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Introduction

Throughout the paper we will use the notations in [26].
HF(M, g) will denote the space of k-forms on the compact oriented manifold M with
respect to the metric ¢
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1 Three dimensional monopoles

1.1 The 3-dimensional Seiberg-Witten equations
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Suppose M is an oriented 3-manifold. To formulate the Seiberg-Witten we will need to fix

additional geometric data.

e A Riemann metric g.

e A spin® structure o.

e A real co-closed form 7.

e A smooth function y: M — R.

The spin® structure o determines a bundle of spinors S, — M. We denote by det o the
determinant line bundle of S,. Fix a Hermitian metric on det o and denote by A, the space

of connections on det o compatible with the Hermitian metric.
We have a Clifford multiplication map

c:T"M ®C — End(S,), aw— c(a).
We normalize this multiplication so that
c(dvg) = —1.
This is equivalent to the identity

cla) = c(xa), Yo e QY (M).

If icv is a purely imaginary one form on M then C(ia) is a traceless symmetric endomorphism

of S,.

The configuration space € = C, consists of pairs C := (¢, A) € T'(S,) x A,. The group

G := Map (M.S') of gauge trasformations acts on € according to the rule

v @A) = (v 0.4 -22).

For every configuration C = (¢, A) we denote by Stab(C) C § the stabilizer of C with

respect to the G-action. It is known that

Stab(C) = {1}, S*



and
Stab(¢), A) = St <= ¢ = 0.

The configurations with notrivial stabilizer are called reducibles. The others are called
irreducible. We will denote the set of irreducible/reducible configurations by € /€red,
Any connection A € A, canonically determines a formally selfadjoint Dirac operator

Da:0(Se) = I(Sy).
The three-dimensional monopole is a configuration satisfying the (7, u)-perturbed Seiberg-

Witten equations
Dap+pf=0
. . SW,
{ c(xFa +in) = 3q(¢) (W)

where ¢(¢) € End(S,) is the traceless symmetric endomorphism acting according to the
rule

1
L(S5) 3 6= (¢, ¥)0 — S[¥l*¢.
Equivalently, the (i, n)-monopoles are zeros of the Seiberg-Witten map
1 _ .
SW = SWypun: € = €, C= (1, 4) > (Davh+ b, e (a(®)) = (+Fa + 1))

Denote by Endy(Sp) the space of traceless symmetric endomorphisms of S,. For latter use
let us mention a few basic properties of the quadratic map g. We define the real, pointwise
inner product on the space of symmetric endomorphisms of S, to be

(T,S) :=Re tr (TS).

Then
lc(ia)|? = 2]al?, Va € Q' (M) (1.1a)
(), 0 = la@) = I (1.1b)
(T,q(®)) = (T, ), VT € Endo(S,), ¥ € T(S,). (1.1¢)

We denote by Z, = Z,(g,7, 1t) the set of monopoles. Z, is a G-invariant subset of C, and
we denote by M, = M, (g,n, 1) the space of orbits

My =25/
The sets 277 /27¢4 and T /M4 are defined in an obvious fashion.

1.2 Admissible 3-manifolds

We will focus our attention on a special class of 3-manifolds, the admissible ones. An
oriented 3 manifold is called admissible if either OM = @ or it is noncompact and the
complement M, of some compact subset is diffeomorphic to a semi-infinite cylinder

R4 x disjoint union of tori



A spin® structure is called admissible if det o |9y is trivial.
We will use the cylindrical language of [26]. A cylindrical structure on M is a choice of
a diffeomorphism
My, = R, X disjoint union of tori.

Fix a cylindrical structure. We will denote by ¢ the outgoing longitudinal coordinate along
the cylindrical neck. A metric § on M will be called admissible along the neck it has the
form

G = dt* + gy + t-exponentially small perturbation

where go denotes a flat metric on a torus. All the choices of perturbations 1, w will be as-
sumed asymptotically cylindrical meaning that they are cylindrical modulo an exponentially
decaying term.

At this point it is convenient to study in some detail the form of the Seiberg-Witten
equations on a cylinder R x X, where ¥ is a compact oriented surface. We will use the
“77-conventions of [26]. Thus, the quantities defined over the 3-manifold R x ¥ will be
indicated by a “~”. The absence of a will indicate a quantity defined over the slice
T?. For example, d denotes the exterior derivative over R x T2 whike d denotes the exterior
derivative over T2. They are related by the identity

(13}

d=dtAd+d.

We fix a metric g on ¥ and we form § = dt?>+ g over R x ¥. We will denote by & a cylindrical
spin® structure on R x 3. It induces a spin® structure on 3. We get two bundles of spinors,
Ss over the cylinder and S, := Sz |g= 0S4, and two Clifford multiplications

é: V(R x ) ®C — End(Ss)

and
c: (X)) ®C — End(S,).

They are related by the equality
c(a) = e(dt)é(a), Ya € QY(D).
We set J := ¢(dt) so that the last equality can be rewritten as
c(a) = Jé(a), Va e Q'(X).

Fix a local oriented orthonormal frame (eg, ez) of the tangent bundle of ¥ and denote by
(e, e?) the dual coframe.
We denote by S&i the Fi-eigensub-bundles of S&i defined by J. Correspondingly, any
spinor ¢ € T (Ss) splits as
=4t @Y7, $* e(S])

The operator J has the block decomposition

-i 0
=0



Now note that

{c(e)), J} = c(e)J + Je(e') = (Je(eh))J + J?e(e') =0

and
c(e! A e?) = c(dvy) = c(e')e(e?) = Je(e')Je(e?) = é(e')e(e?) = J
Thus
c(e)I(S7) C I(SF)
and

cle! N et by = Fioy, Vou € T(SE).

Thus S} @S, is the Zs-graded bundle of spinors naturally associated to the spin‘structure
o. If we set L := S} then

S; 2 L® K3 and deto = L?> @ K3,

where Ky denotes the canonical line bundle of X.
Fix a reference connection Ag on deto — X. Suppose C = (12),121) is a monopole on
R x 3. We can write
A =if(t)dt +ia(t) + Ao

where f(t) is a path of real valued smooth functions on ¥ and a(t) is a path of real valued
smooth one forms on . Also, it will be convenient to think of ¥ as a path 1 (t) of spinors
on S,. Set A(t) := Agp + ia(t). Then

D 5 = &(dt)(9; +if) + e(e) Vil + e(e) Vi

= J(@t +if — c(el)Vfl(t) - c(ez)Vf(t)> = J(@t - @A(t)).

2

If we set ) )
._ 1, .2 _ A soA
E = ﬁ(e + 1e ), (9,4 = \ﬁ{f A (Vel — 1V62),
_ 1 1 ) A 1 _ A A
E=—(e —ie®), 04 = —=eN (V] +iV]
V2 ) Oa=5EN Ve 2)

then we have (see [25])

g 0 0 O
Thus
c(8) = Jé(s) = [i 8] ele) = Je(e) = V2 | | ‘g]
so that -



The first of the Seiberg-Witten equations (SW,, ) can be rewritten as

(O + p+1if)s + iﬂéjut)wf =0
(1.2)
(O +p+if)yp- — i\/igA(t)er =0

The cylindrical structure also affects the second equation in (SW,, ). With respect to the
decomposition Sz = S;r ®S; the endomorphism q(lﬁ) = q(1/3+ & 1/3_) has the form (see [25,
Sec. 2.1])
s[4 P = [-1?) Yy @1
q(¢) = ) - (1.3)
Vi @Y 3 ([-1* = [9+*)

Every complex 1-form on ¥ decomposes uniquely as

a=al 4+ olfe Ql’O(E), a%l e Qo’l(E).

1

If o is real then a¥! = o109, Using these observations in (1.3) we deduce

& q0) = (1042 = [0t + = (4 20— v 0 ). (1.4

5
V2
Observe now that

sel = —dt N e = —dt Axel, ke® =dt Ael = —dt A xe?

S(dt Aet) =e* =xel, &(dt Ae?) = —eb = xe?

and
fel Ne? = dt Ax(e! Ae?).

Using the equality
Fj = Fay +ida + dt A (ia — idf )

we now deduce

$F; = dt A (*FAO +i>x<da) +ix (@ — df).
We can also decompose the perturbation term 7 as
n =modt +m, no =0 In.

The equality
¢ a(v))

DN =

*F; +in =
can now be rewritten as

sda =4 (|92 = [92) +i Fay — 10
(1.5)

%G — xdf = —23/5(@1_4@1# —¢+®@57) —-m



Now observe that
xe = —ie, and *& =1i&

where * denotes the extension by complex linearity of the real Hodge *-operator to complex
valued forms. Observe that ¢y @ ¢¥_ € Q%+, @ ¢_ € Q1Y and **> = —1 on 1-forms.
Applying * to the second equation in (1.5) we can rewrite these equations as follows:

wda =392 = [92) +i Fay — 10
(1.6)
a—df = —T\lﬁ<¢+®w—+¢+®¢—> +*m

The equations (1.2) and (1.6) can be further simplified by assuming the configuration C is
in temporal gauge, i.e. f = 0. In this case we have

0

(O + p)py + i\/ig,t;(t)w—

(O + - — V204404 =0

- - (1.7)
i= 525 (0 @V + by @)+
| #Fag = (042 = [0 [?) + ino
Form the configuration space C, on Y consisting of triples
= (Y, v, A) € T(SF) xT(S;) x Ag.
Define .
. i
T =T : € = QLR), (b4, 6, 4) = +Fa = 5 (104 = [p-2).
Note that the last equation in (1.7) can be rewritten as
T(C(t)) = ino- (1.8)

Lemma 1.1. Suppose the perturbatwn terms are compactly supported. If C= (w, ) S a
smooth configuration such that A is temporal, A = Ao + ia(t), and satisfying the first three
equations in (1.7) (with f =0) then for large |t| we have

o L(C(1) =0

where C(t) = C |yxx= (¥(t), Ao + a(t)) € Cy. Moreover, the first three equations (1.7) with
f =0 describe the ascending gradient flow of the functional

E=C,:C, - R, €, A) = ;/E@Aw,wdv(g)



Proof Observe first that for large |t| we have u =0, n = 0. We have
Lor(c) = wida — 5 (ol ~ [0-P)
dt
Now take the the exterior derivative of the third equation in (1.7). We obtain
di =~ (s @V + e 0 )
Now observe that ¢y ® 1 € Q"Y(X) and ¥y ® ¢ € QM0(X). We deduce
A1 ® V- + s @) = Ay =) + Oy @ )
We will deal only with the first term. Using the Hodge identity 04 = idvgy A 52 we deduce
Ny @) = (Dath4) ANb— + P4 (datp-) = ((3A1E+) NP+ idvog A 1/;+(5j1¢—)>

use the conjugate linear Hodge operator %, such that *., = dv, A ¥, and the equality
+ g +
4 = A(*c104) where A denotes the contraction by the Kéahler form)

_ {(8AA(*C¢+)) AY_ + i(*cm)(ézw)}

(use the Hodge identities 04A = Adg — 1074, 9% = — *. Dax. and x2 = 1 on even forms.)
= (1(e(Bat)) A Yo +i(retr ) (@30) )

(use the first two equations in (1.7), 959 = J=iby, Datpy = —)

= (e () A = (et = == ((rca) ) + (se) ).

We conclude

APy @ v +vr 09 )

= 5 ()i (i) 1) = = (e ) + (1) 0

7(( W) (Wy) = A (*cw—)> - \}§<(*C¢+)(¢+) —9-A (*Cw_)>

= 535 (e = - Py,

Hence

*ida =

Zdt <|¢+|2 WJQ)

thus proving the first part of the lemma. To prove the second part we only need to compute
the L2-gradient of €.



Observe that
d . . 1
im0 €t A+ it) = [(@avdile) + ; [ (elia)pv)du(o)

To proceed further observe that if we locally decompose a = ue + ué, u complex valued
function, we have

(c(ia)y, ) = (c(iue)y, ¥) + (e(iug)y, ¢)
= —V2Re (u, 0y @1_) — V2Re (@, 9y @ 1p_)
= —V2Re (4,14 @ V- + Py @ p_).

Thus
1

Ve, 4) = (Db, — 55 0V + P ©y)).

2 Seiberg-Witten invariants of closed 3-manifolds

2.1 Generalities

Suppose M is a compact oriented 3-manifold. Fix a Riemann metric g, a spin¢ structure
o, a real co-closed 1-from 7 and a real function u. We would like to introduce some natural
structures on the configuration space G, and the set of monopoles M. We will denote by
LFP the Sobolev spaces of distributions k-times differentiable with derivatives in LP.

We re-define the configuration space C, to include some information about the regularity
of the configuration. Thus C, will stand for the space of L?2-configurations (i, A). In this
statement we have tacitly assumed we have chosen a fixed smooth reference connection Ag
on det 0. We want to be more specific about this choice.

By Chern-Weil theory, for every connection A on det o the differential form iF 'A TEP-
resents the integral homology class ¢, := ¢1(det o). For every differential form o on M we
will denote by [a] = [a], its harmonic part in the Hodge decomposition. We now choose
the reference connection to be the unique smooth connection Ay such that

Fa, = [Fa,] = —2ric, € H*(M,R).

Note that
[FA] = [FAO], VA e A

The gauge group is defined as
G:=L**(M,S").

Fix a base point * on M and denote by G(x) C G the group of gauge transformations based
at *, i.e. gauge transformations 7 such that (%) = 1. The perturbation parameters 7, u are
chosen to have L*? regularity, with k sufficiently large so that they have as many classical
derivatives as we need.

Let us first note that the monopoles have a variational interpretation. More precisely
the Seiberg-Witten map SW,,, , is the L?-gradient of the energy functional (see [26])

£:C, — R, £C)=E®,A)



1

=3 /M(A — Ao) A (Fa+ Fa,) + % /M (<©A¢,1/1> + u|w|2>dvg - /M<A — Ay, in)dv,

This functional is not G-invariant but satisfies

E(C) —E(y-C) = 8772/

degy A ci(det(o)) — 477/ degy A [xn)]
M M

where degy 1= 5=v*(df) € Q' (M).
For every C € C, we denote by
Lc: 1155 — TcCq

the infinitesimal action at C
Selif) = Do - C = (ifus, A — 2idf).
Its formal (L?) adjoint is
TcCy 3 C — £6C = £&(¢),ia) = —2id*a — iTm (1), 1)).

We can identify ker £¢ with the Lie algebra of the stabilizer Stab (C) with respect to the
S, action.
Since G, is an affine space we can identify the tangent space T¢C, with C, via the map

C— C+C.
Define the slice ¢ C TcCy = €, at C by
8c := ker £¢ N L*2.

More generally, we set 8¢ := ker £& N L™2. The slice at C is equipped with a natural
Stab (C)-action and we have the following result (see [26]).

Proposition 2.1. There exists a small Stab (C)-invariant neighborhood Uc of C € 8¢ such
that every orbit of G5 which intersects Uc does so trasversally, along a single Stab (C)-orbit.
In particular, every Gy (x)-orbit intersects Uc transversely in at most one point.

Set B, := Cy/G and B, (%) := C»/G(*). From the above proposition we conclude that
B, (*) is a Hilbert manifold while B, is smooth away from the reducible orbits. The set 9,
is then a metric subspace of B, with respect to the induced L?*2-metric. Moreover, I, is
compact with respect to this metric topology (see [26]). The space 9, also has a rich local
structure.

The (7, u)-monopoles are zeros of the smooth map

SW = SWn,u :Co — e}y =TcCo, (¢7A) = (@Aw + i, Q("L/f) - C(*FA + 177)

obtained as the formal gradient of £. Since
d .
— |i=0 €™ - C) =0
g =0 & -0

10



we deduce

DcE(Lcif) = 0 <= <SW(C) , Cc(if) >L2 — 0, Vif € 15,

so that
SW, .(C) € 8¢, VC € C,.

For C € TcCy and if € T1G define

if |~ . .
/ —38¢ 0 if

|

Flmo SW(CHO) —8cin) ],
= € TcC,” @ L*(N,iR).

—1g:C
More explicitly, if C := (1, A) and C = (4, ia) then
W Da+p 0 0 ) se(ia)y — 5 fv
Tc | ia | = 0 —xd d|-|ia |+ 34(, ) (2.1)
if 0 & 0 if 2 Im (¢, 1))

Denote by T2 the first operator on the right hand side of (2.1) and set Pc := Tc — T2.
Notice that Pc is a zeroth order operator while J¢ is a first order, formally selfadjoint
elliptic operator.

Fix a monopole Cy. The problem of understanding the structure of 9, near Cy boils
down to understanding the local structure of the equation

SW(Co+C)=0. (2.2)

where EEOC =0 and ||C||2,2 is very small. Set
HY :=ker £c,, HL = {C €ec; SW(C) =0, ££,C= o}
and denote by II; : 8¢, — Héo the L?-orthogonal projection. Observe that
ker Te, = HE, @ HE,.

For every r > 0 we set . '
Bc(r) :={Ce HE; ||ICll2 < 7).

The equation (2.2) is equivalent to the pair of equations

(1- Hl)(SW(Co + C)) =0, CeSc,, [[Cllan <e. (1.)

M (SW(Co+0)) =0, Cescy [Clle <e. (1t.)

The local structure of (f.) can be easily analyzed using the implicit function theorem.
Our next result states that the solution set of (f.) can be represented as the graph of a
Stab(Cyp)-equivariant map

@y : HE, — kerIl;

tangent to Héo at 0. We have the following result.

11



Proposition 2.2. Suppose Cy is a smooth 3-monopole. There exist 19 = r9(Co) > 0,
e =¢(Cp), v =v(Cp) > 0 and a smooth Stab(C)-equivariant map

®; : Bc,(r0) — ker(1 —II;)S¢,
satisfying the following requirements.
(i) ®1(0) = 0.
(ii) Any solution C' of (t.) decomposes as
C'=Cod(C)
where C = I1,C' € Be,(ro). In particular

(1- H1)<SW(C +C+d,(C)) +2c<1>o((':)) —0,

vC € Bc(r).
(iii) |@1(C)ll22 < VIICI, |De®1(v)ll22 < Cllv|l - IC|l, Vv, C € HE,. (HE, is a finite

dimensional spaces and thus all norms on it are equivalent.)

Set
Qc, : Bey(ro) — HE,, € ILHSW(Co + C+ 01(C)).

Qc, is called the Kuranishi map at Co. It is a Stab(Cp)-equivariant map and the above
discussion shows that QEOI /Stab(Cp) is homeomorphic to a neighborhood of Cy in 9.
The reducible monopoles will play an important role in the sequel and that is why we
want to describe in details some of their more salient features.
Suppose C = (0, A) is a reducible monopoles. We deduce

xFp+in=0<= Fy+ixn=0.
We write A = Ag +ia, a € Q1(M) and the last equality becomes
Fay +ida+ixn=0.
The two form =7 is closed so that it can be represented as
w1 =[] + df = x[n] + df, 5 € QI (M).

We deduce
(FAO + i[*n]) +i(da+ dp) = 0.

The first term in the left-hand-side of the above equality is a harmonic two form while the
other is exact. Using the Hodge decomposition we deduce

[xn] = iF4, = 27¢,

and
da + dp = 0.

12



Proposition 2.3. Reducible monopoles exist if and only if
[¥n] = 27me,. (2.3)

Moreover, if non-empty, the space zmg@d of equivalence classes of reducible monopoles is
isomorphic to the bi-dimensional torus

HY(M,R)/HY (M, 4AnZ).

Proof Set n:= [n]+dBThe first part follows immediately from the observations preceding
the proposition.

Suppose now M’ £ (). We can identify this space with the space of equivalence classes
of solutions a € QM) of the equation

da = —dp

modulo the equivalence relation
2d
a1~a2<:>ia1:ia2——’y, v € G.
Y

By choosing one particular solution ag of this equation we can represent all the others as

ao + closed one form. As v describes G the family —@ describes all imaginary, closed 1-

forms with cohomology class in H'(M,47Z). R
Denote by N the set of co-closed 1-forms on M of regularity L*2, k> 1. Set
Wy = W,(g) = {77 EN: [sn) = 27%}.
W, is a codimension b; affine subspace of N.
Definition 2.4. A reducible (n, pu)-monopole (0, A) is called regular if
ker(D4 + p) = 0.

As explained in [26], the Kuranishi map determined by a regular reducible monopole is
= 0. To proceed further, we need to discuss separately three cases: by(M) > 1, by (M) =1
and bl (M) =0.

2.2 The case b; > 1
Suppose M is connected, bo(M) =1 and by (M) > 1. Since codim W, > 2 the complement

N =N\ W,

is an open and connected set. According to Proposition 2.3, if n € NY then there are no
reducible (7, 1) monopoles. For this reason we will always choose n € N, In this section,
we will also choose u = 0 and we will talk only of n-monopoles.

