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Introduction

Throughout the paper we will use the notations in [26].
Hk(M, g) will denote the space of k-forms on the compact oriented manifold M with

respect to the metric g
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1 Three dimensional monopoles

1.1 The 3-dimensional Seiberg-Witten equations

Suppose M is an oriented 3-manifold. To formulate the Seiberg-Witten we will need to fix
additional geometric data.

• A Riemann metric g.
• A spinc structure σ.
• A real co-closed form η.
• A smooth function µ : M → R.

The spinc structure σ determines a bundle of spinors Sσ → M . We denote by detσ the
determinant line bundle of Sσ. Fix a Hermitian metric on detσ and denote by Aσ the space
of connections on detσ compatible with the Hermitian metric.

We have a Clifford multiplication map

c : T ∗M ⊗ C→ End(Sσ), α 7→ c(α).

We normalize this multiplication so that

c(dvg) = −1.

This is equivalent to the identity

c(α) = c(∗α), ∀α ∈ Ω1(M).

If iα is a purely imaginary one form on M then C(iα) is a traceless symmetric endomorphism
of Sσ.

The configuration space C = Cσ consists of pairs C := (ψ, A) ∈ Γ(Sσ)×Aσ. The group
G := Map (M.S1) of gauge trasformations acts on C according to the rule

γ · (ψ, A) =
(
γ · ψ,A− 2

dγ

γ

)
.

For every configuration C = (ψ,A) we denote by Stab(C) ⊂ G the stabilizer of C with
respect to the G-action. It is known that

Stab(C) = {1}, S1
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and
Stab(ψ,A) = S1 ⇐⇒ ψ ≡ 0.

The configurations with notrivial stabilizer are called reducibles. The others are called
irreducible. We will denote the set of irreducible/reducible configurations by Cirr/Cred.

Any connection A ∈ Aσ canonically determines a formally selfadjoint Dirac operator

DA : Γ(Sσ) → Γ(Sσ).

The three-dimensional monopole is a configuration satisfying the (η, µ)-perturbed Seiberg-
Witten equations {

DAψ + µf = 0
c(∗FA + iη) = 1

2q(ψ)
. (SWη,µ)

where q(ψ) ∈ End(Sσ) is the traceless symmetric endomorphism acting according to the
rule

Γ(Sσ) 3 φ 7→ 〈φ, ψ〉ψ − 1
2
|ψ|2φ.

Equivalently, the (µ, η)-monopoles are zeros of the Seiberg-Witten map

SW = SWg,µ,η : C → C, C = (ψ,A) 7→
(
DAψ + µψ,

1
2
c−1

(
q(ψ)

)− (∗FA + iη)
)
.

Denote by End0(S0) the space of traceless symmetric endomorphisms of Sσ. For latter use
let us mention a few basic properties of the quadratic map q. We define the real, pointwise
inner product on the space of symmetric endomorphisms of Sσ to be

〈T, S〉 := Re tr (TS).

Then
|c(iα)|2 = 2|α|2, ∀α ∈ Ω1(M) (1.1a)

〈q(ψ)ψ, ψ〉 = |q(ψ)|2 =
1
2
|ψ|4. (1.1b)

〈T, q(ψ)〉 = 〈Tψ, ψ〉, ∀T ∈ End0(Sσ), ψ ∈ Γ(Sσ). (1.1c)

We denote by Zσ = Zσ(g, η, µ) the set of monopoles. Zσ is a G-invariant subset of Cσ and
we denote by Mσ = Mσ(g, η, µ) the space of orbits

Mσ := Zσ/Gσ.

The sets Zirr
σ /Zred

σ and Mirr
σ /Mred

σ are defined in an obvious fashion.

1.2 Admissible 3-manifolds

We will focus our attention on a special class of 3-manifolds, the admissible ones. An
oriented 3 manifold is called admissible if either ∂M = ∅ or it is noncompact and the
complement M∞ of some compact subset is diffeomorphic to a semi-infinite cylinder

R+ × disjoint union of tori
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A spinc structure is called admissible if detσ |∂M is trivial.
We will use the cylindrical language of [26]. A cylindrical structure on M is a choice of

a diffeomorphism
M∞ ∼= R+ × disjoint union of tori.

Fix a cylindrical structure. We will denote by t the outgoing longitudinal coordinate along
the cylindrical neck. A metric ĝ on M will be called admissible along the neck it has the
form

ĝ = dt2 + g0 + t-exponentially small perturbation

where g0 denotes a flat metric on a torus. All the choices of perturbations η, w will be as-
sumed asymptotically cylindrical meaning that they are cylindrical modulo an exponentially
decaying term.

At this point it is convenient to study in some detail the form of the Seiberg-Witten
equations on a cylinder R × Σ, where Σ is a compact oriented surface. We will use the
“̂”-conventions of [26]. Thus, the quantities defined over the 3-manifold R × Σ will be
indicated by a “̂”. The absence of a “̂” will indicate a quantity defined over the slice
T 2. For example, d̂ denotes the exterior derivative over R×T 2 whike d denotes the exterior
derivative over T 2. They are related by the identity

d̂ = dt ∧ ∂t + d.

We fix a metric g on Σ and we form ĝ = dt2+g over R×Σ. We will denote by σ̂ a cylindrical
spinc structure on R×Σ. It induces a spinc structure on Σ. We get two bundles of spinors,
Sσ̂ over the cylinder and Sσ := Sσ̂ |Σ= ∂∞Sσ̂, and two Clifford multiplications

ĉ : Ω∗(R× Σ)⊗ C→ End(Sσ̂)

and
c : Ω∗(Σ)⊗ C→ End(Sσ).

They are related by the equality

c(α) = ĉ(dt)ĉ(α), ∀α ∈ Ω1(Σ).

We set J := ĉ(dt) so that the last equality can be rewritten as

c(α) = J ĉ(α), ∀α ∈ Ω1(Σ).

Fix a local oriented orthonormal frame (e1, e2) of the tangent bundle of Σ and denote by
(e1, e2) the dual coframe.

We denote by S±σ̂ the ∓i-eigensub-bundles of S±σ̂ defined by J . Correspondingly, any
spinor ψ̂ ∈ Γ(Sσ̂) splits as

ψ̂ = ψ̂+ ⊕ ψ̂−, ψ̂± ∈ Γ(S±σ̂ )

The operator J has the block decomposition

J =
[ −i 0

0 i

]
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Now note that

{c(ei), J} := c(ei)J + Jc(ei) = (J ĉ(ei))J + J2ĉ(ei) = 0

and
c(e1 ∧ e2) = c(dvg) = c(e1)c(e2) = J ĉ(e1)J ĉ(e2) = ĉ(e1)ĉ(e2) = J.

Thus
c(ei)Γ(S±σ ) ⊂ Γ(S∓σ )

and
c(e1 ∧ e2)φ± = ∓iφ±, ∀φ± ∈ Γ(S±σ ).

Thus S+
σ ⊕ S−σ is the Z2-graded bundle of spinors naturally associated to the spincstructure

σ. If we set L := S+
σ then

S−σ ∼= L⊗K∗
Σ and detσ = L2 ⊗K∗

Σ

where KΣ denotes the canonical line bundle of Σ.
Fix a reference connection A0 on detσ → Σ. Suppose Ĉ = (ψ̂, Â) is a monopole on

R× Σ. We can write
Â = if(t)dt + ia(t) + A0

where f(t) is a path of real valued smooth functions on Σ and a(t) is a path of real valued
smooth one forms on Σ. Also, it will be convenient to think of ψ̂ as a path ψ(t) of spinors
on Sσ. Set A(t) := A0 + ia(t). Then

D̂Â = ĉ(dt)(∂t + if) + ĉ(e1)∇Â
e1

+ ĉ(e2)∇Â
e2

= J
(
∂t + if − c(e1)∇A(t)

e1
− c(e2)∇A(t)

e2

)
= J

(
∂t −DA(t)

)
.

If we set
ε :=

1√
2
(e1 + ie2), ∂A =

1√
2
ε ∧ (∇A

e1
− i∇A

e2
),

ε̄ =
1√
2
(e1 − ie2), ∂̄A =

1√
2
ε̄ ∧ (∇A

e1
+ i∇A

e2
)

then we have (see [25])

ĉ(ε̄) =
√

2
[

0 0
ε̄ 0

]
, ĉ(ε) =

√
2

[
0 −ε
0 0

]

Thus

c(ε̄) = J ĉ(ε̄) =
√

2
[

0 0
iε̄ 0

]
, c(ε) = J ĉ(ε) =

√
2

[
0 iε
0 0

]

so that

DA =
√

2
[

0 −i∂̄∗A
i∂̄A 0

]
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The first of the Seiberg-Witten equations (SWη,µ) can be rewritten as





(∂t + µ + if)ψ+ + i
√

2∂̄∗A(t)ψ− = 0

(∂t + µ + if)ψ− − i
√

2∂̄A(t)ψ+ = 0
(1.2)

The cylindrical structure also affects the second equation in (SWη,µ). With respect to the
decomposition Sσ̂ = S+

σ̂ ⊕ S−σ̂ the endomorphism q(ψ̂) = q(ψ̂+ ⊕ ψ̂−) has the form (see [25,
Sec. 2.1])

q(ψ) =




1
2(|ψ+|2 − |ψ−|2) ψ+ ⊗ ψ̄−

ψ̄+ ⊗ ψ− 1
2(|ψ−|2 − |ψ+|2)


 . (1.3)

Every complex 1-form on Σ decomposes uniquely as

α = α1,0 + α0,1, α1,0 ∈ Ω1,0(Σ), α0,1 ∈ Ω0,1(Σ).

If α is real then α0,1 = α1,0. Using these observations in (1.3) we deduce

ĉ−1(q(ψ)) =
i
2

(
|ψ+|2 − |ψ−|2

)
dt +

1√
2

(
ψ̄+ ⊗ ψ− − ψ+ ⊗ ψ̄−

)
. (1.4)

Observe now that

∗̂e1 = −dt ∧ e2 = −dt ∧ ∗e1, ∗̂e2 = dt ∧ e1 = −dt ∧ ∗e2

∗̂(dt ∧ e1) = e2 = ∗e1, ∗̂(dt ∧ e2) = −e1 = ∗e2

and
∗̂e1 ∧ e2 = dt ∧ ∗(e1 ∧ e2).

Using the equality
FÂ = FA0 + ida + dt ∧

(
iȧ− idf

)

we now deduce
∗̂FÂ = dt ∧

(
∗FA0 + i ∗ da

)
+ i ∗ (ȧ− df).

We can also decompose the perturbation term η as

η = η0dt + η1, η0 := ∂t η.

The equality

∗̂FÂ + iη =
1
2
ĉ−1

(
q(ψ)

)

can now be rewritten as




∗da = 1
4

(
|ψ+|2 − |ψ−|2

)
+ i ∗ FA0 − η0

∗ȧ− ∗df = − i
2
√

2

(
ψ̄+ ⊗ ψ− − ψ+ ⊗ ψ̄−

)
− η1

(1.5)
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Now observe that
∗ε = −iε, and ∗ ε̄ = iε̄

where ∗ denotes the extension by complex linearity of the real Hodge ∗-operator to complex
valued forms. Observe that ψ̄+ ⊗ ψ− ∈ Ω0,1, ψ+ ⊗ ψ̄− ∈ Ω1,0 and ∗2 = −1 on 1-forms.
Applying ∗ to the second equation in (1.5) we can rewrite these equations as follows:





∗da = 1
4

(
|ψ+|2 − |ψ−|2

)
+ i ∗ FA0 − η0

ȧ− df = − 1
2
√

2

(
ψ̄+ ⊗ ψ− + ψ+ ⊗ ψ̄−

)
+ ∗η1

. (1.6)

The equations (1.2) and (1.6) can be further simplified by assuming the configuration Ĉ is
in temporal gauge, i.e. f ≡ 0. In this case we have





(∂t + µ)ψ+ + i
√

2∂̄∗A(t)ψ− = 0

(∂t + µ)ψ− − i
√

2∂̄A(t)ψ+ = 0

ȧ = − 1
2
√

2

(
ψ̄+ ⊗ ψ− + ψ+ ⊗ ψ̄−

)
+ ∗η1

∗FA(t) = i
4

(
|ψ+|2 − |ψ−|2

)
+ iη0

(1.7)

Form the configuration space Cσ on Σ consisting of triples

C = (ψ+, ψ−, A) ∈ Γ(S+
σ )× Γ(S−σ )×Aσ.

Define
Υ = Υσ : Cσ → Ω0(Σ, iR), (ψ+, ψ−, A) 7→ ∗FA − i

4

(
|ψ+|2 − |ψ−|2

)
.

Note that the last equation in (1.7) can be rewritten as

Υ(C(t)) = iη0. (1.8)

Lemma 1.1. Suppose the perturbation terms are compactly supported. If Ĉ = (ψ̂, Â) is a
smooth configuration such that Â is temporal, Â = A0 + ia(t), and satisfying the first three
equations in (1.7) (with f = 0) then for large |t| we have

d

dt
Υ(C(t)) = 0

where C(t) = Ĉ |t×Σ= (ψ(t), A0 + a(t)) ∈ Cσ. Moreover, the first three equations (1.7) with
f = 0 describe the ascending gradient flow of the functional

E = Eσ : Cσ → R, E(ψ, A) =
1
2

∫

Σ
〈DAψ, ψ〉dv(g)
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Proof Observe first that for large |t| we have µ = 0, η = 0. We have

d

dt
Υ(C(t)) = ∗idȧ− i

4
d

dt

(
|ψ+|2 − |ψ−|2

)

Now take the the exterior derivative of the third equation in (1.7). We obtain

dȧ = − 1
2
√

2
d
(
ψ̄+ ⊗ ψ− + ψ+ ⊗ ψ̄−

)

Now observe that ψ̄+ ⊗ ψ− ∈ Ω0,1(Σ) and ψ+ ⊗ ψ̄− ∈ Ω1,0(Σ). We deduce

d
(
ψ̄+ ⊗ ψ− + ψ+ ⊗ ψ̄−

)
= ∂(ψ̄+ ⊗ ψ−) + ∂(ψ̄+ ⊗ ψ−)

We will deal only with the first term. Using the Hodge identity ∂A = idvg ∧ ∂̄∗A we deduce

∂(ψ̄+ ⊗ ψ−) = (∂Aψ̄+) ∧ ψ− + ψ̄+(∂Aψ−) =
(
(∂Aψ̄+) ∧ ψ− + idvg ∧ ψ̄+(∂̄∗Aψ−)

)

(use the conjugate linear Hodge operator ∗c such that ∗cψ+ = dvg ∧ ψ̄+ and the equality
ψ̄+ = Λ(∗cψ+) where Λ denotes the contraction by the Kähler form)

=
{(

∂AΛ(∗cψ+)
) ∧ ψ− + i(∗cψ+)(∂̄∗Aψ−)

}

(use the Hodge identities ∂AΛ = Λ∂A − i∂̄∗A, ∂̄∗A = − ∗c ∂̄A∗c and ∗2
c = 1 on even forms.)

=
(
i
(∗c(∂̄Aψ+)

) ∧ ψ− + i(∗cψ+)(∂̄∗Aψ−)
)

(use the first two equations in (1.7), ∂̄∗Aψ− = i√
2
ψ̇+, ∂̄Aψ+ = − i√

2
)

=
(
i ∗c

(− i√
2

˙̄ψ−
) ∧ ψ− − 1√

2
(∗cψ+)ψ̇+ = − 1√

2

(
(∗cψ+)(ψ̇+) +

(∗cψ̇−
) ∧ ψ−

)
.

We conclude
d
(
ψ̄+ ⊗ ψ− + ψ+ ⊗ ψ̄−

)

= − 1√
2

(
(∗cψ+)(ψ̇+) +

(∗cψ̇−
) ∧ ψ−

)
− 1√

2

(
(∗cψ+)(ψ̇+) +

(∗cψ̇−
) ∧ ψ−

)

− 1√
2

(
(∗cψ+)(ψ̇+)− ψ− ∧

(∗cψ̇−
))− 1√

2

(
(∗cψ+)(ψ̇+)− ψ− ∧

(∗cψ̇−
))

= − 1√
2

d

dt
(|ψ+|2 − |ψ−|2)dvg.

Hence
∗idȧ =

i
4

d

dt

(
|ψ+|2 − |ψ−|2

)

thus proving the first part of the lemma. To prove the second part we only need to compute
the L2-gradient of E.
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Observe that

d

dt
|t=0 E(ψ + tψ̇, A + itȧ) =

∫

Σ
〈DAψ, ψ̇〉dv(g) +

1
4

∫

Σ
〈c(iȧ)ψ,ψ〉dv(g).

To proceed further observe that if we locally decompose ȧ = uε + ūε̄, u complex valued
function, we have

〈c(iȧ)ψ, ψ〉 = 〈c(iuε)ψ,ψ〉+ 〈c(iūε̄)ψ, ψ〉
= −

√
2Re 〈u, ψ+ ⊗ ψ̄−〉 −

√
2Re 〈ū, ψ̄+ ⊗ ψ−〉

= −
√

2Re
〈
ȧ, ψ+ ⊗ ψ̄− + ψ̄+ ⊗ ψ−

〉
.

Thus
∇E(ψ, A) =

(
DAψ,− 1

2
√

2
(ψ+ ⊗ ψ̄− + ψ̄+ ⊗ ψ−)

)
. ¥

2 Seiberg-Witten invariants of closed 3-manifolds

2.1 Generalities

Suppose M is a compact oriented 3-manifold. Fix a Riemann metric g, a spinc structure
σ, a real co-closed 1-from η and a real function µ. We would like to introduce some natural
structures on the configuration space Cσ and the set of monopoles Mσ. We will denote by
Lk,p the Sobolev spaces of distributions k-times differentiable with derivatives in Lp.

We re-define the configuration space Cσ to include some information about the regularity
of the configuration. Thus Cσ will stand for the space of L2,2-configurations (ψ, A). In this
statement we have tacitly assumed we have chosen a fixed smooth reference connection A0

on detσ. We want to be more specific about this choice.
By Chern-Weil theory, for every connection A on detσ the differential form i

2πFA rep-
resents the integral homology class cσ := c1(detσ). For every differential form α on M we
will denote by [α] = [α]g its harmonic part in the Hodge decomposition. We now choose
the reference connection to be the unique smooth connection A0 such that

FA0 = [FA0 ] = −2πicσ ∈ H2(M,R).

Note that
[FA] = [FA0 ], ∀A ∈ Aσ.

The gauge group is defined as
G := L3,2(M,S1).

Fix a base point ∗ on M and denote by G(∗) ⊂ G the group of gauge transformations based
at ∗, i.e. gauge transformations γ such that γ(∗) = 1. The perturbation parameters η, µ are
chosen to have Lk,2 regularity, with k sufficiently large so that they have as many classical
derivatives as we need.

Let us first note that the monopoles have a variational interpretation. More precisely
the Seiberg-Witten map SWg,µ,η is the L2-gradient of the energy functional (see [26])

E : Cσ → R, E(C) = E(ψ, A)
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=
1
2

∫

M
(A−A0) ∧ (FA + FA0) +

1
2

∫

M

(
〈DAψ, ψ〉+ µ|ψ|2

)
dvg −

∫

M
〈A−A0, iη〉dvg

This functional is not G-invariant but satisfies

E(C)− E(γ · C) = 8π2

∫

M
deg γ ∧ c1(det(σ))− 4π

∫

M
deg γ ∧ [∗η]

where deg γ := 1
2πγ∗(dθ) ∈ Ω1(M).

For every C ∈ Cσ we denote by

LC : T1Gσ → TCCσ

the infinitesimal action at C

LC(if) :=
d

dt
|t=0 eitf · C = (ifψ, A− 2idf).

Its formal (L2) adjoint is

TCCσ 3 Ċ 7→ L∗CĊ = L∗C(ψ̇, iȧ) = −2id∗ȧ− i Im 〈ψ, ψ̇〉.

We can identify kerLC with the Lie algebra of the stabilizer Stab (C) with respect to the
Gσ action.

Since Cσ is an affine space we can identify the tangent space TCCσ with Cσ via the map

Ċ 7→ C + Ċ.

Define the slice SC ⊂ TCCσ
∼= Cσ at C by

SC := kerL∗C ∩ L2,2.

More generally, we set Sr
C := kerL∗C ∩ Lr,2. The slice at C is equipped with a natural

Stab (C)-action and we have the following result (see [26]).

Proposition 2.1. There exists a small Stab (C)-invariant neighborhood UC of C ∈ SC such
that every orbit of Gσ which intersects UC does so trasversally, along a single Stab (C)-orbit.
In particular, every Gσ(∗)-orbit intersects UC transversely in at most one point.

Set Bσ := Cσ/G and Bσ(∗) := Cσ/G(∗). From the above proposition we conclude that
Bσ(∗) is a Hilbert manifold while Bσ is smooth away from the reducible orbits. The set Mσ

is then a metric subspace of Bσ with respect to the induced L2,2-metric. Moreover, Mσ is
compact with respect to this metric topology (see [26]). The space Mσ also has a rich local
structure.

The (η, µ)-monopoles are zeros of the smooth map

SW = SWη,µ : Cσ → C1
σ
∼= TCCσ, (ψ,A) 7→ (6DAψ + µψ, q(ψ)− c(∗FA + iη)

obtained as the formal gradient of E . Since

d

dt
|t=0 E(e

tif · C) = 0
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we deduce
DCE(LCif) = 0 ⇐⇒

〈
SW (C) , LC(if)

〉
L2

= 0, ∀if ∈ T1Gσ

so that
SWη,µ(C) ∈ S1

C, ∀C ∈ Cσ.

For Ċ ∈ TCCσ and if ∈ T1G define

TC

[
Ċ
if

]
=




SW η,µ −1
2LC

−1
2L∗C 0







Ċ

if




:=




d
dt |t=0 SW (C + tĊ)− 1

2LC(if)

−1
2L∗CĊ


 ∈ TCCσ

L2

⊕ L2(N, iR).

More explicitly, if C := (ψ,A) and Ċ = (ψ̇, iȧ) then

TC




ψ̇
iȧ
if


 =




DA + µ 0 0
0 − ∗ d d
0 d∗ 0


 ·




ψ̇
iȧ
if


 +




1
2c(iȧ)ψ − i

2fψ
1
2 q̇(ψ, ψ̇)

i
2 Im 〈ψ, ψ̇〉


 (2.1)

Denote by T0
C the first operator on the right hand side of (2.1) and set PC := TC − T0

C.
Notice that PC is a zeroth order operator while TC is a first order, formally selfadjoint
elliptic operator.

Fix a monopole C0. The problem of understanding the structure of Mσ near C0 boils
down to understanding the local structure of the equation

SW (C0 + Ċ) = 0. (2.2)

where L∗C0
Ċ = 0 and ‖Ċ‖2,2 is very small. Set

H0
C0

:= kerLC0 , H1
C0

:=
{

Ċ ∈ CC; SW (Ċ) = 0, L∗C0
Ċ = 0

}

and denote by Π1 : SC0 → H1
C0

the L2-orthogonal projection. Observe that

kerTC0 = H1
C0
⊕H0

C0
.

For every r > 0 we set
BC(r) := {Ċ ∈ H1

C; ‖Ċ‖L2 < r}.
The equation (2.2) is equivalent to the pair of equations

(1−Π1)
(
SW (C0 + Ċ)

)
= 0, Ċ ∈ SC0 , ‖Ċ‖2,2 ≤ ε. (†ε)

Π1

(
SW (C0 + Ċ)

)
= 0, Ċ ∈ SC0 , ‖Ċ‖2,2 ≤ ε. (††ε)

The local structure of (†ε) can be easily analyzed using the implicit function theorem.
Our next result states that the solution set of (†ε) can be represented as the graph of a
Stab(C0)-equivariant map

Φ1 : H1
C0
→ kerΠ1

tangent to H1
C0

at 0. We have the following result.
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Proposition 2.2. Suppose C0 is a smooth 3-monopole. There exist r0 = r0(C0) > 0,
ε = ε(C0), ν = ν(C0) > 0 and a smooth Stab(C)-equivariant map

Φ1 : BC0(r0) → ker(1−Π1)SC0

satisfying the following requirements.

(i) Φ1(0) = 0.

(ii) Any solution Ċ′ of (†ε) decomposes as

Ċ′ = Ċ⊕ Φ1(Ċ)

where Ċ = Π1Ċ
′ ∈ BC0(r0). In particular

(1−Π1)
(

SW
(
C + Ċ + Φ1(Ċ) ) + LCΦ0(Ċ)

)
= 0,

∀Ċ ∈ BC(r).

(iii) ‖Φ1(Ċ)‖2,2 ≤ ν‖Ċ‖2, ‖DĊΦ1(v)‖2,2 ≤ C‖v‖ · ‖Ċ‖, ∀ v, Ċ ∈ H1
C0

. (H1
C0

is a finite
dimensional spaces and thus all norms on it are equivalent.)

Set
QC0 : BC0(r0) → H1

C0
, Ċ 7→ Π1SW (C0 + Ċ + Φ1(Ċ)).

QC0 is called the Kuranishi map at C0. It is a Stab(C0)-equivariant map and the above
discussion shows that Q−1

C0
/Stab(C0) is homeomorphic to a neighborhood of C0 in Mσ.

The reducible monopoles will play an important role in the sequel and that is why we
want to describe in details some of their more salient features.

Suppose C = (0, A) is a reducible monopoles. We deduce

∗FA + iη = 0 ⇐⇒ FA + i ∗ η = 0.

We write A = A0 + ia, a ∈ Ω1(M) and the last equality becomes

FA0 + ida + i ∗ η = 0.

The two form ∗η is closed so that it can be represented as

∗η = [∗η] + dβ = ∗[η] + dβ, β ∈ Ω1(M).

We deduce (
FA0 + i[∗η]

)
+ i(da + dβ) = 0.

