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Introduction

This paper is the result of a National Science Foundatiomidéd Research Experience for
Undergraduates (REU) at the University of Notre Dame dutirgsummer of 2006. The
REU was directed by Professor Frank Connolly, and the reBgapject was supervised by
Professor Liviu Nicolaescu.

The topic of our independent research project for this REd @aometric Probability.
Consequently, the first half of this paper is a study of thekbmdroduction to Geometric
Probability by Daniel Klain and Gian-Carlo Rota. While closely followirthe text, we
have attempted to clarify and streamline the presentatimhideas contained therein. In
particular, we highlight and emphasize the key role playgdhie Radon transform in the
classification of valuations. In the second part we take aetltook at the special case of
valuations on polyhedra.

Our primary focus in this project is a type of function calket/aluation”. A valuation as-
sociates a number to each "reasonable” subgkt &fo that the inclusion-exclusion principle
is satisfied.

Examples of such functions include the Euclidean volume taedEuler characteristic.
Since the objects we are most interested lie in an Euclidpanesand moreover we are
interested in properties which are independent of the iocaif the objects in space, we are
motivated to study “invariant” valuations on certain subs# R". The goal of the first half
of this paper, therefore, is to characterize all such vauatfor certain natural collections
of subsets imR™.

This undertaking turned out to be quite complex. We must $ipgind time introducing
the abstract machinery of valuations (chapter 1), and tipphyeng this machinery to the
simpler simpler case of pixelations (chapter 2). Chaptéed sets up the language of poly-
convex sets, and explains how to use the Radon transforrmeryge many new examples of
valuations. These new valuations have probabilistic pretations. In chapter 4 we finally
nail the characterization of invariant valuations on polyeex sets. Namely, we show that
all valuations are obtainable by the Radon transform teghenfrom a unique valuation, the
Euler characteristic. We celebrate this achievement ipten& by exploring applications of
the theory.

With the valuations having been completely characterigeglfurn our attention toward
special polyconvex sets: polyhedra, that is finite unionsarivexpolyhedra. These poly-
hedra can be triangulated, and in chapter 5 we investigatedmbinatorial features of a
triangulation, or simplicial complex.

In Chapter 7 we prove a global version of the inclusion-esiclo principle for simplicial
complexes known as the Mobius inversion formula. Armed ke tesult, we then explain
how to compute the valuations of a polyhedron using data wegtiurm a triangulation.

In Chapter 8 we use the technique of integration with resfzetite Euler characteristic
to produce combinatorial versions of Morse theory and G&wmsmet formula. In the end,
we arrive at an explicit formula relating the Euler charaste of a polyhedron in terms of
measurements taken at vertices. These measurements caerpesited either as curvatures,
or as certain averages of Morse indices.
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The preceding list says little about why one would be intex these topics in the first
place. Consider a coffee cup and a donut. Now, a topologistdwou tell you that these
two items are “more or less the same.” But that’s ridiculddeiv many times have you eaten
a coffee cup? Seriously, even aside from the fact that theyrade of different materials,
you have to admit that there is a geometric difference bataemoffee cup and a donut. But
what? More generally, consider the shapes around you. W8hathat distinguishes them
from each other, geometrically?

We know certain functions, such as the Euler characteastitcthe volume, tell part of the
story. These functions share a number of extremely usefydgsties such as the inclusion-
exclusion principle, invariance, and “continuity”. Thisotivates us to consider all such
functions. But what are all such functions? In order to apipgse tools to study polyconvex
sets, we must first understand the tools at our disposal. ttumpts described in the previous
paragraphs result in a full characterization of valuationgolyconvex sets, and even lead
us to a number of useful and interesting formulae for conmgutfhese numbers.

We hope that our efforts to these ends adequately commertigist subject’s richness,
which has been revealed to us by our research advisor Livdoldiscu. We would like to
thank him for his enthusiasm in working with us. We would dli&e to thank Professor
Connolly for his dedication in directing the Notre Dame REkdahe National Science
Foundation for supporting undergraduate research.
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1. Valuations on lattices of sets

61.1. Valuations.

Definition 1.1. (a) For every sef we denote byP(S) the collection of subsets ¢f and by
Map(S, Z) the set of functiong : S — Z. Theindicator or characteristicfunction of a
subsetd C S is the function/, € Map(S, Z) defined by

A
Lals) = {(1) EZA

(b) If S'is a set then an-lattice (or a lattice of sets) is a collectioh C P(.S) such that
Pel, ABelL=— ANB, AUBecL.
(c) IsL is anS-lattice then a subsét € L is calledgeneratingf
feG and A, BeG=— ANDBecq,
and everyA € L is a finite union of sets i§. a

Definition 1.2. Let G be an Abelian group anfl a set.

(a) A G-valuationon anS-lattice of sets is a functiop : £ — G satisfying the following
conditions:

@b)u(@) =0

@2)u(AU B) = u(A) + u(B) — (AN B). (Inclusion-Exclusion)
(b) If Gis a generating set of thte-lattice £, then aiG-valuation orgG is a function, : § — G
satisfying the following conditions:

(b1) 1u(0) =0

b2)u(AUB) = u(A) + u(B) — u(An B), foreveryA, B € GsuchthatAUu B € §. O

The inclusion-exclusion identity in Definitidh 2implies thegeneralized inclusion-exclusion
identity

PATUA U UA) = p(A) =) (AN A+ D p(ANA;NA)+-- (L)
) i<j 1<j<k

Example 1.3.(a) (The universal valuationSupposes is a set. Observe thatap(S,Z) is a
commutative ring withl.. The map

I, : P(S) — Map(S,7Z)
given by
P(S)> A~ I, € Map(S,Z)

is a valuation. This follows from the fact that the indicatonctions satisfy the following
identities.

Ianp = Ixlp (1.2a)
Tawp=1Is+1p—Ianp=Ia+1Ip—Islp=1—(1—14)(1—Ip). (1.2b)
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(b) Supposé is a finite set. Then theardinality map
#:P(S)—7Z, A— #A :=the cardinality ofA

is a valuation.

(c) Supposes = R?, R = R andL consists of measurable bounded subsets of the Euclidean
space. The map which associates to e4ch L its Euclidean areayrea(A), is a real valued
valuation. Note that the lattice point count map

AL —Z, A #(ANZ?)

is aZ-valuation.
(d) Let.S andL be as above. Then the Euler characteristic defines a vatuatio

X:L—7Z, A x(A). O

If (G,+) is an Abelian group and is a commutative ring with then we denote by
Homyz (G, R) the set of group morphisnts — R, i.e. the set of maps

0:G—R
such that

©(91+ g2) = w(g1) +©(g92), V91,92 € G.

We will refer to the maps itlomy (G, R) asZ-linear maps fronG to R.

Supposel is an S-lattice. We denote by (L) the (additive) subgroup dflap(S,Z)
generated by the functions, A € L. We will refer to the functions irs(L) asL-simple
functions or simple functions if the latticé& is clear from the context.

Definition 1.4. Supposel is anS-lattice, andG is an Abelian group. Ar7-valued integral
on L is aZ-linear map

/:S(L)—>G, S(L)an/feG. O

Observe that any--valued integral on ab-lattice L defines a valuatiop : L — G by

setting
w(A) = /IA.

The inclusion-exclusion formula fqr follows from (1.29 and (L.20). We say thay. is the
valuation induced by the integraWhen a valuation is induced by an integral we will say
that thevaluation induces an integral

In general, a generating set of a lattice has a much simplastate and it is possible to
construct many valuations on it. A natural question aridest possible to extend to the
entire lattice a valuation defined on a generating set? Tkig@sult describes necessary and
sufficient conditions for which this happens.
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§1.2. Extending Valuations.

Theorem 1.5(Groemer’s Integral Theorem).et G be a generating set for a latticé and
let . : § — H be avaluation or§, whereH is an Abelian group. The following statements
are equivalent.

(1) p extends uniquely to a valuation @n
(2) p satisfies the inclusion-exclusion identities

p(BiUB,U---UB,) => u(Bi) = > u(BiNB;)+--
i i<y
for everyn > 2 and anyB; € GsuchthatB, UB,U---U B, € G.
(3) u induces an integral on the space of simple functi®fs).

Proof. We follow closely the presentation ik R, Chap.2].

e (1) = (2). Note that the second statement is not trivial becaisel - -- U B,,_; is
not necessarily irf§. Suppose the valuatiom extends uniquely to a valuation dn Then
w satisfies the inclusion exclusion identjtyA U B) = u(A) + pu(B) — p(A N B) for all
A,B e L. SinceB;U---UB,_; € Levenifitisnoting, we can apply the inclusion-
exclusion identity repeatedly to obtain the result.

e (2) = (3). We wish to construct a linear mgp: $(£) — H. To do this, we first note
that by (L.2b) any function,f in §(L) can be written as

f = Z OéiIKiu
i=1

whereK; € §anda; € Z. We thus define an integral as follows:

/Z%‘I&dﬂ = Z%M(Ki)-
i=1 i=1

This map might not be well-defined sin¢eould be represented in different ways as a linear
combination of indicator functions of generating sets. Yestneed to show that the above
map is independent of such a representation. We argue bgadactton and we assume that
f has two distinct representations

F="la =Y Bils,
Z%M(AZ—) # ZﬁiM(Bz')-

Thus, subtracting these equations and renaming the tenonsgapately, we are left with the
situation

yet

D aili, =0 and > a;u(K;) # 0. (1.3)
=1 1=1

Now we label the intersections
Ly=Ky, ..., Lpy=Ky, Lpnp=K NKy, Ly=KNK;s,...
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such thatL; C L; = j < 4. This can be done because we have a finite number of sets. We
note that all the;'s are ing, since thek;’s and their intersections are $h We then rewrite
(1.3) in terms of thel;’s as

p p
> ailp, =0 and Y ap(L;) #0. (1.4)
i=1 =1

Now takeq maximal such that
p p
D ail, =0 and ) ap(Li) #0. (1.5)
i=q 1=q

Note thatl < ¢ < p. Note thatu, # 0 since thery would not be maximal.
Let us now observe that

Indeed, ifx € L, \ |J L; then

P

J=q+1
p

I(x) =0 Vi#q and a, =Y ay,(x) =0.
1=q

This is impossible since, # 0. Hence

Lq:Lqﬂ<O L,-) - ij (L, N Ly).

i=q+1 i=q+1

Let us writeL, N L; = L;,. Then, sincé > ¢ and by constructiod; C L, = j < i, we
have thatj; > ¢. Thus:

p p
Ly = U (Lg N L;) = U Lj,.
i=q+1 i=q+1

Then we have

n

0# Z&iﬂ(Li) = agi(Lq) + Z aii(Li)

1=q+1

p n p

i=q+1 i=q+1 1=q+1
where the last equality is attained by applying the assum&dsion/exclusion principle to

the union and regrouping the terms.
We now repeat exactly the same process with the expressiolviing the indicator func-

tion. Then,
p p p
D ail =y ey + ) aili= Y bl
1=q

i=q+1 i=q+1
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Thus,

p
> b, =0

i=q+1
However, this contradicts the maximality @f Hence, the integral map is well defined, and
we are done.

e (3) = (1). Suppose: defines an integral on the spacelotimple functions. Then for
A€ G, [ Iadp = pu(A). This motivates us to define an extensjoof 1 to L by

f(A) = /[Ad,u =u(A), Ael.

This definition is certainly unambiguous and its restrictto G is just , SO we need only
check that it is a valuation. Let, B € £. Then,

[L(AUB):/IAquM:/IA+IB—IAanu

_ / Ladp + / Ipdy - / Linpdp = i(A) + i(B) — (AN B).

Thus, i is an extension ofi to L. Moreover, it is unique.

Suppose is another extension ¢f. Then, given anyl € L we can writed = K; U...U
K, for K; € G. Sinceji: andv are both valuations, both satisfy the generalized inctusio
exclusion principle. Furthermore, since both are extersad ., both agree oy

a(A) = (K U...UK,)

= ZM(Ki) - ZM(Kiij) + Z p(EG N KGN Ky) - -
i=1 1<J 1<j<k
=v(KhU...UK,)=v(A).
Hence, the extension is unique. O
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2. Valuations on pixelations

§2.1. Pixelations. We now study valuations on a small class of easy to undersiagets
of R™. We will then use this knowledge to study valuations on muohengeneral subsets of
R™. One of our main aims is to classify all the “nice” valuatia@rssuch subsets. It will turn
out that the ideas and results of this section are analogaesults discussed later.