A Sard-Smale argument leads to the following genericity result.

13



Proposition 2.5. Fiz a Riemann metric g on M. Then there exists a generic subset Ng
of N such that for every n € Ng and every n-monopole C we have

Hl=Ht=0.

In particular, for these n’s the moduli space My, (g,n) consists of finitely many isolated
points.

Fix a generic 7 as in the above proposition. Then, for every C = (¢, A) € M, the self-
adjoint Fredholm operator J¢ is invertible and thus det ind T¢ admits a natural orientation
oryp.

On the other hand detind J7°C has a natural orientation defined as follows. Observe
that

T¢ =94 ® —SIGN
where SIGN : QY (M) @ QY(M) is the odd-signature operator

xd —d
SIGN[_d* 0}

Thus
ker T = coker T = ker ® 4 @ ker SIGN = ker D4 @ H' (M) @ H°(M).

and thus det ind‘J'g admits a natural orientation determined by fixing an orientation on
H*(M,R). We choose the natural one determined by the complex structure on H*(M)
induced by the Hodge x-operator. Using the affine path

TJL .= ‘I(C) +tPc

connecting ‘Jg to T¢ we can transport the orientation on det ind‘J'g to an orientation or; on
det ind T¢c. The two orientations org and or; differ by a sign which we denote by €¢(C) = £1.
Using the orientation transport formula [26, Sec. 1.5.1] we deduce that this sign can be
alternatively by

G(C) — (_1)SFc+d0

where SFc denotes the spectral flow along the path 74, 0 < ¢ < 1, and dy denotes the
dimension over R of the kernel of ‘I?: Clearly dy) =1+ b1y mod 2 so that we deduce
€(C) = (—1)SFethtL, (2.4)

Define
swu(o,g,n) =Y, €Q).

CeMy(g,m)

As in [26, Sec. 2.3] one can show that the above count is independent of the choices (g, )
and thus defines a smooth invariant

swy : Spin“(M) — Z

called the Seiberg- Witten invariant of M.
The above function has finite support. Moreover, this function is symmetric with respect
to the natural involution o +— & on Spin®(M),

swyr(o) =swy(a).

14



2.3 The case b; =1

Suppose now that M is connected but b;(M) = 1. In this case W,(g) is a codimension 1
affine subspace of N, i.e. a hyperplane called the wall. The complement of the wall is thus
disconnected. In this case it is convenient to give a more computational description of the
wall.

Fix an orientation of the one dimensional real vector space H'(M;R). Thus there
exists an unique g-harmonic 1-form w such that [|w|[z2(5) = 1 and which induces the same
orientation on H'(M,g). The wall W,(g) can be described by the linear equation

(n—27*co,w)r2 = 0.

We set
Ni(g) = {77 EN; £(n—2m*co w)r2 > 0}.

N*(g) is called the positive/negative chamber. Observe that

N(9) \ Wo(g) = NT(g) UN"(g).

Set

N = Hg} xN(g), N* = J{g} x N*(g).

For generic (g,n) in one of the chambers we get a finite set of irreducible monopoles, and
no reducibles and we can count them as before to obtain an integer swf/[(a, g,m). Moreover
sw]j\}(a, g,m) is independent of the generic pairs (g,7) in the same chamber and thus we get
two functions

swi, : Spin‘(M) — Z.

To understand the relationship between these two functions we need to pick two parameters
(g+1,m+1) € N* and a suitable path

(9ssMs)se[-1,1) €N

connecting them. We get a parametrized moduli space
M = {(S,C) €[-1,1] x C; Cisa(gs,ns) monopole}/Q C B,.

We assume the path ¢ — (g4, 7;) crosses the wall only once in a very special fashion.
First, we assume g; is independent of s close to 0,£1 and we set g := go. Next, we
assume the path crosses the wall W, (g) transversally coming from the negative chamber

towards the positive one
d
% |s:0 <7757wg> > 0.

Again this is a compact metric subspace of

B, = J{s} x Bolgr).

s
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To understand the local structure of Sfﬁg near (sg, Co) we need to introduce the parametrized
Seiberg-Witten map

SW : [—1,1] x €y — €, @cpqamAwa@mm%a%ﬂm)—wgg+mg

and study the small solutions (s, C) of the equation

SW(so+4,Co+C)=0
(2.5)

g C=0

We can choose the path s — (gs,7s) generically such that whenever sy # 0 (i.e. 75, is not
on the wall) a neighborhood of (sg, Cp) in M, is diffeomorphic to R. Thus, away from the
reducibles we can assume that the parametrized moduli space is a finite union of paths.
One should think of this parametrized space as a smooth cobordism between the moduli
spaces My (g+1,m+). The singularities arise when 7 crosses the wall, i.e. when s = 0. To
make further progress we need to understand how the reducible part sﬁt;ed sits inside 91,,.
We will achieve this using a little perturbation theory.
Observe first that
M = {0} x M (g, mo) = 5.

If C € Qﬁged is a regular reducible monopole then its Kuranishi map is = 0 and thus
a neighborhood of (0,C) € M, looks like a neighborhood of a point inside the circle of
reducibles. The local structure problem is therefore interesting only at the non-regular
monopoles. As in [17] we can choose the path (gs,7ns) carefully so that there are only
finitely many irregular reducibles which however are only mildly irreqular. A mildly irregular
reducible monopole is by definition a monopole (0, A) such that dimc ker® 4 = 1. Here we
need to more explicit because the Dirac operator © 4 is not G-invariant.

First, by rescaling the metric g we can assume that w, is a generator of the lattice
HY(M,Z)/Tors C H*(M,R). The circle of reducibles M, (g,7m0) can be described in C, as
a path

(0, Ay := Ag + itw +idfy), t € [0,4x], f; € Q°(M).

The results of [17] state that for generic choices of the path f; ker ® 4, is nontrivial only for
finitely many ¢’s and when this happens we have dim¢ ker ©® 4, = 1. For clarity purposes we
will assume that f; = 0, V¢t. The general case requires no new ideas.

The above singular cobordism consists of finitely many real analytic paths, some of
which approach a mildly irregular reducible.

By slightly perturbing the path (gs,7ns) we can assume that for every mildly irregular
monopole (0, A) we have

k= (c(iwg) P, ®) 2 # 0, (%)

where @ denotes an unitary spanning vector of the one-dimensional space ker ® 4.

To understand the local structure near a mildly irregular reducible we will use the
Kuranishi deformation technique. Suppose (0, Cp) is a (mildly irregular) reducible. We can
write the equation (2.5) in the form

F(s,C) =0
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where ' : R x 8¢, — 8¢, is given by
F(5,C) = H(éﬁ/(s, Co+ C))

where II is the L2-orthogonal projection onto the slice. Its linearization F at (0, Co,0) acts
according to the rule

E .
| [Da, O b 0 .o
Il _[ 0 —*d]'[ia}+_[—ﬁﬂm)]’d(L_0

ia
We assume
v:=(n'(0),wg)r2 > 0. (%x)
The kernel of F consists of triples (s, ¥, ia) such that
D, =0
and
—xda = $n'(0)
d*a* =0

The first equation has a (complex) one dimensional space of solutions spanned by ®.

Since [xda] = 0 and [1/(0)] # 0 (by (**)) we deduce § = 0. In particular, this implies a
is a harmonic 1-form. We deduce that any vector ¢ € ker & can be uniquely written as

(0,2®,idwg), 2€C, XeR.
The cokernel consists of vectors
(¢,ib) € T(Sy) x iIQY(M), d*b=0
such that '
(D 4o, 8) + (— * dia — is7/(0),ib) = 0 (2.6)

V3,1, ia. We deduce
¢ € ker @AO.

By letting ¢ = 0 and § = 0 in (2.6) we deduce that b must be harmonic and
(317/(0),6) = 0, V5.

Since [1'(0)] # 0 we conclude that b = 0. Thus any vector @ in the cokernel of F can be
represented as
w=(¢9,0), €C, veR.

Denote by P the orthogonal projection onto the kernel of F and by £ the orthogonal
projection onto the cokernel. Observe that

0
; .
Pl | =] @
1a
ila

17



Similarly, the orthogonal projection £ is given by

; (i), @)@
2
0
Set P+ :=1—P, QF := 1 — Q. Denote the vectors ($,1),ia,if) in the domain of F by E=.

The equation
F(Co+Z=)=0

can be rewritten as

F(E)+ R(E) =0 (2.7)

where R is the nonlinear remainder,

S
R vl = : '(0
i | = | 29(@) —in(s) +131/(0)
if 0
Decompose
E:=Fy+E, Ep:=7P2, Et=0PE

The equation (2.7) is equivalent to the pair of equations
FEH +9tRE) =0 (2.8a)
FEH +QRE)=0 (2.8b)

For each sufficiently small Zg we can solve the first equation for Z+ and we obtain a smooth
function
Zo — E5(

o).

Using the coordinates (z,\) on ker F we can regard =+ as a function of (z, \),
gt =zt(z, ).

Note that Z4(0) = 0 and D |z,—0 Z+ = 0. Thus Zy = 0 is a zero of order at least 2 of =*.
We can extract even more precise information.
Observe that

c(ia)y — (Se(ia)), ©)®
34(4) —i(n(3) — én/(0) = (0))

I

QTR(E) =
so that (2.8a) can be rewritten
.1, + Selia)h — (Le(ia)d, ®)® = 0
—ixdat —i51/(0) = i(n(8) = n(0) = 51'(0)) + 3a()) =0 (2.9)
d*at =0

18



When we take the inner product of the second equation in (2.9) with iw, we get

2n(s) — n(0), ) = 1 (a(), i) = & (elivr, ) )
Since
n(8) = n(0) + 81/ (0) + o(5%)
and

=20+t =20 + (2, )

we deduce from (x) and () that
280 + (%) = %<c(iwg)(zq) FU (), 2 () ) = %ﬁ|z|2 +0(3)

where O(3) denotes generically a term with a zero of order at least 3 at (z,A) = (0,0).
Hence
§= 22+ 0(3) (2.10)
W . .

The equations (2.8b) have the explicit form
F(z, ) i= <c(i)\wg +iad) (2@ + 9, q>>— ~0. (2.11)
The Kuranishi map K of (0, Cp) is given by
(2, A) = F(z, A\, u).

Notice that
F(z,\) = kA z+ O(3). (2.12)
The following proposition summarizes the facts established so far.

Proposition 2.6. A neighborhood of the mildly irregular reducible (0,Co) inside the pa-
rameterized moduli space M, is homeomorphic to

{(z, \); F(),2) = o}/sl.

where S' acts on the component z by complex multiplication.

Using the estimate (2.12) we deduce that a neighborhood of a mildly irregular reducible
in 9, looks like a neighborhood of 0 in (C x R)/S* where S' acts on the first component
by complex multiplication. The singular cobordism 9, then looks roughly like in Figure 1.

To understand the difference sw™ — sw~ we need to understand the orientation of
the above singular cobordism. The irreducible part of the parametrized moduli space M,
consists of two types of arcs.
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Figure 1: A singular one dimensional cobordism in the case by = 1

e Good arcs, i.e. arcs [—1,1] 3t — (s;(t),C;(t)) 1 < j < n not approaching the reducibles.
e Bad arcs, i.e. arcs [—1,0] 3 t — (si(t),Ci(t)) n < k < m + n approaching a mildly
irregular reducible as ¢ — 1. (Only the last monopole Cg(1) is reducible.)

For every good arc we have sj(—1) = 1 and s;(1) = £1. Note that

n n+m
swi (o) —swy, (o) = Z{sj(fl)e(cj(—l)) + sj(l)e(Cj(l))} + Z si(—1)e(Cr(-1)).
j=1 k=n-+1

As in [26, Sec. 2.3] we can show that the first sum is zero so that

n+m

swi (o) —swi(0) = D sp(=1)e(Cr(-1)). (2.13)

k=n+1

Suppose t — (s(t),C;) € [-1,1] x Cy, |t| < 1 is a bad arc path such that (s(0),Co) =
(0, Cp). is a mildly irregular reducible. We assume that for ¢ close to zero the configuration
C: is in the local slice at Cp. Set € := ¢(C_1) = £1. As in [26, Sec. 2.3], the sign € is given
by the orientation transport along the path of Fredholm selfadjoint operators

0,1] 37— Tr:=Tc__.

Our assumptions guarantee that the only contribution to the orientation transport occur
at 7 = 0 and thus we need to understand T, for very small 7. We write

s =&t + 52+ o(t?), C=Co+tC+t2C+ o(t?),
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or more explicitly,
U =) + 12 + o(t?), A= Ay + tia + tid + o(t?).

From the estimate (2.10) we deduce that s is quadratic in t. We assume the parametrization
t — (s(t), Cy) is nondegenerate at t = 0, i.e.

Observe that
QA,T 0 %C(iQ)I/J—T - %iﬂ’—v’
) iy
T, | ia | = 0 —xd d| |ia |+ 34(V—7, )
if if
0 a0 sIm (Y_;9)

where

d
(Y, ¢) = I li=0 q(¢ +t9).

Set T := % |lr=0 Tr. We deduce that

iy sea)y + Le(ia)y — L fo
if ] £ Im (4, 9)

Denote by K the kernel of Ty
K =ker®a, ® HY(M,g) ® H°(M,g),

and by P the orthogonal projection onto K. To understand the orientation transport we
need to understand the resonance operator

R:K — K, Rk= PTk.
We use the coordinates (z, A, u) on K,
(z, A\, u) = (2@, i wg, iu).

We have L
Ze(ia)® + te(idw)y — Lur

z
Tl A | =- L4(4, 2®) . (2.14)
u

%Im <¢, 2®P)

To gain some more insight we need to learn more about (¢, ia). We will achieve this using
perturbation techniques.
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For t close to zero the configuration C; satisfies the equation
SW (so + t$ + 125, Co + tC + 12C + o(t2)) = 0
L&, (tC+2C+o(t?)) =0
The last equation is equivalent to

D Ag+tiatt2iat-- ,g(w} + %)) =0,

and
1 . .
xg(Fay + itda + it*di+ -+ ) = gat+ )+ --)

32
—'{?7(0) + 5t/ (0) + (517”(0) + '5'71’(0))152 T }

LeC=0=da=0
L, (=0 di=0
where 7/(0) and 7”(0) denote the first and second s-derivatives of 75 at s = 0.
The first order contributions are equivalent to

D 4,0 = 0. (2.15a)
xda = —$n'(0), d*a=0 (2.15b)
The equality (2.15a) implies ‘
=P, (eC.

Note that since we assumed v := (/(0),wq)r2 > 0 we deduce that [1'(0)] # 0. Since
[*da] = 0 we deduce $ = 0. Thus, (2.15b) is equivalent to

da =0, d*a=0. (2.16)

Thus @ is a harmonic 1-form and thus can be uniquely represented as pwg, p € R.
The second order contributions are equivalent to

DA, + %c(iaw = 0. (2.17a)

1 .
i*xdi= iq(w) —i81/(0), d*a = 0. (2.17Db)

Now take the (real) inner product of (2.17b) with iw,. We obtain

0= {odi )2 = 3 (e (a(9)), ) 12 — 507/ (0) )

so that



so that )
e,
TR

Using (x * x) we deduce that ¢ # 0. Modulo a gauge transformation in the stabilizer of Cy
we can assume ¢ € R.

Multiplying the equation(2.17a) by ¢ and integrating over M we deduce
ple(iw)d, )2 =0

which in view of (x) implies p = 0 = @ = 0. We can now rewrite (2.14) as

v (2.18)

Se(idw)® — iucd

] = - $4(CP, 29) : (2.19)
1Im ((®, 2)

In particular

((§e(ir)® - Juco), @)

P A== 3o, 20) cliw))

LIm (¢, zq>>

To understand the resonance operator R = PJ we further decompose z = a + ib. Differen-
tiating at ¢ = 0 the identity

(a( +1¢),T) = (T(¢ +18), 9 +td), Vi, ¢ € T(S,), T € Endo(S,),

we deduce
(¢, 9),T)) = (T, 9) + (T, ¥) = 2Re (T, ¢).
Thus 1
(e7(@(c®, 20)) i) = S(d(C®, ), eliw) )
= Re ((c(iw)®P, 2®) = Re ((kz) = (ka.
Also
Im (P, 2®) = —(b.
Thus

0 0 % 0

S > o
S

o

o

)
S > o




We deduce that
CQ 52
det R = e > 0.

Since along the path T, we encounter kernels only for 7 = 0 we deduce that the orientation
transport along this path is

€= (—1)4me K gjon det R = 1.

Using this information in (2.13) we deduce

n+m

swi (o) —swy, (o) = Z sp(—1).

k=n+1

To understand the signs si(—1) we need to understand the type of crossing that occurs
when the mildly irregular reducible monopole appears in the singular cobordism.

Consider again the bad arc (s(t),C¢). We need to understand the sign of s(—1) which
is the same as the sign of s(t) — s(0) for small ¢. Since

s = §t* + o(t?)

we deduce that this sign is given by §. Using (2.18) we deduce that this sign is also given
by k.
sign k = sign s(—1).

On the other hand
sign k = sign (c(iw)®, ).

The last quantity is precisely the spectral flow of the short path of operators
(—8,6) S5t fDAo—o—tiw‘

If the mildly irregular reducibles are (0, Ax), k=n+1,--- ,n+ m we deduce

n+m

swi (o) —swy, (o) = Z SE(D 4, +tiw; |t] < e).
k=n-+1

We deduce that sw},(0) — swy,(0) can be identified with the spectral flow of the loop of
operators © 4 obtained as A runs once along the circle of reducible 7(0)-monopoles. By
rescaling the metric we can assume that w generates the lattice H'(M,Z) c H'(M,R).
Modulo G we can identify the circle of reducibles with the path

[0,47] 5t — (0, Ap + tiw)

where (0, Ap) is a fixed reducible 7(0)-monopole. The spectral flow of the path [0, 47| —
D Ag+tiw 18 easily computed from the formula

1 R N 1
SF(D Ag+tiw; t € [0,47]) 8/[0747T]XM01( ) Aer(4) 3272 /[0,47r]xM Ahta
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where A is the connection on det o — [0,47] x M given by

A= Ay + itw.
Then
FA:FAO—Fidt/\w, FA/\FAZQidt/\w/\FAO
2/ idt/\w/\FA0:87ri/ w A Fy,
[0,47)x M M
:16772/ w/\lFAO:167T2/ w A i (det o).
M 2m M
Thus

1
SF(Day i £ € [0,47]) = 3 / w A ci(det o).
M

We can now state the main result of this section. It was proved for the first time by Y. Lim
in [17] by a slightly different approach.

Theorem 2.7. [17, Lim](Wall crossing formula)

1
swi, (o) —swy, (o) = / w A ci(det o)
2 Jm
where w is a generator of the lattice H*(M,7Z) which induces the orientation on H(M,R)
needed to define positive/negative chambers.

Example 2.8. Consider the manifold M = S' x S? equipped with the natural round
metric of constant positive scalar curvature s. Denote by w the harmonic 1-form id@. w
is a generator of H'(M,Z), and *w is a generator of H?(M,Z). Choose a closed 2-form 7
whose L*°-norm is much smaller than s. We assume that 7 := (xw,n)r2 > 0.

Since H?(M,Z) has no 2-torsion we can identify each spin¢ structure o on M with its
determinant det o. For each n € Z we denote by o, the uniquespin® structure on M such
that

c1(det o) = 2n * w.

Since s > ||n||r~ > 0 we deduce swys(0y,,n7) = 0. On the other hand, we deduce that n
belongs to the positive o,-chamber if and only if n < 0. Hence

swi (o,) =0, Vn <O0.

On the other hand
swi (on) =n, Vn>0.

If we denote by sw(t) the generating function of the sequence sw,(c,,) we deduce
t
— + — —
swi(t) = E SW i (op)t" = E nt" = a0

neZ n>0

Suppose now that M is a 3-manifold with H;(M,Z) = Z we can pick a harmonic 2-form w
generating H2(M,Z) = 7), and a closed 2-form 7 such that (w,n)2 is a very small positive
number 7. We can again uniquely define o,, € Spin®(M) by requiring

c1(det o) = 2nw.
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Denote by swyy,(t) the generating function of the sequence swys(oy,n), and by sws(t)
the generating function of the sequence swj,(c,,). The function swyy,(t) is a Laurent
polynomial satisfying

SWMW(t) = SWMm(t_l).