The first term in the left-hand-side of the above equality is a harmonic two form while the
other is exact. Using the Hodge decomposition we deduce

[∗η] = iFA0 = 2πcσ

and
da + dβ = 0.

12



Proposition 2.3. Reducible monopoles exist if and only if

[∗η] = 2πcσ. (2.3)

Moreover, if non-empty, the space Mred
σ of equivalence classes of reducible monopoles is

isomorphic to the b1-dimensional torus

H1(M,R)/H1(M, 4πZ).

Proof Set η := [η]+dβThe first part follows immediately from the observations preceding
the proposition.

Suppose now Mred
σ 6= ∅. We can identify this space with the space of equivalence classes

of solutions a ∈ Ω(M) of the equation

da = −dβ

modulo the equivalence relation

a1 ∼ a2 ⇐⇒ ia1 = ia2 − 2dγ

γ
, γ ∈ G.

By choosing one particular solution a0 of this equation we can represent all the others as
a0 + closed one form. As γ describes G the family −2dγ

γ describes all imaginary, closed 1-
forms with cohomology class in H1(M, 4πZ). ¥

Denote by N the set of co-closed 1-forms on M of regularity Lk,2, k À 1. Set

Wσ = Wσ(g) :=
{

η ∈ N : [∗η] = 2πcσ

}
.

Wσ is a codimension b1 affine subspace of N.

Definition 2.4. A reducible (η, µ)-monopole (0, A) is called regular if

ker(DA + µ) = 0.

As explained in [26], the Kuranishi map determined by a regular reducible monopole is
≡ 0. To proceed further, we need to discuss separately three cases: b1(M) > 1, b1(M) = 1
and b1(M) = 0.

2.2 The case b1 > 1

Suppose M is connected, b0(M) = 1 and b1(M) > 1. Since codimWσ > 2 the complement

N0 := N \Wσ

is an open and connected set. According to Proposition 2.3, if η ∈ N0 then there are no
reducible (η, µ) monopoles. For this reason we will always choose η ∈ N0. In this section,
we will also choose µ ≡ 0 and we will talk only of η-monopoles.

A Sard-Smale argument leads to the following genericity result.
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Proposition 2.5. Fix a Riemann metric g on M . Then there exists a generic subset N0
g

of N such that for every η ∈ N0
g and every η-monopole C we have

H0
C = H1

C = 0.

In particular, for these η’s the moduli space Mσ(g, η) consists of finitely many isolated
points.

Fix a generic η as in the above proposition. Then, for every C = (ψ,A) ∈ Mσ the self-
adjoint Fredholm operator TC is invertible and thus det indTC admits a natural orientation
or0.

On the other hand det indT0C has a natural orientation defined as follows. Observe
that

T0
C = DA ⊕−SIGN

where SIGN : Ω1(M)⊕ Ω0(M) is the odd-signature operator

SIGN =
[ ∗d −d
−d∗ 0

]

Thus
kerT0

C
∼= cokerT0

C
∼= kerDA ⊕ kerSIGN = kerDA ⊕H1(M)⊕H0(M).

and thus det indT0
C admits a natural orientation determined by fixing an orientation on

H∗(M,R). We choose the natural one determined by the complex structure on H∗(M)
induced by the Hodge ∗-operator. Using the affine path

Tt
C := T0

C + tPC

connecting T0
C to TC we can transport the orientation on det indT0

C to an orientation or1 on
det indTC. The two orientations or0 and or1 differ by a sign which we denote by ε(C) = ±1.
Using the orientation transport formula [26, Sec. 1.5.1] we deduce that this sign can be
alternatively by

ε(C) = (−1)SFC+d0

where SFC denotes the spectral flow along the path Tt
C, 0 ≤ t ≤ 1, and d0 denotes the

dimension over R of the kernel of T0
C. Clearly d0 ≡ 1 + b1 mod 2 so that we deduce

ε(C) = (−1)SFC+b1+1. (2.4)

Define
swM (σ, g, η) =

∑

C∈Mσ(g,η)

ε(C).

As in [26, Sec. 2.3] one can show that the above count is independent of the choices (g, η)
and thus defines a smooth invariant

swM : Spinc(M) → Z

called the Seiberg-Witten invariant of M .
The above function has finite support. Moreover, this function is symmetric with respect

to the natural involution σ 7→ σ̄ on Spinc(M),

swM (σ) = swM (σ̄).
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2.3 The case b1 = 1

Suppose now that M is connected but b1(M) = 1. In this case Wσ(g) is a codimension 1
affine subspace of N, i.e. a hyperplane called the wall. The complement of the wall is thus
disconnected. In this case it is convenient to give a more computational description of the
wall.

Fix an orientation of the one dimensional real vector space H1(M ;R). Thus there
exists an unique g-harmonic 1-form ω such that ‖ω‖L2(g) = 1 and which induces the same
orientation on H1(M, g). The wall Wσ(g) can be described by the linear equation

〈η − 2π ∗ cσ, ω〉L2 = 0.

We set
N±(g) =

{
η ∈ N; ±〈η − 2π ∗ cσ, ω〉L2 > 0

}
.

N±(g) is called the positive/negative chamber. Observe that

N(g) \Wσ(g) = N+(g) ∪N−(g).

Set
N =

⋃
g

{g} ×N(g), N± =
⋃
g

{g} ×N±(g).

For generic (g, η) in one of the chambers we get a finite set of irreducible monopoles, and
no reducibles and we can count them as before to obtain an integer sw±

M (σ, g, η). Moreover
sw±

M (σ, g, η) is independent of the generic pairs (g, η) in the same chamber and thus we get
two functions

sw±
M : Spinc(M) → Z.

To understand the relationship between these two functions we need to pick two parameters
(g±1, η±1) ∈ N± and a suitable path

(gs, ηs)s∈[−1,1] ∈ N

connecting them. We get a parametrized moduli space

M̃ =
{

(s,C) ∈ [−1, 1]× Cσ; C is a (gs, ηs) monopole
}

/G ⊂ Bσ.

We assume the path t 7→ (gt, ηt) crosses the wall only once in a very special fashion.
First, we assume gs is independent of s close to 0,±1 and we set g := g0. Next, we

assume the path crosses the wall Wσ(g) transversally coming from the negative chamber
towards the positive one

d

ds
|s=0 〈ηs, ωg〉 > 0.

Again this is a compact metric subspace of

B̃σ =
⋃
s

{s} ×Bσ(gt).
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To understand the local structure of M̃σ near (s0, C0) we need to introduce the parametrized
Seiberg-Witten map

S̃W : [−1, 1]× Cσ → Cσ, (s,C) = (s;ψ,A) 7→
(
DAψ,

1
2
c−1

(
q(ψ)

)− (∗sFA + iηs)
)

and study the small solutions (ṡ, Ċ) of the equation




ŜW (s0 + ṡ,C0 + Ċ) = 0

L∗C0
Ċ = 0

(2.5)

We can choose the path s 7→ (gs, ηs) generically such that whenever s0 6= 0 (i.e. ηs0 is not
on the wall) a neighborhood of (s0, C0) in M̃σ is diffeomorphic to R. Thus, away from the
reducibles we can assume that the parametrized moduli space is a finite union of paths.
One should think of this parametrized space as a smooth cobordism between the moduli
spaces Mσ(g±1, η±). The singularities arise when ηs crosses the wall, i.e. when s = 0. To
make further progress we need to understand how the reducible part M̃red

σ sits inside M̃σ.
We will achieve this using a little perturbation theory.

Observe first that
M̃red

σ = {0} ×Mred
σ (g, η0) ∼= S1.

If C ∈ Mred
σ is a regular reducible monopole then its Kuranishi map is ≡ 0 and thus

a neighborhood of (0, C) ∈ M̃σ looks like a neighborhood of a point inside the circle of
reducibles. The local structure problem is therefore interesting only at the non-regular
monopoles. As in [17] we can choose the path (gs, ηs) carefully so that there are only
finitely many irregular reducibles which however are only mildly irregular. A mildly irregular
reducible monopole is by definition a monopole (0, A) such that dimC kerDA = 1. Here we
need to more explicit because the Dirac operator DA is not G-invariant.

First, by rescaling the metric g we can assume that ωg is a generator of the lattice
H1(M,Z)/Tors ⊂ H1(M,R). The circle of reducibles Mσ(g, η0) can be described in Cσ as
a path

(0, At := A0 + itω + idft), t ∈ [0, 4π], ft ∈ Ω0(M).

The results of [17] state that for generic choices of the path ft kerDAt is nontrivial only for
finitely many t’s and when this happens we have dimC kerDAt = 1. For clarity purposes we
will assume that ft = 0, ∀t. The general case requires no new ideas.

The above singular cobordism consists of finitely many real analytic paths, some of
which approach a mildly irregular reducible.

By slightly perturbing the path (gs, ηs) we can assume that for every mildly irregular
monopole (0, A) we have

κ := 〈c(iωg)Φ, Φ〉L2 6= 0, (∗)
where Φ denotes an unitary spanning vector of the one-dimensional space kerDA.

To understand the local structure near a mildly irregular reducible we will use the
Kuranishi deformation technique. Suppose (0,C0) is a (mildly irregular) reducible. We can
write the equation (2.5) in the form

F(s,C) = 0

16



where F : R× SC0 → SC0 is given by

F(ṡ, Ċ) = Π
(
S̃W (ṡ,C0 + Ċ)

)

where Π is the L2-orthogonal projection onto the slice. Its linearization F at (0,C0, 0) acts
according to the rule

F




ṡ

ψ̇
iȧ


 =

[
DA0 0

0 − ∗ d

]
·
[

ψ̇
iȧ

]
+

[
0

−iṡη′(0)

]
, d∗ȧ = 0.

We assume
ν := 〈η′(0), ωg〉L2 > 0. (∗∗)

The kernel of F consists of triples (ṡ, ψ̇, iȧ) such that

DA0ψ̇ = 0

and 


− ∗ dȧ = ṡη′(0)

d∗ȧ∗ = 0

The first equation has a (complex) one dimensional space of solutions spanned by Φ.
Since [∗dȧ] = 0 and [η′(0)] 6= 0 (by (∗∗)) we deduce ṡ = 0. In particular, this implies ȧ

is a harmonic 1-form. We deduce that any vector ~v ∈ kerF can be uniquely written as

(0, zΦ, iλωg), z ∈ C, λ ∈ R.

The cokernel consists of vectors

(φ, ib) ∈ Γ(Sσ)× iΩ1(M), d∗b = 0

such that
〈DA0ψ̇, φ〉+ 〈− ∗ diȧ− iṡη′(0), ib〉 = 0 (2.6)

∀ṡ, ψ̇, iȧ. We deduce
φ ∈ kerDA0 .

By letting ψ̇ = 0 and ṡ = 0 in (2.6) we deduce that b must be harmonic and

〈ṡη′(0), b〉 = 0, ∀ṡ.
Since [η′(0)] 6= 0 we conclude that b = 0. Thus any vector ~w in the cokernel of F can be
represented as

~w = (ζΦ, 0), ζ ∈ C, v ∈ R.

Denote by P the orthogonal projection onto the kernel of F and by Q the orthogonal
projection onto the cokernel. Observe that

P




ṡ

ψ̇
iȧ


 =




0

〈ψ̇, Φ〉Φ

i[ȧ]



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Similarly, the orthogonal projection Q is given by

Q

[
ψ̇
iȧ

]
=



〈ψ̇, Φ〉Φ

0




Set P⊥ := 1 − P, Q⊥ := 1 −Q. Denote the vectors (ṡ, ψ̇, iȧ, if) in the domain of F by Ξ.
The equation

F(C0 + Ξ) = 0

can be rewritten as
F(Ξ) + R(Ξ) = 0 (2.7)

where R is the nonlinear remainder,

R




ṡ

ψ̇
iȧ
if


 =




1
2c(iȧ)ψ̇ − i

2fψ̇

1
2q(ψ̇)− iη(ṡ) + iṡη′(0)

0




Decompose
Ξ := Ξ0 + Ξ⊥, Ξ0 := PΞ, Ξ⊥ = P⊥Ξ.

The equation (2.7) is equivalent to the pair of equations

F(Ξ⊥) + Q⊥R(Ξ) = 0 (2.8a)

F(Ξ⊥) + QR(Ξ) = 0 (2.8b)

For each sufficiently small Ξ0 we can solve the first equation for Ξ⊥ and we obtain a smooth
function

Ξ0 7→ Ξ⊥(Ξ0).

Using the coordinates (z, λ) on kerF we can regard Ξ⊥ as a function of (z, λ),

Ξ⊥ = Ξ⊥(z, λ).

Note that Ξ⊥(0) = 0 and D |Ξ0=0 Ξ⊥ = 0. Thus Ξ0 = 0 is a zero of order at least 2 of Ξ⊥.
We can extract even more precise information.

Observe that

Q⊥R(Ξ) =




1
2c(iȧ)ψ̇ − 〈12c(iȧ)ψ̇, Φ〉Φ

1
2q(ψ̇)− i(η(ṡ)− ṡη′(0)− η(0))




so that (2.8a) can be rewritten




DA0ψ̇
⊥ + 1

2c(iȧ)ψ̇ − 〈12c(iȧ)ψ̇, Φ〉Φ = 0

−i ∗ dȧ⊥ − iṡη′(0)− i
(
η(ṡ)− η(0)− ṡη′(0)

)
+ 1

2q(ψ̇) = 0

d∗ȧ⊥ = 0

(2.9)
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Ξ⊥ =




ṡ

ψ̇⊥

iȧ⊥




.

When we take the inner product of the second equation in (2.9) with iωg we get

2〈η(ṡ)− η(0), ωg〉 =
1
2
〈q(ψ̇), c(iωg)〉 =

1
2
〈c(iωg)ψ̇, ψ̇〉

Since
η(ṡ) = η(0) + ṡη′(0) + o(ṡ2)

and
ψ̇ = zΦ + ψ̇⊥ = zΦ + ψ̇⊥(z, λ)

we deduce from (∗) and (∗∗) that

2ṡν + o(ṡ2) =
1
2

〈
c(iωg)(zΦ + ψ̇⊥(z, λ)), zΦ + ψ̇⊥(z, λ)

〉
=

1
2
κ|z|2 + O(3)

where O(3) denotes generically a term with a zero of order at least 3 at (z, λ) = (0, 0).
Hence

ṡ =
κ

4ν
|z|2 + O(3). (2.10)

The equations (2.8b) have the explicit form

F (z, λ) :=
〈
c(iλωg + iȧ⊥)(zΦ + ψ̇⊥), Φ

〉
− = 0. (2.11)

The Kuranishi map K of (0,C0) is given by

(z, λ) 7→ F (z, λ, u).

Notice that
F (z, λ) = κλz + O(3). (2.12)

The following proposition summarizes the facts established so far.

Proposition 2.6. A neighborhood of the mildly irregular reducible (0, C0) inside the pa-
rameterized moduli space M̃σ is homeomorphic to

{
(z, λ); F (λ, z) = 0

}
/S1.

where S1 acts on the component z by complex multiplication.

Using the estimate (2.12) we deduce that a neighborhood of a mildly irregular reducible
in M̃σ looks like a neighborhood of 0 in (C× R)/S1 where S1 acts on the first component
by complex multiplication. The singular cobordism M̃σ then looks roughly like in Figure 1.

To understand the difference sw+ − sw− we need to understand the orientation of
the above singular cobordism. The irreducible part of the parametrized moduli space M̃σ

consists of two types of arcs.

19




 regular reducibles

mildly irregular reducible

irreducibles

s-1 0 1

Figure 1: A singular one dimensional cobordism in the case b1 = 1

•Good arcs, i.e. arcs [−1, 1] 3 t 7→ (
sj(t), Cj(t)

)
1 ≤ j ≤ n not approaching the reducibles.

• Bad arcs, i.e. arcs [−1, 0] 3 t 7→ (sk(t),Ck(t)) n < k ≤ m + n approaching a mildly
irregular reducible as t → 1. (Only the last monopole Ck(1) is reducible.)

For every good arc we have sj(−1) = ±1 and sj(1) = ±1. Note that

sw+
M (σ)− sw−

M (σ) =
n∑

j=1

{
sj(−1)ε

(
Cj(−1)

)
+ sj(1)ε

(
Cj(1)

)}
+

n+m∑

k=n+1

sk(−1)ε
(
Ck(−1)

)
.

As in [26, Sec. 2.3] we can show that the first sum is zero so that

sw+
M (σ)− sw−

M (σ) =
n+m∑

k=n+1

sk(−1)ε
(
Ck(−1)

)
. (2.13)

Suppose t 7→ (s(t), Ct) ∈ [−1, 1] × Cσ, |t| ≤ 1 is a bad arc path such that (s(0), C0) =
(0, C0). is a mildly irregular reducible. We assume that for t close to zero the configuration
Ct is in the local slice at C0. Set ε := ε(C−1) = ±1. As in [26, Sec. 2.3], the sign ε is given
by the orientation transport along the path of Fredholm selfadjoint operators

[0, 1] 3 τ 7→ Tτ := TC−τ .

Our assumptions guarantee that the only contribution to the orientation transport occur
at τ = 0 and thus we need to understand Tτ for very small τ . We write

s = ṡt + s̈t2 + o(t2), C = C0 + tĊ + t2C̈ + o(t2),
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or more explicitly,

ψt = tψ̇ + t2ψ̈ + o(t2), A = A0 + tiȧ + t2iä + o(t2).

From the estimate (2.10) we deduce that s is quadratic in t. We assume the parametrization
t 7→ (s(t),Ct) is nondegenerate at t = 0, i.e.

s̈ 6= 0. (∗ ∗ ∗)

Observe that

Tτ




iψ
ia
if


 =




DA−τ 0

0 − ∗ d d

0 d∗ 0



·



iψ
ia
if


 +




1
2c(ia)ψ−τ − i

2fψ−τ

1
2 q̇(ψ−τ , ψ)

i
2 Im 〈ψ−τ , ψ〉




where
q̇(ψ, φ) :=

d

dt
|t=0 q(ψ + tφ).

Set Ṫ := d
dτ |τ=0 Tτ . We deduce that

Ṫ




iψ

ia

if




= −




1
2c(iȧ)ψ + 1

2c(ia)ψ̇ − i
2fψ̇

1
2 q̇(ψ̇, ψ)

i
2 Im 〈ψ̇, ψ〉




.

Denote by K the kernel of T0

K ∼= kerDA0 ⊕H1(M, g)⊕H0(M, g),

and by P the orthogonal projection onto K. To understand the orientation transport we
need to understand the resonance operator

R : K → K, R~k = P Ṫ~k.

We use the coordinates (z, λ, u) on K,

(z, λ, u) 7→ (zΦ, iλωg, iu).

We have

Ṫ




z
λ
u


 = −




z
2c(iȧ)Φ + 1

2c(iλω)ψ̇ − i
2uψ̇

1
2 q̇(ψ̇, zΦ)

i
2 Im 〈ψ̇, zΦ〉




. (2.14)

To gain some more insight we need to learn more about (ψ̇, iȧ). We will achieve this using
perturbation techniques.
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For t close to zero the configuration Ct satisfies the equation




ŜW (s0 + tṡ + t2s̈,C0 + tĊ + t2C̈ + o(t2)) = 0

L∗C0
(tĊ + t2C̈ + o(t2)) = 0

.

The last equation is equivalent to

DA0+tiȧ+t2iä+··· ,g(tψ̇ + t2ψ̈) = 0,

and
∗g(FA0 + itdȧ + it2dä + · · · ) =

1
2
q(tψ̇ + t2ψ̈ + · · · )

−i

{
η(0) + ṡtη′(0) +

( ṡ2

2
η′′(0) + s̈η′(0)

)
t2 + · · ·

}

L∗C0
Ċ = 0 ⇐⇒ d∗ȧ = 0

L∗C0
C̈ = 0 ⇐⇒ d∗ä = 0

where η′(0) and η′′(0) denote the first and second s-derivatives of ηs at s = 0.
The first order contributions are equivalent to

DA0ψ̇ = 0. (2.15a)

∗dȧ = −ṡη′(0), d∗ȧ = 0 (2.15b)

The equality (2.15a) implies
ψ̇ = ζΦ, ζ ∈ C.

Note that since we assumed ν := 〈η′(0), ωg〉L2 > 0 we deduce that [η′(0)] 6= 0. Since
[∗dȧ] = 0 we deduce ṡ ≡ 0. Thus, (2.15b) is equivalent to

dȧ = 0, d∗ȧ = 0. (2.16)

Thus ȧ is a harmonic 1-form and thus can be uniquely represented as ρωg, ρ ∈ R.
The second order contributions are equivalent to

DA0ψ̈ +
1
2
c(iȧ)ψ̇ = 0. (2.17a)

i ∗ dä =
1
2
q(ψ̇)− is̈η′(0), d∗ä = 0. (2.17b)

Now take the (real) inner product of (2.17b) with iωg. We obtain

0 = 〈∗dä, ȧ〉L2 =
1
2
〈c−1(q(ψ̇)), iȧ〉L2 − s̈〈η′(0), ωg〉L2 ,

so that

s̈ν = s̈〈η′(0), ωg〉L2 =
1
2
〈c−1(q(ψ̇)), iω〉L2 =

1
4
〈q(ψ̇), c(iωg)〉L2 =

1
4
〈c(iωg)ψ̇, ψ̇〉L2 .
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so that

s̈ν =
|ζ|2
4

κ. (2.18)

Using (∗ ∗ ∗) we deduce that ζ 6= 0. Modulo a gauge transformation in the stabilizer of C0

we can assume ζ ∈ R.
Multiplying the equation(2.17a) by ψ̇ and integrating over M we deduce

ρ〈c(iω)ψ̇, ψ̇〉L2 = 0

which in view of (∗) implies ρ = 0 =⇒ ȧ = 0. We can now rewrite (2.14) as

Ṫ




z
λ
u


 = −




ζ
2c(iλω)Φ− i

2uζΦ

1
2 q̇(ζΦ, zΦ)

i
2 Im 〈ζΦ, zΦ〉




. (2.19)

In particular

P Ṫ




z
λ
u


 = −




〈( ζ
2c(iλω)Φ− i

2uζΦ
)
, Φ

〉

1
2

〈
q̇(ζΦ, zΦ), c(iω)

〉

1
2 Im 〈ζΦ, zΦ

〉




.

To understand the resonance operator R = P Ṫ we further decompose z = a + ib. Differen-
tiating at t = 0 the identity

〈
q(ψ + tφ), T

〉
=

〈
T (ψ + tφ), ψ + tφ

〉
, ∀ψ, φ ∈ Γ(Sσ), T ∈ End0(Sσ),

we deduce
〈q̇(ψ, φ), T )〉 = 〈Tψ, φ〉+ 〈Tφ, ψ〉 = 2Re 〈Tψ, φ〉.

Thus 〈
c−1

(
q̇(ζΦ, zΦ)

)
, iω

〉
=

1
2

〈
q̇(ζΦ, zΦ), c(iω)

〉

= Re 〈ζc(iω)Φ, zΦ〉 = Re (ζκz) = ζκa.

Also
Im 〈ζΦ, zΦ〉 = −ζb.

Thus

R




a
b
λ
u


 = −




0 0 ζκ
2 0

0 0 0 − ζ
2

ζκ
2 0 0 0

0 − ζ
2 0 0




·




a
b
λ
u


 .
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We deduce that

detR =
ζ2κ2

8
> 0.

Since along the path Tτ we encounter kernels only for τ = 0 we deduce that the orientation
transport along this path is

ε = (−1)dimRK · sign detR = 1.

Using this information in (2.13) we deduce

sw+
M (σ)− sw−

M (σ) =
n+m∑

k=n+1

sk(−1).

To understand the signs sk(−1) we need to understand the type of crossing that occurs
when the mildly irregular reducible monopole appears in the singular cobordism.

Consider again the bad arc (s(t), Ct). We need to understand the sign of s(−1) which
is the same as the sign of s(t)− s(0) for small t. Since

s = s̈t2 + o(t2)

we deduce that this sign is given by s̈. Using (2.18) we deduce that this sign is also given
by κ.

signκ = sign s(−1).

On the other hand
signκ = sign 〈c(iω)Φ,Φ〉.

The last quantity is precisely the spectral flow of the short path of operators

(−ε, ε) 3 t 7→ DA0+tiω.

If the mildly irregular reducibles are (0, Ak), k = n + 1, · · · , n + m we deduce

sw+
M (σ)− sw−

M (σ) =
n+m∑

k=n+1

SF (DAk+tiω; |t| < ε).

We deduce that sw+
M (σ) − sw−

M (σ) can be identified with the spectral flow of the loop of
operators DA obtained as A runs once along the circle of reducible η(0)-monopoles. By
rescaling the metric we can assume that ω generates the lattice H1(M,Z) ⊂ H1(M,R).
Modulo G we can identify the circle of reducibles with the path

[0, 4π] 3 t 7→ (0, A0 + tiω)

where (0, A0) is a fixed reducible η(0)-monopole. The spectral flow of the path [0, 4π] 7→
DA0+tiω is easily computed from the formula

SF (DA0+tiω; t ∈ [0, 4π]) = −1
8

∫

[0,4π]×M
c1(Â) ∧ c1(Â) =

1
32π2

∫

[0,4π]×M
FÂ ∧ FÂ,
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where Â is the connection on detσ → [0, 4π]×M given by

Â = A0 + itω.

Then
FÂ = FA0 + idt ∧ ω, FÂ ∧ FÂ = 2idt ∧ ω ∧ FA0

2
∫

[0,4π]×M
idt ∧ ω ∧ FA0 = 8πi

∫

M
ω ∧ FA0

= 16π2

∫

M
ω ∧ i

2π
FA0 = 16π2

∫

M
ω ∧ c1(detσ).

Thus
SF (DA0+tiω; t ∈ [0, 4π]) =

1
2

∫

M
ω ∧ c1(detσ).

We can now state the main result of this section. It was proved for the first time by Y. Lim
in [17] by a slightly different approach.

