^*) = \text{Gr}_p^{L} H^{p+q}(C^*)$$

$$E^{p,q}_2 = H^p_{D^*_1} H^q_D(I^{*,*}) = H^{p+q}(C^*)$$
Filtered Complexes & cohomology: adding derived functors

General cplx with filtrations

\[\mathcal{F} \]

Filtration of cohomology

Now, consider derived functors with this:
\[A \longrightarrow B \]

Let \((A', L) \) be filtered cplx in \(C^+(A) \).

- induces filtration of the derived functors \(R^iF(A') \)

\[L^p R^iF(A') = \text{Im} \left(R^iF(L^p A') \longrightarrow R^iF(A') \right) \]

Thus if we begin with \(A' \in C^+(A) \) w/ filtration \(L' \),

then can get
\[A' \longrightarrow I' \]

with a filtration s.t.

\[L^p I' \text{ which are q-i to } L^p A' \]

This gives:
\[H^i(F(L^p I')) = R^iF(L^p A') \]

So since \(L^p(F(I')) = F(L^p I') \), this gives us a filtration

\[L^p R^iF(A') \text{ of } R^iF(A') \]

- can input this into a spectral sequence.
Spectral Sequences for $A \xrightarrow{F} B$:

seq I: $\pi E_{1}^{p,q} = R^{p} F(C^{p})$ so, $E_{2}^{p,q} = H^{p}(R^{q} F C^{p}, R^{q} F C^{p})$

abuts to $IR^{p+q} F(C^{p}, d)$.

This one degenerates at the E_{2}-page when we use a $C-E$ resolution.

seq II: $\pi E_{2}^{p,q} = R^{p} F(H^{q} C^{p}, d)$

also abuts to $IR^{p+q} F(C^{p}, d)$.

In a $C-E$ resolution, all coboundaries, cocycles are also injective throughout the s.seq.

$$\Rightarrow H^{p}(F C^{p}, d)) \cong F(H^{p}(C^{p}, d))$$

so we get that $C^{p} \rightarrow I^{p}$ injective resol'n.

$$H^{p}(F(I^{p}, d_{I}^{p}), F(H^{p}(I^{p}, d_{I}^{p}))) \cong F(H^{p}(I^{p}, d_{I}^{p}), d_{I}^{p})$$

$$R^{p} F(H^{q} C^{p}, d)) = H^{p} F(C^{p}, d)$$

This is the fundamental property we use to understand why the 2nd seq. also abuts to $IR^{p+q} F(C^{p}, d)$.

$$\Rightarrow E_{\infty}^{p,q} = Gr_{L}^{p}(R^{p+q} F(C^{p}, d))$$
Spectral sequences for composed functors

\[\begin{align*}
A & \xrightarrow{F} B \xrightarrow{G} C \\
\end{align*} \]

- \(F \) is left exact, maps injectives in \(A \) to \(G \)-acyclics in \(B \)
- \(G \) is left exact.

Note: in this case \(R(G \circ F) \cong RG \circ RF \).

- Let \(M \in A \).
- Resolve \(M \to (I^\cdot, d) \)

Then \(R^i GF(M) = H^i(GF(I^\cdot), GF(d)) \)

Theorem

\(\exists \) a canonical filtration \(L \) on the objects \(R^i(GF)(M) \) and a spectral sequence

\[\begin{align*}
E^{p,q}_r \Rightarrow R^*(GF)(M) \\
\end{align*} \]

with \(E_2 \) input term

\[\begin{align*}
E^{p,q}_2 & = R^p G(R^q F(M)) \\
E^{p,q}_\infty & = Gr^p_L R^{p+q} GF(M) \\
\end{align*} \]

- will do this by using \(K^* = F(I^\cdot) \)
- in our regular "derived functor s. seq" from previous page.
Special case: Leray spectral sequence.

\[f: X \to Y \text{ conts map of spaces.} \]

\[\begin{array}{c}
\mathcal{S}_X \xrightarrow{f_*} \mathcal{S}_Y \xrightarrow{\Pi(Y,-)} \operatorname{Ab} \\
\Lambda \quad \text{B} \\
\Pi(X,-)
\end{array} \]

Let \(f_* = F \). \(\Pi(Y, -) = G \).

- input into Grothendieck sseq.

Theorem (Leray)

For every sheaf \(F \) on \(X \), there exists a canonical filtration \(L \) on \(H^\bullet(X, F) \) and a spectral sequence

\[E_\infty^{p,q} \Rightarrow H^{p+q}(X, F) \]

that is canonical starting from \(E_2 \), and satisfies

\[E_2^{p,q} = H^p(Y, R^q f_*(F)), \quad E_\infty^{p,q} = \operatorname{Gr}_p H^{p+q}(X, F) \]

(Leray Spectral Sequence)
Using Leray SS to calculate \(H^*(\mathbb{CP}^2) \)

\[S^5 \xrightarrow{f} \text{Hopf Fibration} \quad \forall \text{pt } x \in \mathbb{CP}^2, \quad f^{-1}(x) \approx S^1 \]

our functors:

\[\text{Sh}(S^5) \xrightarrow{f_*} \text{Sh}(\mathbb{CP}^2) \xrightarrow{\mathcal{F}(\mathbb{CP}^2, -)} \text{Ab} \]

Do for constant sheaf \(\mathbb{C} \).

\[E_{i}^{p,q} = H^p(\mathbb{CP}^2; R^q f_* \mathbb{C}) \Rightarrow \text{Gr}_p^L H^q(S^5; \mathbb{C}) \]

\[= \text{Gr}_p^L H^q(S^1; \mathbb{C}) \]

What is \(R^q f_* \mathbb{C} \)?

- Stalk over any \(x \in \mathbb{CP}^2 = H^q(f^{-1}(x); \mathbb{C}) \)

 Since that's the sheaf cohom.

- The Hopf Fibration is a bundle, so any \(y \in \mathbb{CP}^2 \) has

\[f^{-1}(y) \approx f^{-1}(x) \Rightarrow H^q(f^{-1}(x); \mathbb{C}) = H^q(f^{-1}(y); \mathbb{C}) = H^q(S^1; \mathbb{C}) \]

So \(R^q f_* \mathbb{C} \) is a locally constant sheaf over a simply connected space, \(\mathbb{CP}^2 \).

Thus \(R^q f_* \mathbb{C} = H^q(S^1; \mathbb{C}) = \begin{cases} \mathbb{C} & q = 0, 1 \\ 0 & \text{else} \end{cases} \)
E_2 page is

$E_2^{p, q} = \text{Gr}_p^L H^{p+q}(S^5; \mathbb{C})$ - only on $(0, 0)$ and diagonal $p+q = 5$

This SS degenerates after E_3 and beyond.

Using Poincaré duality and where differentials map to 0, we can deduce cohomology of CP^2: $\{0, 1, 3, 4\}$.