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ABSTRACT. We define the total curvature of a semialgebraic graph Γ ⊂ R3 as an integral K(Γ) =R
Γ

dµ, where µ is a certain Borel measure completely determined by the local extrinsic geometry of Γ.
We prove that it satisfies the Chern-Lashof inequality K(Γ) ≥ b(Γ), where b(Γ) = b0(Γ) + b1(Γ),
and we completely characterize those graphs for which we have equality. We also prove the following
unknottedness result: if Γ ⊂ R3 is homeomorphic to the suspension of an n-point set, and satisfies
the inequality K(Γ) < 2 + b(Γ), then Γ is unknotted. Moreover, we describe a simple planar graph
G such that for any ε > 0 there exists a knotted semialgebraic embedding Γ of G in R3 satisfying
K(Γ) < ε + b(Γ).
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INTRODUCTION

The total curvature of a simple closed C2-curve Γ in R3 is the quantity

K(Γ) =
1
π

∫

Γ
|k(s) |ds|,

where k(s) denotes the curvature function of Γ and |ds| denotes the arc-length along C. In 1929 W.
Fenchel [9] proved that for any such curve Γ we have the inequality

K(Γ) ≥ 2, (F)

with equality if and only if C is a planar convex curve.
Two decades later, I. Fáry [8] and J. Milnor [17] gave probabilistic interpretations of the total

curvature. Milnor’s interpretation goes as follows.
Any unit vector u ∈ R3 defines a linear function hu : R3 → R, x 7→ (u, x), where (−,−) denotes

the inner product in R3. For a generic u, the restriction of hu to Γ is a Morse function. We denote by
wΓ(u) the number of critical points of this function. Then

K(Γ) =
1

area (S2)

∫

S2

wΓ(u) |du|,

Date: Version 1. Started: June 6, 2008. Completed: June 18,2008.
2000 Mathematics Subject Classification. Primary 53A04, 53C65,57M15, 57M25, 58A35, 58K05.
Key words and phrases. semialgebraic graphs, stratified Morse theory, total curvature, tight sets, knottedness.

1



2 LIVIU I. NICOLAESCU

where S2 denotes the unit sphere in R3 and |du| the Euclidean area density on S2. Since any function
on Γ has at least two critical points (a minimum and a maximum) the inequality (F) is obvious.
Moreover, they show that if K(Γ) is not too large, then Γ cannot be knotted. More precisely, if
K(Γ) < 4 then Γ cannot be knotted.

Soon after, in 1957, Chern and Lashof [5] proved higher dimensional generalizations of the results
of Fenchel, Fáry and Milnor. Fix a compact k-dimensional submanifold Γ ⊂ Rn+1. Again, any unit
vector u ∈ Rn+1 defines a linear function hu on Rn+1. For generic u restriction of hu to Γ is a
Morse function. We denote by wΓ(u) the number of its critical points. Observe that if Mu(t) denotes
the Morse polynomial of hu|Γ then wΓ(t) = Mu(t)|t=1. We set

K(Γ) =
1

area (Sn)

∫

Sn

wΓ(u) |du|,

where Sn denotes the unit sphere in Rn+1.
The Morse inequalities imply that wΓ(u) ≥ ∑k

j=0 bj(Γ) for generic u, where bj(Γ) are the Betti
numbers of Γ. In particular, we obtain the Chern-Lashof inequality

K(Γ) ≥
k∑

j=0

bj(Γ). (CL)

Chern and Lashof proved that, much like in the case of curves, the quantity K(Γ) can be expressed
as an integral

K(Γ) =
∫

Γ
ρΓ(x)|dAΓ(x)|,

where ρΓ(x) can be explicitly computed from the second fundamental form of the embedding Γ ↪→
Rn+1, and |dAΓ| is the Euclidean area density on Γ. Additionally, they proved that K(Γ) = 2 if and
only if Γk is a convex hypersurface of an affine (k + 1)-dimensional plane in Rn+1. The embedding
Γk ↪→ Rn+1 is called tight if we have equality in (CL). The subject of tight embeddings continues to
be an active area of research (see e.g. [2, 13, 15]).

In this paper we extend the Chern-Lashof approach to singular one dimensional compact semial-
gebraic subsets of Γ ⊂ R3. They can be visualized as graphs embedded in some “tame”1 fashion
in R3. There are several competing proposals of what should constitute the total curvature of such a
graph (see e.g. [11, 20])) but they don’t seem to fit the elegant mold created by Chern and Lashof.
Our approach addresses precisely this issue and its uses an approach based on stratified Morse theory
pioneered by T. Banchoff [1] and N. Kuiper [14] for special cases of stratified spaces, more precisely,
PL spaces. Here are the main ideas and results.

Consider a compact, connected one-dimensional semialgebraic subset Γ ⊂ R3. We fix a Whitney
stratification of Γ, i.e., we fix a finite subset V ⊂ Γ such that the complement is a finite disjoint union
of C2 arcs. Then, for a generic u ∈ S2 the restriction of hu to Γ is a stratified Morse function in
the sense of Lazzeri [16] and Goreski-MacPherson [10]. We denote by Mu(t) its stratified Morse
polynomial and we set

wΓ(u) = Mu(t)|t=1.

The stratified Morse inequalities imply that wΓ(u) ≥ b0(Γ) + b1(Γ) = 1 + b0(Γ) and we define the
total curvature of Γ to be

K(Γ) =
1

area (S2)

∫

S2

wΓ(u) |du|.
Clearly the total curvature satisfies the Chern-Lashof inequality (CL), and we say that Γ is tight if we
have equality.

1For example, tameness would prohibit “very wavy” edges.
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In Theorem 2.5 we give an explicit description of K(Γ) in terms of infinitesimal and local invari-
ants of Γ which shows that the total curvature is independent of the choice of the Whitney stratifica-
tion. The can be given a characterization similar in spirit to the approach in [17]. More precisely (see
Corollary 2.7) the number µ(Γ) = 1

2

(
K(Γ) + χ(Γ)

)
is equal to the average number of local minima

of the family of functions hu|Γ, u ∈ S2. Following the terminology in [17] we will refer to µ(Γ) as
the crookedness of Γ. The Chern-Lashof inequality can be rephrased as µ(Γ) ≥ 1.

In Corollary 2.12 we proved that if the vertices of Γ have degrees ≤ 3 then our integral curvature
coincides (up to a multiplicative factor) with the integral curvature recently introduced by Gulliver
and Yamada [11]. In general there does not seem to be a simple relationship between these two
notions of integral curvature.

We also investigate the structure of one-dimensional tight semialgebraic sets. We observe that Γ
is tight if and only if it satisfies Banchoff’s two-piece property: the intersection of Γ with any closed
half-space is either empty, or connected. Using this observation we were able to give a complete
description of the tight one dimensional semialgebraic subsets of R3. More precisely, in Theorem 3.1
we prove that they are of two types.

• Type S: Straight. In this case all the edges are straight line segments. Moreover, there exists a
convex polyhedron (canonically determined by Γ such that the following hold (see [13, Lemma 2.4])

(a) The 1-skeleton of P is contained in Γ.
(b) Any vertex v of Γ which is not a vertex of P has the property lies in the convex hull of its

neighbors.
• Type C: Curved. In this case some of the edges of Γ have nontrivial curvature. Then Γ is contained in
a plane P and there exists a closed convex semialgebraic curve B ⊂ P with the following properties.