Definition 2.1. (a) Anaffinek-planein R is the translate of &-dimensional vector subspace
of R™. A hyperplandn R" is an affine(n — 1)-plane.
(b) An affine transformatiomf R" is abijection7 : R™ — R such that

TG+ (1= \)&) = \Ti+ (1 — \T7, YAER, @,7€R"

The setAff(R") of affine transformations dR” is a group with respect to the composition
of maps. O

Definition 2.2. An (orthogonal)parallelotopein R™ a compact seP of the form
P:[al,bl]x~-~[an,bn], CLZ'SbZ', Zzl,n O
We will often refer to an orthogonal parallelotope as a pel@tiope or even just Box

Remark2.3. It is entirely possible for any number of the intervals defghan orthogonal
parallelotope to have length zero. Finally, note that thersections of two parallelotopes is
again a parallelotope. O

We denote byPar(n) the collection of parallelotopes iR" and we define @ixelationto
be a finite union of parallelotopes. Observe that the cadladtix(n) of pixelations inR™ is
a lattice, i.e. it is stable under finite intersections anwus.

Definition 2.4. (a) A pixelationP € Pix(n) is said to havelimensiom: (or full dimension
if P isnotcontained in a finite union of hyperplanes.

(b) A pixelationP € Pix(n) is said to havelimensiort (k < n) if P is contained in a finite
union of k-planes but not in a finite union ok (— 1)-planes. O

The top part of Figurel depicts possible boxes iR?, while the bottom part depicts a
possible pixelation ifR2.

§2.2. Extending Valuations from Par to Pix. By definition,Par(n) is a generating set of
Pix(n). Consequently, we would like to know if we can extend valuadifromPar(n) to
Pix(n). The following theorem shows that we can do so whenever thiatrans map into a
commutative ring witht.

Theorem 2.5.Let R be a commutative ring with. Then any valuatiom : Par(n) — R
extends uniquely to a valuation &tix(n).

Proof. Due to Groemer’s Integral Theorem, all we need to show is jihgitves rise to an
integral on the vector space of functions generated by ttheartor functions of boxes. Thus
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T
= =

FIGURE 1. Planar pixelations.

it suffices to show that . .
ZO&Z‘IPZ. =0= ZOZZ,M(R) =0,
=1 =1

where theP;’s are boxes.

We proceed by induction on the dimensienif the dimension is zero, the space only has
one point, and the above claim is true.

Now suppose that the theorem holds in dimension 1. For the sake of contradiction,
we suppose the theorem does not hold for dimensiofhat is, suppose there exist distinct
boxesP,, ..., P,, such that

Zailpi =0 and Za,—,u(Pi) =r 0. (2.1)
i=1 i=1

Let k& be the number of the boxéds of full dimension. Take&: to beminimalover all such
contradictions. We distinguish three cases.

Case 1.k = 0. Since none of the boxes is of full dimension, each is coetiin a hyper-
plane. Of all the relations of typ& (1) we choose the one so that the boxes involved are
contained in the smallest possible numbef hyperplanes.

Assume first that = 1. Then all theP; are contained in a single hyperplane. By the
induction hypothesis, then the integral is well defined, sthave a contradiction.

Thus, we can assume that- 1. So, there exist hyperplanes orthogonal to the coordinate
axes,Hq, ..., H,, such that eacl?; is contained in one of them. Without loss of generality,
we may renumber the indices so tiatc H;.

The the restriction td{; of the first sum in2.1) is zero so that

m
E ai]PiﬂHl - 0
=1

But, P, N H, is a subset of the a hyperplafg and we can apply the induction hypothesis
to conclude that

Zai,u(Pi NHy) =0.

i=1
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Subtracting the above two equations fronlf we see that

Zaz(fpi —Ipnm,) =0 and Zai(M(Pi) — (PN HY)) =1 £ 0.
=1 i=2
The above sums take the same foéri), but we see that the boxé% C I, disappear since

P, = P; N Hy. Thus we obtain new equalities of the tyge1) but the boxes involved are
contained in fewer hyperplanely, - - - , H, contradicting the minimality of.

Case 2.k = 1. We may assume the top dimensional box’js ThenP, U ---U P, IS
contained in a finite union of hyperplanés, - - - , H, perpendicular to the coordinate axes.
Observe that

(HHU---UH,) NP C P,.
Indeed,
vol (HyU-+-UH,)NP) <> vol(H;NP) =0 <vol(P),
j=1
so that
EL”L'()EPl\(HlU"'UHV).

Using the identity) ~ «;Ip, = 0 atz, found above we deduce, = 0 which contradicts the
minimality of k.

Case 3.k > 1. We can assume that the top dimensional boxeg’are - , P.

Choose a hyperplang such thatP, N H is a facet ofPy, i.e. a face ofP; of highest
dimension such that it is not all @*,. H has two associated closed half-spafesand H .
H™ is singled out by the requiremeRt ¢ H*. Recall that

Z OéiIPZ. =0.
i=1
Restricting toH ™ we deduce

Z Oéi]pimHJr = 0.
i=1
Likewise,
D ailpen =0 and ) ailpay- =0 (2.2)
i=1 i=1

Note that?, = (P,NHT)U(PNH )and(P,NHT)N(P,NH~)= P,NH. Then, since
(1 is a valuation, it obeys the inclusion-exclusion rule so

S aipu(P) = ag(PNHY) +> aq(PNH™) =Y au(PNH)  (2.3)
i=1 i=1 i=1 i=1
Since the set®, N H are in a space of dimension— 1, and

m
E ailpng =0
=1
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we deduce from the induction assumption that

Zm:aiM(PimH) =0.

i=1

On the other hand?, " H— = P, N H so P, N H~ has dimensiom — 1. We now have a
new collection of boxe®, " H~ ,i = 1,--- ,m of which at mos& — 1 are top dimensional

and satisfy
ZaiIPZﬂH* =0.

The minimality ofk now implies

iaiu(Pi NH")=0.

i=1

Therefore, the equality2(3) implies

Z a;u(Py) = Z aiu(P,NHY) =7 (2.4)
=1 =1
P, has dimensiom. Then there existn hyperplaned, ..., H,, such that

2n
P =()H;.
i=1

ReplacingP; with P, N H* and iterating the above argument we get

Y (PO H NH NN HE) =Y (PN P = (2.5)
i=1 i=1
and
Z ailpnp, = 0. (2.6)
i=1

We repeat this argument with the remaining top dimensioog¢bp, . . ., P, and if we set

P()Z:Plﬂ-"ﬂpk, A::a1+---+ak

we conclude
Z ailpnp, = Alp, + Z a;lpnp, = 0, (2.7a)
i=1 i>k
> (PN Ry) = Ap(Po) + > cup(PN PRy) = (2.7b)
i=1 i>k

In the above sums, at most one of the boxes is top dimensiwhalh contradicts the mini-
mality of &k > 1.
O
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§2.3. Continuous Invariant Valuations on Pix.

Notation 2.6. We shall denotd’, the subgroup of\ff(R") generated by the translations and
the permutations of coordinatesli. O

Definition 2.7. A valuationy on Pix(n) is calledinvariantif
pu(gP) = u(P), VP € Pix(n), g€ T,.
and is calledranslation invariantif the same condition holds for all translations O

We aim to find all the invariant valuations &tix(n). To avoid unnecessary complications,
we will impose a further condition on the valuations.

The final condition we would like on our valuations &ix(n) is that of continuity. Our
valuations are functions obix(n), which is a collection of compact subsetsRif. So, in
order for continuity to make any sense, we would like somecephof open sets for this
collection of compact sets. A good way of achieving this geab make them into a metric
space by defining a reasonable notion of distance.

Definition 2.8. (a) LetA ¢ R"” andz € R". Thedistance fromz to A, d(z, A), is the
nonnegative real numbéfz, A) defined by

d(xz,A) = ;gg d(x,a)

whered(x, a) is the Euclidian distance fromto a
(b) Let K and E be subsets dR™. Then theHausdorff distancé (K, E) is defined by:

§(K, E) = max (Sup d(a, E),sup d(K, b)) .

aeK beE

(c) A sequence of compact sét§, in R” convergeso a setK if 0(K,, K) — 0 asn —
oo. If this is the case, then we writ€,, — K. O

Remark2.9. If K andE are compact, thefi( K, F) = 0 ifand only if K = E. That s, the
Hausdorff distance is positive definite on the set of compats inR". O
Let B,, be the unit ball inR™. For K € R™ ande > 0, set
K+ eB, :={x+eu |z e K andu € B, }.

The following lemma (whose proof is clear) gives a hands-odenstanding of how the
Hausdorff distance behaves.

Lemma 2.10.Let K and E be compact subsets Bf*. Then
)(K,F)<e < K CFE+eB,andFE C K + ¢B,,. O

The above result implies that the Hausdorff distance isadigta metric. The next result
summarizes this.

Proposition 2.11. The collection of compact subsetsRif together with the Hausdorff dis-
tance forms a metric space. O
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Definition 2.12. Let 1 : Pix(n) — R be a valuation orPix(n). Theny is called (box)
continuousf g is continuous on boxes that is for any sequence of béxesnverging in the
Hausdorff metric to a bo¥’ we have

w(P;) — p(P) O

We want to classify the continuous invariant valuation®ax(n). We start by considering
the problem irR'. An element ofix(1) is a finite union of closed intervals. Fdre Pix(1),
set

15 (A) = the number of connected componentsiof
11 (A) = the length ofA

Both are continuous invariant valuations Bix(1). It is clear that they are invariant under
T,., which is, in this case, the group of translations. It is cteéat both are continuous.

Proposition 2.13. Every continuous invariant valuatign : Pix(1) — R is a linear combi-
nation of} and ]

Proof. Let ¢ = pu(A), whereA is a singleton sefz},z € R. Now lety = pu — cpud. 1/
vanishes on points by construction. Now, define a contindmuostion f : [0, c0)—R by
f(x) = p/([0,2]). 4 is invariant becausg and y} are invariant. Then, ifd is a closed
interval of lengthe, 1//(A) = f(z) since we can simply translatéto the origin.

Now observe that

fle+y) =@ [0,z +y]) = p(0,2] U ([z, 2+ yl) = 4/ (0, 2]) + ' ([w, 2 + y]) — ' ({})

= w([0,2]) + ' ([z,2 +y]) = f(2) + f(y).
Sincef is continuous and linear, we deduce that there exists aamotnstuch thatf (x) = rz,
for all z > 0. Thereforey.’ = rut and our assertion follows from the equality

=+ cpo = T + o,

O
We now move ont®". Let ., (P) be the volume of a pixelatioff of dimension..
Definition 2.14. The k-th elementary symmetric polynomialthe variables:y, . .., z, the
polynomialey(z1, ..., z,) such thag, = 1 and
er(ry,. .., x,) = Z Tiy a1 <k <n. O
1<iy <ip<--<ip<n
Observe that we have the identity
(L+tz)) =Y ep(zr, -, a,)th (2.8)
j=1 k=0

Theorem 2.15.For 0 < k < n, there exists a unique continuous valuatjgnon Pix(n)

invariant under7,,, such thatu,(P) = ey(x1, . .., z,) wheneverP € Par(n) with sides of
lengthzy, ..., x,.
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Proof. Let y}, 11 : Pix(1) — R be the valuations described above. We;set= i} + tpui,
wheret is a variable. Then,
py = g X g X e X g Par(n) — R[t]

is an invariant valuation on parallelotopes with valueshia ting of polynomials with real
coefficients. By Groemer’s Extension Theorelns, /' extends to a valuation oRix(n)
which must also be invariant. Using.g) we deduce

n n

([0, 0] e x [0, a]) = T+ ) =D exlan, -+ an)t".

j=1 k=0

For any parallelotop® we can write
p(P) =3 (P
k=0

The coefficientsu}(P) define continuous invariant valuations &ar(n) which extend to
continuous invariant valuations d@tix(n) such that

ur(S) =" pr(S)t*, vS € Pix(n) pp([0,21] x -+ x [0,2,]) = ex(z1, -+, 7).
O

Theorem 2.16.The valuationg:; on Pix(n) are normalized independently of the dimension
n,i.e.u"(P) = u?(P) forall P € Pix(n).