We deduce as above that ;

(1=1)*

A result of Meng-Taubes [20] states that, 3m € Z such that

A (t)
(1—1)%

where Ap/(t) is the Alexander polynomial of M, [28, 31]. Thus

swr(t) = swarp(t) +

sw(t) = £t™

sWar (1) (1 — )2+t = £t Ap (1) == swar, (1) (t — 2+ 1Y) = £t AN (2) — 1.

We can now remove the + ambiguity by using the identity Aps(t) = 1. Moreover, we can
be even more specific about m if we recall that the Alexander polynomial is symmetric

AM(t) = AM(t_l).

Hence
sWar (1) (t —24+1t71) = Ap(t) — 1.

This shows that swj () is a topological invariant of M, and the chamber issue is moot.
Derivating the above equality twice at t = 1 we deduce

2 swary(on) = 2swary(1) = Af,(1).

nez

Consider now the most general case, by (M) = 1 so that H := H*(M,7Z) = Z & G, where G
is a finite Abelian group.

Fix again a harmonic 2-form w such that *w defines a generator of H'(M,Z). In
particular, we can think of w as generating the free part of H?(M,Z). Choose the closed
2-form 1 as before, and fix a spin® structure og such that det oq is trivial. Such a choice is
always possible since M admits spin structures. Any other spin® structure on M has the
form oy, := 09 ® h. Set

Wh = <wa hfree>L2

where h .. denotes the free part of h. The wall crossing correction term K is the element
in the ring of formal power series Z[[H H is defined by

K:=8——= Zg
( geG

T is the formal variable corresponding to the chosen generator of the free part of H, T :=
exp(w). We have an equality

T

> swig(on)h = swar(h) = sway(h) + K () == 3 swara(o)h+8 5—ys.

heH heH
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A result of Turaev [34] refining work of Meng-Taubes implies that 3h € H such that
sws(h) = £horar(h)
where 7)7(h) denotes the Reidemeister torsion of M. Define
aug s Z{[H)) — Z{[H/G)) = Z([T, 7]

by

augf =y (Z f(gT”))T’Z

neZ ged
and set
SWy = aug(swar), SWar, = aug(swary), Tm = aug(Tar).
Note that aug(8) = |G| and aug(T') = T. Then
G|T
(1-1)?

_ An(T
= +7(T) = iT’“/Z(lAf(T))Q, kezZ,

where Ay (T) € Z[TY/?,T~1/?] is the Alexander polynomial of M which satisfies
Ap(1) = |G|, Am(T) = Ap(T7H).
We conclude as before that

_ o 1
sWary(T)N(T™' =2+ T) = Ay(T) — |G|, sWary = §A§\'4(1)-

We conclude this example with a computation we will need later on. Suppose now that
there exists a positive integer mg such that

(T—m0/2 _ Tmo/z)(AlM_(g =T-'\2p(T), PezT? T

Observe that P(T~1) = P(T), and

(Tm0/2 _ T—m0/2) mo—1

P(T> = P(T_l) = AM(T) (T1/2 — T—1/2) =T "2 AM(T)(l 4+t Tmo—l).

In particular, P(1) = mg|G|. Let r € {0,1} such that mg — 1 —r € 2Z. Derivating twice at
t =1 we get

P'(1) = QAM(1)< 22: k2> +moAl, (1) = %AM(I){Bg(

mg + 1
2

) = Bs(3) } +modi (),

where B3(z) denotes the third Bernoulli polynomial

3 z  z2(z—=1)(22-1)
Bs(z) =23~ 2224 2 = .
3(2) =z 5% 13 >
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Since B3(r/2) = 0 we deduce

m0+1) _ mo(mg — 1)

P/11:
. 5=1 )

Bs(

Hence )
1 1 m§ — 1
sWary(1) = iAXJ(l) = 2—mOP”(1) -

In particular,

Ap(1)
12

A (1) 1 ~mp+1

1
=A%) - = —P'(1

WM,U(D -

2.4 The case b; =0

This case is the worst possible because we always have [xn] = [27¢,| = 0. Thus no matter
how we choose the perturbation (1, w) there will always be reducible - monopoles. In fact,
since by = 0 there will always be exactly one reducible monopole in 9, (g,n, i).

Since H'(M,R) = H?(M,R) = 0 for every closed two form w on M there exists an
unique co-closed 1-from on M such that da = w. We will denote the form a by d~'w. If
we fix a flat connection B on det o then the equation

*Fq +1in

has the explicit solution
A=Ay, =B — id=1 .

Define as in the previous section

N = {g} x N(g).

The transversality results of [7, 17] show that there exists a dense open set 2 C Z
such that for all (g,7) € N° the operator D4, has trivial kernel, i.e. the corresponding
reducible monopole is regular.

For generic (g,7) € N° the space of irreducible monopoles consists of finitely nonde-
generate points. We can define as before the signed count of irreducible monopoles which
we denote by sw'(a, g,n). The space of parameters is disconnected and its components are
separated by the wall

N = 2\ 20,

There exists a filtration
NO 5 N@ 5. N6 5

where }
N(J) = {(97777'u); dim¢ keI"QAgm > ]}

As explained in [7, 17] we have A
codim NV > ;.
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We need to understand the dependence of sw’,(c,g,n7) on (g,m). Pick a smooth path
(9(s),n(s), u(s)), s € [-1,1] of such parameters. Assume that this path crosses the wall
ZM only once, at s = 0. Transversality arguments show that we can assume that the
crossing occurs in a regular fashion, i.e.

dime ker © 4 1

9(0)m(0) —
and, if we denote by A(s), |s| < 1 the smooth function such that A(s) is an eigenvalue of
Da and A(0) = 0, then

g(s),m(s)

R

= dis |s=0 A(s) # 0. (V)

Fix an unitary spinor ® spanning ker® 4, . By slightly perturbing the path g(s) near

s = 0 we can assume that g(s) is independent of s for s near zero. The condition (v') is
then equivalent to

vi= <c(ig0)<1>,@> #0. (VV)

where
Q= d-! (*77/(0)).

As in the previous section we can form the parametrized moduli space
M, = {(s,C); Cisa (g(s),n(s))-monopole}/S.

The reducible part of the parametrized moduli space is easy to describe. For each s there
exists exactly one reducible monopole C; = (0, A5) and thus SﬁTQEd consists of a the smooth
path

s+ (0, As).

For a generic choice of the path (g(s),n(s)) we can assume that away from s = 0 the space
O™ is a smooth, oriented one dimensional manifold. The compact singular cobordism M,
thus consists of of one reducible arc and several irreducible ones, some of which approaching
the mildly irregular reducible (0, Ap). This cobordism looks roughly as in Figure 2.

To understand the structure of the singular cobordism near the mildly irregular reducible
point we follow a strategy very similar to the one used in the case by = 1. Denote the mildly
irregular reducible point of M, by (0,Cp). We are looking at solutions

(5,Co+C) =(0,Co), Ce 8¢,
close to (0, Cp,0) of the nonlinear equation
F(s,C) = 0.
Its linearization at (0,Cp) is given by

§ :
| Da, 0 P 0 o
Il _[ 0 —*d]'[ia}+[—i$n’(0)]’da_o'

1a
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Figure 2: Another singular one dimensional cobordism

The kernel of F consists of triples (3,1, ia) such that

Da¥ =0
and
—xda = —3sn'(0)
d*a* =0

The first equation has a (complex) one dimensional space of solutions spanned by ®. The
second equations have an unique solution

a = —s5p.
Thus the kernel of F consists triples of the form
(éo, z®P, —ié"o(p), seR, zeC.

Note that dimg ker & = 3. The pair (S, z) defines coordinates on this vector space.
The cokernel consists of vectors

(¢,ib) € T(Sy) x iQY (M), d*b=0

such that
(D agth, §) + (— * dia — is1/(0),ib) = 0 (2.20)
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Vs, 1/}, ia. We deduce
¢ € ker @AO.

By letting s, ¥, @ = 0 we deduce *db = 0. In particular, since b; = 0 we deduce that b = 0.
Hence the cokernel consists of pairs

(2@,0), z€eC.

Denote by P the orthogonal projection onto the kernel of F and by 9 the orthogonal
projection onto the cokernel. ) Denote the vectors ($,,1ia,if) in the domain of ¥ by Z=.

The equation
F(Co+2)=0

can be rewritten as

F(E)+ R(Z) (2.21)
where R is the nonlinear remainder,
: selia)) — 314
Rl ¢ | = . , d*a=0.
id 3a(d) —i(n(3) — i37/(0) — n(0))

(Above we have used the simplifying assumption ¢’(0) = 0.) Decompose

'—J‘:'PJ‘

j— — —_ —_ —_
1
= = = — , — = ﬂ)._'7 —

[

The equation (2.21) is equivalent to the pair of equations

FEH+9RE) =0 (2.22a)
FEH +QRE)=0 (2.22D)

For each sufficiently small Zg we can solve the first equation for =+ and we obtain a smooth
function

Zo — Z1(5).

Note that Z4(0) = 0 and D |z,—0 =+ = 0. Thus Zy = 0 is a zero of order at least 2 of =*.
We can extract even more precise information.

Observe that ) )
c(ia)y — (ze(ia)), )@

D=

QT R(E) = | a(¥h) — (in(3) - $1/(0) = n(0))
0

so that (2.22a) can be rewritten
.1, + Selia)h — (Le(ia)d, ®)® =0
—ixdat — 15ty (0) —i(n(3) — n(0) — &7/(0)) + Lq(¢h) =0 (2.23)
d*at =0
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We write

5=50+ 'éJ_(‘éOv Z)v ¢ =20+ qu}L(‘éOa Z)v a = _50()0 + dL(‘éOv Z)'
The equation (2.22b) can be rewritten as
F(30,2) = (c(—isop +iat) (2® + 1), ®) = 0 (2.24)
Observe that
) d ) )
F(50,2) = o7 lt=0 <©Ag(t),n(t)7g(t)(b7 <I>>soz + O(3) = —vs$pz + O(3). (2.25)

We deduce that a neighborhood of (0,Cg) looks like a neighborhood of the origin in the
quotient (R xC)/S! or equivalently, as a neighborhood of the origin in R xR . In particular,
only one arc of irreducibles approaches the mildly irregular reducible point.

We decompose the closure of 93?},”’ into arcs. There are two types of arcs.

e A bad arc [—1,0] > ¢+ (s(t), C(t)) which approaches the mildly irregular reducible.
e Good arcs [—1,1] ot — (s(t),C;(¢)), j=1,--- ,n.

As in the previous subsection we deduce

swir(0,9(1),1(1)) — swiy (0, g(—1),n(=1)) = e(C(=1))s(-1).

We assume that for ¢ close to zero the configuration C(t) is in the local slice at Cy. Set
e :=¢(C) = £1. Asin [26, Sec. 2.3], the sign ¢ is given by the orientation transport along
the path of Fredholm selfadjoint operators

0,1] 57— T, :=Tc_.

As before, only contribution to the orientation transport occurs at 7 = 0 but the case by = 0
requires a bit more work. More precisely, we need to understand the small eigenvalues of
the (real) operator T,. We write

s = st + 52 + o(t?), C(t) = Co+tC+t2C + o(t?),
W(t) =t + 120 4+ P2 + o(t?), A(t) = Ag + tia + t%id + o(t?).

The estimate (2.25) shows that the parametrizations ¢ — s(t) and ¢ — 1(¢) can be chosen
so that

§40, #£0.
Observe that
DA, g(s(-1) 0
iy iy
‘TT i@ = 0 - *g(s(fT)) d d : iQ
if if
0 d*- 0
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Ye(ia)p— + e(ia)y — $fo -

+ 307, 0)
% Im <1/}—T7£>
Set T := % lr=0 T+, T = %% |r—0 T+ so that

T, =To4+ 7T+ 72T + 0(7')2.

Using the condition ¢’(0) = ¢”(0) = 0 we deduce

iy se(ia)y + e(ia)) — L fo
‘j’ ia == %q(¢7 %)
if I EIm (¥, )
and r .. . e ™
iy se(ia)y + se(ia)) — 3 f
T|ia | = L4, )
if I Im (¢, )

Again we need to learn more about (1, id). For ¢ close to zero the configuration C(t) satisfies
the equation
SW (so + té +t25,Co + tC + t2C + 0(t?)) = 0

(2.26)
L&, (tC+1*C+ o(t?)) = 0
Derivating this equation with respect to ¢t at t = 0 we get
DAt =0 (2.27a)
xda = —$n'(0), d*a =0 (2.27Db)
We deduce .
Y =(®, (z#0) a=—sp.
Taking the second t-derivative at t = 0 we obtain
. 1 ... - 8¢,
DAY + +§c(1a)w =0<= D4,¢ — Ec(lgo)(b =0 (2.28a)
1 .
ixdi= 5q(¢) —i87/(0), d*a=0. (2.28Db)

Taking the inner product of (2.28a) with ® we deduce

sCv =0
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so that
$=0, a=0.

Denote by 2 = Q(®) the co-closed 1-form such that

ixdQ=c(q(®))

and set .
X = §<c(iQ),q(<I>)> = (Q,*dQ) = / QA dQ.
M
Note that we can solve (2.28b) explicitly
2
a= %Q — 3.

The scalar y is intimately related to v. Indeed, identifying the coefficients of ¢3 in the first
equation of (2.26) and using @ = 0 we deduce

e 1 .
DA + ic(id)z/) =0.
Taking the inner product of this equation with ® we deduce
e s _ NG PR 3 .
0 = C{e(id)®, ®) = ({e(ia),(®) = ((e(i% 0 ~i¥p) (@) =X~ wh. (2.29)
Thus
x¢? = vs. (2.30)

As we have explained, to understand the orientation transport along the path T, we
need to understand the small eigenvalues of T, |7| < 1. To achieve this we use a little
perturbation theory

We write

T =To+ 7T+ 2T + -+

Denote by Kq the kernel of Ty
Ko = kerD4, ® H(M,g)
and by Py the orthogonal projection onto K. Define the (first) resonance operator
Ry : Ko — Ko, Rok = PyTk.

We begin by looking for linearly small eigenvalues of T i.e. eigenvalues \(7) of T, which
behave like ¢ (¢ # 0) as 7 — 0.

Since the path T is real analytic the eigenvalues and eigenvectors can be parametrized in
a real analytic fashion (see [11]). Denote by Z(t) a real analytic path of unitary eigenvectors
corresponding to the linearly small eigenvalue A\(t). We write

)\(T):)\lT—f---', E(T):Eo+TEl+--~, ”E()H:L )\1750.
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We deduce
TJoZp =0
ToZ1 4+ TZ0 = M5
Thus =y € Ky. The second equation has a solution =Z; if and only if
RoZo = PyTEp = A1

Thus A # 0 is a nonzero eigenvalue of the resonance operator Ry. We use the coordinates
(z,u) on Ko. We have
sc(ia)® — juy

‘T[ " ] = 54(¢P, 2®) (2.31)
%Im (1), 2 ®)
so that .
1
]
u ; :
5Im (Y, 2®)
Again, writing z = a + ib we deduce that Ry has the matrix description
0 0 O
a
Ry|b|=]|00 §
u
05 0

We deduce that Ry has two nonzero eigenvalues, :t%. The corresponding eigenvectors are

0
UV, =idti= 1
+1
Thus there are only two linearly small eigenvalues of T, Ay (1) = :E%T + .- with corre-
sponding eigenvectors
_ 1
Ei(t) = —=¥qp+---.

V2

The above argument shows that there exists one eigenvalue A\o(7) which is at least
quadratically small. We set
No(t) = AoT? + -+

and denote the corresponding family of eigenvectors
E(r) =Z0+7E1+ 7B+, [|Boll = 1.
The equality

(T+7T+72T+- ) Bo4+ 181+ 7280+ ) = M2+ ) (B + 781 + 7289 + - )
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implies
TE9=0

T2, 4+ T =0 (2.32)

ToZ0 + T=1 + T=0 = MiZo
The first equation implies Zg € Ky while the second one implies
PyJ=) =0 < 5 € ker Ry =: K;.

The kernel of the resonance operator Ry is spanned by

Up=d6p0= é
0
Thus 23 = ;. Observe that
0
TV = — 30(¢P, P)
0
The vector Z; is obtained by solving the equation
0 0
ToZ1 = | 54(C2,®) | = | (q(®)
0 0

The solution set of this equation is the affine space
=1 € ((xd) " Hq(®)) + Ko = i¢Q + Kp.
Taking the inner product of the third equation in (2.32) with =y we deduce
Ao = (T21,Z0) + (T2, o).

In the first inner product the Ky-components of =Z; do not contribute because =y € ker Ry.
Now observe that since ¢ = 0

0 < (i) d
T icQ | =— 0
0 0
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so that
2

S ¢ .
(721, Z0) =~ (eli€), 4(®)) = ~Cx
On the other hand, using (2.29)

S 1, ..
(T=0,E0) = §<C(la)‘1>, ®) =0

Thus
(2.30) ..

Ao = —C2x Vs,

We conclude that T, has a quadratically small eigenvalue A\o(7) = —5v72 + - - - with corre-
sponding eigenvector

We can finally determine the orientation transport along the path J.. Imitating the
strategy used in the proof of the orientation transport formula [26, §1.5.1-Eq.(1.5.9)] we
deduce that the orientation transport in this case is given by

sign (—g : gsy) = —sign (§v).

Hence

€(C(—1))s(—1) = —sign (§v) - sign (§) = —sign (v) = —SF (D4 € [-1,1]).

a(s)m(s)? S

This proves that the usual monopole count sw’, is not a topological invariant and satisfies
a wall crossing formula

swiy(a,9(1),1(1)) = swiy(a,9(=1),n(=1)) = =SF(Da,, ., 5 € [-1,1]). (2.33)

To produce a topological invariant we need to alter the above count by a quantity which
will change in the opposite way. For every metric ¢ on M and Hermitian connection A on
det define the Kreck-Stolz invariant

KS(A7 g) = 477dir(A7 g) + 775ign<g)

where 14;-(A, g) denotes the eta invariant of the Dirac operator D 4(g) on S, determined by
g and A and 74n(g) denotes the eta invariant of the signature operator SIGN = SIGN(g)

(see [1]).

If g5 (resp. As), s € [0,1], is a path of metrics (resp. connections) then (see [2])

1

5 (ndz‘r(Ahgl) + h1 — Nair (Ao, 90) — ko) = SF(Da,(gs), s € [0,1])

1 1 N .
+/ ——p1(V) + c1(4)?
8 [0,1]><M( 3p1( ) +aldr)

where h; = dimg ker®y4,(g;), ¢ = 0,1, V denotes the Levi-Civita connection of the metric
ds? + gs on [0,1] x M and a denotes the connection ds ® d5 + Ag on the pullback of det(o)
over the cylinder [0,1] x M. Similarly (see [2])

1 o
nsign(gl) - nsign(gﬂ) = 3/ pl(v)'
[0,1]xM
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Hence
KS(Alagl) - KS(AOaQO) = SSF(QAs(gs)v s € [07 1])

+4(ho — h1) + / Cl(zzl)z.
[0,1]xM

Suppose now that As = Ay ;) as in (2.33). Then
ho = hy = 0.
We can write A; = B +1ia;, j = 0,1, where B denotes a flat connection on det(c). Then
aj = —d~' (xn(j)), j =01,

and a simple computation shows

/[01} MFi:/M(aoAdao—al/\dal).
1] x

In particular
A 1
S L — o
/[0,1}xM A2 Jooyxn A 4%y

The quantity
/ a; N\ daj
M

does not depend on the choice of flat connection B or the gauge equivalence class of A;.
We set

(a1 ANdar — ag A dao).

1 _
O(g,n) := 3 Md 1(*977) A *g1).
We deduce
KS(Ag(l),n(l)a g(l)) — KS(Ag(O),n(O)) = SSF(©A9(8>,’V](S)7S S [—1, 1])
+0(g(1),n(1)) — ©(g(0),n(0)).
Now set

1
swir(7,9.1) = 5 (KS(Ag.0,9) + ©(9.m)) +sWhs(@,9.1).

The above observations show that swy(o, g,n) is independent of g and 7 and thus it is a
topological invariant of (M, o).

3 Moduli spaces of finite energy monopoles

3.1 Finite energy monopoles on admissible 3-manifolds

Suppose (M, §) is an admissible cylindrical 3-manifold with the cylindrical end isometric to
R4+ x N, where N is a disjoint union of tori equipped with flat metrics. For each R > 0 we
set

Mp:= M\ (R,00) x N.