(a) B ⊂ Γ.
(b) Γ \B is a union of line segments contained in the region R bounded by B.
(c) The complement of Γ in the region bounded by B is a finite union of convex open subsets of

the plane P .
In particular, this gives a positive answer to a question raised at the end of [11, Sec. 4].
We also discuss knottedness issues. In Theorem 4.1 we prove that if Γ ⊂ R3 is a semialgebraic

subset of R3 homeomorphic to the suspension of an n-point set, and µ(Γ) < 2, then Γ is isotopic to
a planar embedding of this suspension. The case n = 2 was first proved by Fáry [8] and Milnor [17],
while the case n = 3 was investigated Gulliver-Yamada [11] who proved the unknottedness under the
more stringent requirement µ(Γ) < 3

2 .
The situation is dramatically different for slightly more complicated graphs. Consider a graph

which is homeomorphic to the union of a round circle and two parallel chords. We show that for
every ε > 0 there exists a knotted PL-embedding Γε ↪→ R3 of this graph such that

µ(Γε) < 1 + ε.

In Question 4.4 describe a possible candidate of a class of planar graphs for which the knottedness
results of Milnor ought to hold. For the reader’s convenience, we have included a brief appendix
containing some basic facts about semialgebraic sets used throughout the paper.

Notations. In this paper, we will denote by (−,−) the inner product in R3, by | • | the corresponding
Euclidean norm. For any finite set S we will denote its cardinality by #S.

1. ONE DIMENSIONAL STRATIFIED MORSE THEORY

Suppose Γ is a compact connected 1-dimensional semi-algebraic subset of R3. It can be identified
non canonically with a graph as follows. We fix a finite subset V ⊂ Γ called the vertex set such that
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the complement Γ \ V is a finite disjoint union of real analytic, bounded semialgebraic arcs without
self intersections connecting different points in V . We will refer to these arcs as open edges and we
will denote by E = E(Γ) the set of open edges. Note that this definition excludes the existence edges
with identical endpoints although we allow for multiple edges between two given points.

A semialgebraic graph is a compact, connected 1-dimensional semialgebraic set together with a
choice of vertex set satisfying the above properties.2 Clearly, on the same semialgebraic set we can
define multiple structures of semialgebraic sets.

If Γ is a semialgebraic graph with vertex set V , then the degree of a vertex v, denoted by deg(v) is
the number of edges incident to v. Then

χ(Γ) = #V −#E =
1
2

∑

v∈V

(
2− deg(v)

)
. (1.1)

Since Γ is connected we deduce

b1(Γ) = 1− χ(G) = 1−#V + #E. (1.2)

Note that the degree of a vertex p can be also defined as the cardinality of the intersection of Γ with a
sphere of sufficiently small radius centered at p. This definition makes sense even for points p ∈ Γ\V ,
and for such points we have deg(p) = 2. The equality (1.1) can be rewritten as

χ(Γ) =
∑

p∈Γ

(
2− deg(p)

)
(1.3)

For every p ∈ Γ we define Np ⊂ S2 as follows. For q ∈ Γ \ {p} denote by
−−−→
ρp(u) the unit vector−−−→

ρp(q) := 1
|−→pq|
−→pq. We obtain in this fashion o semialgebraic map

ρp : Γ \ v → S2.

Now set
τ ∈ Np ⇐⇒ ∃ sequence (qk)k≥1 ⊂ Γ \ {p}, τ = lim

k→∞
−−−→
ρp(qk).

Since Γ is semialgebraic, the set Np is finite for any p ∈ Γ. We will refer to the vectors in Np as the
interior unit tangent vectors to Γ at v. The union of half-lines at p in the directions given by τ ∈ Np

is called the tangent cone to Γ at p.
Any unit vector u ∈ S2 defines a linear map (height function)

hu : R3 → R, hu(x) := (u, x).

A unit vector u is called Γ-nondegenerate if the restriction of hu to Γ is a stratified Morse function
with respect to the vertex-edge stratification. More precisely, (see [10]) this means that the restriction
of hu to the interior of any edge has only nondegenerate critical points and moreover

(u, τ ) 6= 0, ∀v ∈ V, τ ∈ N v.

The complement in S2 of the set of Γ-nondegenerate vectors is called the discriminant set of the
semialgebraic graph and it is denoted by ∆Γ. The discriminant set clearly depends on the choice of
graph structure, but one can prove (see [10, 12] and Lemma A.2) that ∆Γ is a closed semialgebraic
subset of S2 of dimension ≤ 1. In particular, most unit vectors u are Γ-nondegenerate.

If u is a nondegenerate vector then for every p ∈ Γ and every ε > 0 we set

L±ε (p,u) :=
{

q ∈ Γ; |p− q| = ε, ±(
hu(q)− hu(p)

)
> 0

}
, (1.4)

2The graph structure is a special Whitney stratification of Γ.
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d±p (u) := lim
ε↘0

#L±ε (p, u).

Observe that d+
p (u) + d−p (u) = deg(p). In Figure 1 we have d+

v (u) = 2, d−v (u) = 3, while N v

consists of four vectors because two of the edges are tangent at v.

FIGURE 1. The neighborhood of a critical point.

Suppose that u is a Γ-nondegenerate unit vector. A stratified critical point of hu on Γ is a point
p ∈ Γ which is either a vertex, or a critical point of the restriction of hu to one of the edges. We
denote by Cr(u) the set3 of stratified critical points of hu. The points in Γ\Cr(u) are called regular
points of hu. Observe that if p is a regular point, then d−p (u) = 1.

Note that Cr(u) is a finite subset of Γ containing the vertices. We set Cr1
u := Cru \V . In other

words, Cr1
u consists of the points in the interiors of edges where the tangent vector to the edge is

perpendicular to u.
The set Cr1(u) decomposes into a set of local minima Cr1

min(u), and a set of local maxima
Cr1

max(u). The set of vertices V further decomposes as V = Vmin(u) ∪ V ∗(u), where Vmin(u)
consists of the vertices of Γ which are local minima of hu, and V ∗(u) is its complement. The set
Vmin(−u) is the set of local maxima of hu, and for this reason we will denote it by Vmax(u).

Note that for every nondegenerate unit vector u, and every c ∈ R the sublevel set {hu ≤ c} is a
also a semialgebraic graph, and the level set {hu = c} consists of finitely many points. If a level set
{hu = c} contains only regular points then {hu ≤ c− ε} is homeomorphic to {hu ≤ c + ε} for all
sufficiently small ε.

If the level set {hu = c} contains the critical points p1, . . . , pk, then {hu ≤ c+ ε} is homotopic to
the set obtained from {hu ≤ c−ε} by separately conning off each of the sets L−δ (u, pi), i = 1, . . . , k.
The points pi will be the vertices of the added cones. Here we define the cone over the empty set to be
a single point. For example, if the level set {hu = c}∩Γ contains k local minima, and the sublevel set
{hu ≤ c− ε}∩Γ is connected for all ε > 0 sufficiently small, then the sublevel set {hu ≤ c+ ε}∩Γ
will have k + 1 connected components for all ε > 0 sufficiently small.

To every critical point p ∈ Γ we associate its Morse polynomial Mu(t, p) ∈ Z[t] according to the
rule

Mu(t, p) :=

{
1 if p is a local minimum of hu

(d−v (u)− 1)t otherwise.

Observe that Mu(t, p) = 0 if p is a regular point. Let us observe that Mu(t, p) is the Poincaré
polynomial of the topological pair ( cone (L−ε (p, u)), L−ε (p,u)) where cone (L−ε (p, u)) denotes the
cone over L−ε (p, u) and ε is sufficiently small

The homological weight of the critical point p ∈ Cr(u) is then defined as the integer

w(p,u) := Mu(t, p)|t=1.

3The same unit vector may be nondegenerate for several graph structures and the critical sets corresponding to these
graph structures could be different.
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The Morse polynomial of u is defined as

Mu(t) = Mu,Γ(t) :=
∑

p∈Cr(u)

Mu(t, p) =
∑

p∈Γ

Mu(t, p).