Proof. This follows from the preceding theorem and the definitioranfelementary sym-
metric function. IfP € Par(n) and we consider the sanmfe € Par(k), wherek > n, P
remains a cartesian product of the same intervals, excep #re some additional intervals
of length0, which do not effecj;. ad

Since the valuatiom(P) is independent of the ambient spagpe,is called thek-th in-
trinsic volume 1 is theEuler characteristic 10(@)=1 for all non-emptypoxes

Theorem 2.17.Let H, and H, be complementary orthogonal subspaceRbfispanned by
subsets of the given coordinate system with dimengi@amsln — h, respectively. LeP; be
a parallelotope infH; and letP = P, x Ps.

Ni(Pl X Pz) = Z /’LT(P1>/”LS(P2> (2.9)

r4s=1

The identity is therefore valid whel, and P, are pixelations since both sides of the above
equalities define valuations dtar(n) which extend uniquely to valuations &ar(n).

Proof. SupposeP; has sides of length, ..., z;, and P, has sides of lengthy, ..., y,_x.
Then,

Z MT(P1>/~LS(P2) - Z ( Z Ljy =Ty Z Yy - jks)

r+s=i r+s=i \1<j1<---<jr<h 1<ki1<--<ks<n—h
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Letj,.1 = ki+h,....5 = Jris = ks + hand letz,—1 = y1,...,2, = Yn_p, SIMply
relabelling. Then,

D Pps(Po) =) Y. ww, > Tjrpr " T

rs=i rs=i \1<j1<-<jr<h h41<j 1< <ji<n
= > Tj e, = pi(PLx By
1< < <Jr<Jgr+1<--<ji<n
sinceP; x P, is simply a parallelotope of which we know how to compute O

§2.4. Classifying the Continuous Invariant Valuations on Pix. At this point we are very
close to a full description of the continuous invariant \aions onPix(n).

Definition 2.18. A valuation x on Pix(n) is said to besimpleif x(P) = 0 for all P of
dimension less than. 0

Theorem 2.19(Volume Theorem foPix(n)). Letu be a translation invariant, simple valu-
ation defined orPar(n) and suppose that is either continuous or monotone. There exists
¢ € R such thatu(P) = cu,(P) for all P € Pix(n), that isy is equal to the volume, up to a
constant factor.

Proof. Let [0, 1]" denote the unit cube iR™ and letc = ([0, 1])™. Then,u ([0, £]") = %
forall kK > 0 € Z. Therefore,u(C) = cu,(C) for every boxC' of rational dimensions
with sides parallel to the coordinate axes sifitean be built from0, 1]" cubes for somé.
Sincey is either continuous or monotone afidis dense iR, thenyu(C') = cu,(C) for C
with real dimensions since we can find a sequence of ratidpabnverging ta”. Then, by
inclusion-exclusiony(P) = cu, (P) for all P € Pix(n) (since it works for parallelotopes,

we can extend it to a valuation on pixelations). O

Theorem 2.20.The valuations, u1, . . ., i, form a basis for the vector space of all con-
tinuous invariant valuations defined &tix(n).

Proof. Let 1 be a continuous invariant valuation ®ix(n). Denote byz, ..., z, be the
standard Euclidean coordinatesi®fhiand let/Z; denote the hyperplane defined by the equa-
tion ; = 0. The restriction orp to H; is an invariant valuation on pixelations i;.
Proceeding by induction (taking= 1 as a base case, which was proven in Proposii®f
assume

n—1
p(A) = ci(A) VA € Pix(n) such thatd C H; (2.10)
=0
Thec; are the same for all/; sinceyy, . . ., 1,1 are invariant under permutation. Then:-

Z;:OI ¢;jv; vanishes on all lower dimensional pixelationgiix(n) since any such pixelation
is in a hyperplane parallel to one of ti#&’s (since they,’s are translationally invariant).
Then, by Theoren2.19we deduce

n—1
H—= Z Cilli = Cpfin
i=0
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which proves our claim. O

If we can find a continuous invariant valuation Bix(n), then we know that it is a linear
combination of the:;’s. However, we would like a better description, if at all pide. The
following corollary yields one.

Definition 2.21. A valuation . is said to behomogenousf degreek > 0 if u(aP) =
a*u(P) forall P € Pix(n) and alla > 0.

Corollary 2.22. Lety be a continuous invariant valuation definedi®ix(n) that is homoge-
nous of degreé for some) < k£ < n. Then there exists € R such thatu(P) = cux(P) for
all P € Pix(n).

Proof. There existy, ..., ¢, € R such thaf, = chm. If P =10,1]", then for allae > 0,

=0
u(aP) = Zci,ui(ozp) = Zciozzm(P) = Z (i)ciai
=0 =0 =0
Meanwhile,
P) =a*u(P)=a" ii(P) = g i "
paP) = a*ulP) = o S (P az(
S0

meaning that; = 0 for i # k. ad
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3. Valuations on polyconvex sets

Now that we understand continuous invariant valuations wera specific collection of sub-

sets ofR", we recognize the limitations of this viewpoint. Notably Wwave said nothing of

valuations on exciting shapes such as triangles and diskmclude these, we dramatically
expand our collection of subsets and again try to classéctntinuous invariant valuations.
This effort will turn out to be a far greater undertaking.

§3.1. Convex and Polyconvex Sets.

Definition 3.1. (a) K C R” is convexf for any two pointsx andy in K, the line segment
between: andy lies in K. We denote byK" the set of all compact convex subsetsRit

(b) A polyconvesset is a finite union of compact convex sets. We denotBdiycon(n) the
set of all polyconvex sets IR". O

Example 3.2. A single point is a compact convex set. If
T={(r,y) eR* |2,y > 0,2 +y <1}

thenT is a filled in triangle inR?, so thatl’ € K2. Also, 97 is a polyconvex set, but not a
convex set. 0

One of the most important properties of convex sets iséparation property

Proposition 3.3. Suppos€’ C R" is a closed convex set ande R” ~. C'. Then there exists
a hyperplane which separatesrom ', i.e. z and C' lie in different half-spaces determined
by the hyperplane.

Proof. We outline only the main geometric ideas of the constructibsuch a hyperplane.
Let

d := dist(z, C).
Then we can find aniquepointy € C such that! = |y — x|. The hyperplane perpendicular
to the segmerntz, y| and intersecting it in the middle will do the trick. O

Definition 3.4. If A is a polyconvex set ifR"™, then we say thatl is of dimension ror has
full dimensionif A is not contained in a finite union of hyperplanes. Otherwige say that
A haslower dimension O

Remark3.5. Polycon(n) is a distributive lattice under union and intersection.tkermore,
K" is a generating set dfolycon(n). 0

We must now explore some tools we can use to understand tbeggact, convex sets.
The most critical of these is theupport function Let (—, —) denote the standard inner
product onR™ and by| — | the associated norm. We set

S" 1 i={ueR" |ul =1}
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Definition 3.6. Let K € X" and nonempty. Then itsupport functionsyx : S"! — R,
given by

hi(u) = r:?ez}?((u,x) O

Example 3.7.If K = {z} is just a single point, theh (u) = (u, z) for all u € S*~1.

Remark3.8. (a) We can characterize the support function in terms of atfon onR" as
follows. Leth : R"—R be such thab(tu) = th(u) for allu € S*~' andt > 0. Let h be
the restriction ofi to S*~!. Thenh is a support function of a compact convex seRihif
and only if

h(z +y) < h(z)+ h(y)
forall z,y € R™.
(b) Consider the hyperplang (K, u) = {x € R" | (z,u) = hg(u)} and the closed half-
spaceH (K,u)” = {z € R" | (z,u) < hg(u)}. Then it is easy to see thaf (K, u)
is “tangent” todK and thatK lies wholly in H(K,u)~ for all w € S"~!. The separation
property described in Propositiéi3implies

K= () H(Ku)".

ueSn—1

In other words K is uniquelydetermined by its support function. ad

Definition 3.9. Let K, L be inX". Then we define
K+L={x+y|zveKyel}
and callK + L theMinkowski sunof K andL.
Remark3.1Q0 We want to point out that for everk, . € X" we have
K C L <= hy(u) < hy(u), Yu e S™!
and

hucrr(u) = max ({z+y,u)) = max ((z,u)+(y,u)

= max((z, u)) + max({y, u)) = hx(u) + hy(u). 0

Remark3.11 Recall that for compact sets and L in R", the Hausdorff metric satisfies
0(K,L) <eifandonly if K € L+ eB andL C K + ¢B. In light of this fact and the
preceding comments, one can show that

O(K,L)= sup |hx(u)—hg(u).

ueSn—1
That is, the Hausdorff metric on compact convect subset®"ois given by the uniform
metric on the set of support functions of compact convex sets O

Now that we have some tools to understand these compact>ceete, we will soon
wish to consider valuations on them. But we don’t want justeduations. We would like
our valuations to be somehow tied to the shape of the convexi@ee, rather than where
the convex set is in the space. So, we would like some sortvafiemce under types of
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transformations. Furthermore, to make things nicer we dbla to restrict our attention to
those valuations which are somehow continuous. We formétiese notions.

It is easiest to begin with continuity. Recall that the Haarfiddistance turns the set of
compact subsets &" into a metric space. Siné€" is a subset of these, continuity is a well
defined concept for elements &f*. (We restrict our attention to these elements and not all
of Polycon(n) since dimensionality problems arise when consideringtéiraf polyconvex
sets.)

Definition 3.12. A valuationy : Polycon(n) — Ris said to beconvex continuou®r simply
continuous where no confusion is possible) if

whenever4,,, A are compact, convex sets aAg— A. O

Notation 3.13. Let £,, be the Euclidean group &", which is the subgroup of affine trans-
formations of R™ generated by translations and rotations. For ang F, there exist
T € SO(n) andv € R" such that

g(x) =T(z)+v,; Yo € R".
The elements of,, are also known asgid motions

Definition 3.14. Let i1 : Polycon(n) — R be a valuation. Thep is said to beigid motion
invariant (or invariant when no confusion is possible) if

p(A) = u(gA)

for all A € Polycon(n) andg € E,. If the same holds only for translatiopgheny is said
to betranslation invariant O

Our aim is to understand the set of convex-continuous ianékialuations ofPolycon(n),
which we will denote byval(n). Note that for everyn < n we have an inclusion

Polycon(m) C Polycon(n)

given by the natural inclusioR™ — R™. In particular, any continuous invariant valuation
i Polycon(n) — R induces by restriction a valuation dtvlycon(m). In this way we
obtain for everym < n a restriction map

Smn @ Val(n) — Val(m)

such thats,, ,, is the identity map and for evedy < m < n we haveSy,, = Si.m © Spn, 1.€.
the diagram below commutes.
[Sk,nb
Sk,n

Val (k)
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Definition 3.15. An intrinsic valuationis asequence of convex-continuous, invarieaiua-
tionsy™ € Val(n) such that for everyn < n we have

m

W= Syt
O

Remark3.16 (a) To put the above definition in some perspective we neesttilra classical
notion. A projective sequencef Abelian groups is a sequence of Abelian grog@s),>1
together with a family of group morphisms

Spm : Gn = Gy, m<n
satisfying
Srm = ]]-Gna Sk:n = Skm © Smrn VE <m <mn..
Theprojective limitof a projective sequendg~,,; S,.. } is the subgroup

limproj,, G, C H Gy,

consisting of sequences,, ), >, satisfying
gn € Gna Im = Omnn, vm <n.
The sequencéVal(n)) together with the maps,,,,, define a projective sequence and we set

Val(o0) := limproj, Val(n) C ] [ Val(n).
n>0
An intrinsic measure is then an element\adl (o).

Similarly if we denote byValp;,(n) the space of continuous, invariant valuations on
Pix(n) the we obtain again a projective sequence of vector spackaraelement in the
corresponding projective limit will be an intrinsic vali@t in the sense defined in the previ-
ous section.

(b) Observe that sinc¥alpic(n) C Val(n) we have a natural map

®,, : Val(n) — Valpic(n).

A priori this linear map need be neither injective nor surjectiveweleer, in a later section
we will show that this map is a linear isomorphism. ad

§3.2. Groemer’s Extension Theorem. We now show that any convex-continuous valua-
tion onX" can be extended tBolycon(n). Thus, we can confine our studies to continuous
valuations on compact, convex sets.

Theorem 3.17.A convex, continuous valuatign, on X" can be extended (uniquely) to
Polycon(n). Moreover, ifu is also invariant, then so is its extension.

Proof. Suppose that is a convex-continuous valuation 6¢. In light of Groemer’s integral
theorem, we need only show that the integral defined by the space of indicator functions
is well defined.