Theorem 2.7. [17, Lim](Wall crossing formula)

sw+
M (σ)− sw−

M (σ) =
1
2

∫

M
ω ∧ c1(detσ)

where ω is a generator of the lattice H1(M,Z) which induces the orientation on H1(M,R)
needed to define positive/negative chambers.

Example 2.8. Consider the manifold M = S1 × S2 equipped with the natural round
metric of constant positive scalar curvature s. Denote by ω the harmonic 1-form 1

2πdθ. ω
is a generator of H1(M,Z), and ∗ω is a generator of H2(M,Z). Choose a closed 2-form η
whose L∞-norm is much smaller than s. We assume that τ := 〈∗ω, η〉L2 > 0.

Since H2(M,Z) has no 2-torsion we can identify each spinc structure σ on M with its
determinant detσ. For each n ∈ Z we denote by σn the uniquespinc structure on M such
that

c1(detσn) = 2n ∗ ω.

Since s À ‖η‖L∞ > 0 we deduce swM (σn, η) = 0. On the other hand, we deduce that η
belongs to the positive σn-chamber if and only if n ≤ 0. Hence

sw+
M (σn) = 0, ∀n ≤ 0.

On the other hand
sw+

M (σn) = n, ∀n ≥ 0.

If we denote by swM (t) the generating function of the sequence sw+
M (σn) we deduce

sw+
M (t) :=

∑

n∈Z
sw+

M (σn)tn =
∑

n>0

ntn =
t

(1− t)2
.

Suppose now that M is a 3-manifold with H1(M,Z) ∼= Z we can pick a harmonic 2-form ω
generating H2(M,Z) ∼= Z), and a closed 2-form η such that 〈ω, η〉L2 is a very small positive
number τ . We can again uniquely define σn ∈ Spinc(M) by requiring

c1(detσn) = 2nω.
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Denote by swM,η(t) the generating function of the sequence swM (σn, η), and by swM (t)
the generating function of the sequence sw+

M (σn). The function swM,η(t) is a Laurent
polynomial satisfying

swM,η(t) = swM,η(t−1).

We deduce as above that
swM (t) = swM,η(t) +

t

(1− t)2
.

A result of Meng-Taubes [20] states that, ∃m ∈ Z such that

swM (t) = ±tm
∆M (t)
(1− t)2

,

where ∆M (t) is the Alexander polynomial of M , [28, 31]. Thus

swM,η(t)(1− t)2 + t = ±tm∆M (t) ⇐⇒ swM,η(t)(t− 2 + t−1) = ±tm−1∆M (t)− 1.

We can now remove the ± ambiguity by using the identity ∆M (t) = 1. Moreover, we can
be even more specific about m if we recall that the Alexander polynomial is symmetric

∆M (t) = ∆M (t−1).

Hence
swM,η(t)(t− 2 + t−1) = ∆M (t)− 1.

This shows that swM,η(t) is a topological invariant of M , and the chamber issue is moot.
Derivating the above equality twice at t = 1 we deduce

2
∑

n∈Z
swM,η(σn) = 2swM,η(1) = ∆′′

M (1).

Consider now the most general case, b1(M) = 1 so that H := H2(M,Z) ∼= Z⊕G, where G
is a finite Abelian group.

Fix again a harmonic 2-form ω such that ∗ω defines a generator of H1(M,Z). In
particular, we can think of ω as generating the free part of H2(M,Z). Choose the closed
2-form η as before, and fix a spinc structure σ0 such that detσ0 is trivial. Such a choice is
always possible since M admits spin structures. Any other spinc structure on M has the
form σh := σ0 ⊗ h. Set

ωh = 〈ω, hfree〉L2

where hfree denotes the free part of h. The wall crossing correction term K is the element
in the ring of formal power series Z[[H]] is defined by

K := S
T

(1− T )2
, S :=

∑

g∈G

g.

T is the formal variable corresponding to the chosen generator of the free part of H, T :=
exp(ω). We have an equality

∑

h∈H

sw+
M (σh)h =: swM (h) = swM,η(h) + K(h) :=

∑

h∈H

swM,η(σh)h + S
T

(1− T )2
.
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A result of Turaev [34] refining work of Meng-Taubes implies that ∃h ∈ H such that

swM (h) = ±h0τM (h)

where τM (h) denotes the Reidemeister torsion of M . Define

aug : Z[[H]] → Z[[H/G]] = Z[[T, T−1]]

by
augf =

∑

n∈Z

(∑

g∈G

f(gTn)
)
Tn,

and set
swM = aug(swM ), swM,η = aug(swM,η), τ̄M = aug(τM ).

Note that aug(S) = |G| and aug(T ) = T . Then

¯swM,η +
|G|T

(1− T )2
= ±τ̄M (T ) = ±T k/2 ∆M (T )

(1− T )2
, k ∈ Z,

where ∆M (T ) ∈ Z[T 1/2, T−1/2] is the Alexander polynomial of M which satisfies

∆M (1) = |G|, ∆M (T ) = ∆M (T−1).

We conclude as before that

swM,η(T )(T−1 − 2 + T ) = ∆M (T )− |G|, swM,η =
1
2
∆′′

M (1).

We conclude this example with a computation we will need later on. Suppose now that
there exists a positive integer m0 such that

(T−m0/2 − Tm0/2)
∆M (T )
(1− T )

= T−1/2P (T ), P ∈ Z[T 1/2, T−1/2].

Observe that P (T−1) = P (T ), and

P (T ) = P (T−1) = ∆M (T )
(Tm0/2 − T−m0/2)

(T 1/2 − T−1/2)
= T−

m0−1
2 ∆M (T )(1 + · · ·+ Tm0−1).

In particular, P (1) = m0|G|. Let r ∈ {0, 1} such that m0 − 1− r ∈ 2Z. Derivating twice at
t = 1 we get

P ′′(1) = 2∆M (1)
(m0−1

2∑
r

k2
)

+ m0∆′′
M (1) =

2
3
∆M (1)

{
B3

(m0 + 1
2

)−B3

(r

2
)}

+ m0∆′′
M (1),

where B3(z) denotes the third Bernoulli polynomial

B3(z) = z3 − 3
2
z2 +

z

2
=

z(z − 1)(2z − 1)
2

.
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Since B3(r/2) = 0 we deduce

B3

(m0 + 1
2

)
=

m0(m2
0 − 1)
8

, P ′′(1) =
m0(m2

0 − 1)
12

∆M (1) + m0∆′′
M (1)

Hence

swM,η(1) =
1
2
∆′′

M (1) =
1

2m0
P ′′(1)− m2

0 − 1
24

∆M (1).

In particular,

swM,η(1)− ∆M (1)
12

=
1
2
∆′′

M (1)− ∆M (1)
12

=
1

2m0
P ′′(1)− m2

0 + 1
24

∆M (1).

2.4 The case b1 = 0

This case is the worst possible because we always have [∗η] = [2πcσ] = 0. Thus no matter
how we choose the perturbation (η, w) there will always be reducible η- monopoles. In fact,
since b1 = 0 there will always be exactly one reducible monopole in Mσ(g, η, µ).

Since H1(M,R) = H2(M,R) = 0 for every closed two form ω on M there exists an
unique co-closed 1-from on M such that dα = ω. We will denote the form α by d−1ω. If
we fix a flat connection B on detσ then the equation

∗FA + iη

has the explicit solution
A = Ag,η := B − id−1 ∗ η.

Define as in the previous section

N :=
⋃
g

{g} ×N(g).

The transversality results of [7, 17] show that there exists a dense open set Z0 ⊂ Z
such that for all (g, η) ∈ N0 the operator DAg,η has trivial kernel, i.e. the corresponding
reducible monopole is regular.

For generic (g, η) ∈ N0 the space of irreducible monopoles consists of finitely nonde-
generate points. We can define as before the signed count of irreducible monopoles which
we denote by sw′(σ, g, η). The space of parameters is disconnected and its components are
separated by the wall

N(1) := Z \ Z0.

There exists a filtration
N(1) ⊃ N(2) ⊃ · · ·N(j) ⊃

where
N(j) =

{
(g, η, µ); dimC kerDAg,η ≥ j

}
.

As explained in [7, 17] we have
codimN(j) ≥ j.
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We need to understand the dependence of sw′
M (σ, g, η) on (g, η). Pick a smooth path

(g(s), η(s), µ(s)), s ∈ [−1, 1] of such parameters. Assume that this path crosses the wall
Z(1) only once, at s = 0. Transversality arguments show that we can assume that the
crossing occurs in a regular fashion, i.e.

dimC kerDAg(0),η(0)
= 1

and, if we denote by λ(s), |s| ¿ 1 the smooth function such that λ(s) is an eigenvalue of
DAg(s),η(s)

and λ(0) = 0, then

ν :=
d

ds
|s=0 λ(s) 6= 0. (X)

Fix an unitary spinor Φ spanning kerDAg(0),η(0)
. By slightly perturbing the path g(s) near

s = 0 we can assume that g(s) is independent of s for s near zero. The condition (X) is
then equivalent to

ν :=
〈
c
(
iϕ

)
Φ, Φ

〉
6= 0. (XX)

where
ϕ := d−1

(∗η′(0)
)
.

As in the previous section we can form the parametrized moduli space

M̃σ = {(s,C); C is a (g(s), η(s))-monopole}/G.

The reducible part of the parametrized moduli space is easy to describe. For each s there
exists exactly one reducible monopole Cs = (0, As) and thus M̃red

σ consists of a the smooth
path

s 7→ (0, As).

For a generic choice of the path (g(s), η(s)) we can assume that away from s = 0 the space
Mirr

σ is a smooth, oriented one dimensional manifold. The compact singular cobordism M̃σ

thus consists of of one reducible arc and several irreducible ones, some of which approaching
the mildly irregular reducible (0, A0). This cobordism looks roughly as in Figure 2.

To understand the structure of the singular cobordism near the mildly irregular reducible
point we follow a strategy very similar to the one used in the case b1 = 1. Denote the mildly
irregular reducible point of M̃σ by (0, C0). We are looking at solutions

(ṡ,C0 + Ċ) = (0,C0), Ċ ∈ SC0

close to (0,C0, 0) of the nonlinear equation

F(s, Ċ) = 0.

Its linearization at (0,C0) is given by

F




ṡ

ψ̇
iȧ


 =

[
DA0 0

0 − ∗ d

]
·
[

ψ̇
iȧ

]
+

[
0

−iṡη′(0)

]
, d∗ȧ = 0.
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s0

regular reducibles

irreducibles

-1 1

mildly irregular reducible

Figure 2: Another singular one dimensional cobordism

The kernel of F consists of triples (ṡ, ψ̇, iȧ) such that

DA0ψ̇ = 0

and 


− ∗ dȧ = −ṡη′(0)

d∗ȧ∗ = 0

The first equation has a (complex) one dimensional space of solutions spanned by Φ. The
second equations have an unique solution

ȧ = −ṡϕ.

Thus the kernel of F consists triples of the form

(ṡ0, zΦ,−iṡ0ϕ), ṡ ∈ R, z ∈ C.

Note that dimR kerF = 3. The pair (ṡ0, z) defines coordinates on this vector space.
The cokernel consists of vectors

(φ, ib) ∈ Γ(Sσ)× iΩ1(M), d∗b = 0

such that
〈DA0ψ̇, φ〉+ 〈− ∗ diȧ− iṡη′(0), ib〉 = 0 (2.20)
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∀ṡ, ψ̇, iȧ. We deduce
φ ∈ kerDA0 .

By letting ṡ, ψ̇, ȧ = 0 we deduce ∗db = 0. In particular, since b1 = 0 we deduce that b = 0.
Hence the cokernel consists of pairs

(zΦ, 0), z ∈ C.

Denote by P the orthogonal projection onto the kernel of F and by Q the orthogonal
projection onto the cokernel. ) Denote the vectors (ṡ, ψ̇, iȧ, if) in the domain of F by Ξ.
The equation

F(C0 + Ξ) = 0

can be rewritten as
F(Ξ) + R(Ξ) (2.21)

where R is the nonlinear remainder,

R




ṡ

ψ̇
iȧ


 =




1
2c(iȧ)ψ̇ − i

2fψ̇

1
2q(ψ̇)− i(η(ṡ)− iṡη′(0)− η(0))


 , d∗ȧ = 0.

(Above we have used the simplifying assumption g′(0) = 0.) Decompose

Ξ := Ξ0 + Ξ⊥, Ξ0 := PΞ, Ξ⊥ = P⊥Ξ.

The equation (2.21) is equivalent to the pair of equations

F(Ξ⊥) + Q⊥R(Ξ) = 0 (2.22a)

F(Ξ⊥) + QR(Ξ) = 0 (2.22b)

For each sufficiently small Ξ0 we can solve the first equation for Ξ⊥ and we obtain a smooth
function

Ξ0 7→ Ξ⊥(Ξ0).

Note that Ξ⊥(0) = 0 and D |Ξ0=0 Ξ⊥ = 0. Thus Ξ0 = 0 is a zero of order at least 2 of Ξ⊥.
We can extract even more precise information.

Observe that

Q⊥R(Ξ) =




1
2c(iȧ)ψ̇ − 〈12c(iȧ)ψ̇, Φ〉Φ

1
2q(ψ̇)− (iη(ṡ)− ṡη′(0)− η(0))

0




so that (2.22a) can be rewritten




DA0ψ̇
⊥ + 1

2c(iȧ)ψ̇ − 〈12c(iȧ)ψ̇, Φ〉Φ = 0

−i ∗ dȧ⊥ − iṡ⊥η′(0)− i
(
η(ṡ)− η(0)− ṡη′(0)

)
+ 1

2q(ψ̇) = 0

d∗ȧ⊥ = 0

(2.23)
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Ξ⊥ =




ṡ⊥

ψ̇⊥

iȧ⊥




, ṡ⊥ = 〈ȧ⊥, ϕ〉.

We write
ṡ = ṡ0 + ṡ⊥(ṡ0, z), ψ̇ = zΦ + ψ̇⊥(ṡ0, z), ȧ = −ṡ0ϕ + ȧ⊥(ṡ0, z).

The equation (2.22b) can be rewritten as

F (ṡ0, z) = 〈c(−iṡ0ϕ + iȧ⊥)(zΦ + ψ̇⊥), Φ〉 = 0 (2.24)

Observe that

F (ṡ0, z) =
d

dt
|t=0

〈
DAg(t),η(t),g(t)Φ,Φ

〉
ṡ0z + O(3) = −νṡ0z + O(3). (2.25)

We deduce that a neighborhood of (0,C0) looks like a neighborhood of the origin in the
quotient (R×C)/S1 or equivalently, as a neighborhood of the origin in R×R+. In particular,
only one arc of irreducibles approaches the mildly irregular reducible point.

We decompose the closure of M̃irr
σ into arcs. There are two types of arcs.

• A bad arc [−1, 0] 3 t 7→ (s(t), C(t)) which approaches the mildly irregular reducible.
• Good arcs [−1, 1] 3 t 7→ (sj(t),Cj(t)), j = 1, · · · , n.

As in the previous subsection we deduce

sw′
M (σ, g(1), η(1))− sw′

M (σ, g(−1), η(−1)) = ε(C(−1))s(−1).

We assume that for t close to zero the configuration C(t) is in the local slice at C0. Set
ε := ε(C) = ±1. As in [26, Sec. 2.3], the sign ε is given by the orientation transport along
the path of Fredholm selfadjoint operators

[0, 1] 3 τ 7→ Tτ := TC−τ

As before, only contribution to the orientation transport occurs at τ = 0 but the case b1 = 0
requires a bit more work. More precisely, we need to understand the small eigenvalues of
the (real) operator Tτ . We write

s = ṡt + s̈t2 + o(t2), C(t) = C0 + tĊ + t2C̈ + o(t2),

ψ(t) = tψ̇ + t2ψ̈ +
...
ψt3 + o(t3), A(t) = A0 + tiȧ + t2iä + o(t2).

The estimate (2.25) shows that the parametrizations t 7→ s(t) and t 7→ ψ(t) can be chosen
so that

s̈ 6= 0, ψ̇ 6= 0.

Observe that

Tτ




iψ
ia
if


 =




DA−τ ,g(s(−τ)) 0

0 − ∗g(s(−τ)) d d

0 d∗−τ 0



·



iψ
ia
if



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+




1
2c(ia)ψ−τ + 1

2c(iȧ)ψ − i
2fψ−τ

1
2 q̇(ψ−τ , ψ)

i
2 Im 〈ψ−τ , ψ〉




Set Ṫ := d
dτ |τ=0 Tτ , T̈ = 1

2
d2

dτ2 |τ=0 Tτ so that

Tτ = T0 + τ Ṫ + τ2T̈ + o(τ)2.

Using the condition g′(0) = g′′(0) = 0 we deduce

Ṫ




iψ

ia

if




= −




1
2c(iȧ)ψ + 1

2c(ia)ψ̇ − i
2fψ̇

1
2 q̇(ψ̇, ψ)

i
2 Im 〈ψ̇, ψ〉




and

T̈




iψ

ia

if




=




1
2c(iä)ψ + 1

2c(ia)ψ̈ − i
2fψ̈

1
2 q̇(ψ̈, ψ)

i
2 Im 〈ψ̈, ψ〉




.

Again we need to learn more about (ψ̇, iȧ). For t close to zero the configuration C(t) satisfies
the equation 




ŜW (s0 + tṡ + t2s̈,C0 + tĊ + t2C̈ + o(t2)) = 0

L∗C0
(tĊ + t2C̈ + o(t2)) = 0

. (2.26)

Derivating this equation with respect to t at t = 0 we get

DA0ψ̇ = 0 (2.27a)

∗dȧ = −ṡη′(0), d∗ȧ = 0 (2.27b)

We deduce
ψ̇ = ζΦ, (z 6= 0) ȧ = −ṡϕ.

Taking the second t-derivative at t = 0 we obtain

DA0ψ̈ + +
1
2
c(iȧ)ψ̇ = 0 ⇐⇒ DA0ψ̈ −

ṡζ

2
c(iϕ)Φ = 0 (2.28a)

i ∗ dä =
1
2
q(ψ̇)− is̈η′(0), d∗ä = 0. (2.28b)

Taking the inner product of (2.28a) with Φ we deduce

ṡζν = 0
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so that
ṡ = 0, ȧ = 0.

Denote by Ω = Ω(Φ) the co-closed 1-form such that

i ∗ dΩ = c−1(q(Φ))

and set
χ :=

1
2
〈c(iΩ), q(Φ)〉 = 〈Ω, ∗dΩ〉 =

∫

M
Ω ∧ dΩ.

Note that we can solve (2.28b) explicitly

ä =
ζ2

2
Ω− s̈ϕ.

The scalar χ is intimately related to ν. Indeed, identifying the coefficients of t3 in the first
equation of (2.26) and using ȧ = 0 we deduce

DA0

...
Ψ +

1
2
c(iä)ψ̇ = 0.

Taking the inner product of this equation with Φ we deduce

0 = ζ〈c(iä)Φ, Φ〉 = ζ〈c(ia), q(Φ)〉 = ζ
〈
c
(
i
ζ2

2
Ω− is̈ϕ

)
, q(Φ)

〉
= χζ3 − ζνs̈. (2.29)

Thus
χζ2 = νs̈. (2.30)

As we have explained, to understand the orientation transport along the path Tτ we
need to understand the small eigenvalues of Tτ , |τ | ¿ 1. To achieve this we use a little
perturbation theory

We write
Tτ = T0 + τ Ṫ + t2T̈ + · · ·

Denote by K0 the kernel of T0

K0
∼= kerDA0 ⊕H0(M, g)

and by P0 the orthogonal projection onto K. Define the (first) resonance operator

R0 : K0 → K0, R0
~k = P0Ṫ~k.

We begin by looking for linearly small eigenvalues of Tτ i.e. eigenvalues λ(τ) of Tτ which
behave like cτ (c 6= 0) as τ → 0.

Since the path Tτ is real analytic the eigenvalues and eigenvectors can be parametrized in
a real analytic fashion (see [11]). Denote by Ξ(t) a real analytic path of unitary eigenvectors
corresponding to the linearly small eigenvalue λ(t). We write

λ(τ) = λ1τ + · · · , Ξ(τ) = Ξ0 + τΞ1 + · · · , ‖Ξ0‖ = 1, λ1 6= 0.
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We deduce 



T0Ξ0 = 0

T0Ξ1 + ṪΞ0 = λ1Ξ0

Thus Ξ0 ∈ K0. The second equation has a solution Ξ1 if and only if

R0Ξ0 = P0ṪΞ0 = λ1.

Thus λ1 6= 0 is a nonzero eigenvalue of the resonance operator R0. We use the coordinates
(z, u) on K0. We have

Ṫ

[
z
u

]
= −




z
2c(iȧ)Φ− i

2uψ̇

1
2 q̇(ζΦ, zΦ)

i
2 Im 〈ψ̇, zΦ〉




(2.31)

so that

R0

[
z
u

]
= −




− i
2uζΦ

i
2 Im 〈ψ̇, zΦ〉




Again, writing z = a + ib we deduce that R0 has the matrix description

R0




a
b
u


 =




0 0 0

0 0 ζ
2

0 ζ
2 0




We deduce that R0 has two nonzero eigenvalues, ± ζ
2 . The corresponding eigenvectors are

Ψ± = iΦ± i =




0
1
±1


 .

Thus there are only two linearly small eigenvalues of Tτ , λ±(τ) = ± ζ
2τ + · · · with corre-

sponding eigenvectors

Ξ±(t) =
1√
2
Ψ± + · · · .

The above argument shows that there exists one eigenvalue λ0(τ) which is at least
quadratically small. We set

λ0(t) = λ2τ
2 + · · ·

and denote the corresponding family of eigenvectors

Ξ(τ) = Ξ0 + τΞ1 + τ2Ξ2 + · · · , ‖Ξ0‖ = 1.

The equality

(T + τ Ṫ + τ2T̈ + · · · )(Ξ0 + τΞ1 + τ2Ξ2 + · · · ) = (λ2τ
2 + · · · )(Ξ0 + τΞ1 + τ2Ξ2 + · · · )
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implies 



TΞ0 = 0

TΞ1 + ṪΞ0 = 0

T0Ξ0 + ṪΞ1 + T̈Ξ0 = λ1Ξ0

(2.32)

The first equation implies Ξ0 ∈ K0 while the second one implies

P0ṪΞ0 = 0 ⇐⇒ Ξ0 ∈ kerR0 =: K1.

The kernel of the resonance operator R0 is spanned by

Ψ0 = Φ⊕ 0 =




1
0
0


 .

Thus Ξ0 = Ψ0. Observe that

ṪΨ0 = −




0

1
2 q̇(ζΦ, Φ)

0




The vector Ξ1 is obtained by solving the equation

T0Ξ1 =




0

1
2 q̇(ζΦ, Φ)

0




=




0

ζq(Φ)

0




The solution set of this equation is the affine space

Ξ1 ∈ ζ(∗d)−1(q(Φ)) + K0 = iζΩ + K0.

Taking the inner product of the third equation in (2.32) with Ξ0 we deduce

λ0 = 〈ṪΞ1,Ξ0〉+ 〈T̈Ξ0, Ξ0〉.

In the first inner product the K0-components of Ξ1 do not contribute because Ξ0 ∈ kerR0.
Now observe that since ȧ = 0

Ṫ




0

iζΩ

0




= −




ζ2

2 c(iΩ)Φ

0

0



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so that

〈ṪΞ1, Ξ0〉 = −ζ2

2
〈c(iΩ), q(Φ)〉 = −ζ2χ.

On the other hand, using (2.29)

〈T̈Ξ0, Ξ0〉 =
1
2
〈c(iä)Φ, Φ〉 = 0

Thus
λ2 = −ζ2χ

(2.30)
= −νs̈.

We conclude that Tτ has a quadratically small eigenvalue λ0(τ) = −s̈ντ2 + · · · with corre-
sponding eigenvector

Ξ0(τ) = Ψ0 + · · ·
We can finally determine the orientation transport along the path Tτ . Imitating the

strategy used in the proof of the orientation transport formula [26, §1.5.1-Eq.(1.5.9)] we
deduce that the orientation transport in this case is given by

sign (−ζ

2
· ζ

2
s̈ν) = −sign (s̈ν).

Hence

ε(C(−1))s(−1) = −sign (s̈ν) · sign (s̈) = −sign (ν) = −SF
(
DAg(s),η(s)

, s ∈ [−1, 1]
)
.

This proves that the usual monopole count sw′
M is not a topological invariant and satisfies

a wall crossing formula

sw′
M (σ, g(1), η(1))− sw′

M (σ, g(−1), η(−1)) = −SF
(
DAg(s),η(s)

, s ∈ [−1, 1]
)
. (2.33)

To produce a topological invariant we need to alter the above count by a quantity which
will change in the opposite way. For every metric g on M and Hermitian connection A on
det define the Kreck-Stolz invariant

KS(A, g) = 4ηdir(A, g) + ηsign(g)

where ηdir(A, g) denotes the eta invariant of the Dirac operator DA(g) on Sσ determined by
g and A and ηsign(g) denotes the eta invariant of the signature operator SIGN = SIGN(g)
(see [1]).

If gs (resp. As), s ∈ [0, 1], is a path of metrics (resp. connections) then (see [2])

1
2

(
ηdir(A1, g1) + h1 − ηdir(A0, g0)− h0) = SF

(
DAs(gs), s ∈ [0, 1]

)

+
1
8

∫

[0,1]×M

(−1
3
p1(∇̂) + c1(Â)2

)

where hi = dimC kerDAi(gi), i = 0, 1, ∇̂ denotes the Levi-Civita connection of the metric
ds2 + gs on [0, 1]×M and â denotes the connection ds⊗ ∂s + As on the pullback of det(σ)
over the cylinder [0, 1]×M . Similarly (see [2])

ηsign(g1)− ηsign(g0) =
1
3

∫

[0,1]×M
p1(∇̂).
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Hence
KS(A1, g1)−KS(A0, g0) = 8SF

(
DAs(gs), s ∈ [0, 1]

)

+4(h0 − h1) +
∫

[0,1]×M
c1(Â)2.