Fix a cylindrical spin® structure & on M, set ¢ := 06 and choose a strongly cylindrical
smooth reference connection Ag on detd and a compactly supported co-closed 1-form 7.
Arguing exactly as in the proof of [26, Prop. 4.3.2] we deduce the following result.
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Lemma 3.1. Suppose C = (

,A) is a smooth configuration. If
Cr = Clorre= (VR AR) = (¥ lonsa: A lorre)

then

/ (D40 + Lle(xFa -+ in) — ~a(b))av(@)
Mg

— [ (A  1EAP 4 4 Gla)P + 5198 + (elin), e(Fy) ~ 5a(0)))dv(a)
Mg

- / (D ap)du(g).
OMp

In particular, if Cisa (g,m)-monopole we have

2¢(C) = /8 (W Dandldnlo)

— [ (A  EAP 4 4 Gla()P + 5198 + (elin),e(Fy) ~ 5a(0)))de(a)
Mg

where € is the energy functional discussed at the end of 1.2.

We now define the energy of a configuration 6=monopole C = (1, ) over a closed subset
S C M by

Bs(©)i= [ (I9A0R +1F4P + 1o +

A monopole C is said to have finite energy if Ep(C) < co.

To better understand the significance of the energy we will discuss in detail the special
case M = I x T?, where I C R is a closed, possibly unbounded, interval, I = [R_, Ry].
Suppose C C (zp, ) is a smooth monopole on this cylinder such that Ais a temporal
connection, i.e. it has the form

LA + 210 + (&lin), &(Fy) — Ja(9)) ) dv(s).

A= Ay +ia(t)

where A is a connection on N and [R_, R1] 3 ¢ ~ a(?) is a smooth path of real 1-forms
on N. In this case we can think of C as a path [R_, R1] 5 ¢ — C(t) of configurations on N
and we define the kinetic energy of the configuration C by the formula

Ekm(é)z/ dt/ la(t)|? + |4 (t)|2dv(yg / dt/ |C(t)[dv(g)

If C = C(t) is a monopole, then according to Lemma 1.1 C(t) defines a flow line of the
gradient of €&, ‘
C=ve(Q).

Thus A
Ein(C) = €(C(R4)) — €(C(R-)).

Using Lemma 3.1 we now deduce
. 1. .
Epin(C) = €(C(R4)) — €(C(R-)) = JE(C). (3.1)

The following result describes one important source of finite energy monopoles.
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Proposition 3.2. Suppose X is a closed, oriented 3-manifold decomposed into two mani-
folds with boundary Y diffeomorphic to a disjoint union of tori. Fix a metric § on X such
that a cylindrical neighborhood of Y in X is isometric to the cylinder ([—1,1] x Y, dt? + g)
where g is a flat metric on M. Denote the complement of (—1,1) x Y in X by Xj.

For R > 0 denote by (Xgr, gr) the Riemann manifold obtained from (X, hg) by replacing
the cylinder Cr := ([~1,1] x Y, dt? 4 g) with the longer one ([~R, R] x Y,dt*> + g). Then
there exists a positive constant C' > 0 such that for all R > 0 and all gr-monopole C we
have

EC’R(C> < C.

Proof Set C = (4, A). Since the scalar curvature sg of gg is O(1) as R — oo we deduce
that there exists C' > 0 such that

l¥alleo < C.

Using Lemma 3.1 we deduce

IEXo (C) + ]ECR(C) = EXR(CO)

= [ (B0 + 5leteFa) - a()P)ae(a) = .
XRr

Hence

Eon(€) = ~Exy(€) < — /

SR A
1o Pdv(g)
Xo

1 .
< <lIsRllso - 1¥[I3 - vol(Xp) < C. W

The finite energy monopoles have a nice asymptotic behavior. First a bit of notation.
Denote by [C] (resp. [C]) the Gn-orbit (resp. G M-O£bit) of a configuration. Denote by G%
(resp. GY,) the identity component of Gy (resp. Gas). We will use the notation [e]g to

denote 99\, or §%/[—orbits.

Theorem 3.3. ([6, Carey-Marcolli-Wang| , [7, Chen]) Consider an admissible 3-
manifold (M, §) with a cylindrical end isometric to (R4 x N, dt?+ g) where N is a disjoint
union of tori and g is a flat metric.

Fiz a cylindrical spin® structure 6 on M, set 0 := 050 and pick a co-closed 1-form n
on M supported away from the cylindrical end. IfC is a finite energy (7, §,n)-monopole on
(M, g) then there exist a gauge transformation % in the identity component of §M and a
critical point Coo of €, such that

T5(Cs) =0 and tlim |

('AY : C) ’t><N _COOHLQ(N) =0
where we recall that Y, is the map Cy — iQ°(N) given by (see 1.2)
_ i 2 _ 2
To(,4) = #Fa — 3 (1042 = [o- ).

The asymptotic limit map [C]O — [Cxo] is called the asymptotic limit map and will be denoted
by Oxo-
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The above theorem shows that we need to better understand the set of critical points
of €, which lie on the level set Y 1(0). These are known as o-vortices on N.

Proposition 3.4. A configuration (¢, A) = (Y4,¥_, A) is a o-vortex on N if and only if

ci(deto) =0, ¥y =1¢_ =0 and F4q=0.

Proof Let us first observe that a Hermitian connection A on det o induces a connection,
still denoted by A, on S, compatible with the natural Zs-grading S, = ST @& S;. This
implies that A induces connections Ay on S; =: L and A_ on S; = K3 ® L. Thus A,
defines a holomorphic structure on the line bundle L and we denote by (L, A ) the resulting
holomorphic line bundle. Similarly A_ defines a holomorphic line bundle (K% ® L, A_) and,
moreover,

(Ky ® L, A-) Zpinolo Ky @ (L, Ay).

The configuration (14,1_, A) is a critical point of &, if and only if (see 1.2)
da,thy =0
I Y- =0 (3.2)

Py QP+ ®Y_ =0

The first equation implies that ¢ is a holomorphic section of (L, Ay). The second equation
implies that ¢_ is a holomorphic section of (K3 @ L, A_)*. Since N is a disjoint union of
tori we deduce that the canonical line bundle K is holomorphically trivial and thus

(KN ® Ly A) Zpinoto (L, At ).

Thus +_ is a holomorphic section of (L, Ay)*. The third equation in (3.2) implies that
Y, ®1_ = 0. The unique continuation principle for holomorphic objects implies that at
least one of the sections ¥, or ¥_ is trivial. We want to show that both must be trivial.
We argue by contradiction.

Suppose ¥+ Z 0. (The case ¥ # 0 can be dealt with in a similar fashion.) This implies
that ¢ = 0 and deg L > 0. On the other hand, using the condition Y (¢4, 9_, A) = 0 we
deduce

i
Py = Z\¢+|2dv(9)
so that . )
1
<degL=— [ Fa=—— 2d :
0<degl = [ Fa=—g- [ wiPavi) <0

Thus 14+ = ¢_ = 0 and the condition Y(¢1,9_, A) = 0 implies F4 = 0 and ¢;(det o) = 0.
|

41



Denote by oy the unique spin® structure on N such that c¢;(det og) = 0. We denote the
set of op-vortices by Z. It consists of configurations C = (1), A) such that v =0, F4 = 0.
Now denote by 9 (resp. M) the set of Gy-orbits (resp. G%-orbits) of og-vortices. The
last result shows that 91 can be identified with the set flat connections on the trivial line
bundle on N modulo the action of even gauge transformations. Thus 97 can be identified
with the union of tori
HY(N,R)/HY(N,4rZ).

In the remainder of this paper we will assume that N is connected, i.e. we will consider
exclusively admissible manifolds with connected ends.

With this convention in place we see that we can identify 91 with a 2-torus. We can
produce angular coordinate on 91 as follows.

A. Fix a trivialization of L = S} and denote by Ag the associated trivial connection. (This
is tantamount to fixing a spin structure on N.)

B. Fix a basis {ji, \} of H|(N,Z).

C. if (0, A) is a op-vortex then we set

i0(A) = l(A — Ap) and ip(A) := /X(A — Ay).

i

We can be more specific! about the choice A. On N there are four spin structures,
€0, €1, €2, €3. The spin structure €y is canonically determined from the Lie group trivialization
of TN. Equivalently, it is the only spin structure on the torus N which is not Spin-bordant.
The line bundle St is naturally trivialized. The Levi-Civita connection on (T'N,g) is the
trivial connection because ¢ is flat. This connection induces the trivial connection on the
spin bundle S, = S;B © S, and thus induces the trivial connection Ag on L. In the sequel,
the choice A will always be determined by the spin structure ¢g. We want to describe a
few more analytical features of this choice.

Denote by ©¢ the complex spin-Dirac operator corresponding to the spin structure €.
This operator is none other than the Hodge-Dolbeault operator

* %
D= [ 0 } L QO () — QO ().

Similarly we obtain flat connections Ag, & = 0,1,2 on L and Dirac operators Dy, k =
1,2, 3, corresponding to the spin structures e, k = 1,2,3. The spin structures €, - - , €3
canonically induce spin® structures, all isomorphic to the spin® structure og. The Dirac
operators Dg, - - - , D3 correspond to different choices of connections on oy. More precisely,
the Dirac operator ®; is obtained using the connection Afw induced by A; on det og = L2,
1 =0,---,3. These operators can also be described as Hodge-Dolbeault operators coupled
with the connection A; on L. Only one of these four Dirac operators has nontrivial kernel,
namely ©( because only one of the four holomorphic line bundles (L, A;), i = 0,---, 3,
admits (anti)-holomorphic sections.

T am indebted to Stephan Stolz for clarifying this rather confusing point.
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The o-vortices are of two types: good and bad. By definition, a vortex (¢, A) is good
if and only if ker ® 4 = 0. Otherwise the vortex is called bad. If (0, A) is a bad vortex then
the holomorphic line bundle (L, Ay) or (L, A;+)* admits nontrivial holomorphic sections.
This is possible only when (L, A} ) is holomorphically trivial, i.e. Ay coincides with the
connection Ay introduced above. This shows that there is only one bad point in 9%, namely
the orbit of Co := (0, A$?). Tt has coordinates (u, A) = (0,0).

The moduli space MM can be identified with Hy(N,R). It covers M and the unique bad
point in 9 lifts to the lattice of bad points H'(N,4nrZ) ¢ H'(N,R). The role of good
vortices is explained in the following refinement of Theorem 3.3.

Theorem 3.5. ([6, Carey—Marcolli—Wangl, [7, Chen]) Suppose C= (1&, /1) s a smooth
finite energy monopole. Set C = (0, A) := 05,C and

§(A) := dist (specD 4,0).

If 6(A) > 0, so that C is a good vortex, then there exists a gauge transformation 5 € §O
such that
4-CeL??,, YO < u<d(A).

H,ex?

In the next subsections we will use this result to describe the local structure of the
moduli space of finite energy monopoles with good asymptotic limit.

3.2 Local structure

In this subsection we will study in detail the set of finite energy monopoles with good
asymptotic limit. We follow closely the approach in [26]
Consider an admissible 3-manifold (M, g) with

O M =: N = T2, g:= 0§ — flat metric.

Fix a cylindrical spin® structure 6 on M such that 0,,6 = og and a strongly cylindrical
connection Ay such that 9. Ay = Ay.

We need a suitable functional setup. For every positive number p and set the space of
configurations C = (¢, A) such that

A ~

Cprer = Cprea(d) = {c — (), A); Ce z,}

={& @A~ Ay) e 12%(55) @ 122

H,ex

(GAIT*M), dos(A — Ag) = 0}.

Note in particular that if (1/),121) € é%em then the connection A is asymptotically strongly
cylindrical. Define R R
Spea = L2, (M,S"), G, :=L¥*(M,S")

H,exr

and set

98 = 8w§u,ex C§:=9n.
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If * is a point on J,cM we denote by §H7@I(*) (resp. G2(x) the based versions of these
groups, consisting of gauge transformations = 1 at . The gauge group G2 consists of L32-
gauge transformations on N which extend to Lu 52 - -gauge transformations on M. Denote
by ¢ the (dlscrete) group of components of 9“ ez and by €7 the group of components of
G9. Note that € = H'(M,Z) while ¢? can be identified with the image of H'(M,4xZ) in
HY (0 M, 477) = (47Z)2.

For any configuration C = (0, A) € Z we have an infinitesimal action

719° = L3?(GA°T*N) — Tc@ = L**(S @ iA'T*N)
given by
c(if) == rt o - C = (0, ~2idf).
Its formal adjoint is given by
TcC 3 (¢,ia) — L&(1,ia) = —2id*a € T3 9.
Define the slice at C to be the closed subspace 8¢ C Tc_ 2 defined by

Sc = {C € Tl i€ = o} =~ ker(A QYN — Ql(m).

Denote by [e]s the G%-orbit of . We have the following standard local structure result.

Proposition 3.6. The L%*2-metric on Z induces a metric on the quotient IMMP = 2/98
defined by
dist22([Ci]o, [Co]) = inf [|Cy — 7 - Call2,2.
~eGO

Moreover

om? =~ g (M,R)/e?.

We want to study the local structure of the quotient @Wex = éuvem/@t,w. Fix a config-
uration Cp := (¢, A) € Cp e and set Coo = (Yoo, Aso) = 0cCo € Z. Set

Goo = Stab (Coo) = S*, Gy := Stab(Cy)

and

8¢, = {C € Te Cueas £ C=0}

where %, denotes the Li-adjoint. Observe that since every C= (é, ia) is asymptotically
strongly cylindrical we have

8£*C SECGC

so that
800860 C SBOOCO‘

Arguing as in the proof of [26, Proposition 4.3.7] we deduce the following result.
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Proposition 3.7. (a) There exists a small Go-invariant neighborhood V of Co in Co + SCO
such that every /gu’ex(cw)-orbit intersects CO +V along at most one éo-orbit.
) (b) There exists a Li’ifc—small neighborhood Uy of 0 in 8¢, such that some neighbor{zoodA of
[Co] in Bpex (equipped with the quotient topology) is homeomorphic to the quotient Uy/Gy.
(¢)The based quotient B, cq(*) = éuyez/gmw(*) is a smooth Hilbert manifold equipped

with a smooth S-action and a neighborhood of Cy in this based quotient is S'-equivariantly
diffeomorphic to the quotient

($" % Uo)/Go
where Gy acts diagonally on the above product.

Definition 3.8. The neighborhood Uy constructed above is called a local slice at Co.

Denote by Zu = Z(é’) the set of finite energy monopoles C = (1&, A) such that C € éu,ez-
It can be described as the zero set of the Seiberg-Witten map?

~ ~

SW : Gyeo — LS5 04T M), (0, 4) = (D 40, Ja()) — (+F; +1n)).

More rigorously, SW should be regarded as a §Mez—equivariant section of the §#7em equiv-
ariant Hilbert vector bundle

L2(Se ®IT* M) x Cpex — Cprea-

If K c MY is a compact subset not containing any bad vortex then, according to Theorem
3.5, we can find a positive number p = p(K) such that if C is a finite energy monopole
with 0[Clo € K then C is gauge equivalent to a monopole in Z,(6). To describe the

local structure of the moduli space M, := Z,,/ §u,ez we will study as in [16] the deformation
theory of a different nonlinear equation which is equivalent to the Seiberg-Witten equations.
Set

X = {if € L22,(MiR); d(Dnf) = 0}.

Define .
F: Cper X X — L*(Se ®iT*M)

by )
(Cif) = SW(C) = 5€(if).

We let the group /9\%633 act trivially on X and thus we can regard F as a /S\Megg-equivariant
section of the G, c,-equivariant bundle

LL2(Ss ®1T* M) x (e,x x :x) — € x X.

Notice that )
<sw<c>, £ei f)>L2(M) —0. (3.3)

This implies the following result.

2Note that if C is a Li’im—conﬁgura‘cion with 9,.C € 2 then indeed SW(C) is in Lt’2,

ie. 9cSW(C) =0.
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Proposition 3.9. The natural map

2, = SWY0) = F71(0), C— (C,0)
is 1 — 1. Moreover, F(C,if) = 0 if and only if SW(C) = £¢(if) = 0.

The above simple observation shows that the local structure of SW=1(0)/ gu,em is iden-
tical to the local structure of F71(0)/G,,.z-

Definition 3.10. The space
F0)/Suer € Cpuer X X)/Spea
is called the extended moduli space. We will denote it by M,,.

Fix a smooth monopole C = (¢, A) € Zu and set Coo = (0, Aso) := 85oC € Z. The local
structure of F7(0)/G,,.cx near C can be read off the deformation complex

~ L0 DF ok
0—=E%:=T1Gucr ~— Bl :=TeCpee ®X — EL := L,*(S; ®iT"M) =0  (E)
where DF denotes the linearization of F at C. To ease the presentation we will denote More
precisely
o 1
DF(C,if) = SW(C) - S 2e(if)

where SW denotes the linearization of SW at C. Observe that (E) fits inside the short
exact sequence of complexes

0-F-E>>B_-0 (3.4)
where
0 F.—7yG VRl 12205, @Al @ AT M) 25 F2 = LIS, @ iTFM) — 0
¢ =TS — Fei= L7 (S: @i(A" © A°)T"M) = Fé = L,2(Ss ©iT"M) —
(F)
and .
0—-BY =T719° =3B{_:=Tc 20iR—BE_:=0-0. (B)

Clearly (B) is a Fredholm complex and its cohomology is given by
H°(Bc_) = T1Stab (Cy) = iR

and
H'(Bc,.) 2 H'(N,g)  H(N, g).

To study the Fredholm properties of (F) we need to understand the Fredholm properties of
the operator

Te, =DF @ (Le@0)™ : L (Ss @ i(A @ AO)T*M) — L*(S; ®iT*M) @ L;*(M,iR)
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where *,, denotes the adjoint with respect to the Li—metric. More explicitly, Te  is described
'b ’ll’
Yy

Se ¢ ]
®
L2 | NT*M |3 | da | =T, | a
®
iAOT™ M) if if
D; 0 07 [¢] [ geG@d—ifd | Ss
®
=| 0 —d d|-|ia |+ La(, ) e L | AT M
@
0 dv 0 if 1 Im(y, 7)) AT M)

We denote the first operator above by 70 and the second one by P. Observe that T) is

precisely the direct sum © ; ® —SIGIN, where —SIGN,, is descrlbed in detail in Appendlx
A. Both operator T¢ cu and ‘I{é , are APS operators and in this case

0T | = 0T
S

¢, =D, ® O (—SIGN,,).

We will use the nation in Appendix A, K, := 5OOSIGNu = 500(—SIGNH). The results
n [18] show that T ., is Fredholm if —p is not an eigenvalue of D ,, @ 3. Proposition

A.1 shows that if 2 < A\;(N)/16, where \1(N) is the first nonzero eigenvalue of the scalar
Laplacian on IV, then —u is not an eigenvalue of 3. Thus ‘TC# is a Fredholm operator

provided p? < A\1/16 and —p is not an eigenvalue of D 4__.
For every 0 < § < \/T)‘T we set

25 = {(o,A) €2 5(A) > 5}

where we recall that §(A) denotes the spectral gap of the operator ® 4 defined in Theorem
3.5.

Proposition 3.11. If0 < u < § < ‘ﬁ then for any finite energy monopole Ce O (Zs)
the associated complex (E) is Fredholm and its Euler characteristic satisfies

Y(E) = X(F) + x(B) = —indT, , — 1.

Set
mué =05 (26) N Zu/gu ex:
Observe that moduli space of finite energy monopoles with good asymptotic limit is covered
by the open pieces (smu s)sno- If Co € Zug = 0 NZs) N Z a neighborhood of [Co} is
describec} by the usual Kuranishi picture. More precisely, if Gy = Stab((;o) then there
exist a Go-invariant neighborhood U of 0 € H 1(Eéo) and a real analytic, Gg-equivariant

map

kU — H*(Ee )

such that £1(0)/Gp is homeomorphic to a neighborhood of [Co] in ﬁu,g.
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Definition 3.12. A monopole C € ZWg is called regular if H2(Ec) =0.

Observe that the asymptotic trace map
Oso 1 L2 (Ss @ i(A' @ AOYT* M) — LAS @ i(A* @ A & AY)T*N)
splits into four components
L%(Ss @i(A @ AT M) > == (¢, ia,if)

= OLE®OLE D ILE®OLE 1= 00t @ 100 (@ — L4adt) ® 1000 (1) @ 100c f-

Set K, = kere, T¢ o Te=T¢ =0 Ko := kere, Te. Arguing as in [26, §4.3.2] we deduce the
following results.

Lemma 3.13. There exists a short exact sequence
0—Uy— K, — H'(Eg) =0
where Uy 2 coker (9n : T1G — iR) 2 ker(H'(F¢) — Hé(EC))3 and G = Stab(C).

Remark 3.14. Let us observe that when C is irreducible, so that G = {1}, we have
dim Up = 1 and the image of Up in K, is spanned by the vector

(£¢ (i1 - @0)),0)
where g is the unique solution of the equation
Aé7u(i¢0) = Acui, Yo € Lz’z.
We refer to [26, Remark 4.3.26] for a proof of this fact.