We proceed by induction on dimension. In dimension zerg, phoposition is trivial, and
in dimension oneX" is the same aBar(n) andPolycon(n) is the same aBix(n). Hence,



24 Csar-Johnson-Lamberty

we have already done this dimension as well. So, supposédioesm holds for dimension
n — 1.

Suppose for the sake of contradiction that the integral ddfioy;. is not well defined. Us-
ing the same technique as in Theor2rs Groemer’s Extension Theorem for parallelotopes,
suppose that there exi&t, . . ., K,, € X" such that

Xm: oailg, =0 (3.1)
i=1
while
> (K =1 #0 (3.2)
i=1

Takem to be the least positive integer such tHatl and 3.2) exist.
Choose a hyperplang with associated closed half-spadés and H~ such thatk; C
Int(H ™). Recall thatl 45 = I415. Thus, in light of equation3. 1), we can multiply and get

m
E aiIKiﬂH+ =0
i=1

as well as
Zai]KzﬂhF =0 and Zai]KiﬂH = 0.
i=1 i=1
Now note that; = (K; N H*)U (K; N H~)and thatd{* N H~ = H. Thus, since: is a
valuation, we may apply this decomposition and see that

Zazu Z%NK NHT) —i—ZozZ,uK NH) zm:ozi,u(KiﬂH).

i=1 i=1 i=1

Since eachi; N H lies insideH, a space of dimensian— 1, we deduce from the induction
assumption that

=1
Moreover, since we took’; C Int (H ), we have
IK10H7 = 07
and the sum
i=1 i=2
must be zero due to the minimality of. Thus, from 8.2), we have

O#T—Zalu Zaz (K; N HT).

=1
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Thus we have replacell; by K; N H* in (3.1) and 3.2). We now repeat this process. By
taking a countable dense subset, choose a sequence of layyes 3/, H-, ... such that
K, CInt(H;"), and

Ky =(H
Thus, iterating the proceeding argument, we have that

Y ap(K;NHE M- N Hf ) =1 #0

i=1

forall ¢ > 1. Sincey is continuous, we can take the limit @as— oo, giving

ZazM(Kz N Kl) =T 7’é 0,
=1

while applying the same type of argument 801j yields

m
E az’IKmKl = 0
i=1

Thus, we find ourselves in exactly the same position we wette egjuations¥.1) and @.2);
therefore, we may repeat the entire argumentfer. . ., K,,, giving

S ap(KinKyN---NKy) =Y ap(Kin--NkK,)
=1

i=1

:(iai>-u(Klﬁ~-~me):r;&O (3.38)
and :

Z O[i][{lﬁ...ﬁ]{m = <Z O[Z> (IKlﬁ"'ﬁKm) = 0 (34)
i=1 i=1

The equalities%.39 and @.4) contradict each other. The firstimplies thatt+ - - - + «,,, # 0
andK;N---NK,, # 0, while from the second impliesthat+- - -+a,, = 00r I, .k, = 0.

Thus, the integral must be well defined, so there exists auengxtension of: to Poly-
con(n). O

§3.3. The Euler Characteristic.
Theorem 3.18.(a) There exists aimtrinsic valuatioru, = (u{).>o uniquely determined by
o (C) =1, vC e X"
(b) Suppos€’ € Polycon(n), andu € S*~!. Define/, : R — R by/,(z) = (u,x) and set
Hy:=(,'(t), Cr:=CNH, F,c(t):=pu(C).
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ThenF, «(t) is asimple functioni.e. it is a linear combination of integral coefficients of
characteristic functiongg, S € X'. Moreover

po(C) = /fcdﬂo = /Fu,c(t)dﬂo(t) = Z(Fu,C(t) — Fc(t+0)). (Fubini)

t

Proof. Part (a) follows immediately from TheoreBil7. To establish the second part we use
again Theoren3.17. For everyC' € Polycon(n) define

M(C) 1= [ Fuctidu(®
Observe that for everyc R and everyC;, Cy € Polycon(n) we have
Fucwe () = po( HiN(CLUCy)) = po((H,NCy) U (Hy N Cy))
= po(Hy N Cy) + po(Hy N Co) — po((H, N Ch) N (H, N Cy))

= Fuc, (t) + Fuc,(t) — Fucine,(t).

Observe that it” € X" thenF,, ¢ is the characteristic function of a compact interzaR'.
This shows thaj,, ¢ is a simple function for everg' € Polycon(n). Moreover

/Fu,clucgd,uo = /Fu,C1d,UO+/Fu,ng,UO —/Fu,cmcgd,uo
so that the correspondence
Polycon(n) 3 C +— A\, (C)
is a valuation such that,(C) = 1, VC € X". From part (a) we deduce

/Fu,cduo = M\u(C) = 110(0).

We only have to prove that for every simple functidft) on R! we have

/ B(E)dpo(t) = La(h) = 3" (h(t) — h(t +0) ).

t

To achieve this observe thag (k) is linear and convex continuous inand thus defines an
integral on the space of simple functions. Moreovei i6 the characteristic function of a
compact interval theii; (k). Thus by Theoren3.17we deduce

L1 :/d,uo

Remark3.19 Denote byS(R™) the the Abelian subgroup éflap(R", Z) generated by indi-
cator functions of compact convex subset®af We will refer to the elements &(RR") as
simple functionsThus anyf € $(R™) can be written non-uniquely as a sum

O
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The Euler characteristic then defines an integral

/duo . $(R") — Z, /(Z e, )duo => o

The convolutionof two simple functionsf, g is the functionf * g defined by

Frg)i= [ L) slu)duoly).
where B
fa(y) = flx —y).
Observe that ifA, B € X™ and A + B is their Minkowski sum then
Iy*x1Ip=1asp
so thatf x g is a simple function for any, g € S(R™). Moreover,
frg=gxf, Vfge3R").
Finally, f « Ijoy = f, forall f € S(R™) so that( §(R"), +, x) is a commutative ring with.O

Definition 3.20. A convex polyhedrors an intersection of a finite collection of closed half-
spaces. Aconvex polytopés acompact convepolyhedron. Apolytopeis a finite union of
convex polytopes. The polytopes form a distributive sutgi@of Polycon(n).

The dimension of a convex polyhedréhis the dimension of the affine subspaté(P)
generated by?. We denote byelint(P) the relative interior ofP that is, the interior of?
relative to the topology oAff(P).

Remark3.21 Give a convex polytopé’, the boundarnyP is also a polytope. Therefore,
po(OP) is defined.

Theorem 3.22.1f P C R™ is a convex polytope of dimension > 0, then u,(0P) =
1— (=)™

Proof. Let u € S*~! be a unit vector and defing : R® — R as before. Using the previous
notation, note that/;NoP = J(H;NP) if t is not a boundary point of the intervgl( P) C R.
Let £ : R — R be defined by

F(t) = po(H, N OP).

We proceed by induction. Far= 1, we haveu,(0P) = 2 = 1 — (—1) sincedP consists of
two distinct points (sincé” is an interval).
Forn > 1, it follows from the induction by hypothesis that

po(Hy NOP) = 11g(0(H; N P)) =1 — (—=1)"~" (*)
if t € ¢,(P) is not a boundary point of the intervé)(P). If t € 0¢,(P), we have
po(H, N OP) =1 (**)
sinceH; N P is a face ofP and is thus irK™. Finally,
po(H, NOP) =0 (***)

whenH, N OP = (.
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We can now Compute
[ e = w0 - Fe+0)

which vanishes except at the two poinandb (¢ < b) where[a, b] = £, (P). Then,

> (F(t) = F(t+0)) = F(a) — F(a+0) + F(b) — F(b+0).

t

Now observe that’(b + 0) = 0 by (***), F(b) = F(a) = 1 by (**) and F(a + 0) =
1 — (=1)"" by (*). Then,

/F(t)duo(t) e () = (1) 4 (=) = 1 — (1)

Theorem 3.23.Let P be a compact convex polytope of dimengian R". Then
pio(relint(P)) = (—1)" (3.5)

Proof. Sincey is normalized independently af we can consideP in the k-dimensional
plane inR™ in which it is contained. Thenelint(P) = P ~\. P so

po(relint(P)) = 1o(P) — p1o(0P) = (—1)".
O

Definition 3.24. A system of facesf a polytopeP, is a familyJ of convex polytopes such
that the following hold.

(@) U relint(Q) = P.
QeT

(b) If Q, Q' € FandQ # @', thenrelint(Q) N relint(Q’) = 0. O

Theorem 3.25(Euler-Schlafli-Poincaré)Let F be a system of faces of the polytapeand
let f; be the number of elementsdhof dimension. Thenug = fo — fi + fo — - -.

Proof. We have
Ip = Z Irclint(Q)
QeTF

so that

po(P) = 3 polrelint(Q)) = 3 (1)@ = 37 (<1)Ffi.

QeF QeTF k>0
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§3.4. Linear Grassmannians. We denote byGr(n, k) the set of allk-dimensional sub-
spaces inR"”. Observe that the orthogonal groafin) acts transitively orGr(n, k) and
the stabilizer of &-dimensional coordinate plane can be identified with the&Sgn prod-
uct O(k) x O(n — k). ThusGr(n, k) can also be identified with the space of left cosets
O(n)/(O(k) x O(n — k).

Example 3.26.Gr(n, 1) is the set of lines iR", a.k.a the projective spa®P"~'. Denote
by S"~! the unit sphere ifik". We have a natural map
(:8"" — Gr(n,1), S"' > 2 ((x) = the line througt) andz.

The map/ is 2-to-1 since

O

Gr(n, k) can also be viewed as a subset of the vector space of symmiretac operators
R" — R" via the map

Gr(n, k) 3V — Py = the orthogonal projection ontd.

As such it is closed and bounded and thus compact. To proecgdtef we need some
notations and a classical fact.

Denote byw, the volume of the unit ball ilR™ and byo,_; the (n — 1)-dimensional
“surface area” oB”~'. Then

Op—1 = NWp_—1

and .
% n =2k
,ﬂ_n/2
Wp = —F————— = ,
T'(n/241) 92k-+1 k]|
— =2k+1
e

wherel'(x) is the gamma function. We list below the valueswpffor smalln.
n|(|0]1]2]3]4

I [
3 2

wp |12 m

Theorem 3.27.For every positive constant there exists auniquemeasurey = . on
Gr(n, k) which is invariant, i.e.

w(g-S)=pu(S), Vge O(n), Sc Gr(n,k) open subset
and has finite volume, i.e.(Gr(n, k)) = c. O

For a proof we refer togar].

Example 3.28.Here is how we construct such a measureCafn, 1). Given an open set
U c Gr(n, 1) we obtain a subset

U=¢"U)cs !
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U consists of two diametrically opposed subsets of the uhiésp Define
1 ~
wU) = 5 area(U)

Observe that for this measure

w(Gr(n, 1)) = %area(S"_l) = =
O

Observe that a constant multiple of an invariant measure iavariant measure. In par-
ticular

fe = C* 1.
Define

[n] = 22“::, m)l = [1]- 2] [n] = ;—iwm [Z] _ [k]![in]_ .

and denote by} the invariant measure dar(n, k) such that

i) = [}

§3.5. Affine Grassmannians. We denote bysraff(n, k) the space of-dimensional affine
subspaces (planes) Bf*. For every affine:-plane we denote bii(1) the linear subspace
parallel toV/, and byV+ the orthogonal complement (V). We obtain in this fashion a
surjection

II : Graff(n, k) — Gr(n, k), V — II(V)
Observe that an affine-planeV is uniquely determined by* and the poinp = VN V.
The fiber of the mapl : Graff(n, k) — Gr(n, k) over a pointL € Gr(n, k) is the sefl~!(L)
consisting of all affiné:-planes parallel td.. This set can be canonically identified wifh
via the map

N (L)>Ve—=VnLtel*

The mapll : Graff(n, k) — Gr(n, k) is an example of vector bundle.
We now describe how to integrate functiofis Graff(n, k) — R. Define

[ twi= [ ([ i),
Graff(n,k) Gr(n,k) ~J L+

whered, . p denotes the Euclidean volume elementlon

Example 3.29.Let

1 dist(L,0) <1

f:Gr(3,1) =R, f(L):= {0 dist (L.0) > 1°
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(V) Vv

FIGURE 2. The orthogonal projection of an elementGmaft(3, 2).