Suppose now that As = Ags,η(s) as in (2.33). Then

h0 = h1 = 0.

We can write Aj = B + iaj , j = 0, 1, where B denotes a flat connection on det(σ). Then

aj = −d−1
(∗jη(j)

)
, j = 0, 1,

and a simple computation shows
∫

[0,1]×M
F 2

Â
=

∫

M
(a0 ∧ da0 − a1 ∧ da1).

In particular
∫

[0,1]×M
c1(Â)2 = − 1

4π2

∫

[0,1]×M
F 2

Â
=

1
4π2

∫

M
(a1 ∧ da1 − a0 ∧ da0).

The quantity ∫

M
aj ∧ daj

does not depend on the choice of flat connection B or the gauge equivalence class of Aj .
We set

Θ(g, η) :=
1

4π2

∫

M
d−1

(∗gη
) ∧ ∗gη.

We deduce

KS(Ag(1),η(1), g(1))−KS(Ag(0),η(0)) = 8SF
(
DAg(s),η(s)

, s ∈ [−1, 1]
)

+Θ(g(1), η(1))−Θ(g(0), η(0)).

Now set
swM (σ, g, η) =

1
8

(
KS(Ag,η, g) + Θ(g, η)

)
+ sw′

M (σ, g, η).

The above observations show that swM (σ, g, η) is independent of g and η and thus it is a
topological invariant of (M,σ).

3 Moduli spaces of finite energy monopoles

3.1 Finite energy monopoles on admissible 3-manifolds

Suppose (M, ĝ) is an admissible cylindrical 3-manifold with the cylindrical end isometric to
R+ ×N , where N is a disjoint union of tori equipped with flat metrics. For each R > 0 we
set

MR := M \ (R,∞)×N.

Fix a cylindrical spinc structure σ̂ on M , set σ := ∂∞σ̂ and choose a strongly cylindrical
smooth reference connection Â0 on det σ̂ and a compactly supported co-closed 1-form η.
Arguing exactly as in the proof of [26, Prop. 4.3.2] we deduce the following result.
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Lemma 3.1. Suppose Ĉ = (ψ̂, Â) is a smooth configuration. If

CR := Ĉ |∂MR
= (ψR, AR) = (ψ̂ |∂MR

, Â |∂MR
)

then ∫

MR

(|D̂Âψ̂|2 +
1
2
|ĉ(∗FA + iη)− 1

2
q(ψ̂)|2)dv(ĝ)

=
∫

MR

(
|∇̂Âψ̂|2 + |FÂ|2 + |η|2 +

1
8
|q(ψ)|2 +

s

4
|ψ̂|2 +

〈
ĉ(iη), ĉ(FÂ)− 1

2
q(ψ̂)

〉)
dv(ĝ)

−
∫

∂MR

〈ψ̂, DAR
ψ̂〉dv(g).

In particular, if Ĉ is a (ĝ, η)-monopole we have

2E(CR) =
∫

∂MR

〈ψ̂, DAR
ψ̂〉dv(g)

=
∫

MR

(
|∇̂Âψ̂|2 + |FÂ|2 + |η|2 +

1
8
|q(ψ)|2 +

s

4
|ψ̂|2 +

〈
ĉ(iη), ĉ(FÂ)− 1

2
q(ψ̂)

〉)
dv(ĝ)

where E is the energy functional discussed at the end of 1.2.

We now define the energy of a configuration σ̂=monopole Ĉ = (ψ̂, Â) over a closed subset
S ⊂ M by

ES(Ĉ) :=
∫

S

(
|∇̂Âψ̂|2 + |FÂ|2 + |η|2 +

1
8
|q(ψ)|2 +

s

4
|ψ̂|2 +

〈
ĉ(iη), ĉ(FÂ)− 1

2
q(ψ̂)

〉)
dv(ĝ).

A monopole Ĉ is said to have finite energy if EM (Ĉ) < ∞.
To better understand the significance of the energy we will discuss in detail the special

case M = I × T 2, where I ⊂ R is a closed, possibly unbounded, interval, I = [R−, R+].
Suppose Ĉ = (ψ̂, Â) is a smooth monopole on this cylinder such that Â is a temporal
connection, i.e. it has the form

Â = A0 + ia(t)

where A0 is a connection on N and [R−, R+] 3 t 7→ a(t) is a smooth path of real 1-forms
on N . In this case we can think of Ĉ as a path [R−, R+] 3 t 7→ C(t) of configurations on N
and we define the kinetic energy of the configuration Ĉ by the formula

Ekin(Ĉ) =
∫ R+

R−
dt

∫

N
|ȧ(t)|2 + |ψ̇(t)|2dv(g) =

∫ R+

R−
dt

∫

N
|Ċ(t)|2dv(g).

If Ĉ = C(t) is a monopole, then according to Lemma 1.1 C(t) defines a flow line of the
gradient of E,

Ċ = ∇E(C).

Thus
Ekin(Ĉ) = E(C(R+))− E(C(R−)).

Using Lemma 3.1 we now deduce

Ekin(Ĉ) = E(C(R+))− E(C(R−)) =
1
2
E(Ĉ). (3.1)

The following result describes one important source of finite energy monopoles.
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Proposition 3.2. Suppose X is a closed, oriented 3-manifold decomposed into two mani-
folds with boundary Y diffeomorphic to a disjoint union of tori. Fix a metric ĝ on X such
that a cylindrical neighborhood of Y in X is isometric to the cylinder ([−1, 1]× Y, dt2 + g)
where g is a flat metric on M . Denote the complement of (−1, 1)× Y in X by X0.

For R À 0 denote by (XR, ĝR) the Riemann manifold obtained from (X, hg) by replacing
the cylinder CR := ([−1, 1] × Y, dt2 + g) with the longer one ([−R, R] × Y, dt2 + g). Then
there exists a positive constant C > 0 such that for all R À 0 and all ĝR-monopole Ĉ we
have

ECR
(Ĉ) < C.

Proof Set Ĉ = (ψ̂, Â). Since the scalar curvature sR of gR is O(1) as R →∞ we deduce
that there exists C > 0 such that

‖ψ̂R‖∞ < C.

Using Lemma 3.1 we deduce

EX0(Ĉ) + ECR
(Ĉ) = EXR

(Ĉ0)

=
∫

XR

(|D̂Âψ̂|2 +
1
2
|ĉ(∗FA)− 1

2
q(ψ̂)|2)dv(ĝ) = 0.

Hence
ECR

(Ĉ) = −EX0(Ĉ) ≤ −
∫

X0

sR

4
|ψ̂|2dv(ĝ)

≤ 1
4
‖sR‖∞ · ‖ψ̂‖2

∞ · vol(X0) ≤ C. ¥

The finite energy monopoles have a nice asymptotic behavior. First a bit of notation.
Denote by [C] (resp. [Ĉ]) the GN -orbit (resp. ĜM -orbit) of a configuration. Denote by G0

N

(resp. Ĝ0
M ) the identity component of GN (resp. ĜM ). We will use the notation [•]0 to

denote G0
N or Ĝ0

M -orbits.

Theorem 3.3. ([6, Carey-Marcolli-Wang] , [7, Chen]) Consider an admissible 3-
manifold (M, ĝ) with a cylindrical end isometric to (R+×N, dt2 + g) where N is a disjoint
union of tori and g is a flat metric.

Fix a cylindrical spinc structure σ̂ on M , set σ := ∂∞σ̂ and pick a co-closed 1-form η
on M supported away from the cylindrical end. If Ĉ is a finite energy (σ̂, ĝ, η)-monopole on
(M, ĝ) then there exist a gauge transformation γ̂ in the identity component of ĜM and a
critical point C∞ of Eσ such that

Υσ(C∞) = 0 and lim
t→∞

∥∥(γ̂ · Ĉ) |t×N −C∞
∥∥

L2(N)
= 0

where we recall that Υσ is the map Cσ → iΩ0(N) given by (see 1.2)

Υσ(ψ,A) = ∗FA − i
4

(
|ψ+|2 − |ψ−|2

)
.

The asymptotic limit map [Ĉ]0 7→ [C∞] is called the asymptotic limit map and will be denoted
by ∂∞.
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The above theorem shows that we need to better understand the set of critical points
of Eσ which lie on the level set Υ−1

σ (0). These are known as σ-vortices on N .

Proposition 3.4. A configuration (ψ,A) = (ψ+, ψ−, A) is a σ-vortex on N if and only if

c1(detσ) = 0, ψ+ = ψ− = 0 and FA = 0.

Proof Let us first observe that a Hermitian connection A on detσ induces a connection,
still denoted by A, on Sσ compatible with the natural Z2-grading Sσ = S+

σ ⊕ S−σ . This
implies that A induces connections A+ on S+ =: L and A− on S−σ ∼= K∗

N ⊗ L. Thus A+

defines a holomorphic structure on the line bundle L and we denote by (L,A+) the resulting
holomorphic line bundle. Similarly A− defines a holomorphic line bundle (K∗

N⊗L,A−) and,
moreover,

(K∗
N ⊗ L,A−) ∼=biholo K∗

N ⊗ (L,A+).

The configuration (ψ+, ψ−, A) is a critical point of Eσ if and only if (see 1.2)




∂̄A+ψ+ = 0

∂̄∗A−ψ− = 0

ψ+ ⊗ ψ̄− + ψ̄+ ⊗ ψ− = 0

(3.2)

The first equation implies that ψ+ is a holomorphic section of (L,A+). The second equation
implies that ψ̄− is a holomorphic section of (K∗

N ⊗ L,A−)∗. Since N is a disjoint union of
tori we deduce that the canonical line bundle KN is holomorphically trivial and thus

(K∗
N ⊗ L,A−) ∼=biholo (L,A+).

Thus ψ̄− is a holomorphic section of (L,A+)∗. The third equation in (3.2) implies that
ψ+ ⊗ ψ̄− ≡ 0. The unique continuation principle for holomorphic objects implies that at
least one of the sections ψ+ or ψ− is trivial. We want to show that both must be trivial.
We argue by contradiction.

Suppose ψ+ 6≡ 0. (The case ψ− 6≡ 0 can be dealt with in a similar fashion.) This implies
that ψ− = 0 and deg L ≥ 0. On the other hand, using the condition Υ(ψ+, ψ−, A) = 0 we
deduce

FA =
i
4
|ψ+|2dv(g)

so that
0 ≤ deg L =

i
2π

∫

N
FA = − 1

8π

∫

N
|ψ+|2dv(g) < 0.

Thus ψ+ ≡ ψ− ≡ 0 and the condition Υ(ψ+, ψ−, A) = 0 implies FA = 0 and c1(detσ) = 0.

¥
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Denote by σ0 the unique spinc structure on N such that c1(detσ0) = 0. We denote the
set of σ0-vortices by Z. It consists of configurations C = (ψ, A) such that ψ = 0, FA = 0.
Now denote by M (resp. M0) the set of GN -orbits (resp. G0

N -orbits) of σ0-vortices. The
last result shows that M can be identified with the set flat connections on the trivial line
bundle on N modulo the action of even gauge transformations. Thus M can be identified
with the union of tori

H1(N,R)/H1(N, 4πZ).

In the remainder of this paper we will assume that N is connected, i.e. we will consider
exclusively admissible manifolds with connected ends.

With this convention in place we see that we can identify M with a 2-torus. We can
produce angular coordinate on M as follows.

A. Fix a trivialization of L = S+
σ and denote by A0 the associated trivial connection. (This

is tantamount to fixing a spin structure on N .)

B. Fix a basis {~µ,~λ} of H1(N,Z).

C. if (0, A) is a σ0-vortex then we set

iθ(A) :=
∫

~µ
(A−A0) and iϕ(A) :=

∫
~λ
(A−A0).

We can be more specific1 about the choice A. On N there are four spin structures,
ε0, ε1, ε2, ε3. The spin structure ε0 is canonically determined from the Lie group trivialization
of TN . Equivalently, it is the only spin structure on the torus N which is not Spin-bordant.
The line bundle S+

ε0 is naturally trivialized. The Levi-Civita connection on (TN, g) is the
trivial connection because g is flat. This connection induces the trivial connection on the
spin bundle Sε0 = S+

ε0 ⊕ S−ε0 and thus induces the trivial connection A0 on L. In the sequel,
the choice A will always be determined by the spin structure ε0. We want to describe a
few more analytical features of this choice.

Denote by D0 the complex spin-Dirac operator corresponding to the spin structure ε0.
This operator is none other than the Hodge-Dolbeault operator

D0 =
[

0 i∂̄∗

∂̄ 0

]
: Ω0,∗(N) → Ω0,∗(N).

Similarly we obtain flat connections Ak, k = 0, 1, 2 on L and Dirac operators Dk, k =
1, 2, 3, corresponding to the spin structures εk, k = 1, 2, 3. The spin structures ε0, · · · , ε3
canonically induce spinc structures, all isomorphic to the spinc structure σ0. The Dirac
operators D0, · · · , D3 correspond to different choices of connections on σ0. More precisely,
the Dirac operator Di is obtained using the connection A⊗2

i induced by Ai on detσ0
∼= L2,

i = 0, · · · , 3. These operators can also be described as Hodge-Dolbeault operators coupled
with the connection Ai on L. Only one of these four Dirac operators has nontrivial kernel,
namely D0 because only one of the four holomorphic line bundles (L,Ai), i = 0, · · · , 3,
admits (anti)-holomorphic sections.

1I am indebted to Stephan Stolz for clarifying this rather confusing point.
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The σ-vortices are of two types: good and bad. By definition, a vortex (ψ, A) is good
if and only if kerDA = 0. Otherwise the vortex is called bad. If (0, A) is a bad vortex then
the holomorphic line bundle (L,A+) or (L,A+)∗ admits nontrivial holomorphic sections.
This is possible only when (L, A+) is holomorphically trivial, i.e. A+ coincides with the
connection A0 introduced above. This shows that there is only one bad point in M, namely
the orbit of C0 := (0, A⊗2

0 ). It has coordinates (µ, λ) = (0, 0).
The moduli space M0 can be identified with H1(N,R). It covers M and the unique bad

point in M lifts to the lattice of bad points H1(N, 4πZ) ⊂ H1(N,R). The role of good
vortices is explained in the following refinement of Theorem 3.3.

Theorem 3.5. ([6, Carey-Marcolli-Wang], [7, Chen]) Suppose Ĉ = (ψ̂, Â) is a smooth
finite energy monopole. Set C = (0, A) := ∂∞Ĉ and

δ(A) := dist
(
specDA, 0).

If δ(A) > 0, so that C is a good vortex, then there exists a gauge transformation γ̂ ∈ Ĝ0

such that
γ̂ · Ĉ ∈ L2,2

µ,ex, ∀0 < µ < δ(A).

In the next subsections we will use this result to describe the local structure of the
moduli space of finite energy monopoles with good asymptotic limit.

3.2 Local structure

In this subsection we will study in detail the set of finite energy monopoles with good
asymptotic limit. We follow closely the approach in [26]

Consider an admissible 3-manifold (M, ĝ) with

∂∞M =: N ∼= T 2, g := ∂∞ĝ − flat metric.

Fix a cylindrical spinc structure σ̂ on M such that ∂∞σ̂ = σ0 and a strongly cylindrical
connection Â0 such that ∂∞Â0 = A0.

We need a suitable functional setup. For every positive number µ and set the space of
configurations Ĉ = (ψ̂, Â) such that

Ĉµ,ex = Ĉµ,ex(σ̂) :=
{

Ĉ = (ψ̂, Â); ∂∞Ĉ ∈ Z
}

=
{

Ĉ; (ψ̂, Â− Â0) ∈ L2,2
µ (Sσ̂)⊕ L2,2

µ,ex(iΛ1T ∗M), d∂∞(Â− Â0) = 0
}

.

Note in particular that if (ψ, Â) ∈ Ĉµ,ex then the connection Â is asymptotically strongly
cylindrical. Define

Ĝµ,ex := L3,2
µ,ex(M, S1), Ĝµ := L3,2

µ (M,S1)

and set
G∂ := ∂∞Ĝµ,ex ⊂ G := GN .
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If ∗ is a point on ∂∞M we denote by Ĝµ,ex(∗) (resp. G∂(∗) the based versions of these
groups, consisting of gauge transformations = 1 at ∗. The gauge group G∂ consists of L3,2-
gauge transformations on N which extend to L3,2

µ,ex-gauge transformations on M . Denote
by Ĉ the (discrete) group of components of Ĝµ,ex and by C∂ the group of components of
G∂ . Note that Ĉ ∼= H1(M,Z) while C∂ can be identified with the image of H1(M, 4πZ) in
H1(∂∞M, 4πZ) ∼= (4πZ)2.

For any configuration C = (0, A) ∈ Z we have an infinitesimal action

LC : T1G0 ∼= L3,2(iΛ0T ∗N) → TCC ∼= L2,2(S⊕ iΛ1T ∗N)

given by

LC(if) :=
d

dt
|t=0 eitf · C = (0,−2idf).

Its formal adjoint is given by

TCC 3 (ψ̇, iȧ) 7→ L∗C(ψ̇, iȧ) = −2id∗ȧ ∈ T1G0.

Define the slice at C to be the closed subspace SC∞ ⊂ TC∞Z defined by

SC :=
{

Ċ ∈ TCC; L∗CĊ = 0
} ∼= ker

(
∆ : Ω1(N) → Ω1(N)

)
.

Denote by [•]∂ the G∂-orbit of •. We have the following standard local structure result.

Proposition 3.6. The L2,2-metric on Z induces a metric on the quotient M∂ := Z/G∂

defined by
dist2,2([C1]∂ , [C2]) = inf

γ∈G∂
‖C1 − γ · C2‖2,2.

Moreover
M∂ ∼= H1(M,R)/C∂ .

We want to study the local structure of the quotient B̂µ,ex := Ĉµ,ex/Ĝµ,ex. Fix a config-
uration Ĉ0 := (ψ̂, Â) ∈ Ĉµ,ex and set C∞ = (ψ∞, A∞) = ∂∞Ĉ0 ∈ Z. Set

G∞ = Stab (C∞) ∼= S1, Ĝ0 := Stab(Ĉ0)

and
ŜĈ0

:=
{

Ĉ ∈ TĈ0
Cµ,ex; L

∗µ

Ĉ0
Ĉ = 0

}

where ∗µ denotes the L2
µ-adjoint. Observe that since every Ĉ = (ψ̂, iâ) is asymptotically

strongly cylindrical we have
∂∞L∗

Ĉ0
Ĉ = L∗

∂∞Ĉ0
∂∞Ĉ

so that
∂∞ŜĈ0

⊂ S∂∞Ĉ0
.

Arguing as in the proof of [26, Proposition 4.3.7] we deduce the following result.
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Proposition 3.7. (a) There exists a small Ĝ0-invariant neighborhood V̂ of Ĉ0 in Ĉ0 + ŜĈ0

such that every Ĝµ,ex(C∞)-orbit intersects Ĉ0 + V̂ along at most one Ĝ0-orbit.
(b) There exists a L2,2

µ,ex-small neighborhood Û0 of 0 in ŜĈ0
such that some neighborhood of

[Ĉ0] in Bµ,ex (equipped with the quotient topology) is homeomorphic to the quotient Û0/Ĝ0.
(c)The based quotient Bµ,ex(∗) = Ĉµ,ex/Ĝµ,ex(∗) is a smooth Hilbert manifold equipped

with a smooth S1-action and a neighborhood of Ĉ0 in this based quotient is S1-equivariantly
diffeomorphic to the quotient

(S1 × Û0)/Ĝ0

where Ĝ0 acts diagonally on the above product.

Definition 3.8. The neighborhood Û0 constructed above is called a local slice at Ĉ0.

Denote by Ẑµ = Ẑ(σ̂) the set of finite energy monopoles Ĉ = (ψ̂, Â) such that Ĉ ∈ Ĉµ,ex.
It can be described as the zero set of the Seiberg-Witten map2

SW : Ĉµ,ex → L1,2
µ (Sσ̂ ⊕ iT ∗M), (ψ̂, Â) 7→ (

DÂψ,
1
2
q(ψ̂)− (∗̂FÂ + iη)

)
.

More rigorously, SW should be regarded as a Ĝµ,ex-equivariant section of the Ĝµ,ex equiv-
ariant Hilbert vector bundle

L1,2
µ (Sσ̂ ⊕ iT ∗M)× Ĉµ,ex → Ĉµ,ex.

If K ⊂ M0 is a compact subset not containing any bad vortex then, according to Theorem
3.5, we can find a positive number µ = µ(K) such that if Ĉ is a finite energy monopole
with ∂∞[Ĉ]0 ∈ K then Ĉ is gauge equivalent to a monopole in Ẑµ(σ̂). To describe the
local structure of the moduli space M̂µ := Ẑµ/Ĝµ,ex we will study as in [16] the deformation
theory of a different nonlinear equation which is equivalent to the Seiberg-Witten equations.
Set

X :=
{
if ∈ L2,2

µ,ex(M iR); d(∂∞f) = 0
}

.

Define
F : Ĉµ,ex × X → L1,2

µ (Sσ̂ ⊕ iT ∗M)

by

(Ĉ, if) 7→ SW(Ĉ)− 1
2
LĈ(if).

We let the group Ĝµ,ex act trivially on X and thus we can regard F as a Ĝµ,ex-equivariant
section of the Ĝµ,ex-equivariant bundle

L1,2
µ (Sσ̂ ⊕ iT ∗M)×

(
Ĉµ,ex × X

)
→ Ĉµ,ex × X.

Notice that 〈
SW(Ĉ), LĈ(if)

〉
L2(M)

= 0. (3.3)

This implies the following result.
2Note that if Ĉ is a L2,2

µ,ex-configuration with ∂∞Ĉ ∈ Z then indeed SW (Ĉ) is in L1,2
µ ,

i.e. ∂∞SW (Ĉ) = 0.
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Proposition 3.9. The natural map

Ẑµ := SW−1(0) → F−1(0), Ĉ 7→ (Ĉ, 0)

is 1− 1. Moreover, F(Ĉ, if) = 0 if and only if SW(Ĉ) = LĈ(if) = 0.

The above simple observation shows that the local structure of SW−1(0)/Ĝµ,ex is iden-
tical to the local structure of F−1(0)/Ĝµ,ex.

Definition 3.10. The space

F−1(0)/Ĝµ,ex ⊂ (Cµ,ex × X)/Ĝµ,ex

is called the extended moduli space. We will denote it by Mµ.

Fix a smooth monopole Ĉ = (ψ̂, Â) ∈ Ẑµ and set C∞ = (0, A∞) := ∂∞Ĉ ∈ Z. The local
structure of F−1(0)/Ĝµ,ex near Ĉ can be read off the deformation complex

0 → E0 := T1Ĝµ,ex
LĈ⊕0−→ E1

Ĉ
:= TĈCµ,ex ⊕ X

DF−→ E2
Ĉ

:= L1,2
µ (Sσ̂ ⊕ iT ∗M) → 0 (E)

where DF denotes the linearization of F at Ĉ. To ease the presentation we will denote More
precisely

DF(Ĉ, iḟ) = SW(Ĉ)− 1
2
LĈ(iḟ)

where SW denotes the linearization of SW at Ĉ. Observe that (E) fits inside the short
exact sequence of complexes

0 → F → E ∂∞−→ B → 0 (3.4)

where

0 → F0
Ĉ

:= T1Ĝµ
LĈ⊕0−→ F1

Ĉ
:= L2,2

µ

(
Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M

) DF−→ F2
Ĉ

:= L1,2
µ (Sσ̂ ⊕ iT ∗M) → 0

(F)
and

0 → B0
C∞ := T1G∂ LC∞−→ B1

C∞ := TC∞Z⊕ iR→ B2
C∞ := 0 → 0. (B)

Clearly (B) is a Fredholm complex and its cohomology is given by

H0(BC∞) ∼= T1Stab (C∞) ∼= iR

and
H1(BC∞) ∼= H1(N, g)⊕H0(N, g).

To study the Fredholm properties of (F) we need to understand the Fredholm properties of
the operator

TĈ,µ := DF ⊕ (LĈ ⊕ 0)∗µ : L2,2
µ

(
Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M

) → L1,2
µ (Sσ̂ ⊕ iT ∗M)⊕ L1,2

µ (M, iR)
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where ∗µ denotes the adjoint with respect to the L2
µ-metric. More explicitly, TĈ,µ is described

by

L2,2
µ




Sσ̂

⊕
iΛ1T ∗M

⊕
iΛ0T ∗M)



3




ψ̂

iâ

if



7→ TĈ,µ




ψ̂

iâ

if




=




DÂ 0 0

0 −∗̂d̂ d̂

0 d̂∗µ 0



·




ψ̂

iâ

if




+




1
2 ĉ(iâ)ψ̂ − i

2fψ̂

1
2 q̇(ψ̂, ψ̂)

i
2 Im〈ψ̂, ψ̂〉



∈ L1,2

µ




Sσ̂

⊕
iΛ1T ∗M

⊕
iΛ0T ∗M)




.

We denote the first operator above by T0
Ĉ,µ

and the second one by PĈ. Observe that T0
Ĉ,µ

is
precisely the direct sum DÂ⊕−SIGNµ, where −SIGNµ is described in detail in Appendix
A. Both operator TĈ,µ and T0

Ĉ,µ
are APS operators and in this case

~∂∞TĈ,µ = ~∂∞T0
Ĉ,µ

= DA∞ ⊕ ~∂∞(−SIGNµ).