Proposition 3.15. There exists a natural short exact sequence

0

0,
0— H'(Eg) — Ko — Uy — 0. (Hy)
In particular, we have an isomorphism

K, = K.

Corollary 3.16.

kere; SIGN,, = ker,, SIGN = H'(M,R) @ H°(M,R).

3The second isomorphism follows from the long exact sequence associated to (3.4).
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Assuming 9,,C = (0, Ax) is a good vortex, we deduce that du kere, T¢ is a lagrangian
subspace in
ker H = HY (M, g) ® R?

equipped with the complex structure
x 0
J=10 0 -1
0 1
Here is a consequence of the above result.

Corollary 3.17. (a) If C is irreducible then Oso kerey Je is a lagrangian subspace in ker H
of the form
O kerey Te @ 00 kere, Te = Le @ Up

where L = O kere, Je C HY(N,g) is a lagrangian subspace with respect to the complex
structure given by the Hodge operator x. Moreover, L¢ coincides with the image of Hl(Eé)
in H'(Bg).
(b) If C is reducible then Je =D, ®SIGN and

Ooo keteg T =2 0% kerey Te @ 0 kerey T¢ = Ligy ® T1 G,

where
Lyiop = Range (H'(M,R) — H'(N,R)).

In particular, Liop coincides with the image of H'(E¢) in H'(Bg) and

kerey Te = kere, © 4 ® Range (H' (M, N;R) — H'(M,R)) @® Lo, ® H(M).

Arguing as in the proof of [26, Prop. 4.3.30] we deduce the following result.

Proposition 3.18. There exist a natural isomorphism
1 ~
H*(F¢) = kery, TC,M
and a short exact sequence

2 oL 111
0— H(Fe) = Ko — Uy — 0 (H2)

where Ud‘ C T1G can be identified with the image of Tlé i T1G o via Oss. The isomor-
phism, HQ(F(:) — ker(Ko — UOL) is given by the map

H?(F¢) = ker, SW* Nker, £ 3 ¥ (my, ¥, 0) € kere, T¢.

Proposition 3.18 and Corollary 3.17 imply the following consequence.
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Corollary 3.19. Suppose C is a reducible monopoles with good asymptotic limit C,. Then
we have the isomorphisms

H'(E¢) 2 kerp2 D ; & H'(M,R) ® H(M,R),
H*(F¢) 2 kerr2® 3 ® H'(M,R),
H'(Bc,) = H'(N,R) ® H’(N,R).
The natural map H'(Eg) — H'(B) coincides with the natural map
i (H' ® H°)(M,R) — (H' ® H°)(N,R),

where i : N — M denotes the natural inclusion. If additionally H'(M,R) = R then the
connecting isomorphism

0:H'(Bc,) — H*(F¢)

can be described as follows.
Decompose H' (N,R) = Lyiop ® *Lyop. For every u € Ly, there exists a unique E(u) in
HY(M;R) such that u = i*E(u). If

U®v®cE Ly ® *Liop © H'(N,R) = H'(Bc)

then
dudvdc)=0®E(xv) €ker2® ; & H'(M,R) = H*(F¢).

The virtual dimension of the moduli space ﬁu at a finite energy monopole C is by
definition the integer

d(C) == —x(Eg).
Note that )
d(C) = _X<FC) — X(Bé) = indR‘TCM + 2.
Arguing as in [26, §4.3.3] we deduce
indR‘TC“LL = IAPS‘TC +1

so that

A~

d(C) = Laps(T¢) + 3.

To compute the index in the right-hand side we use the Atiyah-Patodi-Singer theorem which
simplifies substantially in two ways. First, the local index density of T¢ is zero since Tg
is a formally selfadjoint operator on and odd dimensional manifold (see [10, §1.8.1]) and
furthermore, the eta invariant of JH is zero because the spectrum of H is symmetric with
respect to the origin. Thus

1
Iyps = —5 diInR(kel"ngO D j‘C)

Here is a first consequence of the above considerations.

Corollary 3.20. Suppose C = (1&,121) € ng is a regular finite energy monopole. Then
there exists a small open neighborhood of [C] in M, s homeomorphic to R.
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3.3 Reducibles

Before we begin describing the set of reducible finite energy monopoles we want to show
that they occur quite naturally.

Proposition 3.21. (Key Estimate) Suppose (M, g) is an admissible 3-manifold such
that the scalar curvature s = s is nonnegative and somewhere positive. If n is a compactly
supported 1-form then any finite energy monopole C (7,/}, ) satisfies the L™ -estimate

b2 — ST .
913 < max{0,2 sup (2v2ln(z)| - s(x) }

In particular, if

2v2[n(2)| < s(z), Vo€ M,

then any finite energy monopole is reducible.

Proof Using the Kato inequality and the identities (1.1) we deduce exactly as in [14]
that

~ S 1 - ~
Aull* < =Sl = JPI* + V2Inl[)f?
We set u := \1&\2 so that u is a nonnegative function satisfying the differential inequality

1 — 22
w2y \[WUSO

A
Mu+4 5

Since lim,_,, u = 0 we deduce that u achieves its maximum at a point xzg somewhere inside
M. At this point Apru(zg) > 0 so that at this point

u(zo) (u(xo) +2(s — 2\/§|77|))

Thus
sup [ (x)[? < maX{O, 2 sup (2v2[n(z)| — s(m))} [ |
zeM

zeM

Suppose now that b (M) = 1 and 7 is a co-closed, compactly supported 1-form and
= (1, A) is a finite energy, reducible monopole, i.e. ¢ = 0 and F; = —ikn. The
compactly supported closed 2-form # is ezact since H2(M,R) = 0 so that there will always
erist finite energy reducible monopoles.

To understand the role of the reducibles we begin by studying them separately, inde-
pendently of the monopole equation. Consider a new configuration space fl# ex = fl# ez (0)
consisting of pairs p= (A if) where if € X and Ais an asymptotlcally strongly cylindrical

Lizez connections A on det(6) such that Juo A is flat. The group 9 pex acts on A“ ex DY

5 (Akf) = (42D

Jif).
Denote by Rjs the space of G pex-0rbits of pairs (A, ic) where c is a real constant and Ais
a connection with curvature

FA:—I*T]
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Fix such a pair p = (fl, ic). The local structure of Ry; near p is encoded by the deformation
complex

0= EY = T1Gpe0 2 B i= Tjhyen ® X = B2 := LL*(T* M) — 0.

As in the previous section we can include this complex in a short exact sequence
Ooo
0— Fy — E; = B, — 0. (V')

We deduce
HY(By) = H'(N,R) ® H°(N,R)

H'(E,) = kere, SIGN = H'(M,R) ® H*(M,R), 0H"(Ep) = Liop @R

and
H?(F,) = ker( 0L, : ker., SIGN — H°(N,R)) = H'(M,R).

Using the long exact sequence determined by (v') we deduce
H'(Ey) % H' (By) — H*(Fy) — H(Ey) — 0
or equivalently
0 — Liop @ H'(N,R) — H'(N,R) ® H°(N,R) — H*(F,) — H?*(E,) — 0.
Thus
dim H?*(E,) = dim H' (M, R) — dim H*(N,R) + dim Ly, = dim H* (M, R) — 1.
The above computation leads to the following conclusion.

Corollary 3.22. If dim H'(M,R) = 1 then for every co-closed, compactly supported 1-
form n there will exist reducible finite energy n-monopoles and Ry is diffeomorphic to the
cylinder

HY(M,R)/H*(M,4n7Z) x R.

In particular, in this case, the space of /9\u7ex—orbz'ts of such monopoles is homeomorphic to
the circle
HY(M,R)/HY(M, 4nZ).

Example 3.23. Suppose M is diffeomorphic to the complement of a tubular neighborhood
of a knot K in a rational homology sphere X. Then H'(M,R) = R and (see [28])
Hy(M,Z) = {(a,¢) € Q x Hy(X,Z); a=Ilkx(c,K) mod Z} (3.5)

where lkx denotes the linking pairing

lkx : Hy(X,Z) x Hi(X,Z) — Q/Z.
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Moreover, (see [28])
Hy(M,Z) = Hy(M,0M;7Z) = Hi(X,Z)/(K)

where (K') denotes the cyclic group generated by the homology class of K.

Any representation p : Hy(M,Z) — S' determines a line bundle equipped with a flat
connection. We denote it by L,. The space of representations Hy(N,Z) — S! is a disjoint
union of circles parametrized by Hom(H1(N;Z)", S1), where the superscript 7 indicates the
torsion part. The universal coefficients theorem provides a natural isomorphism

Hom(H,(M;Z)7,SY) = Ext (H,(M;Z)",Z) = H*(M,Z).

The above isomorphism Hom(H;(M;Z)™,S*) — H?(M,Z) is precisely described by the
correspondence
Hom(H,(M;Z)7,S") 2 p— ci1(L,) € H*(M,Z).

If 6 is a spin® structure on M then the space of finite energy reducible 6-monopoles on M
can be identified to the nontrivial double cover of the component of

Hom(H;(N,Z) — S
labeled by c;(det d).

We see that the reducibles cannot always be avoided and we would now like to under-
stand their relative position inside the moduli space of all finite energy monopoles. We will
concentrate exclusively on the situation discussed in Example 3.23, when M is diffeomorphic
to the complement of a knot inside a rational homology sphere.

Fix a cylindrical spin® structure 6 on M. For simplicity, we assume that the perturbation
parameter 7 (co-closed 1-form) is trivial. Suppose C = (0, A) is a finite energy reducible
g-monopole. We know that the asymptotic limit Coo = (0, Ax) =: 05C is a good vortex
so that modulo a gauge transformation we can assume Ce 2%5 for some sufficiently small
0 < p < 4. The local structure of the extended moduli space M, near (C, 0) is given by the
Kuranishi deformation picture. The deformation complex at C has cohomology

H(E¢) 2 iR, H'(Eg) = kerey (D 4 ® SIGN) = ker, © 4 & H'(M,R) & H°(M,R)

Fix a harmonic form wg € L2,(T*M) which spans H'(M,R). Then we can identify H'(E)
with the subspace of T¢Cj e X X given by

{(@,xiwo, ic); ® €kere, Dy, z,c€ ]R},
We also have an isomorphism
H?*(F¢) 2 kere, © ;3 & H'(M,R).

More precisely, according to Proposition 3.18, H 2(Fé) can be identified with the subspace
of L}iQ(S& @ i(A' @ A°)T*M) spanned by

m_s, - ker(9L, : Ko — H°(N,R)).

Observe that C is reqular if and only if kere; ® ; = 0. A regular reducible C defines a

smooth point (C,O) of M. Moreover, a neighborhood of this point inside the extended
moduli space M, is homeomorphic to an open disk in R2.
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Definition 3.24. The reducible finite energy monopole C:= (O,fl) is called mildly irreg-
ular if
o kere, © ; = C. Fix a spinor ® € kere, © ; = ker;, D ; such that ”@HL%M =1.

~

o 1= (C(iwg)P, P)r2 #0. We set €(C) :=signk.

Assume now that C is mildly irregular. The long exact sequence associated to (3.4)
leads to
0— Liop ®R — H*(F¢) X kere, ® ; & H' (M, R) — H*(E¢) — 0.

This shows that H?(E) is a complex 1-dimensional space generated by m_o,®.
To describe the Kuranishi picture we use deformation theory. More precisely we look
for L,jSx—small solutions (C,if) of the system

FC+C) =0
if) € Cpex X X, . (3.6)

20 =0

(@

(C +

To ease the presentation we set
X = TpCper x X, £&_05C =0,
Y = L(Ss @ i(A' @ AY)).

Observe that any solution of (3.6) automatically belongs to X. The solutions of (3.6) as
precisely the zeros of the nonlinear map

N:X =Y, (Cif) - (50, £0).

Observe that H'(E¢) € X and H*(Ez) C Y. We denote the orthogonal complement of
H'(E¢) with respect to the LZ _ -metric by X+ and the orthogonal complement of H?(E)

H,exr

with respect to the Li—metric by Y+. Denote by N the linearization of N at (0,0) € X.
Observe that
N="T¢
M

and

R(D,if) = N, ia, if) — N(C, i, if) = La(®) €Y. (3.7)

Denote by P : Y — Y the LZ—orthogonal projection onto H2(EC). For every x € X we
denote by x° @ x* its decomposition determined by the direct sum X = H 1(Eé) @ Xt
The equation N(x) = 0 is equivalent to the pair of equations

(1-P)(x"+xt) =0, (3.8a)

PN(xY +x+) = 0. (3.8b)
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The equation (3.8a) has a unique small solution x* = x*(x%) for all sufficiently small x°.

Moreover,
il
[~ 2

e

— 0112
= O(x"|%55 ).

We can be much more precise than this. We write

x = (ia,if), %= (071"if%), x* = (@it i),
The collection {®, iwo, i} is a basis of H'(Eg). We write

x? = (2®,izwy,ic), z€C, z,c€R.

The Kuranishi map at (C,0) is given by
F:H'(Eg) — C, x" (R"+x1(x%)), @) .
We regard F as a S'-equivariant function of the variables (z, x, ¢), where S! acts by complex

multiplication on z. We take the L2-inner product of first component of R in (3.7) with ®
and we obtain the estimate

F(z,z,c) = g(m: +ic) + O(3),

where the nonzero constant x was introduced in Definition 3.24. A neighborhood of (C, 0) €
M,, looks like a neighborhood of 0 in the quotient

{F(z,z,¢)=0}/S".

Since the regular moduli space is defined by the additional constraint ¢ = 0 we obtain the
following result.

Proposition 3.25. A neighborhood of a mildly ireqular reducible monopole C in ﬁu 18
homeomorphic to the real algbraic variety

{zz=0}/S" 2R xR,

where the branch {0} x Ry correspond to irreducible monopoles approaching the reducible

C.

3.4 Global structure

It is now time to put together the results established so far and provide a global picture of
the moduli space of finite energy monopoles.

We first define carefully the setting. (M, g) is admissible 3-manifold diffeomorphic to
the complement of a tubular neighborhood of a knot in a rational homology sphere. Fix a
cylindrical spin®-structure 6 on M such that J.,6 = oy, where og is the canonical spin®-
structure on IN. The moduli space of vortices on IV is a 2-torus 9t with an unique bad point
Co = (0, Ag). We fix a basis (i, X) of Hy(T?;Z) such that 7 is the meridian of the knot K
oriented by the right-hand-rule. We obtain in this fashion angular coordinates (6, ¢) on 90t
such that (8(Ao), v(Ag) = (0,0). Pick a small positive number r and define

2(r) :=={(0,A4) € Z; 0(A)%+ p(A)? > 7?2}, M(r) = 2(r)/S, MO(r) = 2(r)/°.
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Set
o(r) == inf dist (0, Da)).
(r) oA, 48 (0, spec (D a) )
Note that 6(r) > 0 and 6(r) \, 0 as r \, 0. We can choose r small enough so that §(r) < %.
Fix a positive number p < d(r) and set

~

Z,(r) :={Ce

11,63 0xC € Z’(T)}7

D>

m#(r) = Zu(r>/9u,ex~
Observe the following fact.

Proposition 3.26. For all sufficiently small, compactly supported perturbation parameters
(n,w) any reducible (6,n,w)-monopole is gauge equivalent to a monopole in Z,(r).

We have the following genericity result.

Theorem 3.27. ([16, Lim]) Fiz r > 0 small and p < 6(r). Then we can generically
choose the compactly supported parameters (n,w) such that the following hold.

(i) n are w are small enough so that all the (6,n,w)-reducibles are gauge equivalent to
configurations in Z,(r).

(ii) Any irreducible monopole C € Zu(r,n,w) is reqular.

(iii) Any reducible monopole Ce Zu(r, n,w) is either reqular or only mildly irregular.

(iv) The map O : ﬁu(r,n,w) — MY is an immersion.

In the sequel we will exclusively work with parameters (7, w) satisfying the conditions
in Theorem 3.27. To simplify the presentation we will, most of the time, assume they are
both equal to zero.

The finite energy condition and the lack of nontrivial tunnelings, i.e. finite energy
monopoles on R x T? can be used as in [26, §4.4.2] to show that M, (r,n, w) is compact.
The structure of ﬁu(r) can now be easily described. It consists of

e a circle of reducible monopoles,

e a finite collection of circles consisting of regular irreducible monopoles,

e a finite number of disjoint smooth arcs with one end on the reducible part and the other
an irreducible monopole whose asymptotic limit lies on the boundary of 9t?(r)

e a finite number of disjoint smooth arcs beginning and ending on the circle of reducibles,
(see Figure 3).

The last issue we address in this section is that of orientation. The family { H*(Bc) }cez(r)
is constant,

HO(BC) = HO(N’R) =R, HI(BC) = HI(N,R),

and we can fix an orientation by fixing an orientation on H!(T? R). This is equivalent
to choosing an orientation on N. We will work with the orientation of N as boundary of
M. Using the short exact sequence (3.4) we now see that the orientability of the family

{H*(EC)}CeZu(r) is decided by the orientability of the family {H*(Fé)}éeiu(r)'
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reducibles

< )

Figure 3: The moduli space of finite energy monopoles

The orientability of the family {H*(F¢)}e €2, (r) is equivalent to the orientability of the
determinant line bundle of the family of Fredholm operators

{7@ L (Se @i(AY @ AT M) — L2(Ss @i(A° & ANT*M); Ce Zﬂ(r)}.
For every C = (1, A) € Zu(r) the operator T  can be written as a sum (see 3.2)

Te,= Tg# + P¢, Ugu =D ; ®—-SIGN,,

where P¢ is a zero order term decaying exponentially to zero along the cylindrical neck. We
deduce that for each s € [0, 1] the differential operator

s . R
‘TC’# = ‘I(C)’” + sch

defines a Fredholm operator L}j2 — Li. Using the deformation s — Ty , we can transfer the
orientability problem to the family {‘Tg u}é €2,(r)" The the determinant line of the family
{D A}( D, AR () is naturally oriented as these operators are complex. On the other hand,

the operator —SIGN, is independent of C. We have thus reached the following conclusion.
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Proposition 3.28. The moduli space §J\Tu(r) 1s orientable and an orientation can be spec-
ified by specifying an orientation on

detind (SIGN, : LL2((A' @ A")T*M) — LZ((A' @ A)T*M)).
Observe that
ker, SIGN,, = 0, ker, SIGN}/" = ker,, SIGN}, = H'(M,R).
We have thus obtained the following consequence.
Corollary 3.29. An orientation on H*(M,R) canonically specifies an orientation on ﬁu (r).

We illustrate the orientation rules on a simple example which will be useful later on.

Example 3.30. Fix an orientation on H'(M,R) and a nonzero harmonic 1-form wy €
L2, which defines a positively oriented basis of H*(M,R). Suppose Co = (0, 4p) is a
mildly irregular reducible monopole. We know that a neighborhood of Cy € ﬁu(r) is
homeomorphic to a neigborhood of 0 in the 1-shaped region

{(z,7) e R xRy; pz =0}

The horizontal part p = 0 describes a neighborhood of Co inside the moduli space reducible
monopoles. The vertical part © = 0 describes a branch of irreducible monopoles bifurcating
at Co (see Figure 4). Because the moduli space is oriented we can attach arrows to these
two branches. We want to explain how.

irreducibles

reducibles

PAN

C0 X
Figure 4: The branching behaviour near a mildly irregular reducible

The reducible branch In this case Jo = 4 @ SIGN. Fix oriented bases in *(FCO)
and H *(BCO)' For orientation purposes we can neglect the spinorial components. The long
exact sequence determined by (3.4) has the form

0— (H'@H°)(M,R) = H'(Ee ) & (H' @ H°)(N,R) = H'(B)
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2 HX(F¢,) = H'(M,R) — 0
Set weo := Osowp = 1*wgy. The space Hl(Bé) is oriented by the basis ¢; = {weo, *Weo, 1},
while H2(FCO) is oriented by the basis ¢o = {wo}. Fix the basis co = {wo, 1} of H'(Eg).
We can now regard the above short exact sequence as an acyclic chain complex of based
vector spaces. The chosen basis of H I(EC) is positively oriented if and only if the torsion

of this acyclic based complex is positive. In this case the torsion is very easy to compute.
Define an algebraic contraction of this chain complex

X: Hl(BCO) — HI(ECO), X(Weo) = wp, X(*wse) =0, x(1)=1.
We deduce (see [28]) that the torsion is given by the determinant of the map
X®0:H'(Be ) — H'(Be ) ® H*(F¢,)

Using Corollary 3.19 we deduce that Ows = 0 and 0 * wee = —wyp. It follows that with
respect to the bases ¢; on Hl(BCO) and cy U cg in H? (Ee,) @ HQ(FCO) the above operator
has the matrix description

1 0 0
0 0 1
0 -1 0

The determinant of this operator is 1 which implies that cg is a positively oriented basis.
In particular, it follows that the map

R >z +— zwy € HY(M,R)

is an orientation preserving map between the horizontal branch in Figure 4 and the oriented
space H'(M,R).