Observe thayf is none other than the indicator function of the €etff(3, 1;B?) of affine
lines inRR? which interseci3?, the closed unit ball centered at the origin. Then

3 _ 3 _ 3] el
/Graf‘f(?,,l) f(V)dAl /G‘,Ngyn\( L f(L T p)dp)/dyl W2 |:1 [3] %)

~~
=wy

3&)3 3(4}3
= —wy = —— = 27.
2(.4.)2 2
In particular
1
A (Graff(3,1;B%) ) = 27 = % =5 % surface area dB®.

§3.6. The Radon Transform. At this point, we further our goal of understandiNgl(n)
by constructing some of its elements.

Recall thatX™ is the collection of compact convex subsetsRifand Polycon(n) is the
collection of polyconvex subsets &". We denote byal(n) the vector space of convex
continuous, rigid motion invariant valuations

= Polycon(n) — R.

Via the embeddin®®* — R", k < n, we can regard’olycon(k) as a subcollection of
Polycon(n) and thus we obtain a natural map

Sk.n 1 Val(n) — Val(k)
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We denote byVal”(n) the vector subspace &fal(n) consisting of valuationg homoge-
neous of degree (or weighi), i.e.
w(tP) =t“u(P), YVt >0, P € Polycon(n).
For everyk < n and everyu € Val(k) we define thdRadon transfornof . to be
Ry ipe = Polycon(n) — R, Polycon(n) 3 P +— (R, xp)(P) := / u(PNV)dAL.
Graff (n,k)

Proposition 3.30.If 1 € Val(k) thenXR,, ;i is a convex continuous, invariant valuation on
Polycon(n).

Proof. For everyu € Val(k), V € Graff(n, k) and anysS;, S € Polycon(n) we have
VN(SiuS)=WVVnNnsSH)u(Vnsy), (VNS)N(VNSy)=Vn(S NS,
so that
(VN (S1USy))=u(VNS)) +u(VNSy) —u(Vn(S;NSy)).
Integrating the above equality with respectitoe Graff(n, k) we deduce that
Rk (S1US2) = Ry x(S1) + Ry (S2) — Ry (S1N S2)

so thatR,, x4 is a valuation orPolycon(n). The invariance o, ;. follows from the invari-
ance ofi, and of the measurg! on Graff(n, k). Observe that i€’, is a sequence of compact
convex sets IR™ such that
c,—-CeX"
then
lim u(C,NV) =pu(CNV), YV e Graff(n, k).

V—00

We want to show that
lim w(C, N V)ANL(V) = / w(C VYAV
V=0 J Graff(n,k) Graff (n,k)

by invoking the Dominated Convergence Theorem. We will piiidan integrable function
[ : Graff(n, k) — R such that

| W(Co V)| < f(V), ¥ >0, YV € Graff(n, k). (3.6)

To this aim observe first that sin€é, — C there exists? > 0 such that all the sets,, and
the set”' are contained in the ba,,(R) of radiusR centered at the origin. Define

Graff(n, k; R) := { V € Graff(n,k) | VN B,(R) #0 }.
Graff(n, k; R) is a compact subset 6fraff(n, k) and thus it has finite volume. Now define

N={0}U{l/n|neZsy}co]
and

F: N x Graff(n,k; R) = R, F(r,V):= ‘,u(C'l/r nv) ‘
where for uniformity we set’ := (', ,. Observe thalV x Graff(n, k; R) is a compact space
andF' is continuous. Set

M :=sup{ F(r,V) | (r,V) € N x Graff(n, k; R) }.
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ThenM < oo. The function

M 'V e Graff(n, k; R)
0 V &Graff(n,k; R)

satisfies the requirements &.0). O

f:Graff(n, k) = R, f(V):= {

The resulting magR,, , : Val(k) — Val(n) is linear and it is called thRadon transform

Proposition 3.31.1f . € Val(k) is homogeneous of weight then®,. . ; ,« is homogeneous
of weightw + j, that is

Rk+j7k(Valw(k) ) C Valw+j(l<: + ])

Proof. If C' € Polycon(k + 7) andt is a positive real number then
Buasait) = [ ([ tCa v pdp) i
Gr(k+j,k) \J L+
We use the equalityC' N (V +p) =t (C N (V + ¢ 'p)) to get
@eesan)tC) =t* [ ([ en v+ p)dpp)akt
Gr(k+j.k) S Lt
We make a change in variables= t~!p in the interior integral so that, . p = t/d; . ¢q and

Recau)t0) =7 [ ([ €OV 4 i) = 7 R C).

Gr(k+j,k)
d

So far we only know two valuations iWal(n), the Euler characteristic, and the Euclidean
volumevol,,. We can now apply the Radon transform to these valuationshapéfully
obtain new ones.

Example 3.32.Let vol, € Val(k) denote the Euclideak+dimensional volume ifR*. Then
for everyn > k and every compact convex subsetC R"” we have

(R voli) (C) = / vol,(V N C)d (V)

Graff(n,k)

:/ (/ voly ((C'N (L +p))dup> dvy (L),
Gr(n,k) L+

whered, . p denotes the Euclidean volume element on (the- k)-dimensional spacé™.
The usual Fubini theorem applied to the decomposifitr= L+ x L implies that

vol, (C) = pu,(C) = /n drnq = /Ll vol, ((C'N (L +p))dy.p.
Hence
(R VOl (C) = / vol,,(C)dvi (L) = m vol,,(C).

Gr(n,k)



34 Csar-Johnson-Lamberty

In other words
Ry e Vol = {Z} vol,, .

Thus the Radon transform of the Euclidean volume produce<titlidean volume in a
higher dimensional space, rescaled by a universal mu#gwie scalar. O

The above example is a bit disappointing since we have nayoed an essentially new
type of valuation by applying the Radon transform to the kieeln volume. The situation is
dramatically different when we play the same game with thieiszharacteristic.

We are now ready to create elementd/afl(n). For any positive integers, n define

wp = Ry n—rpo € Val(n),

wherey, € Val(k) denotes the Euler characteristic.
Observe that it is a compact convex subsetlitt*/, then for anyV € Graff(k + j, k)
we have
1 ifCnNV£0D
Vno) = :
Ho(VNC) {0 ifCnv =0
Thus the function
Graff(k +7,k) 2V — uo(V N C)
is the indicator function of the set
Graff(C, k) := {V € Graff(k + j,k); VNC#0}.

We conclude that
M?H(C ) = (Risjnbo) (C) = / IGraff(Cvk)d)‘zH
Graff(k+j,k)

=\ (Graff(k, C)).
k+j

Thus the quantity;; (C') “counts” how manyk-planes intersect'. From this interpretation
we obtain immediately the following result.

Theorem 3.33(Sylvester) Supposek C L C RF/ are two compact convex subsets.
Then the conditional probability that &-plane which meet4, also intersectss is equal
it (K) =
wy (L)

We can give another interpretation@f. Observe that it € X" then

@)= [ envian,m) = | ( / u0<CmL+p>)dLLp> (L)
Graff (n,n—j) Gr(n,n—j) L+

Now observe that ifC| L) denotes the orthogonal projection@fonto L+ then
fo(CN(L+p)) #0<+= p(CN(L+p)) <> pe (CILY).
An example of this fact ifR? can be seen in Figui® Hence

/ po(C N L+ p))dpop = vol;(C|LF)
L
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and thus
1(C) = / ( )volj(C|Li)dy;;_j(L). 3.7)
Gr(n,n—j

Thusyj is the “average value” of the volumes of the projectioné'ainto thej-dimensional
subspaces dR”.

FIGURE 3. C|L* for V in Graff(2,1).

A priori, some or maybe all of the valuatiop$ € Val’ (n) C Val(n),0 < j < n could
be trivial. Note, however, that” is vol,,. Furthermore, volume is intrinsic, g4 is in fact
pin- \We show that in fact all of the are nontrivial.

Proposition 3.34. The valuations

Ho = [ig, 11, [y, -+ pa € Val(n)
are linearly independent.

Proof. Let B,,(r) denote the closed ball of radiuscentered at the origin dR™. We set
B, = B,,(1). Sincey is homogeneous of degrgave have

i (Br)) = mp(B) 200 [ ol BaL (1) = [ vol(Byd (L)
Gr(n,n—j) Gr(n,n—j)

Hence
1 (By(r)) = wjrj/ dv),_; = wjrj{ " ] = w;r’ [n} . (3.8)
Gr(n,n—j) n—=17 J
Observe that the above equality is also validfet 0.
Suppose that for some real constants:, - - - , ¢, we have

n

Z cju? = (.

J=0
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Then
n
ch,u?(Bn(r)) =0, Vr >0,
=0

so that
n n '
chwj [ }rj =0, Vr > 0.
=

This impliesc; = 0, Vj.
0

The valuation. is homogeneous of degrg@nd itinduces a continuous, invariant, homo-
geneous valuation of degreeon the latticePix(n) C Polycon(n). Observe thatit’; C C
are twocompact convegubsets then

i (Cr) < pi(Co).
Since everyn-dimensional parallelotope contains a ball of positiveéuadve deduce from

(3.9 thaty} (P) # 0, for anyn-dimensional parallelotope. Corollagy22implies that there
exists a constarnt’ = C7' such that

C7ui(P) = pi(P), VP € Pix(k + j). (3.9)
We denote by:’ the valuation
i == Crul € Val (n). (3.10)

Sincep! is vol,,, as isp ., we know thatC” = 1. Thus,iu, = i, = p, = vol,. We will
prove in later sections that the sequelgg) defines arintrinsic valuation and that in fact
all the constants’? are equal td.

Remark3.35 Observe that

n nwy,

1

- 02 L 5 X surface area dB,,.
This is a special case of a more general fact we discuss inegktesabsection which will
imply that the constantS”’_, in (3.9) are equal td. O

§3.7. The Cauchy Projection Formula. We want to investigate in some detail the valua-
tionsy ™ € Val(j + 1). Suppose’ € K7+ and( € Gr(j + 1, 1). If we denote by(C|¢+)
the orthogonal projection af' onto the hyperplané- then we obtain from3.7)

@“@n:/’ 11 (C|R)dv] T (€), VC € K+, (3.11)
Gr(j+1,1)

Loosely, speaking?“(C) is the average value of the “areas” of the shadows oh the hy-
perplanes oR’*!. To clarify the meaning of this average we need the follovélemnentary

fact.
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Lemma 3.36.For anyv € S/ ¢ Ri*!,

u - vl|du = 2w; (3.12)
SJ

Proof. We recall from elementary calculus that an integral canéméd as a Riemann sum,

i.e.,
/ |u; - v]|du =~ E lu; - v]|S(A4;),

where the spher8’ has been partitioned into many small portions (here dendfdeach
containing the point; and possessing aréd A, ).

Let A; denote the orthogonal projection df onto the hyperplane tangent $ at the
point u;. Denote by/~1i|vl the orthogonal projection aofl; onto the hyperplanet. Since
A; C S, this projection is entirely into the disB,,_; lying insidev*. SinceA; lies in a
hyperplane with unit normal*, its projected area is the product of its area in the hypagla
times the angle between the two planes, $€4;[v) = |u; - v|S(4;).