We will use the nation in Appendix A, Hµ := ~∂∞SIGNµ = ~∂∞(−SIGNµ). The results
in [18] show that TĈ,µ is Fredholm if −µ is not an eigenvalue of DA∞ ⊕ Hµ. Proposition
A.1 shows that if µ2 < λ1(N)/16, where λ1(N) is the first nonzero eigenvalue of the scalar
Laplacian on N , then −µ is not an eigenvalue of Hµ. Thus TĈ,µ is a Fredholm operator
provided µ2 < λ1/16 and −µ is not an eigenvalue of DA∞ .

For every 0 < δ <
√

λ1
4 we set

Zδ :=
{

(0, A) ∈ Z; δ(A) > δ
}

where we recall that δ(A) denotes the spectral gap of the operator DA defined in Theorem
3.5.

Proposition 3.11. If 0 < µ < δ <
√

λ1
4 then for any finite energy monopole Ĉ ∈ ∂−1∞ (Zδ)

the associated complex (E) is Fredholm and its Euler characteristic satisfies

χ(E) = χ(F) + χ(B) = −indTĈ,µ − 1.

Set
M̂µ,δ := ∂−1

∞ (Zδ) ∩ Ẑµ/Ĝµ,ex.

Observe that moduli space of finite energy monopoles with good asymptotic limit is covered
by the open pieces (M̂µ,δ)δ↘0. If Ĉ0 ∈ Ẑµ,δ := ∂−1∞ (Zδ) ∩ Ẑµ a neighborhood of [Ĉ0] is
described by the usual Kuranishi picture. More precisely, if Ĝ0 = Stab(Ĉ0) then there
exist a Ĝ0-invariant neighborhood U of 0 ∈ H1(EĈ0

) and a real analytic, Ĝ0-equivariant
map

κ : U → H2(EĈ0
)

such that κ−1(0)/Ĝ0 is homeomorphic to a neighborhood of [Ĉ0] in M̂µ,δ.
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Definition 3.12. A monopole Ĉ ∈ Ẑµ,δ is called regular if H2(EĈ) = 0.

Observe that the asymptotic trace map

∂∞ : L2
ex(Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M) → L2(S⊕ i(Λ1 ⊕ Λ0 ⊕ Λ0)T ∗N)

splits into four components

L2
ex(Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M) 3 Ξ := (ψ̂, iâ, if)

7→ ∂ψ
∞Ξ⊕ ∂1

∞Ξ⊕ ∂0
∞Ξ⊕ ∂f

∞Ξ := ∂∞ψ̂ ⊕ i∂∞(â− tâdt)⊕ i∂∞( tâ)⊕ i∂∞f.

Set Kµ = kerex TĈ,µ, TĈ := TĈ,µ=0, K0 := kerex TĈ. Arguing as in [26, §4.3.2] we deduce the
following results.

Lemma 3.13. There exists a short exact sequence

0 → U0 → Kµ → H1(EĈ) → 0

where U0
∼= coker (∂∞ : T1Ĝ → iR) ∼= ker

(
H1(FĈ) → H1

Ĉ
(EĈ)

)
3 and Ĝ = Stab(Ĉ).

Remark 3.14. Let us observe that when Ĉ is irreducible, so that Ĝ = {1}, we have
dimU0 = 1 and the image of U0 in Kµ is spanned by the vector

(
LĈ

(
i(1− ϕ0)

)
, 0

)

where ϕ0 is the unique solution of the equation

∆Ĉ,µ(iϕ0) = ∆Ĉ,µi, ϕ0 ∈ L3,2
µ .

We refer to [26, Remark 4.3.26] for a proof of this fact.

Proposition 3.15. There exists a natural short exact sequence

0 → H1(EĈ) → K0
∂0∞−→ U0 → 0. (H1)

In particular, we have an isomorphism

Kµ
∼= K0.

Corollary 3.16.

kerex SIGNµ
∼= kerex SIGN ∼= H1(M,R)⊕H0(M,R).

3The second isomorphism follows from the long exact sequence associated to (3.4).

48



Assuming ∂∞Ĉ = (0, A∞) is a good vortex, we deduce that ∂∞ kerex TĈ is a lagrangian
subspace in

kerH ∼= H1(M, g)⊕ R2

equipped with the complex structure

J :=



∗ 0 0
0 0 −1
0 1 0


 .

Here is a consequence of the above result.

Corollary 3.17. (a) If Ĉ is irreducible then ∂∞ kerex TĈ is a lagrangian subspace in kerH

of the form
∂1
∞ kerex TĈ ⊕ ∂0

∞ kerex TĈ
∼= LĈ ⊕ U0

where LĈ = ∂1∞ kerex TĈ ⊂ H1(N, g) is a lagrangian subspace with respect to the complex
structure given by the Hodge operator ∗. Moreover, LĈ coincides with the image of H1(EĈ)
in H1(BĈ).
(b) If Ĉ is reducible then TĈ = DÂ ⊕ SIGN and

∂∞ kerex TĈ
∼= ∂1

∞ kerex TĈ ⊕ ∂f
∞ kerex TĈ

∼= Ltop ⊕ T1G∞,

where
Ltop

∼= Range
(
H1(M,R) → H1(N,R)

)
.

In particular, Ltop coincides with the image of H1(EĈ) in H1(BĈ) and

kerex TĈ
∼= kerex DÂ ⊕ Range

(
H1(M, N ;R) → H1(M,R)

)⊕ Ltop ⊕H0(M).

Arguing as in the proof of [26, Prop. 4.3.30] we deduce the following result.

Proposition 3.18. There exist a natural isomorphism

H1(FĈ) ∼= kerµ TĈ,µ

and a short exact sequence

0 → H2(FĈ) → K0
∂f
∞−→ U⊥

0 → 0 (H2)

where U⊥
0 ⊂ T1G∞ can be identified with the image of T1Ĝ in T1G∞ via ∂∞. The isomor-

phism H2(FĈ) → ker
(
K0 → U⊥

0

)
is given by the map

H2(FĈ) ∼= kerµ SW∗µ ∩ kerµ L
∗µ

Ĉ
3 Ψ 7→ (m2µΨ, 0) ∈ kerex TĈ.

Proposition 3.18 and Corollary 3.17 imply the following consequence.
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Corollary 3.19. Suppose Ĉ is a reducible monopoles with good asymptotic limit C∞. Then
we have the isomorphisms

H1(EĈ) ∼= kerL2 DÂ ⊕H1(M,R)⊕H0(M,R),

H2(FĈ) ∼= kerL2 DÂ ⊕H1(M,R),

H1(BC∞) = H1(N,R)⊕H0(N,R).

The natural map H1(EĈ) → H1(B) coincides with the natural map

i∗ : (H1 ⊕H0)(M,R) → (H1 ⊕H0)(N,R),

where i : N → M denotes the natural inclusion. If additionally H1(M,R) ∼= R then the
connecting isomorphism

∂ : H1(BC∞) → H2(FĈ)

can be described as follows.
Decompose H1(N,R) = Ltop ⊕ ∗Ltop. For every u ∈ Ltop there exists a unique E(u) in

H1(M ;R) such that u = i∗E(u). If

u⊕ v ⊕ c ∈ Ltop ⊕ ∗Ltop ⊕H0(N,R) ∼= H1(BC∞)

then
∂(u⊕ v ⊕ c) = 0⊕ E(∗v) ∈ kerL2 DÂ ⊕H1(M,R) ∼= H2(FĈ).

The virtual dimension of the moduli space M̂µ at a finite energy monopole Ĉ is by
definition the integer

d(Ĉ) := −χ(EĈ).

Note that
d(Ĉ) = −χ(FĈ)− χ(BĈ) = indRTĈ,µ + 2.

Arguing as in [26, §4.3.3] we deduce

indRTĈ,µ = IAPSTĈ + 1

so that
d(Ĉ) = IAPS(TĈ) + 3.

To compute the index in the right-hand side we use the Atiyah-Patodi-Singer theorem which
simplifies substantially in two ways. First, the local index density of TĈ is zero since TĈ
is a formally selfadjoint operator on and odd dimensional manifold (see [10, §1.8.1]) and
furthermore, the eta invariant of H is zero because the spectrum of H is symmetric with
respect to the origin. Thus

IAPS = −1
2

dimR(kerDA∞ ⊕H).

Here is a first consequence of the above considerations.

Corollary 3.20. Suppose Ĉ = (ψ̂, Â) ∈ Ẑµ,δ is a regular finite energy monopole. Then
there exists a small open neighborhood of [Ĉ] in M̂µ,δ homeomorphic to R.
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3.3 Reducibles

Before we begin describing the set of reducible finite energy monopoles we want to show
that they occur quite naturally.

Proposition 3.21. (Key Estimate) Suppose (M, ĝ) is an admissible 3-manifold such
that the scalar curvature s = sĝ is nonnegative and somewhere positive. If η is a compactly
supported 1-form then any finite energy monopole Ĉ = (ψ̂, Â) satisfies the L∞-estimate

‖ψ̂‖2
∞ ≤ max

{
0, 2 sup

x∈M

(
2
√

2|η(x)| − s(x)
)}

.

In particular, if
2
√

2|η(x)| ≤ s(x), ∀x ∈ M,

then any finite energy monopole is reducible.

Proof Using the Kato inequality and the identities (1.1) we deduce exactly as in [14]
that

∆M |ψ̂|2 ≤ −s

2
|ψ̂|2 − 1

4
|ψ̂|4 +

√
2|η||ψ̂|2

We set u := |ψ̂|2 so that u is a nonnegative function satisfying the differential inequality

∆Mu +
1
4
u2 +

s− 2
√

2|η|
2

u ≤ 0.

Since limx→∞ u = 0 we deduce that u achieves its maximum at a point x0 somewhere inside
M . At this point ∆Mu(x0) ≥ 0 so that at this point

u(x0)
(
u(x0) + 2

(
s− 2

√
2|η|)

)
.

Thus
sup
x∈M

|ψ̂(x)|2 ≤ max
{

0, 2 sup
x∈M

(
2
√

2|η(x)| − s(x)
)}

. ¥

Suppose now that b1(M) = 1 and η is a co-closed, compactly supported 1-form and
Ĉ = (ψ̂, Â) is a finite energy, reducible monopole, i.e. ψ̂ = 0 and FÂ = −i∗̂η. The
compactly supported closed 2-form ∗η is exact since H2(M,R) = 0 so that there will always
exist finite energy reducible monopoles.

To understand the role of the reducibles we begin by studying them separately, inde-
pendently of the monopole equation. Consider a new configuration space Âµ,ex = Âµ,ex(σ̂)
consisting of pairs p = (Â, if) where if ∈ X and Â is an asymptotically strongly cylindrical
L2,2

µ,ex-connections Â on det(σ̂) such that ∂∞Â is flat. The group Ĝµ,ex acts on Âµ,ex by

γ̂ · (Â, kif) = (Â− 2d̂γ̂

γ̂
, if).

Denote by RM the space of Ĝµ,ex-orbits of pairs (Â, ic) where c is a real constant and Â is
a connection with curvature

FÂ = −i ∗ η.
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Fix such a pair p = (Â, ic). The local structure of RM near p is encoded by the deformation
complex

0 → E0
p := T1Ĝµ,ex

∗̂d̂⊕0−→ E1
p := TÂÂµ,ex ⊕ X

∗d̂−d̂−→ E2
p := L1,2

µ (iT ∗M) → 0.

As in the previous section we can include this complex in a short exact sequence

0 → F ∗
p → E∗

p
∂∞→ B∗

p → 0. (X)

We deduce
H1(Bp) ∼= H1(N,R)⊕H0(N,R)

H1(Ep) ∼= kerex SIGN ∼= H1(M,R)⊕H0(M,R), ∂∞H1(Ep) ∼= Ltop ⊕ R
and

H2(Fp) ∼= ker
(
∂f
∞ : kerex SIGN → H0(N,R)

) ∼= H1(M,R).

Using the long exact sequence determined by (X) we deduce

H1(Ep)
∂∞→ H1(Bp) → H2(Fp) → H2(Ep) → 0

or equivalently

0 → Ltop ⊕H0(N,R) → H1(N,R)⊕H0(N,R) → H2(Fp) → H2(Ep) → 0.

Thus

dimH2(Ep) = dimH1(M,R)− dimH1(N,R) + dimLtop = dimH1(M,R)− 1.

The above computation leads to the following conclusion.

Corollary 3.22. If dimH1(M,R) = 1 then for every co-closed, compactly supported 1-
form η there will exist reducible finite energy η-monopoles and RM is diffeomorphic to the
cylinder

H1(M,R)/H1(M, 4πZ)× R.

In particular, in this case, the space of Ĝµ,ex-orbits of such monopoles is homeomorphic to
the circle

H1(M,R)/H1(M, 4πZ).

Example 3.23. Suppose M is diffeomorphic to the complement of a tubular neighborhood
of a knot K in a rational homology sphere X. Then H1(M,R) ∼= R and (see [28])

H1(M,Z) ∼=
{
(α, c) ∈ Q×H1(X,Z); α ≡ lkX(c, K) mod Z

}
(3.5)

where lkX denotes the linking pairing

lkX : H1(X,Z)×H1(X,Z) → Q/Z.
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Moreover, (see [28])

H2(M,Z) ∼= H1(M, ∂M ;Z) ∼= H1(X,Z)/〈K〉
where 〈K〉 denotes the cyclic group generated by the homology class of K.

Any representation ρ : H1(M,Z) → S1 determines a line bundle equipped with a flat
connection. We denote it by Lρ. The space of representations H1(N,Z) → S1 is a disjoint
union of circles parametrized by Hom(H1(N ;Z)τ , S1), where the superscript τ indicates the
torsion part. The universal coefficients theorem provides a natural isomorphism

Hom(H1(M ;Z)τ , S1) ∼= Ext (H1(M ;Z)τ ,Z) ∼= H2(M,Z).

The above isomorphism Hom(H1(M ;Z)τ , S1) → H2(M,Z) is precisely described by the
correspondence

Hom(H1(M ;Z)τ , S1) 3 ρ 7→ c1(Lρ) ∈ H2(M,Z).

If σ̂ is a spinc structure on M then the space of finite energy reducible σ̂-monopoles on M
can be identified to the nontrivial double cover of the component of

Hom(H1(N,Z) → S1)

labeled by c1(det σ̂).

We see that the reducibles cannot always be avoided and we would now like to under-
stand their relative position inside the moduli space of all finite energy monopoles. We will
concentrate exclusively on the situation discussed in Example 3.23, when M is diffeomorphic
to the complement of a knot inside a rational homology sphere.

Fix a cylindrical spinc structure σ̂ on M . For simplicity, we assume that the perturbation
parameter η (co-closed 1-form) is trivial. Suppose Ĉ = (0, A) is a finite energy reducible
σ̂-monopole. We know that the asymptotic limit C∞ = (0, A∞) =: ∂∞Ĉ is a good vortex
so that modulo a gauge transformation we can assume Ĉ ∈ Ẑµ,δ for some sufficiently small
0 < µ < δ. The local structure of the extended moduli space Mµ near (Ĉ, 0) is given by the
Kuranishi deformation picture. The deformation complex at Ĉ has cohomology

H0(EĈ) ∼= iR, H1(EĈ) ∼= kerex(DÂ ⊕ SIGN) ∼= kerex DÂ ⊕H1(M,R)⊕H0(M,R)

Fix a harmonic form ω0 ∈ L2
ex(T ∗M) which spans H1(M,R). Then we can identify H1(EĈ)

with the subspace of TĈCµ,ex × X given by
{

(Φ, xiω0, ic); Φ ∈ kerex DÂ, x, c ∈ R
}

,

We also have an isomorphism

H2(FĈ) ∼= kerex DÂ ⊕H1(M,R).

More precisely, according to Proposition 3.18, H2(FĈ) can be identified with the subspace
of L1,2

µ (Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M) spanned by

m−2µ · ker
(
∂f
∞ : K0 → H0(N,R)

)
.

Observe that Ĉ is regular if and only if kerex DÂ = 0. A regular reducible Ĉ defines a
smooth point (Ĉ, 0) of Mµ. Moreover, a neighborhood of this point inside the extended
moduli space Mµ is homeomorphic to an open disk in R2.
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Definition 3.24. The reducible finite energy monopole Ĉ := (0, Â) is called mildly irreg-
ular if
• kerex DÂ

∼= C. Fix a spinor Φ ∈ kerex DÂ = kerµ DÂ such that ‖Φ‖L2
−µ

= 1.

• κ := 〈ĉ(iω0)Φ, Φ〉L2 6= 0. We set ε(Ĉ) := signκ.

Assume now that Ĉ is mildly irregular. The long exact sequence associated to (3.4)
leads to

0 → Ltop ⊕ R→ H2(FĈ) ∼= kerex DÂ ⊕H1(M,R) → H2(EĈ) → 0.

This shows that H2(E) is a complex 1-dimensional space generated by m−2µΦ.
To describe the Kuranishi picture we use deformation theory. More precisely we look

for L2,2
µ,ex-small solutions (Ĉ, if) of the system

(Ĉ + Ĉ, if) ∈ Cµ,ex × X,





F(Ĉ + Ĉ) = 0

L∗
Ĉ
(Ĉ) = 0

. (3.6)

To ease the presentation we set

X := TĈCµ,ex × X, L∗C∞∂∞Ĉ = 0,

Y := L1,2
µ (Sσ̂ ⊕ i(Λ1 ⊕ Λ0)).

Observe that any solution of (3.6) automatically belongs to X. The solutions of (3.6) as
precisely the zeros of the nonlinear map

N : X → Y, (Ĉ, if) 7→ (F(Ĉ),L∗µ

Ĉ
Ĉ).

Observe that H1(EĈ) ⊂ X and H2(EĈ) ⊂ Y. We denote the orthogonal complement of
H1(EĈ) with respect to the L2

µ,ex-metric by X⊥ and the orthogonal complement of H2(EĈ)
with respect to the L2

µ-metric by Y⊥. Denote by N the linearization of N at (0, 0) ∈ X.
Observe that

N = TĈ,µ

and

R(ψ̂, if) := N(ψ̂, iâ, if)−N(Ĉ, iâ, if) =




1
2 ĉ(iâ)ψ̂ − i

2fψ̂

1
2q(ψ̂)

0



∈ Y. (3.7)

Denote by P : Y → Y the L2
µ-orthogonal projection onto H2(EĈ). For every x ∈ X we

denote by x0 ⊕ x⊥ its decomposition determined by the direct sum X = H1(EĈ)⊕X⊥.
The equation N(x) = 0 is equivalent to the pair of equations

(1− P)(x0 + x⊥) = 0, (3.8a)

PN(x0 + x⊥) = 0. (3.8b)
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The equation (3.8a) has a unique small solution x⊥ = x⊥(x0) for all sufficiently small x0.
Moreover,

‖x⊥‖L2
µ,ex

= O(‖x0‖2
L2,2

µ,ex
).

We can be much more precise than this. We write

x =: (ψ̂, iâ, if), x0 =: (ψ̂
0
, iâ0, if0), x⊥ =: (ψ̂

⊥
, iâ⊥, if⊥).

The collection {Φ, iω0, i} is a basis of H1(EĈ). We write

x0 = (zΦ, ixω0, ic), z ∈ C, x, c ∈ R.

The Kuranishi map at (Ĉ, 0) is given by

F : H1(EĈ) → C, x0 7→ 〈
R(x0 + x⊥(x0)),Φ

〉
L2 .

We regard F as a S1-equivariant function of the variables (z, x, c), where S1 acts by complex
multiplication on z. We take the L2-inner product of first component of R in (3.7) with Φ
and we obtain the estimate

F (z, x, c) =
z

2
(κx + ic) + O(3),

where the nonzero constant κ was introduced in Definition 3.24. A neighborhood of (Ĉ, 0) ∈
Mµ looks like a neighborhood of 0 in the quotient

{
F (z, x, c) = 0

}
/S1.

Since the regular moduli space is defined by the additional constraint c = 0 we obtain the
following result.

Proposition 3.25. A neighborhood of a mildly iregular reducible monopole Ĉ in M̂µ is
homeomorphic to the real algbraic variety

{
xz = 0

}
/S1 ∼= R× R+

where the branch {0} × R+ correspond to irreducible monopoles approaching the reducible
Ĉ.

3.4 Global structure

It is now time to put together the results established so far and provide a global picture of
the moduli space of finite energy monopoles.

We first define carefully the setting. (M, ĝ) is admissible 3-manifold diffeomorphic to
the complement of a tubular neighborhood of a knot in a rational homology sphere. Fix a
cylindrical spinc-structure σ̂ on M such that ∂∞σ̂ = σ0, where σ0 is the canonical spinc-
structure on N . The moduli space of vortices on N is a 2-torus M with an unique bad point
C0 = (0, A0). We fix a basis (~µ,~λ) of H1(T 2;Z) such that ~µ is the meridian of the knot K
oriented by the right-hand-rule. We obtain in this fashion angular coordinates (θ, ϕ) on M

such that (θ(A0), ϕ(A0) = (0, 0). Pick a small positive number r and define

Z(r) := {(0, A) ∈ Z; θ(A)2 + ϕ(A)2 ≥ r2}, M(r) := Z(r)/G, M∂(r) := Z(r)/G∂ .
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Set
δ(r) := inf

(0,A)∈Z(r)
dist (0, spec (DA) ).

Note that δ(r) > 0 and δ(r) ↘ 0 as r ↘ 0. We can choose r small enough so that δ(r) < λ1
4 .

Fix a positive number µ < δ(r) and set

Ẑµ(r) := {Ĉ ∈ Ẑµ,ex; ∂∞Ĉ ∈ Z(r)},

M̂µ(r) := Ẑµ(r)/Ĝµ,ex.

Observe the following fact.

Proposition 3.26. For all sufficiently small, compactly supported perturbation parameters
(η, w) any reducible (σ̂, η, w)-monopole is gauge equivalent to a monopole in Ẑµ(r).

We have the following genericity result.

Theorem 3.27. ([16, Lim]) Fix r > 0 small and µ < δ(r). Then we can generically
choose the compactly supported parameters (η, w) such that the following hold.
(i) η are w are small enough so that all the (σ̂, η, w)-reducibles are gauge equivalent to
configurations in Ẑµ(r).
(ii) Any irreducible monopole Ĉ ∈ Ẑµ(r, η, w) is regular.
(iii) Any reducible monopole Ĉ ∈ Ẑµ(r, η, w) is either regular or only mildly irregular.
(iv) The map ∂∞ : M̂µ(r, η, w) → M∂ is an immersion.

In the sequel we will exclusively work with parameters (η, w) satisfying the conditions
in Theorem 3.27. To simplify the presentation we will, most of the time, assume they are
both equal to zero.

The finite energy condition and the lack of nontrivial tunnelings, i.e. finite energy
monopoles on R × T 2 can be used as in [26, §4.4.2] to show that M̂µ(r, η, w) is compact.
The structure of M̂µ(r) can now be easily described. It consists of

• a circle of reducible monopoles,
• a finite collection of circles consisting of regular irreducible monopoles,
• a finite number of disjoint smooth arcs with one end on the reducible part and the other
an irreducible monopole whose asymptotic limit lies on the boundary of M∂(r)
• a finite number of disjoint smooth arcs beginning and ending on the circle of reducibles,
(see Figure 3).

The last issue we address in this section is that of orientation. The family {H∗(BC)}C∈Z(r)

is constant,
H0(BC) = H0(N,R) = R, H1(BC) = H1(N,R),

and we can fix an orientation by fixing an orientation on H1(T 2,R). This is equivalent
to choosing an orientation on N . We will work with the orientation of N as boundary of
M . Using the short exact sequence (3.4) we now see that the orientability of the family
{H∗(EĈ)}Ĉ∈Ẑµ(r) is decided by the orientability of the family {H∗(FĈ)}Ĉ∈Ẑµ(r).

56



����yyyy����yyyyMM̂µ

µ
(r)

(r)

M
N

reducibles

Figure 3: The moduli space of finite energy monopoles

The orientability of the family {H∗(FĈ)}Ĉ∈Ẑµ(r) is equivalent to the orientability of the
determinant line bundle of the family of Fredholm operators

{
TĈ,µ : L1,2

µ

(
Sσ̂ ⊕ i(Λ0 ⊕ Λ1)T ∗M

) → L2
µ

(
Sσ̂ ⊕ i(Λ0 ⊕ Λ1)T ∗M

)
; Ĉ ∈ Ẑµ(r)

}
.

For every Ĉ = (ψ̂, Â) ∈ Ẑµ(r) the operator TĈ,µ can be written as a sum (see 3.2)

TĈ,µ = T0
Ĉ,µ

+ PĈ, T0
Ĉ,µ

= DÂ ⊕−SIGNµ,

where PĈ is a zero order term decaying exponentially to zero along the cylindrical neck. We
deduce that for each s ∈ [0, 1] the differential operator

Ts
Ĉ,µ

:= T0
Ĉ,µ

+ sPĈ

defines a Fredholm operator L1,2
µ → L2

µ. Using the deformation s 7→ Ts•,µ we can transfer the
orientability problem to the family {T0

Ĉ,µ
}Ĉ∈Ẑµ(r). The the determinant line of the family

{DÂ}(ψ̂,Â)∈Ẑµ(r) is naturally oriented as these operators are complex. On the other hand,

the operator −SIGNµ is independent of Ĉ. We have thus reached the following conclusion.
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Proposition 3.28. The moduli space M̂µ(r) is orientable and an orientation can be spec-
ified by specifying an orientation on

det ind
(
SIGNµ : L1,2

µ

(
(Λ1 ⊕ Λ0)T ∗M

) → L2
µ

(
(Λ1 ⊕ Λ0)T ∗M

))
.

Observe that

kerµ SIGNµ = 0, kerµ SIGN∗µ
µ
∼= kerex SIGN∗

µ
∼= H1(M,R).

We have thus obtained the following consequence.

Corollary 3.29. An orientation on H1(M,R) canonically specifies an orientation on M̂µ(r).

We illustrate the orientation rules on a simple example which will be useful later on.