The homological weight of u is then the integer

w(u) = wΓ(u) := Mu(1) =
∑

p∈Cr(u)

w(p,u).

FIGURE 2. A stratified Morse function on a θ-graph.

Remark 1.1. The homological weight wΓ(u) is in general different from the number of critical
points. In Figure 2 we have depicted a stratified Morse function hu on a planar graph. The vector u
lies in the plane of the graph, it is perpendicular to the dotted lines and points upwards. This function
has precisely two stratified critical points p and q but its homological weight is w(u) = w(u, p) +
w(u, q) = 2 + 1 = 3. Its Morse polynomial is Mu(t) = 1 + 2t. Note that Mu(−1) = −1 = χ(Γ).ut

We define a partial order 4 on the vector space R[t] by declaring P 4 Q if and only if there exists
a polynomial R with nonnegative coefficients such that

Q− P = (1 + t)R.

The following result follows immediately from the main theorems of stratified Morse theory [10].

Theorem 1.2 (Morse inequalities). Denote by PΓ(t) the Poincaré polynomial of Γ, PΓ(t) = 1 +
b1(Γ)t. Then for every nondegenerate vector u ∈ S2 we have

Mu(t) < PΓ(t).

In particular,
Mu(−1) = PΓ(−1) = χ(Γ) (1.5)

and
wΓ(u) ≥ 1 + b1(Γ). (1.6)

ut

Definition 1.3. A Γ-nondegenerate vector u is called (Γ-)perfect if Mu(t, Γ) = PΓ(t). ut

The situation in Figure 2 corresponds to a perfect nondegenerate unit vector.

Lemma 1.4. A nondegenerate vector u is perfect if and only if wΓ(u) = PΓ(1) = 1 + b1(Γ).
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Proof. Observe that since Mu(t,Γ) and PΓ(t) are polynomials of degree 1, they are completely
determined by their values at two different t’s. Since Mu(t,Γ)|t=−1 = PΓ(−1) we deduce that a
vector u is perfect if and only if Mu(1) = PΓ(1). ut

Proposition 1.5. Suppose u is a Γ-nondegenerate vector u ∈ S2. Then the following statements are
equivalent.
(a) The vector u is perfect.
(b) For any c ∈ R the sublevel set {hu ≤ c} ∩ Γ is connected.

Proof. We set m(u) = minp∈Γ hu(p). Observe that Mu(0) is the number of local minima of hu.
(b) =⇒ (a) The sublevel set {hu ≤ m(u)} is connected. It coincides with the set of absolute minima
of hu. Since u is nondegenerate this is a discrete set consisting of a single point p0. All the sublevel
sets {hu ≤ c} ∩ Γ are connected so that hu cannot have a local minimum other than the absolute
minimum.

Indeed, as c increases away from m(u), the first time c encounters a critical value c0 such that
the level set {hu = c0} contains local minima, then the number of components of {hu ≤ c0} ∩ Γ
increases by exactly the number of the local minima.

This proves that 1 = Mu(0) = PΓ(0). On the other hand, Mu(−1) = PΓ(−1) = χ(Γ). Since
both Mu(t) and PΓ(t) are polynomials of degree 1 we conclude that Mu(t) = PΓ(t) = 1.
(a) =⇒ (b) Since u is perfect we deduce that Mu(0) = PΓ(0) = 1 so that hu has a unique local
minimum. In particular, the sublevel set {hu ≤ m(u)} ∩ Γ consists of single point and thus it is
connected. To conclude run in reverse the topological argument in the proof of the implication (b)
=⇒ (a). ut

Definition 1.6. (a) A connected semialgebraic graph Γ ⊂ R3 is called tight if all the Γ-nondegenerate
vectors u are Γ-perfect, i.e.,

wΓ(u) = 1 + b1(Γ), ∀u ∈ S2 \∆Γ.

(b) A compact connected 1-dimensional semialgebraic set Γ ⊂ R3 is called tight if it is tight for some
choice of graph structure.
(c) A semi algebraic set in R3 is called tightable if it admits a semialgebraic embedding as a tight
semialgebraic graph. ut

Proposition 1.7. Suppose Γ ⊂ R3 is a semialgebraic graph. Then the following statements are
equivalent.
(a) The graph Γ is tight.
(b) The intersection of Γ with almost any closed half-space is either empty or connected.
(c) The intersection of Γ with any closed half-space is either empty or connected.

Proof. Observe first that the intersection of Γ with a closed half-space is a set of the form {hu ≤ c}∩Γ
for some u ∈ S2 and c ∈ R.

The implications (c) =⇒ (a), (b) and (a) =⇒ (b) follow immediately from Proposition 1.5. It
suffice to prove only the implication (b) =⇒ (c). We use an argument inspired by the proof of [15,
Thm. 3.11].

Denote by U the set of vectors u ∈ S2 such that for any c ∈ R the sublevel set {hu ≤ c} is
connected. The set U is dense in S2.

Fix a vector u ∈ S2 and a real number c. Then there exists a sequence of nondegenerate perfect
vectors un ∈ U and a sequence of positive real numbers (rn)n≥1 satisfying the following properties.
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• limn→∞ un = u.
• limn→∞ rn = 0
• {hu ≤ c} ∩ Γ ⊂ {hun+1 ≤ c + rn+1} ∩ Γ ⊂ {hun ≤ c + rn} ∩ Γ, ∀n ≥ 1.

The sets X = {hu ≤ c } ∩ Γ and Xn = {hun ≤ c + rn} ∩ Γ are closed semialgebraic subsets of Γ
satisfying the conditions

X ⊂ Xn+1 ⊂ Xn, ∀n ≥ 1 and X =
⋂

n≥1

Xn

We conclude that (see [19, §6.6-§6.8])

Ȟ0(X,Z) = lim−→
n

Ȟ0(Xn,Z),

where lim−→ denotes the inductive limit and Ȟ•(−,Z) denotes the Čech homology with integral coef-
ficients. For semialgebraic sets the Čech cohomology coincides with the usual singular cohomology,
and all the sets Xn are connected so that Ȟ0(Xn,Z) = Z for all n. The above equality implies that
X is connected. ut

Remark 1.8. The property (c) in Proposition 1.7 is usually referred to as the two-piece property (TPP
for brevity). The subsets an Euclidean space satisfying this property are known as 0-tight sets. ut

Using the above proposition and Lemma [13, Lemma 2.4] we obtain the following result.

Corollary 1.9. Suppose that Γ is a semialgebraic graph such that all its edges are straight line
segments. Then Γ is tight if and only if there exists a convex polyhedron P such that the following
hold.
(a) Γ ⊂ P .
(b) The vertices and edges of P are contained in Γ.
(c) All the edges of Γ are straight line segments.
(c) If v is a vertex of Γ which is not a vertex of P then v lies in the convex hull of its neighbors. ut

Corollary 1.10. Any plane, closed, convex semi-algebraic curve is tight. ut

2. TOTAL CURVATURE

Fix a compact connected semialgebraic graph Γ ⊂ R3. For every integrable function S2 3 u 7→
f(u) ∈ R we denote by 〈f(u)〉 ∈ R its average. We would like to investigate the average 〈wΓ(u)〉
and thus we would like to know that the function

S2 \∆Γ 3 u 7→ wΓ(u) ∈ Z
is integrable. This is a consequence of the following result proved in the Appendix.