For a fine enough partition & we have tha(A;) ~ S(A;). Clearly thenju;-v|S(A;) ~
lu; - v|S(A;), and thusS(A4,|vt) ~ S(A;|vt). Therefore,

/ - vldu Y S(Auh).
Si i

Because the collection of sefs!;|v1} contains equivalent portions above and below the
hyperplanev*, it covers the unit;j-dimensional ballB; once from above and once from
below, we see that
lu - v|du ~ 2w;.
SJ
The similarities in this proof all converge to equalitieshie limit as the mesh of the partition
A; goes to zero. O

Theorem 3.37(Cauchy’s surface area formuldjor every convex polytopg c R/ we

denote byS(K) its surface area. Then
1
S(K) = _/S,_ 105 (K |,

Wi

Proof. Let P have facets’; with corresponding unit normal vectorsand surface areas.
For every unit vector: the projection( 7;|u*) onto thej-dimensional subspace orthogonal
to u hasj-dimensional volume

pi(Plu™) = aslu - vil.
Foru € S/, the region( P|ut) is covered completely by the projections of facBts
(Plu*) = J@ilub).
For almost every poinp in the projection(P|u*) the line containingy and parallel tou
intersects the boundary d? in two different points. (The set of poings € (P|u') for
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which this does happen is negligible, i.e. it hadimensional volum@.) Thus, in the above
decomposition of P|u") as a union of projection of facets, almost every point®fu") is
contained in exactly two such projections Therefore

i (Plut) Z“J Pilu™)

so that

/:LLJ(P|U du—/ ZO‘Z‘“ vildu
LA 1

S0 lan 22 S = str)
i=1 ! =1

Recall that forparallelotopesP € Par(j + 1),

In this light, Cauchy’s surface area formula becomes
1
wi(P) = / pj(Plut)du, ¥YP € Par(j +1).
SJj

2%
We want to rewrite this as an integral over the Grassman@idri + 1,1). Recall that we
have a2-to-1 map
(:8" — Gr(j+1,1).
An invariant measurg. onGr(j+1, 1) of total volumec corresponds to an invariant measure
fi. on S7 of total volume2c. If o denotes the invariant measure $hdefined by the area
element on the sphere of radiughen
. 2c
S =0, fi.=—
o(S?) =05, [t Uja
Any function f : Gr(j + 1,1) — R defines a functiod*f := f o/ : S’ — R called the
pullbackof f via /. Conversely, any even functignon the sphere is the pullback of some
functiong on Gr(j + 1,1). Moreover

1
| gdw=5 | erdi= £ [ vrio
Gr(j+1,1) 2 Si 05 Jsi

/ ¢ fdo =22 Fdue.
SJ C JGr(j+1,1)

The measure] ™" has total volume = [j + 1] so that

This shows that

O

2Wj
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Using 3.11) we deduce
(Py= % g+

for every parallelotopé c R/*!. Recalling that
. , 74+ 1Dw;
0y = (G + Doy, [ +1] = LF
Wi

we conclude

so that finally

pj(P) = uj " (P), VP € Par(j +1).
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4. The Characterization Theorem

We are now ready to completely characteiizeal(n).

64.1. The Characterization of Simple Valuations. Before we can state and prove the
characterization theorem for simple valuations, we neaédall a few things.F,, denotes
the group of rigid motions aR”, i.e. the subgroup of affine transformationgR¥f generated
by translations and rotations. Two subs&isS; C R™ are calledcongruentf there exists

¢ € E, such that

(So) = 5.
A valuationy : Polycon(n) — R is calledsimpleif
w(S) =0, foreveryS € Polycon(n) such thatlim S < n.
TheMinkowski Sunof two compact convex sets;, andL is given by
K+L={z+y|lzeK,yel}.

We call azonotope finite Minkowski sum of straight line segments, and we calbaoida
convex set” that can be approximated in the Hausdorff metric by a comrdrgequence of
zonotopes.

If a compact convex set is symmetric about the origin, the alkita centeredset. We
denote the set of centered setskin by X.

The proof of the characterization theorem relies in a ctwegg on the following technical
result.

Lemma 4.1. Let K € K. Suppose that the support functionfdfis smooth. Then there
exist zonoidd7, Y, such that

K+Y,=Y.
0
Idea of proof. We begin by observing that the support function of a centénedsegment
in R™ with endpointsu, —u is given by
hy:S™ ' =R, h(z):= |[{u,)|.

Thus, any functiory : S*~! — R which is a linear combinations df,’s with positive
coefficients is the support function of a centered zonotbpparticular any uniform limit of
such linear combinations will be the support function of a@d. For example, a function

g: s LR
of the form

ote) = [ Nl pds.,

with f : S"7! — [0,00) a continuous, symmetric function, is the support functidérao
zonoid.
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Let us denote by'..,..,,(S"!) the space of continuous, symmetric (even) functiens —
R. We obtain a linear map

€1 Conn(S™) = Conen(S™1), (CF) (@) 1= / (2| f(u)dS,

Snfl
called thecosine transformThus we can rephrase the last remark by saying that theecosin
transform of anonnegativecontinuous, even function o®"~! is the support function of a
zonoid.
Note thatf is continuous, even, then we can write is as the differend¢@@itontinuous,
even,nonnegativéunctions

1 1
f=temfoy fo=5U 1D, £ =500 =
Thus if i is the support function of somé € X such that
h=Cf = h+Cf_=Cf,

Note thatCf_ is the support function of a zonoid, andCf, is the support function of a
zonoidY; and thus
h+Cf.=Cf. <= C+Y, =Y.

We deduce that any continuous function which is in the imddgbecosine transform is the
support function of a set' € X" satisfying the conclusions of the lemma.

The punch line is now thatny smooth, even functiorf : S*~! — R is the cosine trans-
form of s smooth, even function on the sphere.

This existence statement is a nontrivial result, and it®pi® based on a very detailed
knowledge of the action of the cosine transform on the haroyolynomials orS™~!. For
a proof along these lines we refer ter], Chap. 3]. For an alternate approach which reduces
the problem to a similar statement about Fourier transfavesefer to [5on, Prop. 6.3].0

Remarkd4.2 The connection between the classification of valuationgla@dpectral proper-
ties of the cosine transform is philosophically the key oeashy the classification turns out
to be simple. The essence of the classification is invarfeuretic, and is roughly says that
the invariance under the group of motions dramatically datsn the number of possible
choices. O

Theorem 4.3. Suppose that € Val(n) is a simple valuation. If. is even that is
u(K) =pu(—-K), VK € X",

then
©([0,1]") = 0 <= p is identically zero orK™.

Proof. Clearly only the implication —- is nontrivial. To prove it we employ a simple
strategy. By cleverly cutting and pasting and taking limves produce more and more sets
S € Polycon(n) such thaf:(S) = 0 until we get what we want. We will argue by induction
on the dimensiom of the ambient space.

The result is true for = 1 because in this cask! = Par(1) and we can invoke the
volume theorem foPix(1), Theoren2.19
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So, now suppose that > 1 and the theorem holds for valuations &i*—!. Note that
for every positive integek the cubel0, 1] decomposes ik cubes congruent tf0, 1| and
overlapping on sets of dimensienn. We deduce that

p([0, 1/K]") = 0.

Since any box whose edges have rational length decompdeesiimes congruent t@), ﬂ "
for some positive integet we deduce that. vanishes on such boxes. By continuity we
deduce that it vanishes on all boxBs= Par(n). Using the rotation invariance we conclude
that rotation invariancey(C') = 0 for all boxesC' with positive sides parallel to some other
orthonormal axes.

We now consideporthogonal cylindersvith convex bases, i.e. sets congruent to convex
sets of the fornC' x [0, 7] € X", C' € X"~'. For every real numbers< b define a valuation
T =T, ONK""! by

r(K) = (K x [a,),
forall K € X"~'. Note that0, 1] x [a, ] € Par(n) so that
7([0,1]"7") = p([0, 1] x [a, b]) = 0.

Then satisfies the inductive hypotheses,se= 0. Henceyu vanishes on all orthogonal
cylinders with convex basis.

Now suppose thaf/ is a prism, with congruent top and bottom faces parallel to the
hyperplaner,, = 0, but whose cylindrical boundary is not orthogonaktp= 0 but rather
meets it at some constant angle. See the top of Figure

FIGURE 4. Cutting and pasting a prism.
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We now cutM into two piecesM;, M, by a hyperplane orthogonal to the cylindrical
boundary ofM. Using translation invariance, slide; and M, around and glue them to-
gether along the original top and bottom faces. (See Figurd/e then have a right cylinder
C'. Thus,

p(M) = p(My) + p(Ms) = p(C) = 0.
Note that we must actually be careful with this cutting anglsting. It is possible that/
is too “fat”, preventing us from slicing/ with a hyperplane orthogonal to the cylindrical
axes and fully contained in each of them. If this problem escwe can easily remedy it
by subdividing the top and bottom a@ff into sufficiently small convex pieces. Using the
simplicity of u, we can then consider each separately

Now let P be a convex polytope having facd?s . . ., P,,, and corresponding outward unit
normal vectorsiy, . .., u,,. Letv € R™ and letv denote the straight line segment connecting
the pointv to the origin. Without loss of generality, suppose tRat. . ., P; are exactly those
facets ofP such thatu,;,v) > 0 forall 1 < i < j. We can thus express the Minkowski sum

P+vas '
J
P+o=PU (U(R+@)> ,
i=1
where each term in the above union is either disjoint fromativers or intersects in dimen-

sion less tham (see Figure).

FIGURE 5. Smearing a convex polytope.

This simply results from the fact th&t + v is the 'smearing’ ofP in the direction ofv.
Hence, since: is simple,

J
p(P+0) = p(P)+ > u(P,+0).
i=1
But now each tern®,; + v is the smearing of the facét in the direction ofv, makingP; + v
a prism, so that

u(P +v) = p(P),
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for all convex polytopes® and line segments. By translation invariance could beany
segment in the space.
We deduce iteratively that for all convex polytopeésnd all zonotopeg we have

w(Z)=0 and P+ Z)=p(P).

By continuity,
p(Y)=0 and pu(K+Y) = pu(K),
for all K € X" and all zonoids Y.

Now suppose thak” € K and has a smooth support function. Then by our lemma, there
are zonoidg7, Y, such thatk” + Y; = Y5. Thus, we now have that

1K) = p(K +Ys) = p(Yy) = 0.

Since any centered convex body can be approximated by arsszgjaoécentered convex sets
with smooth support functions, by continuity of . is zero on all centered convex, compact
sets.

Now let A be ann-dimensional simplex, with one vertex at the origin. Let..., u,
denote the other vertices @f, and letP be the parallelepiped spanned by the vectors
Uty ..., Uy LtV = uy + -+ + u,. Let& be the hyperplane passing through the points
uy, ..., u, and let¢, be the hyperplane passing through the pointsu,...,v — w,. Fi-
nally, denote by the set of all points of’ lying between the hyperplanésandés.

We now write

P=AUQU(-A+v),

where each term in the union intersects any other in dimarsss tham. P and(@ are
centered, so

0=pu(P) = p(A) + pu(Q) + p(—=A +v) = p(A) + p(=4A).

Thus,u(A) = —p(—A). Yet by assumptiop(A) = pu(—A). Thus,u(A) = 0.

Now since any convex polytope can be expressed as the finia ohsimplices each of
which intersects with any other in dimension less thamwe have thap(P) = 0 for all
convex polytopes’. Since convex polytopes are denséif, we have that is zero onX”,
which is what we wanted. O

We now immediately get the following result.

Theorem 4.4. Suppose that is a continuous simple valuation d" that is translation and
rotation invariant. Then there exists some R such thatu(K) + u(—K) = cu,(K) for all
K eX".

Proof. For K € X", define
N(K) = p(K) + p(=K) = 2p([0,1]") pn ().
Theny satisfies the conditions of the previous theorem, sorlimizero onK”. Thus,
u(K) + p(=K) = cpn(K),
wherec = 2u([0, 1]™). 0
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§4.2. The Volume Theorem.

Theorem 4.5(Sah) Let A be an-dimensional simplex. There exist convex polytapes. ., P,,
such thatA = P, U --- U P,, where each term of the union intersects another in dimension
at mostn — 1 and where each of the polytopé&sis symmetric under a reflection across a
hyperplane, i.e. for eacR;, the exists a hyperplane such thatis symmetric when reflected
across it.

Proof. Let zy, ..., z, be the vertices ofA and letA; be the facet ofA opposite tar;. Let

z be the center of the inscribed spherefofind letz; be the foot of the perpendicular line
from z to the faceth,. For alli < j, let A; ; denote the convex hull of, z;, z; and the face
A; N A; (see Figure).

FIGURE 6. Cutting a simplex into symmetric polytopes.

Then
A — U Ai,j)
0<i<j<n
where the distinct termd, ; of this union, by construction, intersect in at most dimensi
n — 1. EachA4; ; is symmetric under reflection across the- 1 hyperplane determined by
and the face\;, N A;. We can then relabel the; ; asP,,..., P, andA = P,U---U P, as
desired. 0

Theorem 4.6(Volume Theorem foPolycon(n)). Suppose that is a continuous rigid mo-
tion invariant simple valuation ofK™. Then there exists € R such thatu(K) = cu, (K),
for all K € X". Note that we can extend continuous valuation§@rto continuous valua-
tions onPolycon(n), so the theorem also holds replacifi@ with Polycon(n).

Proof. Sincey is translation invariant and simple, by Theordm, there exists: € R such
that u(K) + u(—K) = ap,(K) for all K € X". Let A be an-simplex inR”. Then
H(A) + p(=A) = apn(A).

Supposen is even, meaning the dimension &f' is even. ThemA and —A differ by a
rotation. This is clearly true if®?. We can then rotat& to —A in each “orthogonal” plane
of R", meaningA and—A differ by the composition of these rotations, i.e. a rotatibhen
(D) = p(—A) = 2ua(A).