Example 3.30. Fix an orientation on H1(M,R) and a nonzero harmonic 1-form ω0 ∈
L2

ex which defines a positively oriented basis of H1(M,R). Suppose Ĉ0 = (0, Â0) is a
mildly irregular reducible monopole. We know that a neighborhood of Ĉ0 ∈ M̂µ(r) is
homeomorphic to a neigborhood of 0 in the ⊥-shaped region

{(x, r) ∈ R× R+; ρx = 0}.

The horizontal part ρ = 0 describes a neighborhood of Ĉ0 inside the moduli space reducible
monopoles. The vertical part x = 0 describes a branch of irreducible monopoles bifurcating
at Ĉ0 (see Figure 4). Because the moduli space is oriented we can attach arrows to these
two branches. We want to explain how.

ρ

xc0̂
reducibles

ir
r
e
d
u
c
ib

le
s

Figure 4: The branching behaviour near a mildly irregular reducible

The reducible branch In this case TĈ0
= DÂ0

⊕ SIGN. Fix oriented bases in H∗(FĈ0
)

and H∗(BĈ0
). For orientation purposes we can neglect the spinorial components. The long

exact sequence determined by (3.4) has the form

0 → (H1 ⊕H0)(M,R) ∼= H1(EĈ0
) i∗→ (H1 ⊕H0)(N,R) ∼= H1(BĈ)
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∂→ H2(FĈ0
) ∼= H1(M,R) → 0

Set ω∞ := ∂∞ω0 = i∗ω0. The space H1(BĈ) is oriented by the basis c1 = {ω∞, ∗ω∞, 1},
while H2(FĈ0

) is oriented by the basis c0 = {ω0}. Fix the basis c2 = {ω0, 1} of H1(EĈ).
We can now regard the above short exact sequence as an acyclic chain complex of based
vector spaces. The chosen basis of H1(EĈ) is positively oriented if and only if the torsion
of this acyclic based complex is positive. In this case the torsion is very easy to compute.
Define an algebraic contraction of this chain complex

χ : H1(BĈ0
) → H1(EĈ0

), χ(ω∞) = ω0, χ(∗ω∞) = 0, χ(1) = 1.

We deduce (see [28]) that the torsion is given by the determinant of the map

χ⊕ ∂ : H1(BĈ0
) → H1(EĈ0

)⊕H2(FĈ0
)

Using Corollary 3.19 we deduce that ∂ω∞ = 0 and ∂ ∗ ω∞ = −ω0. It follows that with
respect to the bases c1 on H1(BĈ0

) and c2 ∪ c0 in H1(EĈ0
)⊕H2(FĈ0

) the above operator
has the matrix description 


1 0 0
0 0 1
0 −1 0


 .

The determinant of this operator is 1 which implies that c2 is a positively oriented basis.
In particular, it follows that the map

R 3 x 7→ xω0 ∈ H1(M,R)

is an orientation preserving map between the horizontal branch in Figure 4 and the oriented
space H1(M,R).

The irreducible branch Suppose Ĉ0 = (0, Â0) is a mildly irregular reducible monopole.
The local structure of the extended moduli space Mµ near (Ĉ, 0) is given be the Kuranishi
deformation picture. The deformation complex at Ĉ0 has cohomology

H0(EĈ0
) ∼= iR, H1(EĈ0

) ∼= kerex(DÂ0
⊕ SIGN) ∼= kerex DÂ0

⊕H1(M,R)⊕H0(M,R)

More precisely, we can identify H1(EĈ0
) with the subspace of TĈ0

Cµ,ex × X given by

{
(zΦ, xiω0, ic); z ∈ C, x, c ∈ R}

where Φ is a spinor spanning kerex DÂ0
such that

‖Φ‖L2
−µ

= 1.

We assume
‖ω0‖L2

−µ
= 1, κ := 〈ĉ(iω0)Φ, Φ〉L2 6= 0 (3.9)

We also have an isomorphism

H2(FĈ0
) ∼= kerex DÂ0

⊕H1(M,R).
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More precisely, according to Proposition 3.18, H2(FĈ0
) can be identified with the subspace

of L1,2
µ (Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M) spanned by {m−2µ · iω0,m−2µ · Φ}.
According to the computations in 3.3, we can approximate the irreducible branch

monopoles approaching Ĉ0 by real analytic path

[0, ε) 3 s 7→ Ĉs = Ĉ0 + s(Φ, 0) + O(s2).

Note that
H2(FĈs

) ∼= kerex TĈs

and
H0(FĈs

) = 0 = H0(EĈs
).

Using Corollary 3.17 we deduce that the image of H1(EĈs
) in H1(BĈs

) is a lagrangian
subspace LĈs

of H1(N,R). The exact sequence

H1(EĈs
) → H1(BĈs

) → H2(FĈs
) → 0

now implies that dimH2(FĈs
) = 2 = dim kerex TĈs

. In particular this shows that

kerµ TĈs
= 0

and
dimH1(FĈs

) = H2(FĈs
) + indTĈs,µ = 1.

More precisely H1(FĈs
) ⊂ L2,2

µ is generated by LĈs
(iϕs), where ϕs ∈ L2,2

µ,ex is the unique
solution of the boundary value problem

∆Ĉs,µϕs = 0, ∂∞ϕs = 1.

We regard the long exact sequence associated to (3.4)

0 → H0(BĈs
) → H1(FĈs

) → H1(EĈs
) → H1(BĈs

) → H2(FĈs
) → 0 (3.10)

as an acyclic complex. To find the orientation of H1(EĈs
) we need to find oriented bases

on H1(FĈs
) and H2(FĈs

) which induce the fixed orientation on det indTĈs,µ, where s is
very small. Then the orientation on H1(EĈs

) is determined so that the torsion of (3.10) is
positive. We arbitrarily fix an orientation on H2(FĈs

) ∼= cokerTĈs,µ so that we reduce the
problem to finding an orientation on H1(FĈs

) ∼= kerµ TĈs, u.
Recall that the symplectic vector space kerH admits a natural decomposition

kerH = H1(N,R)⊕ (
dt ∧H0(N,R)⊕H0(N,R)

) ∼= H1(N,R)⊕ (dt ∧ R⊕ R).

For simplicity we denote the component dt ∧R by U0 and the component R by Uf . U0 has
a canonical basis {u0} and Uf has a canonical basis {uf}. The symplectic structure is given
by

J =



∗ 0 0
0 0 −1
0 1 0


 .

60



Since kerµ TĈs
= 0 we can identify kerex TĈs

with its image in kerH via ∂∞. This image is

∂∞
(
H2(FĈs

)
)

= LĈs
⊕ U0.

Fix a basis hs of LĈs
. There exist ĥs, Ξs ∈ kerex TĈs

such that

∂∞ĥs = hs and Ξs = u0.

The vector ĥs spans the tangent space to the irreducible branch at the configuration Ĉs.
For s sufficiently small this branch is well approximated by the curve (s 7→ sΦ, Â0). Thus
the tangent space can be well approximated by the real line spanned by Φ.

• In the sequel we assume that hs is chosen such that the oriented real line 〈ĥs〉 converges
to the oriented real line 〈Φ〉.

We can be more specific about Ξs as well. More precisely, Ξs = LĈs
(v̂s + t), where v̂s is

the unique solution of the problem

v̂s ∈ L3,2
µ,ex, ∆Ĉs

v̂s = −∆Ĉs
(t), ∂∞v̂0 = const, 0 < s ¿ 1.

We orient H2(FĈs
) using the basis m−2µ(ĥs,Ξs). We identify H1(BĈs

) with the subspace
H1(N,R) ⊕ Uf ⊂ kerH. The space H1(FĈs

) is generated by Υs := LĈs
(iϕs). As we

mentioned earlier, we have an orientation on det indTĈs,µ and thus we can represent an
oriented basis as εΥs, ε = ±1. The connecting morphism

δ : H1(BĈs
) = span

{
hs, ∗hs, uf

} → H2(FĈs
)

is given by

hs → 0, (∗hs) 7→ ∂−1
∞ (J(∗hs)) = −m−2µĥs, uf 7→ ∂−1

∞ (Juf ) = −m−2µΞs.

To decide whether the basis ĥs of H1(EĈs
) is positively oriented we need analyze the torsion

of the acyclic complex of based oriented

0 → H0(BĈs
) = 〈uf 〉 → H1(FĈs

) = 〈εΥs〉 → H1(EĈs
) = 〈ĥs〉

→ H1(BĈs
) = 〈hs, ∗hs, uf 〉 → H2(FĈs

) = 〈m−2µĥs,m−2µΞs〉 → 0.

This is given by the determinant of the map

T : H1(FĈs
)⊕H1(BĈs

) = 〈εΥs, hs, ∗hs, uf 〉

→ H0(BĈs
)⊕H1(EĈs

)⊕H2(FĈs
) = 〈uf , ĥs,m−2µĥs,m−2µΞs〉

described by

Υs 7→ uf , hs 7→ ĥs, (∗hs) 7→ −m−2µĥs, uf 7→ −m−2µΞs.

This determinant is equal to ε. Thus we need to compare the canonical orientation on
detTĈs,µ with the orientation induced by

Υs ⊗ (m−2µĥs ∧m−2µΞs)∗.
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We follow the principles outlined in Appendix C to which we refer for details and notations.
We need to pick an oriented stabilizer for the family [0, ε] 3 s 7→ TĈs,µ. The natural

choice is the cokernel of TĈ0,µ : L1,2
µ → L1,2

µ which is precisely V0 := H2(FĈ0
). More

precisely, we have a natural real basis of V0,

V0 = 〈m−2µΦ, im−2µΦ, im−2µω0〉.

The choice ω0 defines an orientation on V0. More generally, set

Vs := kerT
∗µ

Ĉs,µ
∼= H2(FĈs

).

Now form the operators

O′s := TĈs,µ ] V0 : L1,2
µ

(
Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M

)⊕ V0 → L2
µ(Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M),

(ψ̂, iâ, if ; v) 7→ TĈs,µ(ψ̂, iâ, if) + v

and similarly O′′s = TĈs,µ ] Vs, s ∈ (0, ε]. Set

KV0(s) = kerO′s, KVs = kerO′′s .

The spaces KV0(s) form a bundle over [0, ε] and for s sufficiently small we have the short
exact sequences,

0 → Vs → V0 → V0/projV0
(Vs) → 0, (3.11a)

0 → H1(FĈs
) → KVs → 0, (3.11b)

0 → KVs → KV0(s)
F→ V0/projV0

(Vs) → 0. (3.11c)

We analyze successively the above short exact sequences. As s ↘ 0 the 2-plane projV0
(Vs)

converges to the oriented 2-plane 〈m−2µΦ,m−2µiΦ〉 so that we can identify Vs with this
oriented 2-plane and V0/projV0

(Vs) with the oriented line spanned by m−2µiω0.
Using (3.11b) we deduce that

KVs ≈
(
H1(FĈs

)⊕ 0
) ⊂ L1,2

µ

(
Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M

)⊕ V0

and is oriented by the basis
{

εΥs

}
. Using the sequence (3.11c) we obtain an orientation

on KV0(s), 0 < s ¿ 1.

or (KV0(s)) = or (KVs) ∧ 〈F−1(m−2µiω0)〉

As s ↘ 0 the oriented line spanned by Υs converges to the oriented line spanned by iΦ.
The sign ε is determined by the requirement that as s ↘ 0 the oriented 2-plane KV0(s)
converges to the oriented 2-plane

〈Φ, iΦ〉 ∼= KV0(s = 0).

We need to determine Θs ∈ L1,2
µ

(
Sσ̂ ⊕ i(Λ1 ⊕ Λ0)T ∗M

)
such that

TĈs
Θs + m−2µiω0 = 0,

62



i.e. Θs ⊕ m−2µiω0 = F−1(m−2µiω0), and then study the behavior of the oriented line
spanned by Θs ⊕m−2µiω0 as s ↘ 0. We write

Θs = ψ̂
s
⊕ iâs ⊕ ifs.

Observe that Ĉs = Ĉ0 + s(Φ, 0) + O(s2) so that

TĈs,µ = T0
Ĉs,µ

+ PĈs
= TĈ0,µ + PĈs

where

PĈs
Θs = s




1
2 ĉ(iâ)Φ− i

2fsΦ

1
2 q̇(Φ, ψ̂

s
)

i
2 Im〈Φ, ψ̂

s
〉




+ O(s2)Θs =: s
(
R + O(s)

)
Θs.

Observe now that
TĈ0,µΘs + sRΘs + m−2µiω0 = O(s2)Θs.

Denote by Θ0
s the L2

µ-orthogonal projection of Θs to the kernel of TĈ0,µ and set Θ⊥
s =

Θs −Θ0
s. Arguing as in the proof of [26, Lemma 1.5.13] we deduce that there exists

Z0 = z0Φ ∈ kerµ TĈ0,µ, z0 ∈ C,

such that
lim
s↘0

‖sΘs − Z0‖L2
µ

= lim
s↘0

‖sΘ0
s − Z0‖L2

µ
= 0.

Take the L2
µ-inner product of the last equality with m−2µiω0. Using the normalization

‖ω0‖L2
−µ

= 1 we e deduce

s
〈
RΘs, iω0

〉
L2 + 1 = O(s2)

〈
Θs, iω0

〉
L2
−µ

.

If we let s ↘ 0 we conclude

−1 =
〈
R(z0Φ), iω0

〉
=

1
2

Re z0

〈
q(Φ), ĉ(iω0)

〉
L2 .

Using the normalization condition (3.9) we deduce that r0 := Re (z0) 6= 0 and more pre-
cisely, r0 · κ < 0. This shows that oriented plane KV0(s) converges to the oriented plane

〈
εiΦ,−κΦ

〉
.

Since we require that this plane has the same orientation as
〈
Φ, iΦ

〉
we deduce ε · κ > 0.

We conclude that when κ > 0 the irreducible branch leaves the reducible locus while when
κ < 0 the irreducible branch is directed towards the reducible locus.

Remark 3.31. For every cylindrical spinc structure σ̂ and every choice of perturbations
(η, w) obe can form an integer SF (σ̂, η, w)) defined as the spectral flow of the family of
Dirac operators on Sσ̂,

(DA)
(0,A)∈M̂red

µ (r)
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parametrized by the space of gauge equivalence classes of reducible (σ̂, η, w)-monopoles.
This spectral flow is independent of (η, w) and we will denote it by SF (σ̂). One can choose
the parameters (η, w) such that

• If SF (σ̂) = 0 then kerDA = 0 for any operator DA in the above family.
• If SF (σ̂) 6= 0 then dimC kerDA ≤ 1 for all operators in the above family with equality for
only finitely many of them. Moreover DA is any of these operators with nontrivial kernel
spanned by a spinor Φ, then

SF (σ̂) · 〈c(iω0)Φ, Φ〉 > 0.

In less rigorous but more intuitive terms, the above condition signifies that the (possibly
nonexistent) eigenvalues of the above family of Dirac operators cross the 0-value transver-
sally, exactly |SF (σ̂)| times, and always in the same direction.

We will refer to a perturbation (η, w) as above as a monotone perturbation. For monotone
perturbations, there are no irreducible branches of M̂µ(r) which begin and end on the
reducible branch.

4 Gluing results

4.1 Dehn surgery and spinc structures

Suppose M is a compact, oriented 3-manifold with boundary ∂M such that b1(M) = 1
and χ(M) = 0. It follows that ∂M is diffeomorphic to a torus. We will think of M as an
admissible 3-manifold with a fixed cylindrical structure along the end. Set T := ∂∞M , and
denote by j the inclusion T ↪→ M . The kernel of j∗ : H1(T,Z) → H1(M,Z) is a rank 1-free
Abelian group. We fix a longitude λ ∈ H1(T,Z), i.e. a generator of ker j, and denote by
m0 its multiplicity. This is a positive integer such that λ = m0λ0 where λ0 ∈ H1(T,Z) is a
primitive element. The cycle j∗λ-bounds a chain Λ ⊂ M which generates H2(M, ∂M ;Z).

We equip T with the orientation as boundary of M . This orientation defines a nonde-
generate (symplectic) intersection pairing on H1(T,Z). We obtain a symplectic lattice Θ.
Fix µ0 ∈ Θ such that λ0 · µ0 = 1. The dual of Θ is the symplectic lattice Θ] is defined by

Θ] = HomZ(Θ,Z) ∼= H1(∂M,Z).

The intersection pairing on Θ defines an element λ] ∈ Θ∗ uniquely determined by the
requirements

〈λ], u〉 = λ · u, ∀u ∈ Θ.

In particular, 〈λ], λ〉 = 0. λ] is a generator of Θ∗
M , the range of the morphism

j∗ : H1(M,Z) → H1(∂M,Z).

The group H1(M, ∂M ;Z) is finite and the universal coefficients theorem coupled with the
Poincaré-Lefschetz duality imply that we have natural isomorphisms

H2(M ;Z) ∼= H1(M, ∂M ;Z) ∼= Hom(H1(N)τ ,Z).

In particular, the restriction map j∗ : H2(M,Z) → H2(T,Z) is trivial. In particular, all the
spinc structures on M are admissible.
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Denote by Pic∞(M, ∂M) the space of ismorphisms classes of pairs (L, φ) where L is a
complex line bundle over M and φ : L |∂M→ C is a trivialization along the boundary. The
realtive Chern class produces an isomorphism

crel
1 : Pic∞(M, ∂M) → H2(M,∂M ;Z).

The group Θ] acts on Pic∞(M, ∂M) as follows. If (L, φ) ∈ Pic∞(M) and c ∈ Θ] then we
define

c(L, φ) = (L, cφ) := (L, γφ)

where γ : ∂M → S1 is a gauge transformation such that the closed 1-form 1
2πi is harmonic

and represents the element c ∈ H1(∂M,Z). We have the equality4

crel
1 (L, cφ) = crel

1 (L, φ) + δMc,

where δM : H1(∂M,Z) → H2M, ∂M ;Z) is the connecting morphism of the pair (M, ∂M).
In particular this shows that the stabilizer of this action is the subgroup Θ]

M .
The group Pic∞(M, ∂M) acts freely and transitively on Spinc

cyl(M). Fix a cylindrical
spinc structure on M . By doing so we provide an identification

Spinc
cyl(M) ∼= Pic∞(M,∂M) ∼= H2(M, ∂M ;Z).

We can now think of cylindrical spinc structures over M as complex line bundles over
M equipped with a trivialization along ∂M . In particular we have an action of Θ] on
Spinc

cyl(M, ∂M)
H1(∂M,Z)× Spinc

cyl(M) 3 (c, σ̂) 7→ c · σ̂
and

det(c · σ̂) = 2δMc + det σ̂.

Consider the solid torus S1×D2. We obtain an admissible manifold X equipped with a
cylindrical structure by attaching the cylinder R+ × S1 × ∂D2. Denote by m0 ∈ H1(∂X,Z)
the homology class carried by {1} × ∂D2 and by k0 ∈ H1(∂X,Z) carried by S1 × {pt}. We
orient ∂X as boundary of X so that m0·k0 = 1. Fix an orientation reversing diffeomorphism
Γ : ∂X → T such that Γ(k0) = λ0, µ0 := Γ(m0). Denote by µ]

0 ∈ H1∂M,Z) the element
defined by

〈µ]
0, x〉 = µ0 · x, ∀x ∈ Θ.

For each orientation preserving diffeomorphism ϕ : ∂X → X we denote by Yϕ the manifold
obtained by attaching X to M via the orientation reversing diffeomorphism Γϕ := Γ ◦ ϕ.
Alternatively, we can think of ϕ as changing the cylindrical structure of Y so that we get a
cylindrical manifold Xϕ where the cylindrical structure allong the neck is given by

1R+ × ϕ : R+ × ∂X → R+ × ∂X.

The manifold Yϕ can also be thought of gluing the cylindrical manifold M with Xϕ using
the gluing map Γ.

4A proof of this identity is described later in this section.
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The diffeomorphism type of Yϕ depends only on the attaching curve c = Γϕ(m0). Using
the basis {m0,k0} of H1(∂X,Z) we can represent ϕ as a matrix

ϕ =
[

p α
q β

]
∈ SL(2,Z),

so that c = pµ0 + qλ0, and will also write Yp/q instead of Yϕ. The operation we have just
described is called Dehn surgery along c

Remark 4.1. Since we are interested in monopoles on Yϕ we have to specify a metric on
this manifold. The metric we will work with will have a cylindrical neck of length r À 1,
and we assume the gluing of ∂X and ∂M via ϕ takes place in the middle of this neck.
We also assume that ∂M is equipped with a flat metric g∂M , and X is equipped with a
metric of nonnegative scalar curvature such that ϕ is an isometry between g∂X and g∂M .
Using the construction in Appendix B we can explicitly produce such metrics on solid tori,
by attaching to the solid torus S1 × D2, a cylinder [0, r] × T 2 with a nonnegative scalar
curvature metric which interpolates between the canonical flat metric g0 on T 2, and the flat
metric ϕ∗g0.

We would like to describe the basic topological invariants of Yp/q in terms of (p, q) and
the invariants of Y . For more details and proofs we refer to [28]. We will distinguish two
cases.

A. p = c · λ0 6= 0. In this case Yc is a rational homology sphere and we have a short exact
sequence

0 → Z〈j∗c〉 → H1(M,Z) → H1(Yc,Z) → 0.

We set Kc := Γ0◦ϕ(k0) and we continue to denote by Kc the image of j∗Kc in H1(Yc,Z). We
denote the linking form of Yc by lkc. The above short exact sequence defines an element
in Ext (H1(Yc),Z) ∼= Hom(H1(Yc,Z),Q/Z) which can be canonically identified with the
character lkc(Kc, •) of H1(Yc,Z). Moreover, the torsion part of H1(M,Z) is naturally
isomorphic to the kernel of this character.

By passing to Poincaré duals we obtain the short exact sequence

0 → Z〈c]〉 δM−→ H2(M, T ;Z) → H2(Yc,Z) → 0. (4.1)

We can use this short exact sequence to explain how to glue cylindrical spinc structures on
M and X to obtain all the spinc structures on Yc.

The cylindrical manifold X is equipped with a canonical spinc structure. To describe
it, we use Turaev’s description of spinc-structures in terms of smooth Euler structures,
[28, 33, 35].

A cylindrical spinc structure on X can be described by indicating a nowhere vanishing
vector field V on X pointing outwards along the boundary.5 The determinant line bundle
of the spinc structure σV determined by V is the oriented real 2-plane bundle 〈V ⊥〉 → X.
Along ∂X we have 〈V ⊥〉 ≡ T∂X. The tangent bundle of ∂X has a canonical trivialization,

5For technical purposes, in all the computations to come, we will slightly deform such vector fields to
get vector fields coinciding with ∂t in a small neighborhood of the boundary, where t denotes the outgoing
normal coordinate near the boundary.
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uniquely defined up to a homotopy. More precisely, an oriented basis of H1(∂X;Z) induces
a trivialization of T∂X. Different bases lead to homotopic trivializations.

We use the basis {m0,k0} of H1(∂X,Z) to produce a trivialization of T∂X. The canon-
ical spinc structure on S1 ×D2 is described by the vector field

V0 = cos
(πr

2
)
k0 + sin

(πr

2
)
∂r, r ∈ [0, 1],

where we denote by r the radial coordinate along the disk D2. We will denote this cylindrical
spinc structure by core. Alternatively, we have an injection

Spinc
cyl(X) → H2(X, ∂X;Z) ∼= Z, σ 7→ crel

1 (detσ).

Its image consists of the odd elements of H2(Xϕ, ∂Xϕ;Z) ∼= H1(X;Z). We choose the core
S1 × {0} as generator of H1(X,Z). The canonical cylindrical spinc structure is uniquely
determined by

crel
1 (core) = c1(〈V0〉⊥) = 1 ∈ H2(X, ∂X;Z).

We denote by L0 ∈ Pic∞(X, ∂X) the complex line bundle 〈V0〉⊥ equipped with the canon-
ical trivialization along ∂X. We can obtain all the other cylindrical spinc-structures by
twisting L0 |∂X by a homotopically nontrivial gauge transformation. More precisely, given
a gauge transformation γ : ∂X → S1 we denote by [γ] = γ∗

(
1

2πidγ/γ
) ∈ H1(∂X,Z) the co-

homology class it determines. If we change the canonical trivialization of L0 |∂X to γL0 |∂X

then
c1(γ · core) = 1 + 2δX [γ] (4.2)

where δX : H1(∂X,Z) → H2(X, ∂X;Z) is the connecting morphism of the pair (X, ∂X).
To see this, it suffices to pick a connection a A0 of L0 trivial near ∂X with respect to the
canonical trivialization and a connection Aγ trivial near ∂X with respect to the trivialization
γ · L0. Then, near ∂X we have

Aγ = γA0γ−1 = A0 − 2dγ/γ.

Choose a smooth cut-off function c(r) such that c(r) ≡ 0 r ≈ 0, and c(r) ≡ 1 for r ≈ 1.
Then we can define Aγ := A0 − 2c(r)dγ/γ. We deduce

FAγ = FA0 − 2c′(r)dr ∧ dγ/γ.

The compactly supported cohomology class δX [γ] is represented by

d(
c(r)
2πi

dγ/γ) =
c′(r)
2πi

dr ∧ dγ/γ.

Thus

c1(Aγ) = c1(A0) + 2
c′(r)
2πi

dr ∧ dγ/γ

from which the equality (4.2) is obvious. Note also that

δXm]
0 = 0
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so that twists by gauge trasformations which are homotopically trivial along the meridian
m0 do not change the cylindrical structure. The twisted cylindrical structure γ · core is also
described by the vector field

Vγ = cos
(πr

2
)
γk0 + sin

(πr

2
)
∂r.

We can now provide the following interpretation to the diagram (4.1). We begin by defining
a gluing operation

# : Spinc
cyl(M,∂M)× Spinc(Xϕ) → Spinc(Yϕ).

Start with spinc structures σ̂M and σ̂X on X represented by vector fields VM and VX

which are ≡ ∂t near the boundary. Observe that VX is ϕ-invariant. Consider the cylinder
C0 := [−1, 1]× S1 × S1 with the vector field T0 given by

T0(t, θ1, θ2) = cos
( t + 1

2
π
)
∂t + sin

( t + 1
2

π
)
∂θ1 .