The irreducible branch Suppose Co = (0, flo) is a mildly irregular reducible monopole.
The local structure of the extended moduli space M, near (C,0) is given be the Kuranishi
deformation picture. The deformation complex at Co has cohomology

HY(Be,) =iR, H'(BEg,) = kere,(D 4, & SIGN) = ker,, D 3 & H'(M,R) & H’(M,R)
More precisely, we can identify H 1(ECO) with the subspace of T¢ Cpex X X given by
{(z@,xiwo,ic); z€C,z,ce R}
where @ is a spinor spanning kerg, ® Ao such that
] =1.

We assume
HWOHLEM =1, k:=(e(iwg)®,P)r2 #0 (3.9)
We also have an isomorphism
H?*(F¢ ) 2 kere, ® 4 @ H' (M, R).
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More precisely, according to Proposition 3.18, H? (FCO) can be identified with the subspace
of L*(Ss @ i(A @ A°)T* M) spanned by {m_y, -iwp,m_o, - ®}.

According to the computations in 3.3, we can approximate the irreducible branch
monopoles approaching Cy by real analytic path

[0,6) 3 s — Cy = Co + s(®,0) + O(s?).

Note that
H*(F¢ ) = kere, T¢
and
HO(Fe ) =0=H"(Eg ).
Using Corollary 3.17 we deduce that the image of HI(ECS) in HI(BCS) is a lagrangian
subspace Le of H L(N,R). The exact sequence
H'(Eg ) — H'(Bg ) = H*(Fe ) — 0

E] s s

now implies that dim H? (F¢ ) = 2 = dimkere; J¢ . In particular this shows that
ker, Je =0

and

dim H'(F¢ ) = H*(Fe ) +indTe_, = 1.
More precisely H I(FCS) C L,Qf is generated by £¢ (ips), where ¢, € Lzzex is the unique
solution of the boundary value problem

Ae, s =0, Oops =1.
We regard the long exact sequence associated to (3.4)

0— H'B¢)— H'(Fe ) > H'(Eg ) > H'(Bg ) = H*(F¢ ) = 0 (3.10)

E] s s E] s

as an acyclic complex. To find the orientation of H* (ECS) we need to find oriented bases
on Hl(ch) and HQ(FCS) which induce the fixed orientation on detindTe . where s is
very small. Then the orientation on H I(ECS) is determined so that the torsion of (3.10) is
positive. We arbitrarily fix an orientation on H? (FCS) = coker TCS,M so that we reduce the
problem to finding an orientation on H 1(F(:S) = ker, Te_ -

Recall that the symplectic vector space ker H admits a natural decomposition

ker H = H'(N,R) @ (dt A H'(N,R) & H'(N,R)) = H'(N,R) & (dt \R & R).

For simplicity we denote the component dt AR by Uy and the component R by Uy. Uy has
a canonical basis {up} and Uy has a canonical basis {us}. The symplectic structure is given
by



Since ker,, ‘TCS = 0 we can identify kere, Te, with its image in ker H via 0. This image is
Ooo(H?(F¢)) = Le_ & Up.
Fix a basis hg of L(:S' There exist fzs, =g € kergy TCS such that
8ooi15 = hs; and =4 = uy.

The vector h spans the tangent space to the irreducible branch at the configuration Cs.
For s sufficiently small this branch is well approximated by the curve (s — s®, Ag). Thus
the tangent space can be well approximated by the real line spanned by ®.

o In the sequel we assume that hs is chosen such that the oriented real line <izs> converges
to the oriented real line (®).

We can be more specific about =4 as well. More precisely, =4 = SCS (0s +t), where vy is
the unique solution of the problem

3,2
n.ex’

Vs € L Acsf}s = _ACS (t), Osolg = const, 0 < s < 1.

We orient HQ(FéS) using the basis m_g, (hs, Z5). We identify HI(BCS) with the subspace
HY(N,R) @ Uy C kerH. The space Hl(FCg) is generated by Ts := £¢ (ips). As we

s

mentioned earlier, we have an orientation on detind T¢ i and thus we can represent an
Sy
oriented basis as €Y, € = 1. The connecting morphism

J: Hl(BC ) = span { h, *hs, us} — HQ(FC )

s s

is given by
hs — 0, (xhs) — O (J(xhy)) = —m,Q#iLS, up s O (Juyp) = —m_9, .

To decide whether the basis hg of H 1(ECS> is positively oriented we need analyze the torsion
of the acyclic complex of based oriented

0— HB¢) = (ug) — H'(Fe ) = (Xs) — H' (B¢ ) = (hy)

S

~

— H'(Bg ) = (hs, %hs,up) — H*(Fe ) = (m_g,hs, m_5,Z;) — 0.
This is given by the determinant of the map

T:H' (Fe )& H' (Be) = (€5, by, #hs, uy)

~ ~

- HO(BéS) @ Hl (ECS) @ H2(Fés) = <Uf, hs, m—2uh5a m—2u55>
described by
Ts = ur, hs — BS, (*hs) = —m_QMilS, uf — —m_QuES.

This determinant is equal to €. Thus we need to compare the canonical orientation on
det T¢ , with the orientation induced by

T, ® (m_guhs A m_guEs)*.
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We follow the principles outlined in Appendix C to which we refer for details and notations.
We need to pick an oriented stabilizer for the family [0,e] 5 s +— ‘J’CS e The natural

choice is the cokernel of Te L,1j2 — L,le which is precisely Vp := H 2(FCO). More
precisely, we have a natural real basis of 1,

Vb = <m,2N<I>, im,Q#(I), im,QNWQ>.
The choice wy defines an orientation on V. More generally, set
V= ker‘J’E‘S"H =~ H*(F¢ ).
Now form the operators
Oy :=Te, , WVo : L (So @i(A1 @ Ao)T*M) & Vo — Ly, (S5 @ i(A1 @ Ao)T*M),
($,id,if;0) = T, (¢,ia,if) + v
and similarly 07 =T¢_ @V, s € (0,e]. Set
Ky, (s) = ker O, Ky, = ker O7.

The spaces Ky, (s) form a bundle over [0,¢] and for s sufficiently small we have the short
exact sequences,

0— Vs — Vo — Vo/projy, (Vs) — 0, (3.11a)
0— H'(F¢ ) — Ky, — 0, (3.11b)
0 — Ky, — Ky,(s) = Vo/projy, (Vs) — 0. (3.11¢)

We analyze successively the above short exact sequences. As s\, 0 the 2-plane pro jVO(V;)
converges to the oriented 2-plane (m_g,®, m_5,i®) so that we can identify V; with this
oriented 2-plane and Voy/projy, (V) with the oriented line spanned by m_o,iwp.

Using (3.11b) we deduce that

Ky, = (Hi(Fe ) ®0) C L (Ss @ i(A1 & A)T*M) & Vp
and is oriented by the basis {GTS}. Using the sequence (3.11c) we obtain an orientation
on Ky, (s), 0 <s < 1.
or (Kv;(s)) = or (Kv,) A (F~' (m_g,iwp))

As s\, 0 the oriented line spanned by Y converges to the oriented line spanned by i®.
The sign € is determined by the requirement that as s N\, 0 the oriented 2-plane Ky, (s)
converges to the oriented 2-plane

(®,i®) = Ky, (s = 0).
We need to determine ©4 € L,1j2 (S& Pi(A1 P AO)T*M) such that

TCSGS + m_guin =0,
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ie. O, ®m_g iwg = F_l(m,guiwo), and then study the behavior of the oriented line
spanned by ©, @ m_s,iwg as s\, 0. We write

O, :és ®ia, @ifs.
Observe that C; = Co + s(®,0) + O(s?) so that

70 4. =T
12 s

Te.n=Te,, Con 1 P2,

where

Pe Os=s 36(2,0) +0(s%)05 =: 5(R + 0(s)) O

Observe now that

T

€ 105 T 8RO + m_siwg = O(s%)O,.

Denote by 09 the Li—orthogonal projection of ©4 to the kernel of ‘J'CO i and set OF =
O, — 0%, Arguing as in the proof of [26, Lemma 1.5.13] we deduce that there exists

Zo = zy® € keru ‘TCO#, zp € C,

such that
. R 0 _
;1{1(1) |s©s — ZOHLﬁ = ;1{% |s© — ZOHL% =0.

Take the Li—inner product of the last equality with m_s,iwg. Using the normalization
llwollzz =1 we e deduce
K

$(RO;, iwp) » + 1 = O(s*)(Oy, iwy)

L2,
If we let s\, 0 we conclude

-1= <iﬁ(zo<I>),iw0> = %Re zo<q(¢)),é(iwo)>L2.

Using the normalization condition (3.9) we deduce that ro := Re(z9) # 0 and more pre-
cisely, ro - £ < 0. This shows that oriented plane Ky, (s) converges to the oriented plane

<ei<1>, —K(I)>.

Since we require that this plane has the same orientation as <<I>, i<I>> we deduce € - k > 0.
We conclude that when s > 0 the irreducible branch leaves the reducible locus while when
k < 0 the irreducible branch is directed towards the reducible locus.

Remark 3.31. For every cylindrical spin® structure & and every choice of perturbations
(n,w) obe can form an integer SF(5,n,w)) defined as the spectral flow of the family of
Dirac operators on Sg,

(QA)(07A)€§y\qLed(r)
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parametrized by the space of gauge equivalence classes of reducible (4,7, w)-monopoles.
This spectral flow is independent of (7, w) and we will denote it by SF(5). One can choose
the parameters (1, w) such that

e If SF(6) = 0 then ker® 4 = 0 for any operator ® 4 in the above family.

o If SF(6) # 0 then dimc ker® 4 < 1 for all operators in the above family with equality for
only finitely many of them. Moreover ® 4 is any of these operators with nontrivial kernel
spanned by a spinor ®, then

SF(5) - {c(iw)®, ) > 0.

In less rigorous but more intuitive terms, the above condition signifies that the (possibly
nonexistent) eigenvalues of the above family of Dirac operators cross the 0-value transver-
sally, exactly |SF(4)| times, and always in the same direction.

We will refer to a perturbation (n, w) as above as a monotone perturbation. For monotone
perturbations, there are no irreducible branches of §J\TH(T) which begin and end on the
reducible branch.

4 Gluing results

4.1 Dehn surgery and spin® structures

Suppose M is a compact, oriented 3-manifold with boundary OM such that by (M) = 1
and x(M) = 0. It follows that 0M is diffeomorphic to a torus. We will think of M as an
admissible 3-manifold with a fized cylindrical structure along the end. Set T := 0, M, and
denote by j the inclusion T' < M. The kernel of j, : H1(T,Z) — H1(M,Z) is a rank 1-free
Abelian group. We fix a longitude A\ € Hy(T,Z), i.e. a generator of kerj, and denote by
mo its multiplicity. This is a positive integer such that A = mg\g where \g € H1(T,Z) is a
primitive element. The cycle j.A-bounds a chain A C M which generates Hy(M,0M;Z).
We equip T with the orientation as boundary of M. This orientation defines a nonde-
generate (symplectic) intersection pairing on H;(7,Z). We obtain a symplectic lattice ©.
Fix o € © such that A - o = 1. The dual of © is the symplectic lattice ©F is defined by

©* = Homy(0,Z) = HY(OM, Z.).

The intersection pairing on O defines an element A¥ € ©* uniquely determined by the
requirements
O u)=X-u, Yue®O.

In particular, (\¥, \) = 0. A is a generator of ©%,, the range of the morphism
ji*: H' (M, Z) — H' (0M, 7).

The group Hy(M,0M;Z) is finite and the universal coefficients theorem coupled with the
Poincaré-Lefschetz duality imply that we have natural isomorphisms

H*(M;7) = H\(M,0M;Z) = Hom(H(N)",7Z).

In particular, the restriction map j* : H?(M,Z) — H?(T,7Z) is trivial. In particular, all the
spin® structures on M are admissible.
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Denote by Pic® (M, 0M) the space of ismorphisms classes of pairs (L, ¢) where L is a
complex line bundle over M and ¢ : L |gpy— C is a trivialization along the boundary. The
realtive Chern class produces an isomorphism

el Pic™(M,0M) — H*(M,0M; 7).

The group ©F acts on Pic™ (M, dM) as follows. If (L, $) € Pic™(M) and ¢ € ©F then we
define

(L, ¢) = (L, cp) := (L,79)

where v : OM — S! is a gauge transformation such that the closed 1-form % is harmonic
and represents the element ¢ € H'(OM,Z). We have the equality*

Cgel(La Cgb) = qul(L, qb) + 6]\/[07

where 637 : HY(OM,Z) — H?>M,0M;7Z) is the connecting morphism of the pair (M, dM).
In particular this shows that the stabilizer of this action is the subgroup @3\4.

The group Pic™ (M, M) acts freely and transitively on Sping,(M). Fix a cylindrical
spin® structure on M. By doing so we provide an identification

Sping, (M) = Pic™(M,0M) = H*(M,0M;Z).
We can now think of cylindrical spin® structures over M as complex line bundles over
M equipped with a trivialization along M. In particular we have an action of ©f on
Sping,,(M,0M)

HY(OM,Z) x Sping,, (M) > (¢,6) —c- &

and
det(c- ) = 20p¢+ det 6.

Consider the solid torus S* x D2. We obtain an admissible manifold X equipped with a
cylindrical structure by attaching the cylinder R, x S x D?. Denote by mg € H1(0X,Z)
the homology class carried by {1} x D? and by kg € H1(0X,Z) carried by S x {pt}. We
orient X as boundary of X so that mgy-ky = 1. Fix an orientation reversing diffeomorphism
I': 90X — T such that I'(ko) = Ao, po := I'(mg). Denote by ,ug € H'OM,Z) the element
defined by

<,u%,a:) = -z, Vreo.

For each orientation preserving diffeomorphism ¢ : X — X we denote by Y, the manifold
obtained by attaching X to M via the orientation reversing diffeomorphism I'y, := I' o ¢.
Alternatively, we can think of ¢ as changing the cylindrical structure of Y so that we get a
cylindrical manifold X, where the cylindrical structure allong the neck is given by

1Ig, X p: Ry x0X — Ry x 0X.

The manifold Y, can also be thought of gluing the cylindrical manifold M with X, using
the gluing map I.

4A proof of this identity is described later in this section.
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The diffeomorphism type of Y, depends only on the attaching curve ¢ = I',(myg). Using
the basis {mg, ko} of H1(0X,Z) we can represent ¢ as a matrix

_|p «
w—[q ﬂ]GSL(ZZ),

so that ¢ = puo + gAo, and will also write Y}/, instead of Y,,. The operation we have just
described is called Dehn surgery along c

Remark 4.1. Since we are interested in monopoles on Y, we have to specify a metric on
this manifold. The metric we will work with will have a cylindrical neck of length r > 1,
and we assume the gluing of 0X and dM via ¢ takes place in the middle of this neck.
We also assume that M is equipped with a flat metric ggps, and X is equipped with a
metric of nonnegative scalar curvature such that ¢ is an isometry between ggx and gsas.
Using the construction in Appendix B we can explicitly produce such metrics on solid tori,
by attaching to the solid torus S x D?, a cylinder [0,7] x T? with a nonnegative scalar
curvature metric which interpolates between the canonical flat metric gg on 72, and the flat
metric p*go.

We would like to describe the basic topological invariants of Y}/, in terms of (p,q) and
the invariants of Y. For more details and proofs we refer to [28]. We will distinguish two
cases.

A. p=c- )X #0. In this case Y, is a rational homology sphere and we have a short exact
sequence
0 — Z(j«c) — Hi(M,Z) — Hi(Y.,Z) — 0.

We set K. :=T'gop(kg) and we continue to denote by K. the image of j. K. in Hy(Y,,Z). We
denote the linking form of Y, by lk.. The above short exact sequence defines an element
in Ext (H1(Y;),Z) = Hom(H;(Yc,Z),Q/Z) which can be canonically identified with the
character 1k (K., o) of Hy(Y.,Z). Moreover, the torsion part of H;(M,Z) is naturally
isomorphic to the kernel of this character.

By passing to Poincaré duals we obtain the short exact sequence

0 — Z(ct) M H2(M, T Z) — H2(Ye,Z) — 0. (4.1)

We can use this short exact sequence to explain how to glue cylindrical spin® structures on
M and X to obtain all the spin® structures on Y.

The cylindrical manifold X is equipped with a canonical spin® structure. To describe
it, we use Turaev’s description of spin®-structures in terms of smooth Euler structures,
[28, 33, 35].

A cylindrical spin® structure on X can be described by indicating a nowhere vanishing
vector field V on X pointing outwards along the boundary.® The determinant line bundle
of the spin® structure oy determined by V is the oriented real 2-plane bundle (V) — X.
Along 0X we have (V1) = TOX. The tangent bundle of 9X has a canonical trivialization,

5For technical purposes, in all the computations to come, we will slightly deform such vector fields to
get vector fields coinciding with 9; in a small neighborhood of the boundary, where ¢t denotes the outgoing
normal coordinate near the boundary.
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uniquely defined up to a homotopy. More precisely, an oriented basis of H1(90X;Z) induces
a trivialization of T0X. Different bases lead to homotopic trivializations.

We use the basis {mg, ko} of H1(0X,Z) to produce a trivialization of 70X . The canon-
ical spin¢ structure on S' x D? is described by the vector field

Vo = cos(%r)ko + sin(%r)&, r € [0,1],

where we denote by 7 the radial coordinate along the disk D?. We will denote this cylindrical
spin® structure by core. Alternatively, we have an injection

Sping, (X) — H*(X,0X;Z) 2 Z, o c[“(deto).
Its image consists of the odd elements of H?(X,, 0X,;Z) = Hy(X;Z). We choose the core
St x {0} as generator of Hi(X,Z). The canonical cylindrical spin® structure is uniquely

determined by
i (core) = e1((Vo)') = 1 € H*(X,0X;7Z).

We denote by Ly € Pic™ (X, 0X) the complex line bundle <Vo>L equipped with the canon-
ical trivialization along 0X. We can obtain all the other cylindrical spin®-structures by
twisting Lo |sx by a homotopically nontrivial gauge transformation. More precisely, given
a gauge transformation v : 0X — S' we denote by [v] = v*(5kdv/v) € H'(0X,Z) the co-
homology class it determines. If we change the canonical trivialization of Lo |gx to vLo |ax
then

c1(y - core) =1+ 20x[7] (4.2)

where 6x : H'(0X,Z) — H*(X,0X;Z) is the connecting morphism of the pair (X,9X).
To see this, it suffices to pick a connection a Ag of Ly trivial near X with respect to the
canonical trivialization and a connection A, trivial near X with respect to the trivialization
v - Lg. Then, near 0.X we have

Ay =yAoy-1 = Ao — 2dv /7.

Choose a smooth cut-off function ¢(r) such that ¢(r) = 0 r = 0, and ¢(r) = 1 for r = 1.
Then we can define A, := Ay — 2¢(r)dy/y. We deduce

Fa, = Fa, —2¢(r)dr Ady/~.

The compactly supported cohomology class dx[7] is represented by

o(r) c(r)

271 27

d(5—dy/v) = dr A dy/y.

Thus
d(r)

c1(Ay) = c1(Ag) +2 dr N dy /v

27

from which the equality (4.2) is obvious. Note also that

cSXmE!J =0
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so that twists by gauge trasformations which are homotopically trivial along the meridian
my do not change the cylindrical structure. The twisted cylindrical structure v - core is also
described by the vector field

VvV, = cos(%r)vko + sin(%r)&«.
We can now provide the following interpretation to the diagram (4.1). We begin by defining

a gluing operation
# 1 Sping, (M, 0M) x Spin®(Xy) — Spin®(Y,,).
Start with spin® structures s and 6x on X represented by vector fields V3; and Vx

which are = 0; near the boundary. Observe that Vx is p-invariant. Consider the cylinder
Co :=[~1,1] x St x S with the vector field T given by

+1 +1

To(t,0', 6% = cos(t ™) + sin(t 7)Dpr.