Now suppose that is odd. By Theorend.5, there exist polytope#;, ..., P,, such that
A =P U---UP,anddim P, N P; < n — 1 and eachP, is symmetric under a reflection
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across a hyperplane. Thus, we can transfétrmto — P; by a series of rotations and then
reflection across the hyperplane. Thetp;) = u(—F;) and

m m

p(=8) = > u(=P) = 3 u(P) = (&)

i=1
Then for alln-simplicesA, ji(A) = §u,(A).
Letc = § and suppos@ is a convex polytope ifR". ThenP is a finite union of simplices,
Le.P=A;U---UA,, suchthatlim A; N A; < n. Then

p(P) = p(Ar)+- -+ p(Ap)
= (A1) + -+ cpn(An)
= cpn(P)

The set of convex polytopes is denselkifi, so sinceu is continuousyu(K) = cu,(K) for
all K € X. O

64.3. Intrinsic Valuations. We would like to show that for each > 0 the valuations
i, determine arintrinsic valuation meaning that for allv. > n and P € Polycon(n),
7 (P) = fin (P). For uniformity, we set

iy =0, Vk>n.
Theorem 4.7. For everyk > 0 the sequence

(iy) € [ val(n)

n>0
defines an intrinsic valuation, i.e., an element of
. € Val(oo) = limproj,, Val(n).

Proof. First of all let us fixk. Since there is no danger of confusion we will wiit& instead
of i1} . Consider the statement

L"(P)=pn"(P), VP € Polycon(l). (P,.0)
Note thatl < n. We want to prove by induction overthat the statement
P,, foranyl <n (S,)

is true for anyn. The statemerfy, is trivially true. We will prove that
So, -+ ,Sn1 = S,.
Thus, we know that’,, , is true for every < m < n, and we want to prove that
P, istrue for any/. (Ty)

To proveT, we argue by induction oA (n is fixed.)
The result is obviously true fof = 0,1 since in these caskix = Polycon. Thus, we
assume thab, , is true and we will show thak, .., is true. In other words, we know that

i"(P)=7n‘(P), P e Polycon(l) (4.1)
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and we want to prove that
a"(P)=pn""(P), VP € Polycon(f +1).

Clearly the last statement is trivially truefif+ 1 = n so we may assume+ 1 < n.

We denote byv the restriction offi” to Polycon(¢ 4+ 1). Thenw restricts tofi‘ on
Polycon(¢) andfi™ restricts toni “ by (4.1).

Sincel + 1 < n we deduce fronB,,, thati“"" restricts toji* on Polycon(f). Then
v — pt! vanishes orPolycon(/), meaning it is a continuous invariant simple valuation on
Polycon(£ + 1). Theorem4.6implies that there exists€ R such thav — i ‘"' = ¢fij "} on
Polycon(¢ + 1).

On the other hand; = i onPix(l + 1), meaning: = 0 and thus, = "' O

Based on this result, the superscripfdf does not matter. Therefore, we define
=M

At this point, we are able to characterize the continuowsyriant valuations oRolycon(n),
as we did forPix(n) in Theorem2.20,

Theorem 4.8(Hadwiger’s Characterization Theorenmihe valuationgi, i+, ..., 1, form
a basis for the vector spacdéal(n).

Proof. Let 1 € Val(n) and letH be a hyperplane iiR™. The restriction of: to H is then
a continuous invariant valuation di. Note that the choice o/ does not matter singeis
rigid motion invariant and all hyperplanes can be arrivetthedugh rigid motions of a single
hyperplane. Recall thdtolycon(1) = Pix(1), and by Theoren2.2Q the statement is true
for n = 1. We take this as our base case and proceed by induction.

For every polyconvex set in H, we assume that

n—1
u(A) =3 el (4)
Thus, Z:j
M= Z il
is a simple valuation iVal(n). Then, by Tlhztgorem.&
n—1
M= chﬁz = Cnllp,
We move the sum to the other side aln:(;)
= Z Cifl
=0
O

In a definition analogous to that dtix(n), a valuationu: on Polycon(n) is homogenous
of degreék if for « > 0 and allK € Polycon(n), u(akK) = o*u(K).
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Corollary 4.9. Let u € Val(n) be homogenous of degrée Then there exists € R such
that u(K) = cu,(K) for all K € Polycon(n).

Proof. By Theorem4.8 we know that there exist), - - - , ¢, € R such that

M= Z Gl
i=0

Suppose” = [0, 1]™, the unit cube iR™. Fix o > 0. Then,

wlaP) = Zci,ui(aP) = Za ciit;(P) = Z <Z,)cza :
=0 =0 =0
fi;(P) = pi(P) = (7) since forP € Par(n), 11; is thei-th elementary symmetric function.
At the same time,

P) = ofu(P) = 7 (P)af = ") ok
paP) = o*ulP) = S (P Z()a
We compare the coefficients in the two sums and conclude thgt= 0 for ¢ # k. Thus,
= CiHl 0
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5. Applications

It is payoff time! Having thus proven Hadwiger's Charactation Theorem, we now seek
to use it in extracting as much interesting geometric infation as possible. Let us recall
that

g = Ron-rpo and iy = Cppy,
where the normalization constarit§ are chosen so that

k

Above, i is the intrinsic valuation on the lattice of pixelations defil in Section 2. We have
seen in the last section that the sequeficg} .~ defines an intrinsic valuation and thus we
will write 7z, instead ofiz

Ao, = mll0.11) = ()

§5.1. The Tube Formula. Let K, L € X", and letae > 0. We have the Minkowski sum
K+aL={r+ay|xzec Kandy € L}

Proposition 5.1 (Smearing Formula)Let z denote the straight line segment connecting
and the origino. For K € X™ and any unit vector. € R",

pin(K + €) = i (K) + i1 (K|u™)

Proof. Let L = K + eu. We will compute the volume of. by integrating the lengths of
one-dimensional slices of L with lings parallel through: passing through points € ™,
thatis

(L) = / (L0 L)z

Sinceu, (IN4,) = i (K Nt,) + eforall z € K|ut and zero forr ¢ K|ut, we have that

M@Z/ﬂﬂmMMZ/ (12(K 1 £2) + ) = pun () + eptn (K |ub)

K|ut

Let C,, denote the:-dimensional unit cube. Recall that for< ¢ < n,

Proposition 5.2. For e > 0,

pn(Cr+ €Br) = > p1i(Cr)wy i€ = (n) Wni€" " = wuifi (Cr)e"
=0 ;

1=0
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Proof. Letuq, ..., u, denote the standard orthonormal basisR6r andu; the line segment
connectingu; to the origin. By Propositios.1we have

n 1 ‘
:un(Bn + Tﬂl) =Wp +TWy_1 = Z ( ) Wn—irl

- 1
=0

foralln > 1.
Having proven the base case, we proceed by induction. Safpat

k
un(Bn+rﬂ1++ruk Z()wn ZT

=0

for somel < k < n. Then
fin (BpArT++ - A1Tps1) = pin (B A1+ - A1) 47 -1 (B +rT + - 40705 [ )

k

k
:Z< )wn T +7‘,un 1(Bn 1+Frup -+ +uk =Z< )wn ir —l—Z( )wn i— 17“ i

1= 1=

() () =2 (7)o

Thus, by induction we have that

n n 4
fn(By, + 70y + -+ - +170,) = Z <Z,)wn_,-r’

1=0

Noting thatyu,, is homogeneous of degreewe have that

1 1
tn (B 4rug+- - +rty,) = pn(Ba+rCy) = wy (r (;Bn + Cn)) ="y, (;Bn + Cn) )

Lettinge = % the previous two inequalities give us

e By =32 (ot =3 (e
0

=0 i=

O

We can now prove the following remarkable result, first pbbg Jakob Steiner in di-
mensions< 3 in the 19th century.

Theorem 5.3(Tube Formula) For K € X™ ande > 0,

tn (K + €B,,) Zu Yp_i€" (5.1)
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Proof. Letn(K) = u,(K + B,,), for K € X". BecauseB,, € X", for K, L € X" we have
that
(KUL)+B,=(K+B,)U(L+B,),
and clearly
(K+B,)N(L+B,)=(KNL)+B,,
so we have

n(KUL):un<(KUL)+Bn) :un<(K+Bn)U(L+Bn))

= pn(K +B,) + pn (L + By) —Mn<(K+Bn) N (L+Bn)>

= n(K) +n(L) —n(KNL).
Thusn is a valuation ori™. The continuity and invariance ¢f,, and the symmetry dB,,
under Euclidean transformations show thas a convex-continuous invariant valuation on
K™, which according to the Extension Theor&mi7extends to a valuation iWal(n). By
Hadwiger’s Characterization Theorem we have that

n

n(K) =Y ai (K),

=0
for all K € X™. Therefore, foe > 0 we have that

1 & I &
W(K+eB,)=¢"u, | -K+B,, | =¢" g (K)— = (K e
I +B,) = €, (1 4B, ) YR = YR

In particular, if we letK’ = ), in the previous equation and comparing with the results of
the previous Proposition, we find that

Zcz,uz n Z:u wn 26 Z’

i.e. Ci = Wpn_j- O

Theorem 5.4(The intrinsic volumes of the unit ballFor 0 < i < n,
~ ny\ wp n
1B = ()2 = e
1) Wp—; 7

Proof. Applying the tube formula to té&f = B,, we obtain

Zu W)€ = 1n(Bo + €By) = jia ((1+ € By)

= (1+6)"pn(By) = Z (") e,

=0
for all e > 0. Comparing coefficients of powers a@fwe uncover the desired result. O
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65.2. Universal Normalization and Crofton’s Formulae. It turns out that the intrinsic
volumes of the unit ball are the final piece of the puzzle inarsthnding the constants’
in the formulag ; = C7ul, where

jp = Ronowtto and fif =y on Pix(n).
We have the following very pleasant surprise.
Theorem 5.5.For0 < k <nandK € X",

I =My =y
In other words, no more hats!

Proof. From Theorenb.4we deduce

n n _~n n . n
Crur(Byn) =) = wy (n _ k:) = Wp (k‘)
On the other hand3(8) shows that

n n

Equating the two, we readily see ti@} = 1 for all n, &£ > 0. In fact, since bothu, and
are intrinsic, we have shown that, = 1. O

We have thus proved that the intrinsic volumgson Polycon(n) are exactly the Radon
TransformsR,, ,,—it0, @ result to which we feel obliged to “tip our hats”.
The following theorem is a generalization of the previous.on

Theorem 5.6(Crofton’s formula) For 0 < i, j < nand K € Polycon(n),

R ) = | s ()

Pron._ From the section before regarding Radon Transforms, wadyrenow thatR,, ,,_;t; €
Val'™/(n). By Corollary4.9we have that there exists:a R such thatR” _.u; = cp;y ;. TO
obtain thisc we simply evaluat€X,, ,,_;z;)(B,,).

(Rin-ittj)(By) = (Rn,n—i((Rn,n—i)MO))(Bn)
- (] B NIV () ) X (V)
Graff(n,n—1i) Graff(Vin—i—j)
— / (/ / to(By, N (L +x))dp dVZ:;_j(L)) dvy (V)
Gr(n,n—1i) Gr(V,n—i—j) J L+
-/ ( / [ a du:;:;‘_jw)) (V)
Gr(n,n—1i) Gr(Vin—i—j) J B4
B n—i—7j o n
B /;r(n,n—i) ([ n—1 }UH_J) an_Z(V)
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|y
= . .| Wit
n—1 n—1

But we also have by Theorem4 that

n
cpiv;(Br) = c L n j} Wit

A R Bl e

Remarks.7. If we define a weighted Radon transform
Ry, Val(k) — Val(k +w), R = [w]!Riswr

and we sef.f := [i]!u; then we can rewrite Crofton’s formulae in the more symmetiof

and thus

e = R
Note that. are also intrinsic valuations, i.e. are independent of threedsion of the ambient
space. O

§5.3. The Mean Projection Formula Revisited. The conclusion of Theorers.5 allows
us to restate Cauchy’s surface area formula as follows:

Theorem 5.8(The mean projection formulajor 0 < £ < n andC € X",
Runst)€) = ml0) = [ (V) 7 (0h).
O

It turns out that Cauchy’s mean value formula is a specia cas more general formula.

Theorem 5.9(Kubota) For0 < k£ <l <nandC € X",

/er) pe(C|V) dvf (V) = {7::} 1:(C).