This vector field points inwards along the boundary of C0. If we now think of Yϕ as an
union

Yϕ = M ∪ C0 ∪ϕ:∂X→{1}×T 2 X

then we get a nowhere vanishing vector field on Yϕ equal to VM on M , T0 on C0 and VX

on X. We call this vector field VM#ϕVX and denote the corresponding spinc structure by
σ̂M#ϕσ̂X .

If we fix a cylindrical spinc structure σ̂0 on M then any other cylindrical spinc structure
on M is obtained in an unique way from σ0 by twisting with a L ∈ Pic∞(M, ∂M),

(σ̂0, L) 7→ σ̂0 ⊗ L.

If we set
σ̂0(ϕ) := σ̂0#ϕcore

then, for every LM ∈ Pic∞(M,∂M), LX ∈ Pic∞(X, ∂X) we have

(σ̂0 ⊗ LM )#ϕ(core⊗ LX) = σ0(ϕ)⊗ (LM#LX).

As we have explained, we have an identification

crel
1 : Pic∞(X, ∂X) → Z, L 7→ c1(L) ∈ H2(X, ∂X;Z) ∼= Z,

and we denote by Ln ∈ Pic∞(X, ∂X) the cylindrical line bundle such that crel
1 (Ln) = n.

We also set
coren := core⊗ Ln.

The gluing map ϕ induces by pullback a morphism

ϕ∗ : G∂M = Map (∂M,S1) → G∂X = Map (∂X, S1).

gauge group G∂M ( resp. G∂X) acts on Pic∞(M, ∂M) (resp. Pic∞(X, ∂X)) by twisting the
trivialization along the boundary. For every γ ∈ G∂M we have

σ̂0 ⊗ (γLM#ϕLn) = σ̂0 ⊗ (LM#ϕΓ∗ϕ(1/γ)Ln)
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= σ̂0 ⊗
(
LM#ϕLn−δXΓ∗ϕ[γ]

)
= σ̂0 ⊗

(
LM#ϕLn−〈[γ],Γϕm0〉

)
.

Recalling that c := Γϕ(m0), we deduce c] = (Γ∗ϕ)−1m]
0, and if [γ] = c] we deduce

σ0(ϕ)⊗ (γLM#ϕLn) = σ0(ϕ)⊗ (LM#ϕLn).

We can now provide the promised interpretation of (4.1).

Proposition 4.2. Every spinc structure σ̂ on Yϕ can be written as

σ̂ = σ̂M#ϕcore

for some σ̂M ∈ Spinc
cyl(M). Moreover if σ̂1, σ̂2 ∈ Spinc

cyl(M) then

σ̂1#ϕcore ∼= σ̂2#ϕcore ⇐⇒ ∃n ∈ Z such that σ̂2 = nc]σ̂1.

B. p = 0, q = 1 ⇐⇒ c = λ0. Set Y0 := Yλ0 . In this case we also have a short exact sequence

0 → Z〈λ0〉 j∗−→ H1(M ;Z) → H1(Y0,Z) → 0.

The cycle j∗λ0 has order m0 in H1(M,Z). We deduce that for every spinc structure σ on
Y0 there exist exactly m0 cylindrical spinc structures σ on M with the property

σ̂ = σ̂′#0core.

We summarize the facts proved so far.

For every ϕ ∈ SL(2,Z) there exists a natural surjection

πϕ : Spinc
cyl(M) → Spinc(Yϕ), σ̂ 7→ σ̂#ϕcore.

Moreover,
πϕ(σ̂1) = πϕ(σ̂2) ⇐⇒ ∃n ∈ Z : σ̂2 = (nc])σ̂1.

Denote by Θ]
ϕ the image of H1(X,Z) in Θ] via (ϕ∗ ◦ Γ∗)−1. Note that Θ]

ϕ is the group
generated by c]. The results we have established show that the map

πϕ : Spinc
cyl(M) → Spinc(Yϕ)

is Θ]
M + Θ]

ϕ-invariant. In particular, it descends to a map

πϕ : Spinc
cyl(M)/(Θ]

M + Θ]
ϕ) → Spinc(Yϕ).

Set Gϕ := Θ]/(Θ]
M +Θ]

ϕ). The quotient Spinc
cyl(M)/(Θ]

M +Θ]
ϕ) is equipped with a residual

Gϕ action. We can use πϕ to transport it to a Gϕ-action on Spinc(Yϕ). On the other hand,
we have isomorphisms

Spinc(M) ∼= Spinc
cyl(M)/Θ] ∼=

(
Spinc

cyl(M)/(Θ]
M + Θ]

ϕ)
)
/Gϕ.

We conclude that πϕ induces a map

πϕ : Spinc(M) → Spinc(Yϕ)/Gϕ.
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Remark 4.3. The group Gϕ can be given a different geometric interpretation. The closed
curve Γ ◦ ϕ(k0) determines a homology class Kϕ ∈ H1(Yϕ,Z). Then Gϕ is isomorphic to
the cyclic group generated Kϕ. For 0/1-surgery this is an infinite cyclic group. In this case
the generator of Gϕ may not be a primitive class. It has the form m0 × primitive class.
For the other surgeries the group Gϕ is finite. In this case the extension

0 → Z2 ∼= Θ]
M + Θ]

ϕ ↪→ Θ] ∼= Z2 → Gϕ → 0

defines an element χ ∈ Ext(Gϕ,Z2) = Hom(Gϕ,Q/Z × Q/Z), and thus can be identified
with a pair (χ1, χ2) of characters of Gϕ. More precisely

χ1(Kϕ) =
1
r
, r := |Gϕ|, χ2(Kϕ) = −lkYϕ(Kϕ,Kϕ),

where lkYϕ denotes the linking form on Yϕ. We refer to [28] for proofs and details.

4.2 A relative “invariant”

We continue to use the set-up and notations described in 4.1. Fix a sufficiently small positive
exponential weight µ. Set

ĜM := Ĝµ,ex, GM
T = ∂∞Ĝ ⊂ GT := L3,2(T, S1).

The group of components of G is Θ] while the group of components of G∂M is the subgroup
of Θ] generated by λ].

We identify the trivial complex line bundle over T with the (holomorphic) tangent bundle
of T equipped with the canonical trivialization. Denote by B0 the trivial connection on the
trivial complex line bundle over T . Recall that MT denotes the spaces of flat connections
on the trivial line bundle over T modulo even gauge transformations in GT . We have a
homeomorphism

MT → H1(T,R)/2Θ]

defined by

(B0 + ia) mod GT 7→ 1
2π

[a] mod 2Θ],

where [a] ∈ H1(T,R) denotes the harmonic part of the closed 1-form a. Denote by MM
T the

space of flat connections on the trivial bundle on T modulo even gauge transformations in
GM

T . This space is homemorphic to the cylinder

H1(T,R)/2Zλ].

The space MM
T is a Z-cover of MT . We denote by M̃T the universal cover of MT ,

M̃T
∼= H1(T,R).

The unique bad reducible in MT lifts to a lattice of bad points in M̃T which can be identified
with 2Θ].

For all 0 < r ¿ 1 denote by MT (r) the complement in MT of an open disk of radius r
centered at [B0] ∈ MT . Topologically, MT (r) is a torus with a small disk removed. Denote
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Figure 5: Spaces of gauge equivalences classes of flat connections on a torus

by MM
T (r) the preimage of MT (r) in MM

T . Topologically, MM
T (r) is an infinite cylinder

with a sequence of holes in it; see Figure 5. We define M̃T (r) in a similar way. It is a plane
with small holes centered at the bad points.

Fix a cylindrical spinc structure σ̂ on M , a very small r, and perturbations parameters
(η, w) on M in the generic way explained in 3.4. We get a moduli space M̂M,σ̂(r) := M̂µ(r).
When no confusion is possible we will write M̂M (r) instead of M̂M,σ̂(r). The image ∂∞M̂M,σ̂

is a compact immersed curve in MM
T . Before we describe it we consider a special case which

will play an important role in the sequel.

Example 4.4. Suppose M is the solid torus S1×D2. We think of it as a cylindrical manifold
equipped an admissible metric of nonnegative scalar curvature as explained in Appendix
B. Then all the finite energy monopoles corresponding to the canonical cylindrical spinc

structure σ̂ = core are reducible. It consists of ĜM equivalence classes of flat connections
on L0, and the moduli space M̂M is diffeomorphic to a circle. We would like to understand
the image ∂∞M̂M . We want to show that B0 6∈ ∂∞M̂M , and then describe the position of
B0 relative to ∂∞M̂M .

First let us emphasize one subtlety. The map ∂∞ is not simply a restriction-to-the-
boundary map. The bundle L0 is equipped with a canonical isomorphism

ϑ : L0 |T→ CT .

If B̂ is a flat connection on L0 then

∂∞B̂ = ϑB̂ |T ϑ−1.

Then
∂∞B̂ = B0 + ib, b ∈ Ω1(T ), db = 0.

Denote by r the radial coordinate along D2, by θ the angular coordinate on D2, and by
ϕ the angular coordinate along the core S1. As in 4.1 we set m0 := {1} × ∂D2 ∈ Θ,
k0 = S1 × 1 ∈ Θ. Then

m]
0 =

1
2π

dϕ, k]
0 = − 1

2π
dθ.

71



Choose a smooth, nonnegative, nonincreasing cut-off function c(r) such that c(r) ≡ 1 for
r ≈ 1 and r ≡ 0 for r ≈ 1/2. Set B̂′ := B̂ − ic(r)b

∂∞B̂′ = B0

and
i

2π
FB̂′ =

1
2π

δMb.

The compactly supported 2-form i
2πFB̂′ represents the relative Chern class of L0 which by

was chosen to be the canonical generator of H2(M, ∂M ;Z). Equivalently, this means

1 =
1
2π

∫

{1}×D2

δMb =
1
2π

∫

∂D2

b.

Thus
1
2π

b ∈ −k]
0 + Zm]

0.

Observe that MM
T = Θ]/2m]

0Z. The image ∂∞M̂M in MM
T is (−k]

0 + Rm]
0)/2Zm]

0, and it
looks like in Figure 6.
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Figure 6: The traces left by the monopoles on a solid torus

We now consider the general case. We decompose

M̂M,σ̂(r) = M̂red
M,σ̂(r) ∪ M̂irr

M,σ̂(r).
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We want to analyze first ∂∞M̂red
M,σ̂(r). Recall that

M̂red
M,σ̂(r) =

{
Â; FÂ + ∗iη = 0

}
/2iZω0

where ω0 ∈ L2
ex is a harmonic 1-form which defines a positive6 generator of H1(M,Z).

We will always choose this positive generator to be the Poincaré dual of the cycle Λ ∈
H2(M,∂M ;Z) which bounds the longitude λ.

Fix a flat connection B̂0 on det(σ̂) and a smooth 1-form b0 ∈ L2
ex such that ∗η = d̂b0.

Then the finite energy reducible monopoles have the form

Â = B̂0 + ib̂0 + itω0.

Let us observe that since η is compactly supported the restriction of b0 to T is a closed
1-form. We will denote it by b0 The restriction of ω0 to T generates the image of the
morhism

H1(M,R) → H1(T,R)

By passing to Poincaré duals we deduce that ω0 |T = λ].
The cylindrical spinc structure σ̂ carries additional topological information. First, the

absolute Chern class c1(det σ̂) ∈ H2(M,Z). This is completely characterized by the holon-
omy representation defined by the flat connection B̂0

holB̂0
: H1(M,Z) → S1.

The second more refined information is the relative Chern class crel
1 (det σ̂) ∈ H2(M,∂M ;Z),

and is due to the cylindrical structure. The absolute Chern class is the image of the relative
Chern class via the natural morphism

H2(M, ∂M ;Z) → H2(M,Z).

As in Example 4.4 we have

∂∞Â = B̂0 |T +ib0 + itλ] + ib

b is a closed 1-form such that 1
2π b is integral, and its presence is due to the cylindrical

structure. We now write
B̂0 |T = B0 + iχ0.

The closed 1-form 1
2πχ0 is uniquely determined mod Zλ], and satisfies the holonomy con-

ditions,
holB̂0

(j∗c) = exp
(−i〈χ0, c〉

)
, ∀c ∈ Θ.

In particular, 1
2π 〈χ0, λ〉 ∈ Z. Arguing exactly as in Example 4.4 we deduce

1
2π
〈b + χ0, λ〉 = deg(σ̂) := 〈crel

1 (det σ̂), Λ〉 ∈ Z.

6The positivity assumption refers to the chosen orientation of H1(M,R) required to orient the moduli
spaces.
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We write
1
2π

b := uλ]
0 + vµ]

0, u, v ∈ Z
1
2π

χ0 := x0λ
]
0 + y0µ

]
0, x, y ∈ Q.

We deduce
vm0 = −deg(σ̂), m0y ∈ Z,

If we define ασ̂, βσ̂ ∈ Q ∩ [0, 1) by the equalities

exp(2πiβσ̂) = holB̂0
(j∗λ0), exp(−2πiασ̂) = holB̂0

(j∗µ0).

We deduce
x0 − ασ̂ ∈ Z, y0 − βσ̂ ∈ Z

The ambiguity in y0 is due to the fact that there is no canonical identification7 between
cylindrical spinc-structure and cylindrical line bundles. The image of M̂red

M in MM
T

∼=
H1(T ;R)/2Zλ] is a circle. Its lift to the universal cover is the line

t 7→ b0 +
(
βσ̂ − deg(σ̂)

m0

)
µ]

0 + tλ]
0

depicted in Figure 7.

(
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0


0
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0
0
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+b
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µ
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#

#

##

#=

Bad reducible

Figure 7: The boundary trace left by the reducible monopoles on a knot complement.

7When M is the complement of a knot in an integral homology sphere then there is a canonical way of
associating a cylindrical line bundle to a spinc structure.
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Suppose now that we perform Dehn surgery on M by attaching a solid torus X = S1×D2

using a gluing map ϕ : H1(∂X,Z) → H1(∂X,Z). As explained in 4.1 this means attaching
∂X to ∂M using the gluing map

Γ ◦ ϕ : ∂X
ϕ−→ ∂X

Γ−→ ∂M.

We have an oriented basis m0, k0 of H1(∂X,Z) where we orient ∂X as boundary of X and
an oriented basis {λ0, µ0} of H1(∂M,Z) = Θ, where ∂M is oriented as boundary of M .
With respect to the chosen bases Γ has the matric description

Γ :=
[

0 1
1 0

]
⇐⇒ m0 7→ µ0, , k0 7→ λ0.

The attaching map ϕ can be identified with a matrix in SL(2,Z)

ϕ =
[

p α
q β

]
∈ SL(2,Z),

Then

Γϕ := Γ ◦ ϕ =
[

q β
p α

]
=⇒ m0 7→ pµ0 + qλ0.

We will denote the above matrix by Γp/q. The map Γ−1
ϕ induces by pullback a map

(Γϕ)] : H1(∂X,Z) → H1(∂M,Z) = Θ∗.

With respect to the bases {m]
0,k

]
0} and {λ]

0, µ
]
0} it has the matrix description

(Γp/q)] =
[

α −β
−p q

]−1

= −
[

q β
p α

]
= −Γp/q.

Consider now the horizontal oriented line

T :=
{
(−k]

0 + tm]
0; t ∈ R}

n∈Z ⊂ H1(∂X,R).

This line is depicted in Figure 6 and it is the lift to H1(∂X,R) of the curve

∂∞M̂X,core ⊂ MX
∂X

∼= H1(∂X,R)/2Zm]
0.

The image of T via (Γϕ)] is the line

Tϕ = Tp/q :=
{
−(βλ]

0 + αµ]
0)− tc]; c] = qλ]

0 + pµ]
0, t ∈ R

}
⊂ H1(∂M,R).

Note that T stays away from the lattice of bad points H1(∂X, 2Z) . Since Γp/q maps bad
points to bad points we conclude that the line Tp/q will also stay away from the lattice of
bad points 2Θ]. Set

Cσ̂(r) := ∂∞M̂irr
M,σ̂(r) ⊂ MM

T , χσ̂ := ∂∞M̂red
M,σ̂ ⊂ MM

T
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and denote by • 7→ [•] either one of the natural projections

H1(∂M,R) → MT , MM
T → MT .

[Tp,q] is a closed curve on MT which does not pass through the unique bad point [B0]. [χσ̂]is
a closed curve in MT , the image mod 2Θ] of the line

t 7→ b0 +
(
βσ̂ − deg(σ̂)

m0

)
µ]

0 + tλ]
0 ⊂ H1(∂M,R).

[Cσ̂(r)] consists of

(i) Immersed closed curves on the torus MT away from the unique bad point B0.
(ii) Immersed closed curves on the torus MT with boundaries on a small circle centered at
the unique bad point of MT .
(iii) Immersed curves with both boundary points on [χσ̂].
(iv) Immersed curves with one boundary point on [χσ̂], and another on the small circle
centered at [B0].

We conclude that [Cσ̂(r)] is partitioned into two parts

[Cσ̂(r)] = Aσ̂(r) ∪Bσ̂(r)

where A consists only of closed curves while B consists only of curves with boundary. The
closed curves [χσ̂] and A carry multiplicity

As we have explained in 4.1, the orbit of σ̂ in Spinc
cyl(M) modulo the twisting action

of H1(∂M,Z) can be identified with the spinc structure underlying σ̂. We will denote both
this orbit, and the underlying spinc-structure by [σ̂]. The gluing operation # associates
to the orbit [σ̂] (on M) a Gϕ-orbit of spinc-structures on Yϕ. We will denote this orbit
by [σ̂]ϕ = [σ̂]p/q ⊂ Spinc(Yp/q). The rational number βσ̂ is essentially the level invariant
defined in [30, Sec. 17].

The gluing results of [26, Sec.45] imply that we have a bijection

[Cσ̂(r)] ∩ [Tp,q] ←→
⋃

σ∈[σ̂]p/q

M̂(Yp/q, σ).

The cohomology classes 2λ]
0 and 2µ]

0 are natural generators of H1(MT ,Z).
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A The odd signature operator on admissible 3-manifolds

Suppose M is an admissible 3-manifold with a cylindrical neck R+×T 2, where T 2 is equipped
with a flat metric. The odd signature operator on M is the first order formally selfadjoint
operator

SIGN : (Ω1 ⊕ Ω0)(M) −→ (Ω1 ⊕ Ω0)

given by the block decomposition

SIGN =
[ ∗̂d̂ −d̂

−d̂∗ 0

]
.

Along the neck any 1-form α has a decomposition

α = dt ∧ α0(t) + α1(t), α0 := tα, t := ∂t , α1 ∈ Ω1(∂∞M).

Similarly, a 2-form has a decomposition

ω = dt ∧ ω1 + ω2.

Then
d̂α = dt ∧ (α̇1 − dα0) + dα1

and
∗̂d̂α = ∗(α̇1 − dα0) + dt ∧ ∗dα1.

Using the equality −d̂∗ = ∗̂d̂∗̂ we deduce

−d̂∗ = ∗̂d̂(∗α0 − dt ∧ ∗α1) = ∗̂(dt ∧ ∗α̇0 + dt ∧ d ∗ α1)

= α̇0 + ∗d ∗ α1 = α̇0 − d∗α1.

For f ∈ Ω0(M) we have along the neck

d̂ = dt ∧ df + df.

Thus

SIGN




α1

dt ∧ α0

f


 =



∗α̇1 − ∗dα0 − df

dt ∧ (−ḟ + ∗dα1)
α̇0 − d∗α1




Thus, along the neck we can regard SIGN as an operator on Ω0⊕Ω1⊕Ω0(∂∞M) given by

SIGN




α1

α0

f


 =






∗ 0 0
0 0 −1
0 1 0


 ∂t +




0 − ∗ d −d
∗d 0 0
−d∗ 0 0










α1

α0

f




=




0 0 −1
0 ∗ 0
1 0 0





∂t −




0 d − ∗ d
d∗ 0 0
∗d 0 0










α0

α1

f



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This shows that SIGN is an APS operator in the sense of [26] and

~∂∞SIGN =




0 d − ∗ d
d∗ 0 0
∗d 0 0


 =: H.

The kernel of H consists of triples (α0, α1, f) ∈ (Ω0 ⊕ Ω1 ⊕ Ω0)(T 2) such that




d∗α1 = 0, ∗dα1 = 0

dα0 = ∗df
.

This shows that α1 is harmonic and α0 and f are constants. kerH is equipped with
symplectic structure induced by the metric on kerh and the compatible almost complex
structure

J :=



∗ 0 0
0 0 −1
0 1 0


 .

The L2-kernel of SIGN consists of L2-harmonic 1-forms and thus

kerL2 SIGN ∼= Range
(
H1(M,∂M) → H1(M)

)
.

The extended kernel of SIGN consists of pairs (α, f) where f is a real constant and α is an
extended L2-harmonic 1-form. Observe that if we identify α = dt ∧ α0 + α1 with α0 ⊕ α1

then
∂∞α = ∂∞α0 ⊕ ∂∞α1.

We set ∂0∞α := ∂∞α0 and ∂1∞α := ∂∞α1. The subspace Lan := ∂∞ kerex SIGN ⊂ kerH is
Lagrangian so that

J(∂∞(α, f)) ⊥ L, ∀(α, f) ∈ kerex SIGN.

In particular,
J(α, 0) ⊥ (0, ∂∞f), ∀(α, f) ∈ kerex SIGN.

This implies that
∂0
∞α = 0, ∀(α, f) ∈ kerex SIGN.

Using the results of [26, Example 4.1.21] we can identify Lan with Ltop, the image of
(H1 ⊕H0)(M) in (H1 ⊕H0)(T 2) ⊂ kerH. By comparing the short exact sequences

0 → kerL2 SIGN → kerex SIGN → Lan → 0

and
0 → kerL2 SIGN → (H1 ⊕H0)(M) → Ltop → 0

we deduce
kerex SIGN ∼= (H1 ⊕H0)(M), Lan = Ltop.

In this work we also use the weighted odd signature operator SIGNµ, µ > 0, given by

SIGNµ :=
[ ∗̂d̂ −d̂

−d̂∗µ 0

]
=

[ ∗̂d̂ −d̂

−m−2µd̂∗m2µ 0

]
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Along the neck it has the form

SIGNµ




α1

α0

f


 =






∗ 0 0
0 0 −1
0 1 0


 ∂t +




0 − ∗ d −d
∗d 0 0
−d∗ 2µ 0










α1

α0

f




=



∗ 0 0
0 0 −1
0 1 0





∂t −




0 d − ∗ d
d∗ −2µ 0
∗d 0 0










α1

α0

f




so that SIGNµ is an APS operator as well with

~∂∞SIGNµ =




0 d − ∗ d
d∗ −2µ 0
∗d 0 0


 =: Hµ.

Denote by ∆k the Laplacian on k-forms on T 2 equipped with a flat metric. Let λ1 > 0
be the smallest positive eigenvalue of ∆0. We want to determine the eigenvalues ν of Hµ

such that ν2 < λ1
4 assuming that µ is sufficiently small, µ2 < λ1

16 . Observe that if ν is an
eigenvalue of Hµ then ν2 is an eigenvalue of H2

µ. Next, observe that

H2
µ =




∆1 −2µd 0
−2µd∗ ∆0 + 4µ2 0

0 0 ∆0


 .

Thus if (α1, α0, f) is a nonzero eigenvector of Hµ corresponding to the small eigenvalue ν
we deduce 




d∗α1 = (2µ + ν)α0

dα0 = ∗df + να1

∗dα1 = νf
(A.3)

and 



(∆0 + 4µ2)α0 = 2µd∗α1 + ν2α0

∆1α1 = 2µdα0 + ν2α1

∆0f = ν2f

. (A.4)

From the second equation in (A.3) we deduce

∆α0 = d∗dα0 = νd∗α1 = ν(2µ + ν)α0. (A.5)

If ν = 0 then we deduce that both α0 and f are constants and d∗α1 = 2µα0. The only
constant which is a divergence is 0 so that α0 = 0. Hence, for µ > 0 we have

kerHµ =
{

(α0, α1, f); α0 = 0, f = const, dα1 = d∗α1 = 0
}

=⇒ dimRHµ = 3. (A.6)

If 0 < ν2 < λ1
4 we deduce from the third equation in (A.4) that f = 0. If α0 = 0 as well then

we deduce from (A.3) that α1 = 0. Thus α0 6= 0 and we deduce from (A.5) that ν(2µ + ν)
is an eigenvalue λ of ∆0. Notice that

µ2 <
λ1

16
, ν2 <

λ1

4
=⇒ ν(2µ + ν) <

λ1

2
.
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Hence λ = 0 so that ν = −2µ and α0 ∈ ker∆0 which means that α0 is a constant. Using
this information in the second equation of (A.3) we deduce that α1 = 0. We have thus
proved the following result.

Proposition A.1. For small µ, µ2 < λ1
16 , the operator Hµ has only one nonzero eigenvalue

in the interval (−
√

λ1
2 ,

√
λ1
2 ). This eigenvalue is −2µ and the corresponding eigenspace is

spanned by the vector
(α0, α1, f) = (1, 0, 0).

B Nonnegative scalar curvature metrics on cylinders

We denote by θ1, θ2 the angular coordinates on T 2 := S1 × S1 so that
∫

T 2

dθ1 ∧ dθ2 = 4π2.

A diagonal metric on T 2 is a (flat) metric of the form

g := k1(dθ1)2 + k2(dθ2)2

where k1 and k2 are positive constants. We will prove the following result.

Proposition B.1. Suppose A ∈ SL2(Z) and ε > 0 is a very small number. Denote by g0

the flat metric on T 2 described by

g0 := A∗
(
dθ1)2 + (dθ2)2

)
.