Proposition 2.1. The function S2 \ ∆Γ 3 u 7→ w(u) ∈ Z is semialgebraic. In particular, it is
bounded and measurable. ut

Following [5] we define the total curvature of Γ to be average K(Γ) of this function,

K(Γ) := 〈wΓ(u)〉 =
1
4π

∫

S2

|w(u)|dσ(u)|,

where |dσ| denotes the Euclidean area density on the unit sphere S2. For the definition and (1.6) we
obtain the following generalization of Fenchel’s inequality.
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Corollary 2.2.
K(Γ) ≥ 1 + b1(Γ),

with equality if and only if Γ is tight. ut

We want give a description of K(Γ) in terms of local geometric invariants of Γ. Observe that for
any nondegenerate vector u ∈ S2 we have

w(u) = #Cr1(u) +
∑

v∈V

w(u, v) =
∑

e∈E

#
(
Cr1(u) ∩ e

)
+

∑

p∈V

w(u, p).

For every (open) edge of Γ we denote by K(e) the total curvature

K(e) :=
1
π

∫

e
|ke(s)||ds|,

where |ds| denotes the arclength along e and ke denotes the curvature along e. Then (see [5] or [15,
§2] ) we have 〈

#(Cr1(u) ∩ e )
〉

= K(e),
so that, 〈

#Cr1(u)
〉

=
∑

e∈E

K(e). (2.1)

For every vertex p ∈ V , and any nondegenerate unit vector u we set

λ(u, p) =

{
2 p ∈ Vmin(u)
d−p (u) p ∈ V \ Vmin(u).

Then
w(u, p) = λ(u, p)− 1 and

∑

p∈V

w(u, p) =
∑

p∈V

λ(u, p)−#V,

so that, ∑

p∈V

〈w(u, p)〉 =
∑

p∈V

〈λ(u, p)〉 −#V. (2.2)

Definition 2.3. For every point p ∈ Γ we define

Σ+
Γ (p) :=

{
u ∈ S2; (u, τ ) > 0, ∀τ ∈ Np

}
.

The closure of Σ+
Γ (p) is a geodesic polygon on S2, and we denote by σ+

Γ (p) its area. ut

Remark 2.4. Let us observe that if p ∈ Γ is not a vertex, then σ+
Γ (p) = 0. ut

For every nondegenerate unit vector u, and any vertex p we have

λ(u, p) + λ(−u, p) = deg(p) +

{
2 u ∈ Σ+

Γ (p) ∪ −Σ+
Γ (p)

0 otherwise,

and we conclude that

2〈λ(u, p)〉 = 〈λ(u, p)〉+ 〈λ(−u, p)〉 = deg(p) +
1
π

σ+
Γ (p).

Hence, ∑

p∈V

〈λ(u, p)〉 =
1
2

∑

p∈V

deg p +
1
2π

∑

p∈V

σ+
Γ (p) = #E +

1
π

∑

p∈V

σ+
Γ (p).
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Using the equality (2.2) we deduce
∑

p∈V

〈w(u, p)〉 = #E −#V +
1
2π

∑

p∈V

σ+
Γ (p) =

1
π

∑

p∈V

σ+
Γ (p)− 2 +

(
1 + b1(Γ)

)
.

We have thus proved the following result.

Theorem 2.5. The total curvature of the compact connected semialgebraic graph Γ is given by

K(Γ) =
1
2π

∑

p∈V

σ+
Γ (p) +

∑

e∈E

K(e)− χ(Γ) =
1
2π

∑

p∈V

σ+
Γ (p) +

∑

e∈E

K(e)− 2 + b1(Γ) + 1.

In particular, the graph Γ is tight if and only if
∑

p∈V

σ+
Γ (p) + 2

∑

e∈E

∫

e
|ke(s)| |ds| = 2π. ut

Corollary 2.6. The total curvature of Γ is independent of the choice of vertex set V . ut

Proof. Indeed, Remark 2.4 implies that

K(Γ) =
1
2π

∑

p∈Γ

σ+
Γ (p) +

∑

e∈E

K(e)− χ(Γ).

Neither one of the three summands depends on the choice of vertex set. ut

Corollary 2.7. Suppose Γ is a compact connected semialgebraic graph inR3. For every Γ-nondegenerate
unit vector u ∈ S2 we denote by µ(u) the number of local minima of the function hu on Γ, and by
µ(Γ) the average, µ(Γ) := 〈µ(u)〉.Then

µ(Γ) =
1
2
(
K(Γ) + χ(Γ)

)
=

1
4π

∑

p∈V

σ+
Γ (p) +

1
2π

∑

e∈E

∫

e
|k(s)| |ds|. (2.3)

Proof. Observe that

2µ(u) = 2Mu(0) = Mu(1) + Mu(−1) = w(u) + χ(Γ).

The equality (2.3) is obtained by averaging the above identity. ut

Corollary 2.8. The total curvature of a plane, closed, convex semi-algebraic curve is equal to 2. ut

Corollary 2.9. Suppose Γ is a planar, convex semialgebraic arc with endpoints p0 6= p1. Let θ0, θ1 ∈
[0, π] denote the angles at p0 and respectively p1 between the arc Γ and the line determined by π0.
Then ∫

Γ
|k(s) |ds| = θ0 + θ1.

Proof. Denote by Γ̂ the closed curve obtained from Γ by connecting p0 to p1 by a straight line seg-
ment. Then Γ̂ is a plane convex curve and using Theorem 2.5 we deduce

2 = K(Γ̂) =
1
π

∫

Γ
|k(s) |ds|+ 1

2π

(
(2π − 2θ0) + (2π − 2θ1)

)

which implies the claimed equality. ut
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Corollary 2.10. Suppose the graph Γ is contained in a plane and it is the union of a closed, convex
semialgebraic curve B and a finite union of line segments contained in the region R bounded by B
such that R \ Γ is a finite union of convex sets. Then Γ is tight.

Proof. The curve B is a disjoint union of (open) edges and vertices of B. Denote by VB (respectively
EB) the collection of vertices (respectively open) edges contained in B and by V ′

B (respectively E′
B)

the collection of vertices (respectively open edges) not contained in B. If v ∈ V ′
B then the cone

generated by N v is the plane of the graph Γ so that σ+
Γ (v) = 0. Similarly, if e ∈ E′

B , then K(e) = 0
since e is a straight line segment. Hence

K(Γ) =
1
2π

∑

v∈VB

σ+
Γ (B) +

∑

e∈EB

K(e)− 2χ(Γ) = K(B)− χ(Γ) = 2− χ(Γ) = 1 + b1(Γ).

This proves that Γ is tight. ut

Remark 2.11. Observe that when Γ is a polygonal simple close curve then the formula (2.3) special-
izes to Milnor’s formula [17, Thm. 3.1].

(b) Recently, Gulliver and Yamada have proposed in [11] a different notion of total curvature. For
every nondegenerate vector u and every vertex p they define a defect at p to be the integer

δ(u, p) =
(
d−p (u, p)− d+

p (u)
)+

, x+ := max(x, 0), .

The Gulliver-Yamada total curvature is then the real number T (Γ) defined by

1
π

T (Γ) =
∑

p∈V

〈 δ+(u, p) 〉+
∑

e∈E

K(e).

Observe that
δ(u, p) + δ(−u, p) = |d−p (u, p)− d+

p (u)|
so that

1
π

T (Γ) =
1
2

∑

p∈V

〈 |d−p (u, p)− d+
p (u)| 〉 +

∑

e∈E

K(e)

Let us show that when all vertices have degrees ≤ 3, then

1
π

T (Γ) = K(Γ). (2.4)

Indeed, for every vertex p ∈ V , and every unit vector u, such that both u and −u are regular, we
have

δ(u, p) + δ(−u, p) = w(p, u) + w(p,−u) =

{
3 u ∈ Σ+

p (Γ) ∪ −Σ+
p (Γ)

1 otherwise.