This vector field points inwards along the boundary of Cy. If we now think of Y, as an
union
ch =M U CQ Ugo:@X—>{l}><T2 X

then we get a nowhere vanishing vector field on Y, equal to Vjy on M, Ty on Cp and Vx
on X. We call this vector field V;#,Vx and denote the corresponding spin® structure by
TMHAPOX -

If we fix a cylindrical spin® structure 6¢9 on M then any other cylindrical spin® structure
on M is obtained in an unique way from og by twisting with a L € Pic®(M,0M),

(609,L) — 69 ® L.
If we set
Go(p) := Go#,core
then, for every Ljs € Pic™(M,0M), Lx € Pic™(X,0X) we have
(60 ® Lar)#(core @ Lx) = oo(p) @ (Lm#Lx).
As we have explained, we have an identification
A Pic™®(X,0X) — Z, L ci(L) € H*(X,0X;Z) = Z,

and we denote by L, € Pic™(X,0X) the cylindrical line bundle such that ¢} (L,) = n.
We also set
core, = core ® L.

The gluing map ¢ induces by pullback a morphism
©* : Goar = Map (OM, S') — Gox = Map (90X, S1).

gauge group Ggns ( resp. Gox) acts on Pic™ (M, 0M) (resp. Pic®™(X,0X)) by twisting the
trivialization along the boundary. For every v € Gg)s we have

60 @ (YLm#pLn) = 60 @ (Ly#,U5(1/7) Ln)
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=60 ® (Lu#toLn-sxrs)) = 00 ® (Lo Ln—(p)r,mo))-

Recalling that ¢ := I',(my), we deduce ¢! = (F’;)*lmg, and if [y] = ¢! we deduce

oo() ® (YLu#pLn) = oo(p) ® (Ly#eLn).
We can now provide the promised interpretation of (4.1).
Proposition 4.2. Every spin® structure 6 on Y, can be written as
0 = OpFpcore

for some 6 € Sping,,(M). Moreover if 61,62 € Sping,, (M) then

o1 pcore = oot core <= dn € Z such that 69 = ncﬁ&l.

B.p=0,9g=1<+= c= )\g. Set Yy :=Y),. In this case we also have a short exact sequence

0 — Z(\o) 25 Hy(M;Z) — Hy(Yo,Z) — 0.

The cycle j. Ao has order mq in Hi(M,Z). We deduce that for every spin® structure o on
Yy there exist exactly mg cylindrical spin® structures o on M with the property

~ N
0 = G F#qcore.
We summarize the facts proved so far.

For every ¢ € SL(2,7) there exists a natural surjection

Ty + Sping, (M) — Spin®(Yy), &+ d#,core.

Moreover,
To(61) = Tp(69) <= In € Z: &9 = (nc)61.

Denote by @?p the image of H'(X,Z) in ©F via (¢* o I'*)~!. Note that @ﬁw is the group
generated by ¢f. The results we have established show that the map

Ty 0 Sping, (M) — Spin®(Y,)
is @%VI + @Ep—invariant. In particular, it descends to a map

7 1 Sping, (M)/ (0, + ©%) — Spin®(Y,).

Set Gy, = @ﬁ/((%%\/[ +@?p). The quotient Spiniyl(M)/(@gw —1—6&) is equipped with a residual

G, action. We can use 7, to transport it to a G',-action on Spin®(Y,). On the other hand,
we have isomorphisms

Spin(M) = Sping, (M)/6% = (Sping, (M)/(6}, + 64)) /G,
We conclude that 7, induces a map

Ty 2 Spin®(M) — Spin®(Y,)/G.,.
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Remark 4.3. The group G, can be given a different geometric interpretation. The closed
curve I' o (ko) determines a homology class K, € Hi(Y,,Z). Then G is isomorphic to
the cyclic group generated K. For 0/1-surgery this is an infinite cyclic group. In this case
the generator of G, may not be a primitive class. It has the form mg x primitive class.
For the other surgeries the group G, is finite. In this case the extension

022206}, +06, e =72~ G, —0

defines an element y € Ext(G,,Z?%) = Hom(G,,Q/Z x Q/Z), and thus can be identified
with a pair (x1, x2) of characters of G',. More precisely

1
x1(Ky) = o ri= |G|, x2(Ky) = —lkyw(K¢,K¢),

where lky,, denotes the linking form on Y,,. We refer to [28] for proofs and details.

4.2 A relative “invariant”

We continue to use the set-up and notations described in 4.1. Fix a sufficiently small positive
exponential weight p. Set

Gar = Gpews G = 05 C Gp := L>(T, SV).

The group of components of G is ©f while the group of components of M is the subgroup
of ©f generated by .

We identify the trivial complex line bundle over 7" with the (holomorphic) tangent bundle
of T equipped with the canonical trivialization. Denote by By the trivial connection on the
trivial complex line bundle over T. Recall that i denotes the spaces of flat connections
on the trivial line bundle over T' modulo even gauge transformations in Gr. We have a

homeomorphism

My — HY(T,R)/20*
defined by
1
(Bp +1ia) mod Gp 2—[@] mod 20F,
T

where [a] € H'(T,R) denotes the harmonic part of the closed 1-form a. Denote by 9 the
space of flat connections on the trivial bundle on T modulo even gauge transformations in
Sé\f‘[ . This space is homemorphic to the cylinder

HY(T,R)/27Z)*.
The space S)JTZ_\F/[ is a Z-cover of M. We denote by ﬁT the universal cover of My,
M = HY(T,R).

The unique bad reducible in M7 lifts to a lattice of bad points in ﬁtT which can be identified
with 20,

For all 0 < r < 1 denote by Mp(r) the complement in M7 of an open disk of radius r
centered at [Bg] € Mr. Topologically, My (r) is a torus with a small disk removed. Denote
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Figure 5: Spaces of gauge equivalences classes of flat connections on a torus

by MM (r) the preimage of My(r) in M. Topologically, M (r) is an infinite cylinder
with a sequence of holes in it; see Figure 5. We define ﬁT(T‘) in a similar way. It is a plane
with small holes centered at the bad points.

Fix a cylindrical spin® structure 6 on M, a very small r, and perturbations parameters
(n,w) on M in the generic way explained in 3.4. We get a moduli space EDTMU( )= S)ﬁu(r).
When no confusion is possible we will write 90t M (7) instead of m wm,s(r). The image Do M
is a compact immersed curve in f)ﬁ%‘r/‘[ . Before we describe it we consider a special case which
will play an important role in the sequel.

Example 4.4. Suppose M is the solid torus S' x D?. We think of it as a cylindrical manifold
equipped an admissible metric of nonnegative scalar curvature as explained in Appendix
B. Then all the finite energy monopoles corresponding to the canonical cylindrical spin®
structure ¢ = core are redumble It consists of Gj; equivalence classes of flat connections
on Lo, and the moduli space EIRM is diffeomorphic to a circle. We would like to understand
the image 0o SJTM We want to show that Bg & 0 E)JTM, and then describe the position of
By relative to 0 iITIM

First let us emphasize one subtlety. The map O is not simply a restriction-to-the-
boundary map. The bundle L is equipped with a canonical isomorphism

I LO |T—> QT
If B is a flat connection on Lo then
OsoB = 9B 971

Then )
dsoB =Bg +ib, be QYT), db=0.

Denote by r the radial coordinate along D?, by @ the angular coordinate on D?, and by
¢ the angular coordinate along the core S'. As in 4.1 we set mgy := {1} x dD? € O,
ko= S' x 1€ ©. Then

f- Lo 1= L
Mo = 974 %o 27
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Choose a smooth, nonnegative, nonincreasing cut-off function ¢(r) such that ¢(r) = 1 for
ra~1landr=0forra1/2. Set B':= B —ic(r)b

OB’ = By

and . 1
i
— Fa = —
o B 27
The compactly supported 2-form %FB, represents the relative Chern class of Ly which by
was chosen to be the canonical generator of H?(M,dM;Z). Equivalently, this means

1 1
)

= — MO = —
27 {1}><D2 27 oD2

Oprd.

1 b.

Thus 1
5be —k + Zmb,

Observe that MY = @ﬁ/2ng. The image sy in mM is (—kg + ng)/2ng, and it
looks like in Figure 6.

............................................

ucible/

Figure 6: The traces left by the monopoles on a solid torus

We now consider the general case. We decompose

M5 (1) = MGG () UMY 5 (7).
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We want to analyze first 6ooﬁ’j\2fl&(r). Recall that
Myits (r) = { As By + +in = 0} /21w

where wy € L2, is a harmonic 1-form which defines a positive® generator of H'(M,Z).
We will always choose this positive generator to be the Poincaré dual of the cycle A €
Hy(M,0M;Z) which bounds the longitude X.

Fix a flat connection By on det(5) and a smooth 1-form by € L2, such that sn = dby.
Then the finite energy reducible monopoles have the form

A= BQ + ilA)o + itwy.

Let us observe that since 7 is compactly supported the restriction of by to 17" is a closed
1-form. We will denote it by by The restriction of wy to T' generates the image of the
morhism

HY(M,R) — HY(T,R)

By passing to Poincaré duals we deduce that wg|7= A*.

The cylindrical spin® structure & carries additional topological information. First, the
absolute Chern class ci(det 5) € H%(M,Z). This is completely characterized by the holon-
omy representation defined by the flat connection By

holy : Hi(M,Z) — S.

The second more refined information is the relative Chern class ¢ (det &) € H2(M,0M;Z),
and is due to the cylindrical structure. The absolute Chern class is the image of the relative
Chern class via the natural morphism

H*(M,dM;7Z) — H*(M,Z).
As in Example 4.4 we have
OsoA = By |7 +ibo + itA* 4 ib

b is a closed 1-form such that %b is integral, and its presence is due to the cylindrical
structure. We now write
By |r= By + ixo-
The closed 1-form %XO is uniquely determined mod ZA!, and satisfies the holonomy con-
ditions,
holp (j«c) = exp(—i(xo,¢)), Vce€O.

In particular, %<XO> A) € Z. Arguing exactly as in Example 4.4 we deduce

1

5 (bt X0, \) = deg(6) = (il (det &), A) € Z.

5The positivity assumption refers to the chosen orientation of Hl(M7 R) required to orient the moduli
spaces.
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We write )
%b = u)\g +v,ug, u,v EZ
LI f
5, X0 = T0Ag + Yorg, Ty € Q.
We deduce
vmo = — deg((})a moy € Z,

If we define ag, 85 € QN [0,1) by the equalities

exp(27ifs) = hol 5 (j«Xo), exp(—27ias) = hol 5 (Jutto)-
We deduce
ro—as €L, Yyo—Ps €L

The ambiguity in yg is due to the fact that there is no canonical identiﬁ/(_:\ation7 between
cylindrical spin®-structure and cylindrical line bundles. The image of im}’\f[d in 932¥ =
H(T;R)/2Z)¥ is a circle. Its lift to the universal cover is the line

dea(é
t— by + (ﬁ& - eg(oa)

)u?) + 1A

depicted in Figure 7.

(ocg By~ deg(%)/mo) +b,

# #
X'=m, X,

Bad reducible

Figure 7: The boundary trace left by the reducible monopoles on a knot complement.

“When M is the complement of a knot in an integral homology sphere then there is a canonical way of
associating a cylindrical line bundle to a spin® structure.
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Suppose now that we perform Dehn surgery on M by attaching a solid torus X = S xD?
using a gluing map ¢ : H1(0X,Z) — H1(0X,7Z). As explained in 4.1 this means attaching
0X to OM using the gluing map

Toyp:dX -2 ax -1 oM.

We have an oriented basis myg, ko of H1(0X,Z) where we orient 0X as boundary of X and
an oriented basis {\o, no} of Hi(OM,Z) = O, where OM is oriented as boundary of M.
With respect to the chosen bases I' has the matric description

F:|:(1) (1):|<:>m0*—>#0,, koi—>)\0.

The attaching map ¢ can be identified with a matrix in SL(2,Z)

ool
= € SL(2,7),
=1y 8 (2,Z)
Then _ _
T', =Top= ¢ B A
0= p= » o« = myp — plo + gAo.

We will denote the above matrix by I' The map F;l induces by pullback a map

p/T
(Ty); : H'(0X,Z) — H'(OM,Z) = O*.
With respect to the bases {mg, kg} and {)\g, ,u%} it has the matrix description

IR

(Tpjg)t = [ -» q P « ] = Ly

Consider now the horizontal oriented line
T:={(-kj+tm}; teR} , C H'(X,R).
This line is depicted in Figure 6 and it is the lift to H'(0X,R) of the curve
OoeMx core C MYy = H' (DX, R)/2Zm},.
The image of T via (I'y)y is the line
To = Tp)q = {—(m% + auﬁ) —tcty o = qu —i—p,u%, te R} c H'(OM,R).

Note that T stays away from the lattice of bad points H'(0X,2Z) . Since I')/q maps bad
points to bad points we conclude that the line T),/,, will also stay away from the lattice of
bad points 20%. Set

Cs(r) = BooMitf 5 (1) C MY, x5 = BocDy5L, © MY
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and denote by e — [e] either one of the natural projections
HY(OM,R) — My, MM — oy,

[Tp.q] is a closed curve on M7 which does not pass through the unique bad point [Bg]. [xs]is
a closed curve in My, the image mod 20 of the line

renl
th+@r—ﬁ?)$H%cm@Mm.

[Cs(r)] consists of

(i) Immersed closed curves on the torus My away from the unique bad point By.

(ii) Immersed closed curves on the torus M7 with boundaries on a small circle centered at
the unique bad point of M.

(iii) Immersed curves with both boundary points on [xs].

(iv) Immersed curves with one boundary point on [xs|, and another on the small circle
centered at [By].

We conclude that [Cs(r)] is partitioned into two parts
[Cs(r)] = As(r) U Bs(r)

where A consists only of closed curves while B consists only of curves with boundary. The
closed curves [ys] and A carry multiplicity

As we have explained in 4.1, the orbit of ¢ in sz'ngyl(M ) modulo the twisting action
of HY(OM,Z) can be identified with the spin® structure underlying 6. We will denote both
this orbit, and the underlying spin®-structure by [6]. The gluing operation # associates
to the orbit [6] (on M) a Gg-orbit of spin®structures on Y,. We will denote this orbit
by [6], = [6]p/q € Spin©(Y),,,). The rational number 35 is essentially the level invariant
defined in [30, Sec. 17].

The gluing results of [26, Sec.45] imply that we have a bijection

[Co(M] N [Tpgl = | MY, 0).

O’G[é’]p/q

The cohomology classes 2)\?) and Zug are natural generators of Hy(9Mp,7Z).
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A The odd signature operator on admissible 3-manifolds

Suppose M is an admissible 3-manifold with a cylindrical neck R xT?, where T2 is equipped
with a flat metric. The odd signature operator on M is the first order formally selfadjoint
operator

SIGN : (2! ¢ Q%) (M) — (Q' & Q°)

given by the block decomposition

SIGN=| " —d4 |
—d* 0

Along the neck any 1-form « has a decomposition
a=dtNag(t) +ai(t), ap:=_tw, Jy:=0], a1 € Ql(ﬁooM).
Similarly, a 2-form has a decomposition
w =dt Nwi + wa.

Then R
da = dt A (qq — dog) + dog

and A
kdo = x(ag — dag) + dt A\ xday.

Using the equality —d* = *d% we deduce

A

—d* = id(*ao —dt AN xaq) = *(dt A xég + dt Ad o)

:d0+*d*a1:do—d*a1.

For f € Q%(M) we have along the neck

d = dt Adf + df.
Thus
aq xG — *dagy — df
SIGN | dt Aoy | = | dt N (—f + *daq)
f G —d oy

Thus, along the neck we can regard SIGN as an operator on Q0@ Q! @ QY (0, M) given by

a1 * 0 0 0 —x*xd —d aq
SIGN | o9 | = 0 0 -1 0+ *d 0 0 o
f 01 0 —d* 0 0 f

00 -1 0 d —=xd ™)

=10 % O O— | d° 0 0 o

1 0 0 xd 0 0 f
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This shows that SIGN is an APS operator in the sense of [26] and

0 d —=xd
0xxSIGN = | d* 0 0 =: J.
*d 0 0

The kernel of 3 consists of triples (ap, aq, f) € (20 ® Q! @ Q°)(T?) such that

d*Oq = 0, *qu =0

doag = *df

This shows that «; is harmonic and «g and f are constants. kerH is equipped with
symplectic structure induced by the metric on ker h and the compatible almost complex
structure

* 0
J:=10 0 -1
01 0
The L2-kernel of SIGN consists of L2-harmonic 1-forms and thus

kerz SIGN = Range (H'(M,0M) — H'(M)).

The extended kernel of SIGN consists of pairs («, f) where f is a real constant and « is an
extended L2-harmonic 1-form. Observe that if we identify o = dt A ag + a1 with ag @ aq
then

Ooo@ = Oootg B Oso 1.

We set 0% a0 := O and 9L, := Ooa1. The subspace Lgy, := oo kerey SIGN C ker H is
Lagrangian so that
J(O0xo(a, f)) L L, Y(a, f) € kerey SIGN.

In particular,
J(,0) L (0,0f), Y(a,f) € kere, SIGN.

This implies that
%o =0, Y(a, f) € kerey SIGN.

Using the results of [26, Example 4.1.21] we can identify L,y, with Ly, the image of
(H' @ HY) (M) in (H' @ H°)(T?) C ker K. By comparing the short exact sequences

0 — kery2 SIGN — kere, SIGN — Ly, — 0

and
0 — kery» SIGN — (H' @ H°) (M) — Loy — 0

we deduce
kere; SIGN = (H' @ H°)(M), Lan = Liop.

In this work we also use the weighted odd signature operator SIGIN,,, i > 0, given by

SIGN,, = [ sd  —d ] _ [ &d —d

—CZ*“ 0 —m,Q”cZ*mQ# 0
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Along the neck it has the form

aq * 0 0 0 —xd —d aq
SIGN“ ag | = 0 0 —1 |0+ *xd 0 0 (o)
f 01 0 —d*  2u 0 f
x 0 0 0 d —xd o
=10 0 -1 O — | d —2u 0 g
01 0 xd 0 0 f
so that SIGN, is an APS operator as well with
. 0 d —xd
O0xcSIGN,, = | d* -2 0 =: H,.
xd 0 0

Denote by A} the Laplacian on k-forms on T2 equipped with a flat metric. Let A; > 0
be the smallest positive eigenvalue of Ag. We want to determine the eigenvalues v of H,
such that v? < % assuming that y is sufficiently small, p? < i‘—é. Observe that if v is an
eigenvalue of }, then v? is an eigenvalue of 9—(3. Next, observe that

Ay —2ud 0
f}(i = | —2ud* A¢g+4u®> 0
0 0 Ay

Thus if (a1, ag, f) is a nonzero eigenvector of H,, corresponding to the small eigenvalue v
we deduce
d*oy = (2u+v)ag
dog = *df + voy (A.3)
xdoy = v f

and
(Ao +4p®)ag = 2ud* oy + 2ag
Aray = 2udog + V2ag . (A4)

Aof =vf
From the second equation in (A.3) we deduce
Aag = d*dag = vd* ag = v(2u + v)ay. (A.5)

If v = 0 then we deduce that both ag and f are constants and d*a; = 2uag. The only
constant which is a divergence is 0 so that ayg = 0. Hence, for p > 0 we have

kerH, = < (ap, a1, f); ag=0, f=const, daoy =d*ag =0p=—= dimpH, =3. (A.6
it it

If0 <12 < % we deduce from the third equation in (A.4) that f = 0. If ap = 0 as well then
we deduce from (A.3) that oy = 0. Thus ag # 0 and we deduce from (A.5) that v(2u + v)
is an eigenvalue A of Ag. Notice that

A A A
2 1 2 1 1
L — — = v(2u+ —.
< 1671/ < 1 V( 1/)< 9
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Hence A = 0 so that v = —2u and «ag € ker Ag which means that g is a constant. Using
this information in the second equation of (A.3) we deduce that a; = 0. We have thus
proved the following result.

Proposition A.1. For small u, u? < i‘—é, the operator H,, has only one nonzero eigenvalue

in the interval (—@, @) This eigenvalue is —2u and the corresponding eigenspace s
spanned by the vector
(Oé(), ag, f) = (1’ Oa 0)

B Nonnegative scalar curvature metrics on cylinders

We denote by 6%, 2 the angular coordinates on 72 := S x S' so that
/ do* A do* = 4r?.
T2

A diagonal metric on T? is a (flat) metric of the form
g = ki(d0")? + ko(d6?)?
where k1 and ko are positive constants. We will prove the following result.

Proposition B.1. Suppose A € SLy(Z) and € > 0 is a very small number. Denote by go
the flat metric on T? described by

go := A* (d91)2 + (d92)2).