(In other words, g0 is the pullback by A of the canonical metric on T 2.) Then there exists
a constant δ > 0 and a smooth path g(t) of flat metrics on T 2 such that

(i) g(t) ≡ 1
δ2 g0, ∀t ≤ ε,

(ii) g1 := g(1) is a diagonal metric,
(iii) g(t) = g1, ∀t ≥ 1− ε,
(iv) and the scalar curvature of the metric ĝ := dt2 + g(t) on R× T 2 is nonnegative.

Proof Set
δ2 := g0(∂θ1 , ∂θ1)

and, only for the ease of notation, reset

g0 :=
1
δ2

g0.

Then, ∂θ1 is an unit vector with respect to this metric and we can complete it to an oriented
orthonormal frame of g0. We denote its dual coframe by {ϕ1, ϕ2} ⊂ Ω1(T 2). This coframe
is related to the original one, dθ1, dθ2 via the equalities

{
ϕ1 = dθ1 + a0dθ2

ϕ2 = kθ2
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where k is a positive constant. The path g(t) will be described by indicating by a path of
coframes {ϕ1(t), ϕ2(t)} which we declare to be orthonormal with respect to g(t).

We seek coframes of the form
{

ϕ1 = dθ1 + a(t)dθ2

ϕ2 = kθ2 (B.7)

where a(t) is a smooth function such that

a(t) ≡ 0, ∀t ≥ 1− ε (B.8a)

a(t) = a0, ∀t ≤ ε. (B.8b)

Clearly the conditions (i)-(iii) are satisfied for all choices of a(t) as above. We only need to
prove that we could choose a(t) constrained by (B.8a) and (B.8b) such that (iv) is satisfied
as well. We will use E. Cartan’s moving frame technique.

Set ϕ0 := dt. Then {ϕ0, ϕ1, ϕ2} is an orthonormal coframe for ĝ on X := R× T 2. This
defines an orthonormal frame of X,

{e0, e1, e2}

with respect to which the Levi-Civita is described by an so(3)-valued 1-from on X

Γ :=




0 x y
−x 0 z
−y −z 0


 , x, y, z ∈ Ω1(X).

Γ is determined by Cartan’s structural equations

d~ϕ = Γ ∧ ~ϕ, ~ϕ :=




ϕ0

ϕ1

ϕ2


 .

Using (B.7) we deduce

dϕ0 = dϕ2 = 0, dϕ1 =
ȧ

k
ϕ0 ∧ ϕ2

where the dot denotes t-derivatives. We deduce

0 = x ∧ ϕ1 + y ∧ ϕ2 (B.9a)

ȧ

k
ϕ0 ∧ ϕ2 = −x ∧ ϕ0 + z ∧ ϕ2 (B.9b)

0 = −y ∧ ϕ0 − z ∧ ϕ1 (B.9c)

Set
x =

∑

i

xiϕ
i, y =

∑

j

yjϕ
j , z =

∑

k

zkϕ
k, xi, yj , zk ∈ C∞(X).

Then
(B.9a) =⇒ x0 = y0 = 0, x2 = y1
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(B.9b) =⇒ x1 = z1 = 0, x2 + z0 =
ȧ

k
(B.9c) =⇒ y2 = z2 = 0, y1 = z0.

We conclude that
x =

ȧ

2k
ϕ2,

ȧ

2k
ϕ1, z =

ȧ

2k
ϕ0,

so that

Γ :=
ȧ

2k




0 ϕ2 ϕ1

−ϕ2 0 ϕ0

−ϕ1 −ϕ0 0


 .

The curvature of the Levi-Civita equation, which we regard as a so(3)-valued 2-form Ω, is
given by

Ω := dΓ + Γ ∧ Γ.

The scalar curvature of ĝ is given by

ŝ = σ(Ω)

where, for any so(3)-valued 2-form Ω on X, we set

σ(Ω) :=
∑

i6=j

〈Ω(ei, ej)ej , ei〉 = 2
∑

0≤i<j≤2

〈Ω(ei, ej)ej , ei〉

= 2
(
〈Ω(e0, e1)e1, e0〉+ 〈Ω(e0, e2)e2, e0〉+ 〈Ω(e1, e2)e2, e1〉

)
= 2

∑

0≤i<j≤2

Ωj
i (ei, ej).

Thus
ŝ := σ(dΓ) + σ(Γ ∧ Γ).

Now observe that

Γ ∧ Γ =
(

ȧ

2k

)2




0 ϕ0 ∧ ϕ1 ϕ2 ∧ ϕ0

−ϕ0 ∧ ϕ1 0 ϕ1 ∧ ϕ2

ϕ0 ∧ ϕ2 −ϕ1 ∧ ϕ2 0




.

We deduce that

σ(Γ ∧ Γ) = 2
(

ȧ

2k

)2

.

Next, observe that

dΓ =
ä

2k
ϕ0 ∧




0 ϕ2 ϕ1

−ϕ2 0 ϕ0

−ϕ1 −ϕ0 0


 +

ȧ

2k




0 0 ȧ
kϕ0 ∧ ϕ2

0 0 0

− ȧ
kϕ0ϕ2 0 0




=: A1 + A2.

Clearly, σ(A1) = 0 while

σ(A2) =
(

ȧ

k

)2

.

Thus ŝ = σ(Ω) ≥ 0 for any choice of a(t) constrained by (B.8a) and (B.8b). ¥
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C Continuous families of Fredholm operators

This appendix is a quick survey and an expansion of the ideas introduced in [26, §1.5.1].
Suppose X is a compact smooth manifold and

X 3 x 7→ Tx ∈ Fred(H0,H1)

is a smooth family of bounded, Fredholm operators between two Hilbert spaces H0 and H1.
A sub-bundle V of the trivial bundle H1 := (H1 ×X → X) is called a stabilizer for the

family T• if for every x ∈ X the operator

Tx ] Vx : H0 ⊕ Vx → H1, (h0, v) 7→ Txh0 + v ∈ H1

is onto. In this case the family of vector spaces

KV (T•) := ker(T• ] V )

can be organized as a smooth vector bundle over X. We can think of V as defining a
resolution of T• in the sense that we have a short exact sequence

0 H0 H0 ⊕ V V 0

0 H1 H1 0 0

w wi

u

T•

u

T•]V

w

u

0

w

w0 w1 w0 w
where the last two vertical arrows are onto.

If V1 ⊂ V2 are two stabilizers then we have a short exact sequence

0−→KV1(T•) → KV2(T•) → V2/V1 → 0 (KV1↪→V2)

where we automatically identify V2/V1 with the orthogonal complement of V1 in V2 and
map KV2(T ) → V2/V1 is induced by the orthogonal projection

H0 ⊕ V2 → V2/V1.

It is often convenient to regard (KV1↪→V2) as describing an acyclic chain complex. Taking
the direct sum of (KV1↪→V2) with the acyclic complex

0 → V ∗
1 → V ∗

2 → (V2/V1)∗ → 0 (CV1↪→V2)

we obtain the short exact sequence

0 → KV1(T )⊕ V ∗
1 → KV2(T )⊕ V ∗

2 → (V2/V1)⊕ (V2/V1)∗ → 0.

All vector spaces in the above acyclic complex are equipped with scalar products and thus,
as explained in [28], this chain complex is equipped with a natural algebraic contraction.
The torsion of this acyclic complex + algebraic contraction is a natural isomorphism

IV2/V1
: detKV1(T )⊗ detV ∗

1 ⊗ det(V2/V1)⊗ det(V2/V1)∗ → det KV2(T )⊗ V ∗
2 .
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Since we have a canonical isomorphism detU ⊗det U∗ ∼= R for every vector space U we will
regard IV2/V1

as an isomorphism

IV2/V1
: LV1 → LV2

where for every stabilizer V we set

LV := det KV (T )⊗ det V ∗.

In [26] we proved that
IV3/V1

= IV3/V2
◦ IV2/V1

.

An orientation of the family (T•) is a collection of isomorphisms

ϕV : R→ LV , V stabilizer

such that for every V1 ↪→ V2 the diagram below is homotopically commutative

LV1 LV2

R

wIV2/V1

[
[̂

ϕV1 �
��
ϕV2

A family is called orientable if it admits an orientation. Notice that an orientation induces
an orientation on each of the lines det kerTx ⊗ det kerT ∗x , x ∈ X. More precisely, if V is a
stabilizer then we have a short exact sequences

0 → kerTx → KVx(Tx) → Vx/projVx
(kerT ∗x ) → 0

0 → kerT ∗x
projVx−→ Vx → Vx/projVx

(kerT ∗x ) → 0
.

The above considerations imply the following result.

Proposition C.1. A family T• is orientable if and only if there exists an orientable stabi-
lizer V such that the bundle KV (T•) is orientable.

We can organize the collection of smooth families of Fredholm operators parameterized
by X as an additive category. The morphisms between two families (S•), (T•) are smooth
families (L0, L1) of bounded operators

X 3 x 7→ Li(x) ∈ B(Hi), i = 0, 1

such that the diagram below is commutative for every x ∈ X,

H0 H0

H1 H1

wL0(x)

u
Sx

u
Tx

wL1(x)

.

We can talk about short exact sequences of Fredholm families. We have the following result.
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Proposition C.2. Suppose

0 → S•
(f0,f1)−→ T•

(g0,g1)−→ U• → 0 (C.10)

is a short exact sequence of Fredholm families. If two of the families are orientable then so
is the third.

Proof We can find a trivial vector sub-bundle V ⊂ H1 which is a stabilizer for all three
families. We then have a short exact sequence

0 → S• ] V
(f0⊕1V ,f1)−→ T• ⊕ V

(g0⊕1V ,g1)−→ U• ] V → 0

and thus a short exact sequence

0 → KV (S) → KV (T ) → KV (U) → 0.

The proposition is now obvious. ¥

The short exact sequence (C.10) induces for each x ∈ X a long exact sequence relating
the cohomology spaces of the complexes Sx, Tx and Ux. Suppose for exemplification that
we have chosen oriented bases in the cohomology of Sx and Tx. We know that there is
an induced orientation on detH∗(Ux). In all concrete computations one has to address the
following effectivity issue. How do we effectively produce bases of H∗(Ux) inducing the same
orientation on H∗(Ux) as the orientation induced by the short exact sequence (C.10)?

The recipe is very simple. Fix an arbitrary basis of H∗(Ux). We can now regard the
long exact sequence derived from (C.10) as a based acyclic complex. The basis we chose
on H∗(Ux) produces the desired orientation if and only if the torsion of this based acyclic
complex is positive.

D Gluing formulæ for the eta invariants

We have included here for the reader’s convenience a survey of the basic facts concerning
surgery formulæ for eta invariants. We follow closely the elegant presentation in [12].

The selfadjoint operators with compact resolvents behave in many respects as common
finite-dimensional symmetric matrices and we will refer to such operators as excellent. The
eta invariant extends the notion of signature from finite-dimensional symmetric matrices to
an important subclass of excellent operators.

The signature of a finite-dimensional symmetric matrix A is defined as

sign (A) = number of positive eigenvalues− number of negative eigenvalues.

This definition however does not extend to infinite dimensions since the above terms are
infinite. One could try to “regularize” the definition. For each s ∈ C we set

ηA(s) =
∑

λ∈σ∗(A)

dimker(A− λ)
λ|λ|s−1

=
∑

λ>0

dimker(A− λ)− dimker(A + λ)
λs

(D.11)
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where σ∗(A) = spec (A) \ {0}. Then one can define

sign (A) = ηA(0).

The advantage of this new definition is that it is admirably suited for infinite-dimensional
extensions. Assuming for simplicity that A is invertible we can define

ηA(s) = tr (A · |A|−(s+1)), |A| = (A2)1/2.

Using the classical integral

Γ(α)x−α =
∫ ∞

0
tα−1e−txdt, x > 0, α > 1,

we get (x 7→ A2, α 7→ (s + 1)/2)

ηA(s) =
1

Γ( (s + 1)/2 )

∫ ∞

0
t(s−1)/2tr (Ae−tA2

)dt.

The right-hand side of the above expression has two advantages. First of all, it makes sense
even when A is not invertible and on the other hand, it extends to infinite dimensions. We
will denote the trace of an infinite-dimensional operator (when it exists) by “Tr” while “tr”
is reserved for finite-dimensional operators. We have the following result.

Proposition D.1. (a) Consider a closed, oriented Riemannian manifold (M, g) of dimen-
sion ν, E → M a Hermitian vector bundle and

D : C∞(E) → C∞(E)

a first order selfadjoint elliptic operator. Then

ηD(s) :=
1

Γ( (s + 1)/2 )

∫ ∞

0
t(s−1)/2Tr (De−tD2

)dt (D.12)

is well defined for all Re s À 0 and extends to a meromorphic function on C which is
described by the Dirichlet series (D.11) for |s| À 0 . Its poles are all simple and can be
located only at s = (ν + 1− k)/2, k = 0, 1, 2, · · · .
(b) If ν is odd then the residue of ηD(s) at s = 0 is zero so that s = 0 is a regular point.

For a proof of this nontrivial result we refer to [3, 4, 10]. When d is odd we define the
eta invariant of A by

η(D) := ηD(0).

Another important source of excellent operators arises from elliptic selfadjoint boundary
value problems. For more details on the properties of such problems we refer to the clear
presentation in [4].

Suppose (N̂ , ĝ) is a (2n+1)-dimensional, compact Riemannian manifold with boundary
N = ∂N̂ such that a tubular neighborhood of N is isometric to the cylinder (0, 1]×N, dt2+g)
where g is a Riemann metric on N and t denotes the outgoing normal coordinate. For each
R ∈ (0,∞] we denote by N̂R the Riemann manifold obtained from N̂ by attaching the
cylinder [0, R]×N .
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We assume Ê → N̂ is a hermitian vector bundle on N̂ . Set E := Ê |∂N̂ . Suppose we
are given a formally selfadjoint Dirac type operator

D̂ : V ∞(Ê) → C∞(Ê)

which near the boundary has the APS form

D̂ = J(∂t −D), J = ĉ(dt),

D∗ = D, JD + DJ = 0, (D.13)

where ĉ denotes the Clifford multiplication on Ê induced by D̂ and D : C∞(E) → C∞)(E)
is a formally selfadjoint Dirac type operator on N . The operator J induces a symplectic
structure on L2(E),

ω(u, v) =
∫

N
〈Ju, v〉dvg.

Given a closed subspace S ⊂ L2(E) we can define a closed densely defined operator D̂S to
be D̂ acting on the domain

Dom (D̂S) =
{

u ∈ L1,2(Ê); u |N∈ S
}

.

Denote by H±
D the closed subspace of L2(E) spanned by the eigenvectors of D corresponding

to positive/negative eigenvalues. We denote by Π±D the orthogonal projection onto H±
D. It

is known that Π±D is a zeroth order pseudodifferential operator. Its principal symbol is
completely determined by the principal symbol of D. Consider the following family of
closed subspaces of L2(E)

L = LD̂ =
{

Λ ⊂ L2(E); Λ⊥ = JΛ, dim(H+
D ∩ Λ) < ∞

}

The condition Λ⊥ = JΛ means that Λ is a Lagrangian subspace. Define now a subfamily
L∞ consisting of those Lagrangian subspaces such that

• The orthogonal projection PΛ onto Λ is a zeroth order pseudodifferential operator.
• The operator PΛ −Π−D is a smoothing operator.

The space L is not empty and if fact it contains two remarkable elements.

The Calderon subspace Define the Cauchy-data space

Λ(D̂) =
{

u |N ; u ∈ ker D̂ ∩ L1/2,2(Ê)
}L2

⊂ L2(E).

Then according to [4] we have JΛ(D̂) ∈ L∞
D̂

. We will refer to JΛ(D̂) as the Calderon
subspace.
The Atiyah-Patodi-Singer subspace Set L∞(D̂) := ∂∞ kerex D̂ ⊂ kerD. L∞(D̂) is
a Lagrangian subspace of kerD. The Atiyah-Patodi-Singer (or APS) Lagrangian is

Λaps(D̂) := L∞(D̂)⊥ ⊕H−
D = JL∞(D̂)⊕H−

D.

We have the following result (see [4, 37]) for details).
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Theorem D.2. (a) There exists a natural topology on L∞
D̂

(described in [29]) such that
L∞

D̂
is a homogenous space for the group U∞ of unitary operators U : L2(E) → L2(E) such

that 1 − U is a smoothing. The stabilizer of Λ ∈ L∞
D̂

can be identified with the subgroup
O∞ ⊂ U∞ consisting of those unitary transformations which commute with the orrthogonal
reflection through Λ. L∞

D̂
can be viewed as a smooth manifold with the tangent space at Λ

canonically identified with T1U
∞/T1O

∞.
(b) For every Λ ∈ L∞

D̂
the operator D̂Λ is excellent. In particular, the correspondence

Λ 7→ D̂Λ is smooth.
(c) For every Λ ∈ L∞

D̂
the Dirichlet series (D.11) associated to D̂Λ converges for |s| À 0

and extends to a meromorphic function ηD̂Λ
on C with s = 0 a regular point.

We set η(D̂, Λ) := ηD̂Λ
(0) and define the reduced eta invariant of D̂ by the equality

ξ(D̂, Λ) =
1
2
(
η(D̂,Λ) + dimC ker D̂Λ).

ξ(D̂Λ) does not depend continuously on D̂ but exp(2πiξ(D̂Λ) does. Moreover if

[0, 1] 3 t 7→ Λt ∈ L∞
D̂

is a smooth path then

ξ(D̂, Λ1)− ξ(D̂,Λ0) = SF (D̂Λt ; 0 ≤ t ≤ 1)

+
1

2πi

∫ 1

0
exp

(−2πiξ(D̂, Λ)
) d

dt
exp

(
2πiξ(D̂,Λ)

)
dt.

The integrand in the above equality is called the infinitesimal variation of ξ, and is denoted
by

d

dt
ξ(D̂, Λt).

In the case when Λt = exp(itH)Λ0 where H is a selfadjoint smoothing operator, so that
iH ∈ T1U

∞, the infinitesimal has the more explicit description

d

dt
|t=0 ξ(D̂, Λt) :=

1
2
Tr (H).

This can be given a more conceptual description as follows. Consider the Fredholm deter-
minant map

det : U∞ → S1, U 7→ det U.

Then, define

$ := −(det2)∗
( 1
2πi

dθ
) ∈ Ω1(U∞).

This is a left invariant 1-form on U∞ and for every iH ∈ T1U
∞ we have

$(iH) = − 1
π

Tr (H).
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Since the map det2 is O∞ invariant, the form $ descends to 1-form on L∞
D̂

which we continue
to denote by $. Then

d

dt
ξ(D̂, Λt) = $(Λ̇t) (D.14)

where Λ̇t ∈ TΛtL
∞
D̂

is the tangent vector to the path t 7→ Λt. Let us point out that if
γ := t 7→ Λt is a closed loop in L∞

D̂
then the Maslov index of the loop

t 7→ (γ(t), Λ(D̂) )

is given by

µ(γ, Λ(D̂)) = −
∮

γ
$ = −µ(Λ(D̂), γ(t)).

Example D.3. Consider the operator D̂ on L2([0, R],C) domain
{

u ∈ L1,2([0, r],C); arg u(0) = 0, arg u(r) = π/3
}

defined by

D̂u = −i
du

dt
+ πau

where a is a real number. This operator is selfadjoint has compact resolvent and the
spectrum consists of simple eigenvalues λ ∈ R such that

λ− πra ∈ π

3
+ Zπ.

Thus
spec (D̂) =

{
π(ra +

1
3

+ k); k ∈ Z
}

.

Set αr := ra + 1
3 −

⌊
ra + 1

3

⌋
. Assume αr 6= 0. Then

ηD̂(s) =
∑

k∈Z

sign (αr + k)
|αr + k|s =

∑

k≥0

1
|αr + k|s −

∑

k≥0

1
|k + 1− αr|s

= ζ(s, αr)− ζ(s, 1− αr)

where ζ(s, c) denotes the Riemann-Hurwitz function

ζ(s, c) :=
∑

k≥0

1
(k + c)s

.

Using the computations in [36, Sec.13.21] we deduce

ηD̂(0) = ζ(0, αr)− ζ(0, 1− αr) =
1
2
− αr − (

1
2
− (1− αr)) = 1− 2αr.

The eta invariant depends on the length of the interval, but observe that our operator
violates the compatibility condition (D.13).
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Example D.4. For θ ∈ [0, π) consider D̂θ the operator on L2([0, R],R2) with domain
{

u ∈ L1,2([0, r],R2); u(0) ∈ L0, u(r) ∈ Lθ

}

where L0 is the line y = 0, Lθ is the line y = tan(θ)x, and D̂ acts according to

D̂θu = J
d

dt

where

J =
[

0 −1
1 0

]
.

The eigenvalues of D̂θ are obtained by solving the equation

exp(−rλJ)L0 = Lθ

so that
spec (D̂θ) =

π

r

( θ

π
+ Z

)
.

Arguing as in the previous example we deduce

ηθ := ηD̂θ
(0) = 1− 2

θ

π
, ξθ := ξD̂θ

(0) =
1
2
− θ

π
.

Note that this eta invariant is independent of the length r. Next observe that

2(ξε − ξ−ε) = ηε − η−ε = ηε − ηπ−ε = −2
ε

π
+ 2

π − ε

π
= 2− 4

ε

π
.

In this case the space of lagrangian boundary conditions can be identified with the space of
1-dimensional subspaces of R2 and the form $ on RP1 ∼= S1 is $ = − 1

πdθ. The variational
formula for the eta invariants predicts

ξε − ξ−ε = SF (D̂θ; −ε ≤ θ ≤ ε)− 1
π

∫ ε

−ε
dθ = 1− 2ε

π

which agrees with the above direct computation. Notice that

SF (D̂θ; −ε ≤ θ ≤ ε) = µ( (Lθ, L0),−ε ≤ θ ≤ ε).

Consider the more general situation where D̂θ has the same domain as above but acts
according to

D̂θu = J(
d

dt
−A)u

where

A =
[

1 0
0 −1

]
.

Using the variational formula we deduce

ξ(D̂θ)− ξ(D̂π/2) = SF (D̂t; t ∈ [π/2, θ])− θ − π/2
π
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= µ
(
(Lt ⊕ L0,ΓerA); t ∈ [π/2, θ]

)
+

1
2
− θ

π

where ΓerA ⊂ R2 ⊕ R2 is the graph of the symplectic map erA. Thus we only need to
compute ξ(D̂π/2). Observe that λ ∈ spec (D̂θ) if and only if

exp(r(A− λJ))L0 = Lθ.

To compute this exponential observe that the two matrices A and J anti-commute and
J2 = −1 = −A2 so that

(rA− rλJ)2 = r2A2 − r2λ2.

Now observe that (rA− rλJ) commutes with r2A2 − λ2 so that

(rA− rλJ)2k = (r2 − r2λ2)k, (rA− rλJ)2k+1 = (r2 − r2λ2)k(rA− rλJ).

Thus

exp(r(A− λJ)) =
∞∑

k=0

(r2 − r2λ2)k
( 1

(2k)!
+

1
(2k + 1)!

(rA− rλJ)
)

Now observe that

exp(r(A− λJ))
[

1
0

]
=




∑∞
k=0

1
(2k)!(r

2 − r2λ2)k

−rλ
∑∞

k=0
1

(2k+1)!(r
2 − r2λ2)k




In the special case when θ = π/2, so that Lπ/2 is the y-axis of R2, we deduce from the
above computation that the spectrum of A is symmetric with respect to the the involution
λ ←→ −λ so that the eta invariant in this case is zero. Observe that 0 6∈ spec (D̂π/2) so
that ξ(D̂π/2) = 0. In general 0 ∈ spec (D̂θ) if and only if erAL0 = Lθ. This never happens
since erAL0 = L0. Thus, in this general case we also have

ξ(D̂θ) =
1
2
− θ

π
.

We have the following fundamental result due to P.Kirk and M.Lesch, [12].

Theorem D.5. (Surgery formula for eta invariants) Suppose (N̂ , ĝ) is an odd dimen-
sional manifold decomposed into two parts N̂± by an oriented hypersurface N such that a
tubular neighborhood of N is isometric to the cylinder [−1, 1]×N equipped with the metric
dt2 + g, g := ĝ |N . Denote by N̂r the manifold obtained from N̂ by replacing the neck
[−1, 1]×N with the longer one [−r, r]×N . We get similarly two manifolds with boundary
N̂±

r (see Figure 8).
Suppose D̂ is a selfadjoint Dirac-type operator on N̂ such that along the neck has the

form
D̂ = (∂t −D), J := ĉ(dt), JD + DJ = 0, D∗ = D.

Denote by D̂r the obvious extension of D̂ to N̂r and set D̂±
r = D̂r |N̂±

r
. Then

ξ(D̂r) = ξ
(
D̂+

r , JΛ(D̂+
r )

)
+ ξ

(
D̂−

r , Λ(D̂+
r )

)
.
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Figure 8: Adiabatic splitting of a manifold

More generally, if Λ± ∈ L∞
D̂±r

and

[0, 1] 3 t 7→ Λ±t ∈ L∞
D̂±r

is a pair of smooth paths such that Λ+
t connects JΛ(D̂+

r ) to Λ+ and Λ−t connects Λ(D̂+
r ) to

Λ− then

ξ(D̂r)−ξ(D̂+
r , Λ+)−ξ(D̂−

r , Λ−) = SF (D̂+
r , Λ+

t )+SF (D̂−
r , Λ−t )+

∫ 1

0

{
$+(Λ̇+

t )+$−(Λ̇−t )
}
dt

= µ(Λ+
t , Λ(D̂+

r )) + µ(Λ−t , Λ(D̂−
r )) +

∫ 1

0

{
$+(Λ̇+

t ) + $−(Λ̇−t )
}
dt

where µ(•, •) denotes the Maslov index of a pair of paths of Fredholm lagrangians.
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