The equality (2.4) follows by averaging the above identity.
In general K(Γ) 6= 1

πT (Γ). To see this consider the graph Γ0 obtained by joining the north pole
to the south pole of the unit sphere by n meridians of longitudes 2kπ

n , k = 1, . . . , n. If n is an odd
integer then

|d−p (u, p)− d+
p (u)| = 1

for any vertex p and almost all u’s. In this case we have σ+
p (Γ0) = 0 for any vertex p and we deduce

K(Γ0) =
∑

e∈E

K(e) + n− 2.
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On the other hand
1
π

T (Γ0) = 1 +
∑

e∈E

K(e).

(c) Taniyama [20] has proposed another notion of total curvature T1(Γ) given by

1
π

T1(Γ) =
∑

e∈E

K(e) +
∑

p∈V

θ(p),

where for every vertex p the quantity θ(p) is the sum
∑

τ0 6=τ1∈Np

(
π − ](τ 0, τ 1)

)
.

We can check by direct computation that K(Γ0) 6= 1
πT (Γ0) 6= 1

πT (Γ1). It seems that Taniyama’s
definition is closer in the spirit to the approach of I. Fáry [8] where he showed that the total curvature
of simple closed curve in R3 is equal to the average of the total curvatures of its projections on all the
two dimensional planes. ut

From (2.4) and Corollary 2.2 we obtain the following generalization of the first half of [11, Thm.2].

Corollary 2.12. Suppose Γ is a connected, semialgebraic graph such that each of its vertices has
degree ≤ 3. If T (Γ) denotes the Gulliver-Yamada total curvature of Γ then

T (Γ) = πK(Γ) ≥ π
(
1 + b1(Γ)

)
. ut

Remark 2.13. Suppose S is a topological space which admits an embedding as a semi-algebraic
graph in R3. We define

µ0(S) := inf
{

µ(ϕ(S) ); ϕ : S → R3 is an embedding as a semialgebraic graph
}
. (2.5)

Note that µ0(S) ≥ 1. Clearly µ0(S) is a topological invariant of S. If S is tightable (see Definition
1.6(c) then µ0(S) = 1, but the converse is not true.

To see this, consider the topological space Σn obtained as the suspension of a n-point set. Denote
by P± the two suspension points. Theorem 3.1 implies that Σn is not tightable if n > 3. However,
for every ε > 0 we can find semialgebraic embeddings ϕ : Σn ↪→ R2 such that µ

(
ϕ(Σn)

)
< 1 + ε.

To see this, we embed Σn in the plane as union of a circle with (n − 2) arcs connecting the
diametrically opposed points P± (see Figure 3). Assume that the arcs are C2, they do not intersect in
the interior and they are C2-close to the diameter [P−P+]. Then µ(Σn) ≈ 1.

P

P

+

-

FIGURE 3. A suspension of a n-point set with small crookedness.
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Let us observe that we can find semialgebraic sets S with arbitrarily large µ0(S). Suppose S is a
wedge of n > 1 circles C1, . . . , Cn. We denote by w the common point of these n-circles.

For any semialgebraic embedding ϕ : S → R3 as semi-algebraic graph we obtain n pairs of unit
vectors at w, n±i ∈ Nw, i = 1, . . . , n. The vectors n±i are tangent to the component Cϕ

i of the
wedge, Cϕ

i = ϕ(C); see Figure 4.

C

C

C

w

1

1

1

2

3

n

n

+

-ϕ

ϕ

ϕ

FIGURE 4. A wedge of circles.

Let αi ∈ [0, π] denote the angle between n±i . If Sϕ := ϕ(S) then

µ(Sϕ) =
1
4π

σ+
w (Sϕ) +

1
2π

n∑

i=1

∫

Cϕ
i

|k(s)|ds|

=
1
4π

σ+
w (Sϕ) +

n∑

i=1

(
µ(Cϕ

i )− 1
2π

(π − αi)
) ≥

n∑

i=1

µ(Cϕ
i )− n

2
≥ n

2

In fact
µ0(S) =

n

2
.

Indeed,for every ε > 0 we can embed S as a planar wedge of circles, such that the components Cϕ
i

are convex, the solid angle σ+
w (Sϕ) is trivial and the angles αi are small, αi < 2πε

n . Then

µ(Sϕ) =
n∑

i=1

µ(Cϕ
i )− n

2
+

1
2π

n∑

i=1

αi =
n

2
+

1
2π

n∑

i=1

αi <
n

2
+ ε. ut

3. TIGHTNESS

We want to give a complete explicit classification of tight semi-algebraic graphs in R3.

Theorem 3.1. A semialgebraic graph Γ is tight if an only if its of one the following types: type C
described in Corollary 2.10, and type S described in Corollary 1.9.

Proof. Suppose Γ is a connected semialgebraic graph. As usual we denote by V the set of vertices
and by E the set of edges. We denote by RΓ ⊂ S2 the set of Γ-regular unit vectors.

Assume Γ is tight. According to Proposition 1.7 this means that the intersection of Γ with any
closed half-space is connected.

For every point p on an (open) edge e we denote by Lp the affine line tangent to the edge e at p and
by k(p) the curvature of e at p. If k(p) 6= 0 we denote n(p) the normal vector to e at p. We set

C(Γ) :=
{
p ∈ Γ \ V ; k(p) 6= 0}.(V ∪ F (Γ)

)
, C(e) := C(Γ) ∩ e, ∀e ∈ E.

We will refer to C(Γ) as the curved region of Γ since it consists of the points along edges where the
curvature is nonzero. The set C(e) is semialgebraic, open in e and consists of finitely many arcs.
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If C(Γ) = ∅ then all the edges of Γ are straight line segments and the theorem reduces to Corollary
1.9. Thus in the sequel we will assume that C(Γ) 6= ∅.

Lemma 3.2. Suppose p is a point on an open edge of the tight graph Γ such that k(p) 6= 0. Then
the graph Γ is contained in the affine osculator plane, i.e., the affine plane determined by the affine
tangent line Lp and the normal vector n(p), and it is situated entirely in one of the closed half-planes
determined by Lp.

Proof. Consider a unit vector u such that (u, n(p)) > 0. Set c = hu(p) The intersection between
the half-space {hu ≤ c} and Γ is closed, connected and semialgebraic. The curve selection theorem
implies that and p is an isolated point of this intersection. Hence the intersection consists of a single
point so that Γ is contained in the half-space

H+
u,p =

{
q ∈ R3; (u, q − p) ≥ 0}.

Thus
Γ ⊂

⋂

(u,n(p)>0

H+
u,p.

This intersection is a half-plane in the osculator plane determined by the affine tangent line Lp. ut

Using a similar argument as in the proof of Lemma 3.2 we deduce the following result.

Lemma 3.3. The edges of Γ are convex arcs. ut

For every vertex v of Γ we denote by Cv the convex cone spanned by the vectors in N v and by C∗v
is dual cone

C∗v =
{
p ∈ R3; (p, τ ) ≥ 0; ∀τ ∈ N v }.

The intersection of C∗v with the unit sphere is the closure of the open region Σ+
Γ (v) introduced in

Definition 2.3.

Lemma 3.4. For every vertex v of Γ we have Γ ⊂ Cv.

Proof. Note first that Σ+
Γ (v) = ∅ if and only if σ+

Γ (v) = 0. If σ+
Γ (v) = 0 then Cv = R3 and the

statement is obvious. Assume σ+
Γ (v) > 0.