(In other words, go is the pullback by A of the canonical metric on T%.) Then there exists
a constant § > 0 and a smooth path g(t) of flat metrics on T? such that

(@) g(t) = 5L2g(b Vit < g,

(ii) g1 := g(1) is a diagonal metric,

(iii) g(t) = g1, Vt>1—¢,

(iv) and the scalar curvature of the metric § := dt* + g(t) on R x T? is nonnegative.

Proof Set
6% = 90(0g1, Op, )

and, only for the ease of notation, reset

1
go ‘= ﬁgo-

Then, Jg1 is an unit vector with respect to this metric and we can complete it to an oriented
orthonormal frame of gg. We denote its dual coframe by {¢!, ©?} C Q}(T?). This coframe
is related to the original one, df', d#? via the equalities

©' = df' + agdb?
902 — ]{02
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where k is a positive constant. The path g(¢) will be described by indicating by a path of
coframes {¢'(t), ¢%(t)} which we declare to be orthonormal with respect to g(t).
We seek coframes of the form

1 1 2
o' = db' +a(t)do
{2z “ B.7)
where a(t) is a smooth function such that
alt)=0, Vt>1—¢ (B.8a)
a(t) =ag, Vt<e. (B.8b)

Clearly the conditions (i)-(iii) are satisfied for all choices of a(t) as above. We only need to
prove that we could choose a(t) constrained by (B.8a) and (B.8b) such that (iv) is satisfied
as well. We will use E. Cartan’s moving frame technique.

Set ¥ := dt. Then {¢°, p!, ©?} is an orthonormal coframe for § on X := R x T2. This
defines an orthonormal frame of X,

{607 €1, 62}

with respect to which the Levi-Civita is described by an so(3)-valued 1-from on X

0 =z
Fi=| -2 0 =z |, z,9,2€ QY(X).
-y —z 0

I' is determined by Cartan’s structural equations
aF=T NG, F:=| ¢

Using (B.7) we deduce .
a
dg® = dp* =0, dp' = - A ¢

where the dot denotes t-derivatives. We deduce

0=z AQ' +yAp (B.9a)
%po AN =—z AN + 2 A QP (B.9b)
0=—-yA’—2zA (B.9¢)
Set ' '
T = in(plu y= Zngojv z = szgokv Ti,Yj, 2k € COO(X)
i j k
Then

(B9a) = 290=yo=0, z2 =1
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(B.gb):>$1:2:1:0, $2+20:%
(B9c) = y2 =20 =0, y1 = 2p.
We conclude that

_ 4 . G i 4 g
$—2k()0> 2k907 z 2]{907
so that
4 0 902 S01
= % —cpi 0 gpo
—p- —po O

The curvature of the Levi-Civita equation, which we regard as a so(3)-valued 2-form (2, is
given by
Q:=dl'+ T AT.

The scalar curvature of g is given by
$=0(Q)

where, for any so(3)-valued 2-form 2 on X, we set

a(Q) = (e ej)esen) =2 Y (Qeirej)ej, e

i#j 0<i<j<2
= 2({2(eo, ex)er, co) + (o, ea)ez, co) + (Mer,ex)ezsen)) =2 > Ylerey).
0<i<5<2
Thus
S:=0(dl')+ o AT).
Now observe that
N
'Al= @ —p0 Al 0 Ol A ?
2k
AP =AY 0
We deduce that )
a
'Al)=2(—
o nr)=2 (5 )
Next, observe that
0 0 %gpo A @2
i 0 ¢ v a
dl=—¢"AN| = 0 ¢ |+ 0 0 0 — Ay + Ay,
2k 1 2k
- —po 0

Clearly, o(A1) = 0 while

Thus § = 0(2) > 0 for any choice of a(t) constrained by (B.8a) and (B.8b). B
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C Continuous families of Fredholm operators

This appendix is a quick survey and an expansion of the ideas introduced in [26, §1.5.1].
Suppose X is a compact smooth manifold and

Xo>2x—T, € FI‘ed(H(),HI)

is a smooth family of bounded, Fredholm operators between two Hilbert spaces Hy and H;.
A sub-bundle V of the trivial bundle H; := (H; x X — X)) is called a stabilizer for the
family T, if for every x € X the operator

T, WV,: Hy®V, — Hy, (h(),’l)) — T.ho+v e Hy
is onto. In this case the family of vector spaces
Ky (T,) :=ker(Te W V)

can be organized as a smooth vector bundle over X. We can think of V' as defining a
resolution of T, in the sense that we have a short exact sequence

0 Hy —~ HyaV 1% 0
Te TeWV 0
0o—2* H — g —% . 0

where the last two vertical arrows are onto.
If Vi C V5 are two stabilizers then we have a short exact sequence

O—)KVI (TO) - iKVz(TO) - ‘/2/‘/1 —0 (Kvl‘—>V2)

where we automatically identify V5/V; with the orthogonal complement of Vi in V5 and
map Ky, (T') — Va/Vi is induced by the orthogonal projection

Hy @ Vo — Vo /V1.

It is often convenient to regard (Ky,—.y,) as describing an acyclic chain complex. Taking
the direct sum of (Ky;.y;,) with the acyclic complex

0=V =V — (V2/V1)" =0 (Cviews)
we obtain the short exact sequence
0—Xn(T)o V' — K (T) & Vg — (Vo/V1) & (V2/V1)" — 0.

All vector spaces in the above acyclic complex are equipped with scalar products and thus,
as explained in [28], this chain complex is equipped with a natural algebraic contraction.
The torsion of this acyclic complex + algebraic contraction is a natural isomorphism

Ly, vy 2 det Ky, (T) @ det Vi* @ det(Va/V1) @ det(Va/V1)* — det Ky, (T) @ Vy'
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Since we have a canonical isomorphism det U @ det U* = R for every vector space U we will
regard Iy, v, as an isomorphism

Ly, py - v — Ly
where for every stabilizer V' we set
Ly :=det Ky (T) ® det V*.

In [26] we proved that
IV3/V1 = IV3/V2 © IVQ/VI'

An orientation of the family (7,) is a collection of isomorphisms
oy : R — Ly, V stabilizer

such that for every V; — V5 the diagram below is homotopically commutative

Tvy vy

Ly, —— Ly,
‘P‘;l\ /vaz
R

A family is called orientable if it admits an orientation. Notice that an orientation induces
an orientation on each of the lines det ker T, ® det ker T}, x € X. More precisely, if V is a
stabilizer then we have a short exact sequences

0 — ker T, — Ky, (1) — V/projy, (kerTj;) — 0

rojy,

0 — ker Ty ProJy Ve — Vi/projy, (kerTy) — 0
The above considerations imply the following result.

Proposition C.1. A family T, is orientable if and only if there exists an orientable stabi-
lizer V' such that the bundle Ky (T,) is orientable.

We can organize the collection of smooth families of Fredholm operators parameterized
by X as an additive category. The morphisms between two families (S,), (7o) are smooth
families (Lo, L1) of bounded operators

X >z~ Lij(x) € B(H;), i=0,1
such that the diagram below is commutative for every = € X,

Lo(x
H, o(w) Hy

Szl lTI-
Li(x)

H14>H1

We can talk about short exact sequences of Fredholm families. We have the following result.
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Proposition C.2. Suppose

0 s, Rl 7, @9 (C.10)

is a short exact sequence of Fredholm families. If two of the families are orientable then so
1s the third.

Proof We can find a trivial vector sub-bundle V' C H; which is a stabilizer for all three
families. We then have a short exact sequence

(90®1v,91)

(fo@l_v>,f1)T.®V V9 1wy S0

00— SewV
and thus a short exact sequence
0 — Ky () — Ky(T) — Kv(U) — 0.

The proposition is now obvious. H

The short exact sequence (C.10) induces for each x € X a long exact sequence relating
the cohomology spaces of the complexes S,, T, and U,. Suppose for exemplification that
we have chosen oriented bases in the cohomology of S, and T,. We know that there is
an induced orientation on det H*(U;). In all concrete computations one has to address the
following effectivity issue. How do we effectively produce bases of H*(U,) inducing the same
orientation on H*(U,) as the orientation induced by the short exact sequence (C.10)7

The recipe is very simple. Fix an arbitrary basis of H*(U,). We can now regard the
long exact sequence derived from (C.10) as a based acyclic complex. The basis we chose
on H*(U,) produces the desired orientation if and only if the torsion of this based acyclic
complex is positive.

D Gluing formulae for the eta invariants

We have included here for the reader’s convenience a survey of the basic facts concerning
surgery formulae for eta invariants. We follow closely the elegant presentation in [12].

The selfadjoint operators with compact resolvents behave in many respects as common
finite-dimensional symmetric matrices and we will refer to such operators as excellent. The
eta invariant extends the notion of signature from finite-dimensional symmetric matrices to
an important subclass of excellent operators.

The signature of a finite-dimensional symmetric matrix A is defined as

sign (A) = number of positive eigenvalues — number of negative eigenvalues.

This definition however does not extend to infinite dimensions since the above terms are
infinite. One could try to “regularize” the definition. For each s € C we set

dimker(A — \) dimker(A — \) — dimker(A + \)
nals) = > AT T > = (D.11)

A€o+ (A) A>0
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where 0*(A) = spec (A) \ {0}. Then one can define
sign (A) = n4(0).

The advantage of this new definition is that it is admirably suited for infinite-dimensional
extensions. Assuming for simplicity that A is invertible we can define

na(s) = tr(A-|A|7CHD),|A] = (4312,

Using the classical integral
o0
MNa)z™ = / et x>0, a > 1,
0
we get (z+— A%, a— (s+1)/2)

na(s) = ! 172) /OOO =1/ 24y (Ae_tAQ)dt.

I'((s+1

The right-hand side of the above expression has two advantages. First of all, it makes sense
even when A is not invertible and on the other hand, it extends to infinite dimensions. We
will denote the trace of an infinite-dimensional operator (when it exists) by “Tr” while “tr”
is reserved for finite-dimensional operators. We have the following result.

Proposition D.1. (a) Consider a closed, oriented Riemannian manifold (M,g) of dimen-
sion v, E — M a Hermitian vector bundle and

D:C*®(E)— C™(E)

a first order selfadjoint elliptic operator. Then

np(s) = ! / =D/ 27y (De_tDZ)dt (D.12)

I((s+1)/2) Jo
is well defined for all Res > 0 and extends to a meromorphic function on C which is
described by the Dirichlet series (D.11) for |s| > 0 . Its poles are all simple and can be
located only at s = (v+1—k)/2, k=0,1,2,---.

(b) If v is odd then the residue of np(s) at s =0 is zero so that s = 0 is a regular point.

For a proof of this nontrivial result we refer to [3, 4, 10]. When d is odd we define the
eta invariant of A by

n(D) :=np(0).

Another important source of excellent operators arises from elliptic selfadjoint boundary
value problems. For more details on the properties of such problems we refer to the clear
presentation in [4].

Suppose (N ,§) is a (2n+ 1)-dimensional, compact Riemannian manifold with boundary
N = &N such that a tubular neighborhood of N is isometric to the cylinder (0, 1]x N, dt?+g)
where g is a Riemann metric on N and ¢ denotes the outgoing normal coordinate. For each
R € (0,00] we denote by Ng the Riemann manifold obtained from N by attaching the
cylinder [0, R] x N.
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We assume F — N is a hermitian vector bundle on N. Set E := E lox- Suppose we
are given a formally selfadjoint Dirac type operator

D:V>(E) — C*(E)
which near the boundary has the APS form
D =J(d — D), J=¢(dt),

D*=D, JD+DJ =0, (D.13)

where & denotes the Clifford multiplication on E induced by D and D : C®°(E) — C*°)(E)
is a formally selfadjoint Dirac type operator on N. The operator J induces a symplectic
structure on L?(E),

w(u,v) = /N (Ju,v)dv,.

Civen a closed subspace S C L?(E) we can define a closed densely defined operator Dg to
be D acting on the domain

Dom (Dg) = {u e LY(E); u|ye s}.

Denote by i}(% the closed subspace of L?(E) spanned by the eigenvectors of D corresponding
to positive/negative eigenvalues. We denote by H% the orthogonal projection onto 3—(%. It
is known that ij) is a zeroth order pseudodifferential operator. Its principal symbol is
completely determined by the principal symbol of D. Consider the following family of
closed subspaces of L?(E)

L=Lp= {A C LX(EB); A*=JA, dim(HENA) < oo}
The condition A+ = JA means that A is a Lagrangian subspace. Define now a subfamily

L consisting of those Lagrangian subspaces such that

e The orthogonal projection Py onto A is a zeroth order pseudodifferential operator.
e The operator Py — II}, is a smoothing operator.

The space L is not empty and if fact it contains two remarkable elements.

The Calderon subspace Define the Cauchy-data space

L2
AD) = {uly; wekeDOL22E)} C LX(E).

Then according to [4] we have JA(D) e LE. We will refer to JA(D) as the Calderon
subspace.

The Atiyah-Patodi-Singer subspace  Set Loo(f)) := O kerey D C ker D. Loo(f)) is
a Lagrangian subspace of ker D. The Atiyah-Patodi-Singer (or APS) Lagrangian is

Agps(D) := L®(D)* @ Hp = JL=(D) © K,

We have the following result (see [4, 37]) for details).
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Theorem D.2. (a) There exists a natural topology on LY (described in [29]) such that
L%O is a homogenous space for the group U™ of unitary operators U : L*(E) — L*(E) such
that 1 — U is a smoothing. The stabilizer of A € L%o can be identified with the subgroup
0% C U consisting of those unitary transformations which commute with the orrthogonal
reflection through A. L%O can be viewed as a smooth manifold with the tangent space at A
canonically identified with TYU™ /T1O0.

(b) For every A € LODO the operator Dy is excellent. In particular, the correspondence

A — Dy is smooth.
(¢) For every A € L the Dirichlet series (D.11) associated to Dy converges for |s| > 0
and extends to a meromorphic function Np, On C with s =0 a regular point.

We set (D, A) :=n p, (0) and define the reduced eta invariant of D by the equality

~

&(D,A) = = (n(D,A) + dimc ker Dy).

| =

£(Dy) does not depend continuously on D but exp(2mi&(Dy) does. Moreover if
0,15t — A € LT
is a smooth path then

E(D, A1) —&(D, Ag) = SF(Dy,;0<t<1)

1 ! oric(D. A d 2mie (D, A))dt
+27Ti/0 eXp(_ 7[-15( ) ))&GXP( 7T1£( ’ )) )

The integrand in the above equality is called the infinitesimal variation of £, and is denoted

by
ig(b Ar)
Clt s 43t ).

In the case when Ay = exp(itH)Ag where H is a selfadjoint smoothing operator, so that
iH € T7U°, the infinitesimal has the more explicit description

d A 1
— |t=0 &(D, Ay) := =Tr (H).
7 lt=0 €(D, A¢) = ST (H)
This can be given a more conceptual description as follows. Consider the Fredholm deter-

minant map

det : U® — S, U detU.
Then, define
* 1 o9]
w = —(det?) (Tﬁde) e QL (u).

This is a left invariant 1-form on U* and for every iH € T1U* we have

w(iH) = —%Tr ().
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Since the map det? is O invariant, the form w descends to 1-form on L%" which we continue

to denote by w. Then
d

dt
where A, € TAtL%O is the tangent vector to the path ¢t — A;. Let us point out that if
v :=1t+— A; is a closed loop in L%" then the Maslov index of the loop

f(f)a Ay) = W(At) (D.14)

t— (3(), A(D))
is given by
B MDY = = f = —u(A(D), 7).
Example D.3. Consider the operator D on L?([0, R],C) domain
{u e LY2([0,7],C); argu(0) =0, argu(r) = 7r/3}
defined by

. d
Du = —idi; + mau

where a is a real number. This operator is selfadjoint has compact resolvent and the
spectrum consists of simple eigenvalues A € R such that

)\—TFTCLEg—f—Zﬂ'.

Thus 1
spec (D) = {7‘((7"& + 3 +k); ke Z}.

Set o, :=ra + 57— Lra + %J Assume a, # 0. Then

sign (o, + k)
np(s) =
D 1;2 | + k|* kgoar—klds kzm]k—kl—ak*

= C(Sa aT) - C(s7 1- Oér)

where ((s, c) denotes the Riemann-Hurwitz function

1
((s,c) = Zm

k>0

Using the computations in [36, Sec.13.21] we deduce
1
np0) =¢(0,0,) —¢(0,1 —a,) = 5 —ay — (5 —1=-ap))=1-2a,.
The eta invariant depends on the length of the interval, but observe that our operator

violates the compatibility condition (D.13).

89



Example D.4. For 6 € [0, 7) consider Dy the operator on L?([0, R], R?) with domain
{ueL"?([0,r),R?); u(0) € Lo, u(r) € Ly

where Lg is the line y = 0, Ly is the line y = tan(f)z, and D acts according to

. d
Dou = J—
o=
where
0 -1
J—[l : ]

The eigenvalues of Dy are obtained by solving the equation
exp(—rAJ)Lo = Lg

so that
T /0

spec (Dg) = — (— + Z).
r\T
Arguing as in the previous example we deduce

0 1 6

Mo = p, (0) =1 =2, & :=&p,(0)= 5 — .

Note that this eta invariant is independent of the length r. Next observe that

TZE o9 4=,
T i

13
2(§s - 5—5) =MNe —MNee =MNe — Ng—e = —2; + 2

In this case the space of lagrangian boundary conditions can be identified with the space of
1-dimensional subspaces of R? and the form w on RP! = §! is w = —%dG. The variational
formula for the eta invariants predicts

£ — & . = SF(Dy; —5§0§€)—1/ g —1- 2%

) . ™
which agrees with the above direct computation. Notice that
SF(Dp; —e <0 <e)=pu( (Lo Lo),—e < 0 <e).

Consider the more general situation where Dy has the same domain as above but acts
according to

Dyu = J(i —A)u

dt
where
1 0
A= [ - } |
Using the variational formula we deduce
. . . 0—m/2
(D) — €(Dyja) = SF(Dys 1 € n/2,0) — T2
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1 40
= M((Lt @LO’FGTA);t & [7'(/270]) + 5 o ;

where I',ra C R? @ R? is the graph of thAe symplectic map ™. Thus we only need to
compute (D /5). Observe that A € spec (Dp) if and only if

exp(r(A — AJ))Lo = Ly.

To compute this exponential observe that the two matrices A and J anti-commute and
J? = —1 = —A? so that
(rA —rXJ)? = r2A% —r2)\2

Now observe that (rA — r\J) commutes with 7242 — \? so that
(rA — A2 = (P2 = 2XDF 0 (rA — X)L = (02 — 2 2X2)F(r A — rAJ).

Thus

exp(r(A —\J)) ir —r2)\?%) << ! + L (TA—T)\J))
k=0

2k)  (2k+1)!
Now observe that

> 07 (7" —7"2/\2)

—’I")\ ZZO:O m(rz — 7"2)\2)k

exp(r(A — AJ)) [ . ] _

In the special case when 6 = 7/2, so that L/, is the y-axis of R?, we deduce from the
above computation that the spectrum of A is symmetric with respect to the the involution
A «—— —\ so that the eta invariant in this case is zero. Observe that 0 ¢ spec (D AW /2)
that & ( x/2) = 0. In general 0 € spec (Dg) if and only if "4 Ly = Lg. This never happens
since €™ Ly = Lg. Thus, in this general case we also have

We have the following fundamental result due to P.Kirk and M.Lesch, [12].

Theorem D.5. (Surgery formula for eta invariants) Suppose (N, g) is an odd dimen-
sional manifold decomposed into two parts Ny by an oriented hypersurface N such that a
tubular neighborhood of N is isometric to the cylinder [—1,1] x N equzpped with the metric
dt? +g, g == § |n. Denote by N, the manifold obtained from N by replacing the neck
[—1,1] x N with the longer one [—r,r] x N. We get similarly two manifolds with boundary
NZE (see Figure 8).

Suppose D is a selfadjoint Dirac-type operator on N such that along the neck has the
form

D= (8-D), J:=e¢(dt), JD+DJ =0, D'=D.

Denote by ﬁr the obvious extension off) to Nr and set ]5;'5 = ﬁr |Ni. Then
£(Dy) = €(DF, JADS)) +€( Dy, ADY)).
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z>

>
'—tz+

Figure 8: Adiabatic splitting of a manifold

More generally, if A* € L D and
0,13t — AF € LY.

is a pair of smooth paths such that A connects JA(D;) to At and A, connects A(DF) to
A~ then

§(D,) —¢(DF A —€(D; A7) = SF(DF, AF)+ SF(D; A7 / (o (i) 4= (A7)}t

— u(AF AD) + p(Ay A(D / {ma(hf) + = (Ap) Jat

where (e, o) denotes the Maslov index of a pair of paths of Fredholm lagrangians.
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