Then Σ+
Γ (v) is an open subset of S2 and Σ+

Γ (v) \∆Γ is dense in Σ+
Γ (v). For any u ∈ Σ+

Γ (v) \∆Γ

the function hu has a local minimum at v, and since Γ is tight, it has to be the absolute minimum. In
other words Γ is contained in the half-space H+

v (u) so that

Γ ⊂
⋂

u∈Σ+
Γ (v)\∆Γ

H+
v (u) =

⋂

u∈Σ+
Γ (v)

H+
v (u)

(cl=closure)
=

⋂

u∈cl (Σ+
Γ (v))

H+
v (u) = (C∗v)

∗ = Cv,

where at the last step we have used the fact that a closed convex cone coincides with its bidual. ut

We set
Vext = Vext(Γ) :=

{
v ∈ V ; σ+

Γ (v) > 0
}
,

and we will refer to the vertices in Vext as extremal vertices.
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Lemma 3.5. Suppose C(Γ) 6= ∅. Then there exists a semialgebraic closed convex curve B such that
the following hold.
(a) B ⊂ Γ.
(b) Γ is contained in the convex hull R of B.
(c) Γ \B is a union of straight line segments.
(d) The components of R \ Γ are convex open sets.

Proof. Since C(Γ) 6= ∅ Lemma 3.2 implies that Γ must be a planar. For every v ∈ V we denote by Av

the intersection of Cv the unit circle in the plane containing Γ of the curve. Set θv := length (Av).
Denote by V ′

ext the set of vertices such that θv ≤ π. Clearly Vext ⊂ V ′
ext but in general the inclusion

is strict. For example, the vertices p and v in Figure 5 belong to V ′
ext, but not to Vext. The vertex b

belongs to Vext.

FIGURE 5. A tight graph and its set V ′
ext.

Note that if θv > π then θv = 2π. Moreover

σ+
Γ (v) = 2(π − θv).

For v ∈ V ′
ext the angle Av is spanned by two vectors τ± ∈ N v, where τ± are ordered such that the

counterclockwise angle from τ− to τ+ is ≤ π. The two vectors τ± correspond to two edges e±(v)
incident to v; see Figure 5.

If we start at v and travel along the edge e+(v) we encounter another vertex ϕ(v) of Γ. From
Lemma 3.2 and 3.4 we deduce that during our travel the graph Γ is situated to the right of the affine
tangent lines to e+(v) oriented by the direction of motion; see Figure 5. This implies that ϕ(v) ∈ V ′

ext

and e+(v) = e−(ϕ(v)).
We have thus obtained a map ϕ : V ′

ext → V ′
ext such that v is connected to ϕ(v) by the edge e+(v)

and Γ is situated to the right of the edge e+(v) oriented by the motion from v to ϕ(v).
Suppose S ⊂ V ′

ext is a minimal ϕ-invariant subset of Vext. Then we can label the vertices in S as
s1, s2, . . . , sk, so that

k = |S|, v2 = ϕ(v1), . . . , vk = ϕ(vk−1), v1 = ϕ(vk).

The succession of edges e+(v1), . . . , e+(vk) determines a closed, clockwise oriented curve. It is
convex because it is situated on one side of the affine tangent lines to the smooth points of this curve
and it is contained in each of the angles Avi . Denote by B this closed convex curve.

The graph Γ is contained in the region R bounded by B. If e is an (open) edge of Γ not intersecting
B, then e must be a line segment. Indeed, if p ∈ e is a point where k(p) 6= 0, then the line Np through
p determined by n(p) intersects B in two different points q1, q2 which, according to Lemma 3.2, are
situated in the same half-plane determined by the affine tangent line Lp. In particular, the point p is
not contained on the closed segment [p1, p2]. This is a contradiction because the intersection of the
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line Np with R is precisely the segment [p1, p2] which implies that Γ has a point p not contained in
R. Arguing in a similar fashion we deduce that Vext ⊂ B.

For every vertex v ∈ V the set N v is contained in the unit circle in the plane of Γ. Thus, we can
cyclically counterclockwise order the vectors in N v. If v ∈ V \ V ′

ext then the (counterclockwise)
angle between two consecutive vectors in N v (with respect to this cyclic ordering) is < π because in
this case the planar cone spanned by N v must coincide with the plane of Γ.

Suppose D is a component of R \ Γ. Its boundary is a disjoint union of finitely many vertices and
open edges of Γ. We fix the clockwise orientation of ∂D. At each vertex v ∈ V ∩ ∂D we have two
edges an incoming and an outgoing edge contained in ∂D. They determine two vectors τ 0, τ 1 ∈ N v.
Since D is a connected component of the complement of Γ in R, these two vectors must be successive
vectors in N v with respect to the counterclockwise cyclic order on N v.

If v ∈ B ∪ V ′
ext then the angle between these vectors is ≤ π because the curve B is convex. If v is

in the interior of R and v ∈ V \V ′
ext then as we have seen above, the counterclockwise angle between

these vector must be smaller than π. This proves that D is a convex open region. ut

This completes the proof of Theorem 3.1. ut

Remark 3.6. Because tight sets satisfy the two-piece-property (see Remark 1.8) we can use the
characterization of planar 0-tight planar sets in [15, Thm. 1.3] to give an alternate proof of Lemma
3.5. ut

Remark 3.7. We chose to work in the category of semialgebraic sets because they may be familiar
to a larger audience. In fact all the results in this paper are valid in any o-minimal category. We refer
to [7] for more information about o-minimal sets and maps. ut

4. KNOTTEDNESS

As we mentioned in the introduction, Milnor proved that the knotting of a circle C ⊂ R3 requires
a substantial amount of curvature. More precisely, if µ(C) < 2 then C cannot be knotted. Gulliver
and Yamada [11] extended this result to singular situations. Let us define a θ-graph to be a graph
homeomorphic to the union of a round circle and a diameter. Such a graph is 3-regular, and for
these graphs the Gulliver-Yamada total curvature coincides with the notion of total curvature intro-
duced in this paper. Theorem 2 in [11] can be rephrased as follows. If Γ ⊂ R3 is a semialgebraic
graph homeomorphic to a θ-graph, and µ(Γ) < 3

2 , then the embedding of Γ is isotopic to a planar
embedding.

Denote by Σn the suspension of an n-point set. In Figure 6 we have depicted a planar embedding
of Σ5. We will refer to the two distinguished points of the suspension as the poles. Observe that
Σ2 is a circle, and Σ3 is a θ-graph. As explained in Remark 2.13, this set admits semialgebraic
embeddings Γ with µ(Γ) ≈ 1. Our next result generalizes the unknottedness results of Milnor [17]
and Gulliver-Yamada [11].

Theorem 4.1. Suppose Γ ⊂ R3 is a semialgebraic subset homeomorphic to the suspension of n-
points. If µ(Γ) < 2 then Γ is unknotted, i.e., it is isotopic with a planar embedding of the suspension.

Proof. Fix a vertex set V on Γ. The poles belong to the vertex set. The complement of the poles in
Γ is a semialgebraic set with n connected components. We will refer to these as the meridians of the
suspension. They are (open) semialgebraic arcs without self intersections.
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FIGURE 6. The suspension of 5 points.

Denote by U ⊂ S2 the set consisting of Γ-nondegenerate unit vectors u such that hu has at least
two local minima on Γ. The set U is semi-algebraic. Since µ(Γ) < 2 we deduce that

Area (U) <
1
2
Area (S2).

If M := S2 \ U then M is semialgebraic and Area (M) > 1
2Area (S2). Hence

Area
(
M ∩ (−M)

)
> 0.

Since M∩(−M) is semialgebraic, and has nonzero area, we deduce that it has nonempty interior. We
denote this interior by V. For any u ∈ V the function hu has a unique local minimum and a unique
local maximum on Γ. From the results in [18] we deduce that we can choose u ∈ V satisfying the
additional condition that the restriction of hu on Cr(u) is injective.

The poles of Γ are critical points of hu so that hu has distinct values on these poles. We label the
poles by P± so that hu(P+) > hu(P−). We set m± := hu(P±). We need to distinguish two cases.
A. The poles are the only local extrema of hu on Γ. In this case, the restriction of hu on each meridian
induces a semialgebraic homeomorphic between that meridian and the open interval (m−,m+). The
graph is then a braid with the top and bottom capped-off; see Figure 7.

FIGURE 7. A braided embedding of Σ4.

Such a braided embedding is isotopic to a planar embedding because a braid with the top capped
off can be untwisted by an isotopy which keeps the bottom of the braid fixed. This can be see easily
for the basic braids σ±i ; see Figure 8. By Artin’s classical result (see e.g. [3, Thm. 1.8]) any braid is
a composition of such elementary braids. Thus, we can inductively untwist any capped braid.
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FIGURE 8. The elementary braid σi with the top capped off.

B. One of the poles P± is not an absolute extremum of hu. We will reduce this case to the previous
one. More precisely, we will prove that we can isotop Γ an embedding of Σn such that hu is a stratified
Morse function with a unique relative maximum at P+ and a unique relative minimum located at p−.

Suppose that the unique relative maximum is achieved at a point q located on one of the meridians.
Denote this meridian by M . The hyperplane H determined by u and containing P+ intersects the
meridian M at a unique point r; see Figure 9. (If there were several points of intersection with M ,
the function hu would have several local maxima on this meridian.)

FIGURE 9. Deforming Γ to a braided embedding.

The pole P+ is a stratified critical point and, since the function hu does not have local maxima
on meridians different from M we deduce that we can find an open, convex polyhedral cone C with
vertex at P+ satisfying the following conditions.

• The cone C is situated below the hyperplane H , i.e., it is contained in the open half-space
{hu < m+}.

• The cone C contains all the meridians other than M .
We deduce that if a point r′ on the meridian M is sufficiently close to r, then the open line segment

(P+r′) does not intersect any of the meridians situated below H . Now choose r′ ∈ M sufficiently
close to r and situated slightly below H; see Figure 9. Moreover, we can assume that M is smooth at
r′ and thus r′ is not a critical point of hu. Clearly we can deform the arc P+qr′ to the segment [P+r′]
while keeping the endpoint fixed such that during the deformation we do not intersect the meridians
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different from M . We have thus isotoped Γ to an embedding with the property that hu is a stratified
Morse function with no local maxima along the meridians.

Arguing similarly, we can isotop Γ such that hu has no local minima along the meridians. Thus
we have isotoped ourself to case A. This concludes the proof of Theorem 4.1. ut

FIGURE 10. A surgery from the singular figure eight to a trefoil knot.

Remark 4.2. (a) The special case b = 2 is due to Fáry [8] and Milnor [17]. The case n = 3 was
investigated by Gulliver and Yamada [11] where they established the unknottedness of a theta graph
whose crookedness satisfies µ < 3

2 .
(b) Using the crookedness lowering trick in [17, Lemma 1.2] one can prove that if Γ is a semialgebraic
embedding of Σn with µ(Γ) ≤ 2, then either Γ planar, or it is isotopic to an embedding Γ′ with
µ(Γ′) < µ(Γ). This shows that if µ(Γ) ≤ 2 then Γ is unknotted.

The upper bound 2 on crookedness in Theorem 4.1 cannot be improved. For example, if Γ is the
figure eight curve in the left-hand side of Figure 10 then µ(Γ) = 2. We can find surgeries of this
figure eight curve producing the trefoil knot in the right-hand side while barely changing the total
curvature so that µ(trefoil) ≈ 2. Essentially, this surgery replaces a straight line segment with an arc
of circular helix with the same endpoints, and axis parallel to the segment. If the slope of this arc of
helix is very large then the total curvature is very small. More precisely the total curvature of the arc

[0, 2πc] 3 s 7→ (
a cos

s

c
, a sin

s

c
,
bs

c

) ∈ R3, c =
√

a2 + b2,

is 2a
c = 2√

1+m2
where m = b

a is its slope.
ut

Remark 4.3. The above result is not valid for graphs that are not suspensions of finite sets. In fact
the situation is dramatically different. For such graphs, it is possible that they are almost tight µ(Γ)
is very close to 1 and still be knotted. We describe below such an instance.

Consider the planar semialgebraic set Γa depicted in Figure 11(a). In this case µ(Γ) = 1. We
shrink the horizontal edges to obtain a set Γb as in Figure 11(b) still satisfying µ(Γb) = 1. We denote
by r the common length of the two horizontal edges.

Now deform the vertical edge AB to obtain the broken line AV B as in Figure 11(c). The triangle
AV B is isosceles. The new semialgebraic set Γc satisfies

µ(Γc) = 1 +
θ

π
,

where θ denotes the angle between AB and V A. Continue deforming the broken line AV B until V
crosses the vertical chord CD, and push V a bit more to the left to obtain the semialgebraic set Γd

depicted in Figure 11(d).
If we continue to denote by θ the (new) angle between V A and AB then

µ(Γd) = 1 +
θ

π
.
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FIGURE 11. Deforming a simple tight set.

FIGURE 12. Resolving a crossing as an under/overcrossing.

On the left-had side of Figure 12 we describe how to replace the intersection between the lines V A
and CD with by creating a small (under) “dimple” in the arc AB. The new arc V A will go below
CD. We can arrange that resulting change in µ(Γ) due to this dimple is < ε

4 . In the right-hand side of
Figure 13 we replace similarly the intersection of V B and CD with a crossing of V B over the new
arc CD. Again we can arrange that the change in µ(Γ) due to this surgery is < ε

4 .
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After all these transformations we obtain a subset in R3 homeomorphic to the original set Γa and
isotopic to the set depicted in Figure 13. We observe two disjoint circles forming a Hopf link.

FIGURE 13. The formation of a Hopf link

By choosing the length r in Figure 11(b) sufficiently small, we can arrange that the angle θ between
V A and CD in Figure 11(d) is < πε

2 . After performing all these operations we obtain a semialgebraic
Γ set isotopic with the set in Figure 13 and satisfying

µ(Γ) < 1 +
θ

π
+

ε

4
+

ε

4
< 1 + ε.

This set cannot be unknotted to the set Γa because of the presence of the nontrivial Hopf link. ut

Question 4.4. The last remark leads to a natural question. Suppose Γ is a planar graph with the
following property.

(P) For any planar semialgebraic embedding Γ′ ↪→ R2, and any two bounded connected compo-
nents R1, R2 of the complement R2 \ Γ′, the closures R1 and R2 have a point in common.

For example, the suspension of a n-point set Σn (Figure 6) or the wedge of circles (Figure 4) has this
property. We believe that the following is true.

Suppose Γ is a planar graph satisfying property (P). Then the following hold.
(a) For any ε > 0 there exists a planar embedding ϕ : Γ ↪→ R2 such that µ

(
ϕ(Γ)

)
< µ0(Γ) + ε,

where µ0(Γ) is the topological invariant defined in (2.5).
(b) Any semialgebraic embedding Γ ↪→ R3 is isotopic to a planar embedding if µ(Γ) < µ0(Γ) + 1.

ut

APPENDIX A. BASICS OF REAL SEMI-ALGEBRAIC GEOMETRY

We want to present a few basic facts of real algebraic geometry used throughout the paper. For
proofs and more details we refer to [4, 7, 6].

A subset A ⊂ Rn is called semialgebraic if it is a finite union of sets described by finitely many
polynomial inequalities. We denote by Sn the collection of semi-algebraic subsets of Rn and we set
S = ∪n≥1S

n.
Using the canonical embedding Rn ⊂ Rn+1 we can regard Sn as a subcollection of Sn+1. If

A ∈ Sm and B ∈ Sn, then a (possibly discontinuous) map f : A → B is semialgebraic if its graph
Γf ⊂ A × B is a semialgebraic set. Sometimes we will refer to the semialgebraic sets/functions as
definable sets/ functions.

We list below some of the basic properties of the semialgebraic sets.
• The collection S is closed under boolean operations: union, intersection complement, cartesian
product.
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• (Tarski-Seidenberg) If T : Rm → Rn is an affine map, then T (Sm) ⊂ Sn.
• The image and preimage of a definable set via a definable map is a definable set.
• (Piecewise smoothness of one variable semialgebraic functions.) If f : (0, 1) → R is a semialge-
braic function, then there exists

0 = a0 < a1 < a2 < · · · < an = 1

such that the restriction of f to each subinterval (ai−1, ai) is real analytic and monotone. Moreover
f admits right and left limits at any t ∈ [0, 1].
• (Closed graph theorem.) Suppose X is a semialgebraic set and f : X → Rn is a semialgebraic
bounded function. Then f is continuous if and only if its graph is closed in X × Rn.
• (Curve selection.) If A is a definable set, and x ∈ cl(A) \ A, then there exists an S definable
continuous map

γ : (0, 1) → A

such that x = limt→0 γ(t).
• Any definable set has finitely many connected components, and each of them is definable.
• Suppose A is a definable set, p is a positive integer, and f : A → R is a definable function. Then
A can be partitioned into finitely many definable sets S1, . . . , Sk, such that each Si is a Cp-manifold,
and each of the restrictions f |Si is a Cp-function.
• (Triangulability.) For every compact definable set A, and any finite collection of definable subsets
{S1, . . . , Sk}, there exists a compact simplicial complex K, and a definable homeomorphism

Φ : K → A

such that all the sets Φ−1(Si) are unions of relative interiors of faces of K.
• (Definable selection.) Suppose A, Λ are definable. Then a definable family of subsets of A parame-
terized by Λ is a definable subset

S ⊂ A× Λ.

We set
Sλ :=

{
a ∈ A; (a, λ) ∈ S

}
,

and we denote by ΛS the projection of S on Λ. Then there exists a definable function s : ΛS → A
such that

s(λ) ∈ Sλ, ∀λ ∈ ΛS .

• (Dimension.) The dimension of a definable set A ⊂ Rn is the supremum over all the nonnegative
integers d such that there exists a C1 submanifold of Rn of dimension d contained in A. Then
dimA < ∞, dim(X × Y ) = (dimX)(dimY ), ∀X,Y ∈ S, and

dim(cl(A) \A) < dimA.

Moreover, if (Sλ)λ∈Λ is a definable family of definable sets then the function

Λ 3 λ 7→ dimSλ

is definable.
• If f : A → B is a semialgebraic bijection (non necessarily continuous) then dimA = dim B.
• If A1, . . . , An are definable sets then

dim(A1 ∪ · · · ∪An) = max
{

dimAk; 1 ≤ k ≤ n
}
.

• (Definable triviality of semialgebraic maps.) We say that a semialgebraic map Φ : X → S is
definably trivial if there exists a definable set F , and a definable homeomorphism τ : X → F × S
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such that the diagram below is commutative

X S × F

S

[
[[]

Φ

wτ

�
��� πS

.

If Ψ : X → Y is a continuous definable map, and p is a positive integer, then there exists a partition
of Y into definable Cp-manifolds Y1, . . . , Yk such that each the restrictions

Ψ : Ψ−1(Yk) → Yk

is definably trivial.
From the definable triviality of semialgebraic maps we deduce the following consequence.

Corollary A.1. If F : A → B is a continuous semialgebraic map, then the collection of fibers
(F−1(b))b∈B contains only finitely many homeomorphism types. ut

Lemma A.2. The discriminant set ∆Γ is a closed semialgebraic subset of S2 of dimension ≤ 1.

Proof. We denote by F (Γ) the set of points on the open arcs where the curvature vanishes. The set
F (Γ) is of dimension at most 1, and thus is a finite disjoint union of (open arcs) arcs and points.
Moreover the collection

LΓ :=
{
Lp; p ∈ F (Γ)

}

consists of finitely many affine lines. We see that

C(Γ) := Γ \ (
V ∪ F (Γ)

)
.

The set ∆Γ of degenerate vectors is a disjoint union

∆Γ = ∆V
Γ t∆F

Γ t∆∗
Γ

• ∆V
Γ consists of unit vectors u perpendicular to some vector τ in some N v, v ∈ V . It is a

finite union of great circles on S2

• ∆F
Γ consists of unit vectors u perpendicular to one of the affine lines in LΓ. It is also a finite

union of great circles.
• ∆∗

Γ consists of unit vectors u such that there exist a point p ∈ C(Γ) with the property u ⊥
n(p), Lp. It is 1-dimensional and thus it is a finite union of semialgebraic arcs on S2.

Observe that for p ∈ C(Γ) the subspace spanned by n(p) and the tangent space Tpe is the osculator
plane of E at p. We denote this plane by Op. Then

∆∗
Γ =

{
u ∈ S2; ∃p ∈ C(Γ) : u ⊥ Op

}
.

We need to prove that ∆∗
Γ is has dimension ≤ 1. Consider the set

N∗(Γ) =
{
(p, u) ∈ C(Γ)× S2; u ⊥ Op

}
.

The set N∗(Γ) is semialgebraic, and the natural map N∗(Γ) → C(Γ) is two-to-one. In particular
N∗(Γ) is one dimensional. The projection of N∗(Γ) on S2 is the set ∆∗

Γ so that dim∆∗
Γ ≤ 1. ut

Proof of Proposition 2.1. Suppose Γ is a compact, connected semialgebraic subset of R3 of dimen-
sion 1. We define

XΓ :=
{
(u, p, q, ε) ∈ S2 × Γ× Γ× R; hu(q) < hu(p), |p− q| = ε,

}
.
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The natural projection π : XΓ → S2×ΓR, (u, p, q, ε) 7→ (u, p, ε) is a continuous semialgebraic map
and its fiber over (u, p, ε) is the link L+

ε (p,u) defined in (1.4). From Corollary A.1 we deduce again
that the are only finitely many topological types amongst these spaces.

Fix a graph structure on Γ and consider the definable subset Cr ⊂ (S2 \∆Γ)× Γ

Cr :=
{
(u, p) ∈ (S2 \∆Γ)× Γ; p ∈ Cr(u)

}
.

The natural projection Cr → S2 \∆Γ is semialgebraic and the fiber over u ∈ S2 \∆Γ is the critical
set Cr(u). Corollary A.1 now implies that there are finitely many topological types in the family
Cr(u), u ∈ S2 \∆Γ. Since the sets Cr(u) are finite sets we deduce

sup
{|Cr(u)|; u ∈ S2 \∆Γ

}
> ∞.

Now observe that
Mu(t) = lim

ε↘0

∑

p∈Cr(u)

Pε,p,u(t),

where Pε,u(t) is the Poincaré polynomial of the topological pair ( cone ( L−ε (t, p) ), L−ε (t, p) ). The
map

Cr×Γ× R 3 (u, p, ε) 7→ Pε,p,u(t) ∈ Z[t]
is definable. In particular, its range is finite, and its level sets are semialgebraic sets. This implies that
w(u) is semialgebraic. ut

Remark A.3. Denote by SΓ ⊂ S2 the set of Γ-nondegenerate unit vectors u such that the restriction
of hu to Cr(u) is injective. The set SΓ is open and semi-algebraic, and the functions corresponding
to u ∈ SΓ are the so called stable stratified Morse functions. The results of R. Pignoni [18] imply that
the function

SΓ 3 u 7→ Mu(t) ∈ Z
is constant on the connected components of SΓ. ut
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