Proof. Define a valuatiom on X" by
vC) = [ mClv)an(v)
Gr(n,l)

Arguing as in the proof of Propositich30we deduce that € Val®(n). By Corollary4.9
there exists a constante R such thatr = cuy. As before, we compute the constartty
considering what happens whénh= B,,.

chn(B) = v(B,) = |

[ mem)a(w) = m(B)|;
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-] [ <[]
' [kln =kt [n]! n — k! n—k
TR =K R =1 n-Q—k lz—k}

Therefore

65.4. Product Formulae. We now examine the intrinsic volumes on products.
Theorem 5.10.Let0 < k < n. Let K € Polycon(k) and L € Polycon(n — k). Then

pi( K X L) = > e (K)p(L).
r+s=t
Proof. The set function; (K x L) is a continuous valuation in each of the variablésnd
L when the other is fixed. Also, note that every rigid motipre E is the restriction of
some rigid motiond € E,, that restricts to the identity on the orthogonal complenight®.
Thus, by the invariance qf;,

pi(¢(K x L)) = pi( ®(K x L)) = p;(K x L).
The characterization theorem tells us that for everghat there exist constants(L), de-
pending onl, such that
k
(K x L) Z ¢ (L

for all K € X*.

Repeating the same argument with fix&dand varyingL, we see that the,(L) are
continuous invariant valuations dki"—*, so we apply the characterization theorem again,
collect terms appropriately, and ultimately conclude thaire are constants, € R such

that
k n—k

(K x L) chmur ps(L),

forall K € X* andL € K"*,
Now we determine the constants usifig, the unitm-dimensional cube. Let, 5 > 0.
Then

k n—k
(O(Ck X ﬂCn k = chrs,ur Ck ,LLS(CH—]C>O[TBS
r=0 s=0
5 ()
= ZCTS .
T

r=0 s=

On the other hand, we already know how to compute this fronptbduct formula in The-

orem2.17 . .
,ul(ozCk X 6Cn—k) — Z (r> <n; )Oﬂ"ﬁs.

r4s=1
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Comparing these two, we see that oK » < k and0 < s < n — k, we havec,, = 1 if
r + s =1 andc,; = 0 otherwise.
Hence,

pai(K x L) = > pe(K)po(L),

r4s=1

As a result of this theorem, we get the following corollary.

Corollary 5.11. Suppose that is a convex-continuous invariant valuation &nlycon(n)
such that

p(K x L) = p(K)p(L),
forall K € Polycon(k), L € Polycon(n — k), where0 < k < n. Then eithey, = 0 or there
existsc € R such that

= po+ cpr+ Epg+ -+ .
Conversely, i« is a valuation satisfying

= po+ cpr + Epg+ o+ i,
theny satisfies
p(K x L) = p(K)pu(L).
Proof. By the characterization theorem, there are real constastgh that

H= Copto + C1jt1 + =+ + Cpfin.

Let C;, denote the unit cube iR*. Then for allo, 3 > 0, the multiplication condition implies
that

n—k
,u(a(]k X ﬁcn—k) - M(ack) ﬁCn k (ZCTQ :ur Ck ) (Z Csﬁslus(cn—k)>
s=0

k n—k
= ZZC Cspir (Cr) s (Cr—p ) 3°.
r=0 s=0
On the other hand, by the previous theorem,

uaCy x BC_) = > cipi(aCi x BCug) =D ;i ¥ 1r(Cr)pts(Cre) " 5°

=0 =0 r4s=i

k n—k
=33 et (Cpa(Coa)a’ B

r=0 s=0
Comparing these polynomials im, 3, we see that the coefficients must be equal. Hence,
CrCs = Cryg, forall0 < r, s < n. Thus,cy = .9 = 2. Hence, is either0 or 1. If ¢y = 0,
thenc, = ¢, o = ¢.co = 0, makingu zero. Ifcy = 1, then relabet; = ¢. Then, forr > 0,
¢ = C1+..41 = ¢} = ¢, and we are done. The converse follows by simply applying the
previous theorem. O
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65.5. Computing Intrinsic Volumes. Now that we have a better understanding of the
intrinsic measureg,, it would be nice if we could compute the intrinsic volumessafious
types of sets. We already know how to compute them for pikalat We want to explain how
to determine them for convex polytopes. In a later sectiomalleexplain how to compute
them for arbitrary polytopes using triangulations and thiboMs inversion formula.

SupposeP € X" is a convex polytope. Using the tube formutal) we deduce that for
allr >0

(P +7B) Z i (K )wy ™,

where the superscript d8,, has been dropped for notational convenience. Suppose
P + rB. Because” is compact and convex, there exists a unique poinE P such that

v —xp| <|z—y|, VyeP

If x € P, then clearlyr = zp. If, on the other hand;y ¢ P, thenzp € OP. Furthermore,
if v ¢ Pandy € 0P, theny = zp < x —y L H, whereH is the support plane af
andy € PN H. Thatis to say, the line connectingandxz, must be perpendicular to the
boundary.

Denote byP;(r) the set of all: € P + rB such thatzp lies in the relative interior of an
i-face of P. If x is in the relative interior of? then it is contained in an-face of P, and
consequently so isp = x. If z is on the boundary then it is in one éfs faces (and again,
So iszp = x). Finally, if z is in neither the interior o nor the boundary, then as stated
before there is a unique- on the boundary and hence in aface of P.

P+rB=JR(r)
=0
The uniqueness afp implies that this union is disjoint.
Denote byF;(P) the set of all-faces ofP. Let ) be a face ofP, and letv be any outward
unit normal to the boundary of P at Then we set

M(Q,r)={y+dv|yerelint(Q),0<d<r}.

M(x,r)

X

M(Q.r)

FIGURE 7. A decomposition of® + rBs,.
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Proposition 5.12.
P(r)= |J M(@r).

QeF;(P)

Proof. First, suppose: € P;(r). From beforex, € relint(Q) for someQ € Fi(P). If
xr = zp, thenz € relint(Q), and therefore: € M(Q,r) for anyr. On the other hand, if
x # xp, then letv denote the unit vector parallel to the line betweeandzp. From the
above discussion we know thats perpendicular to the boundary Bfat z», and therefore
x = zp + 0v, whered = [z — zp[. Thus we have thati(r) C Ugep,p) M(Q, 7).

On the other hand, supposec M(Q,r). Thenz = y + dv for somey € relint(Q). If
0 = 0thenz =y andisinP;(r). If § # 0, z — y = dv, and is therefore. to the boundary
of P aty. Thereforey = xp andx € Fi(r). Thereforel’;(r) D Ugep,py M(Q. ), and thus
we have equality. O

For A C R", let theaffine hullof A be the intersection of all planes Ri* containingA.
We then denote byl the set of all vectors ifR™ orthogonal to the affine hull of..

Let@Q € F;(P). ThenQ* has dimensiom — i. Because of this)/(Q, r) is like M (Q, 1),
except that it has been “stretched” by a factor of n —i dimensions. Thugy,, (M (Q,r)) =
", (M(Q,1)). This fact, coupled with the fact that oif (Q, ) are disjoint, gives us that

um(r»un( U M(@,m) u( U M(@,n) = " (P(1)).
)

QeF;(P QEF;(P)

Furthermore,

a(P+7B) = (U B-(r)) = > ) = 3 P

for all » > 0. Comparing with the tube formul® (1), we see that
D (Ko™ = (P(1))r"
=0 1=0

By comparing coefficients of powers orwe get that

() = Lo E) (5.2)

Wn—;

. N ’ i

FIGURE 8. M(z;,1) from Example5.13



58 Csar-Johnson-Lamberty

Example 5.13.Consider a general convex polyhedBrin R? with edgesz, , . . ., Z,,. Each
edgez; is formed by two facets oP’, denote these two facég, and@),,, and denote their
outward unit normals by;;, andu;,, respectively. We then have that the volume of the
sectionM (z;, 1) is given by

f11(z3)0;

a0 (21, 1)) = 220N ) 12y, ) = 120

wheref; = arccos(u;, - u;,). Refer to Figure3 for an example. Therefore
Cops(P(1) i - =0,
mP) === =5 ;m(zz)@z-

This remarkable formula has immediate applications ini$jpguolyhedra of interest.
For example, take an orthogonal parallelotdpe- a; x ay x az. Clearly there are four
sides of lengthu; for eachi, and the anglé; = 7 for eachi. It is evident then that

1 — T
p(P) = %;4%5 = a; + az + as.
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6. Simplicial complexes and polytopes

At this point, we feel like we understandhal(n) to our satisfaction. We would now like to fo-
cus much more concretely on computing the these valuatoyresdpecial case of polyconvex
sets, called polytopes. These are finite unions of convex@ués. The inclusion-exclusion
principle suggest dissecting these into smaller, and €mpéces. Technically, this dissec-
tion operation is called triangulation, and the simplercpgeare called simplices. In this
section, we formalize the notion of triangulation and inigege some of its combinatorial
features.

§6.1. Combinatorial Simplicial Complexes. A combinatorial simplicial comple(CSC
for brevity) with vertex set i/ is a collectionk of non-empty subsets of the finite dét
such that

TeK=o0€K, YoCT1, 0#0.

The elements of< are called th¢open) face®f the simplicial complex. It is a face then
we define

dimo := #o0 — 1.
A subsetr of a facer is also called a face af. If additionally
H#o=FH#H1—1

then we say that is an(open) faceof 7. If dim ¢ = 0 then we say that is a vertex ofk.
We denote by the collection of vertices oK. In other words, the vertices are exactly the
singletons belonging t&’. For simplicity we will writev € Vi instead ofv} € V.

Two CSCsK and K’ are calledsomorphi¢ and we write thisk’ = K”, if there exists a
bijection from the set of vertices df to the set of vertices ak” which induces a bijection
between the set of faces af and K”.

We denote by:(V) ¢ P(P(V)) the collection of all CSC’s with vertices ii. Observe
that

Kl,KQ € Z(V) - K1 N Kg, K1 U K2 c E(V)
so that(V) is a sublattice oP(P(V)).

Example 6.1. For every subset C V defineAg € (V) to be the CSC consisting of all
non-empty subsets ¢f. Ag is called theelementarysimplex with vertex sef. Observe that

AS1 N ASQ - AS10527

For every CSCK € X(V) the simplices\,, o € K are called thelosed facesf K.
We deduce that the collection

A(V) = {AS 1S V}
is a generating set of the lattie& V). O

Example 6.2.Let K € ¥(V). For every nonnegative integer we define
K,, = {U€K| dimagm}.
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K,, is a CSC called the:-skeleton of. Observe that

KQCK1C"',K:UKm. O
m>0
Definition 6.3. TheEuler characteristiof a CSCK € (V) is the integer
X(E) = (=1)%me, O
ceK

Proposition 6.4. The mapy : 3(K) — Z, K — x(K) is a valuation.

Proof. For every K € (V) and every nonnegative integer we denote byF,,(K) the
collection of itsm-dimensional faces, i.e.

Fn(K):={o€ K| dimo:=m}.

We then have

X(E) =Y (=1)"#Fn (K).

m>0

Then

and the claim of the proposition follows from the inclusiexelusion property of the cardi-
nality. O

Example 6.5. Suppose\s is a simplex. Then

m m n
(a9 =Y ( > ) =>e(,h ) =L .
m>0 \oCS, #o=m+1 m>0
66.2. The Nerve of a Family of Sets.
Definition 6.6. Fix a finite setl’. Consider a family
A:={A,; veV}

of subsets a set’ parameterized by'.
(a) For every C V we set

Thenerveof the family.A is the collection
N(A):={cCV|A, #0}. O

Clearly the nerve of a familyl = {A, | v € V' } is a combinatorial simplicial complex
with vertices inV.
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Definition 6.7. Supposé/ is a finite set and< € (V). For everyo € K we define the
starof ¢ in K to be the subset

Stg(o):={reK|TD0}.

Observe that
K = | Stk(v). O

Proposition 6.8. For every CSCX € % (V') we have the equalities
Sti(o) =[Stk (v), Vo€ K, K =] A,.

vET ceK
In particular, we deduce thak' is the nerve of the family of stars at vertices
StK Z:{StK(U) |U€VK}. O

We can now rephrase of the inclusion-exclusion formulagiie language of nerves.

Corollary 6.9. Supposé is a lattice of subsets of a sét, i1 : L — R is a valuation into a
commutative ring with.. Then for every finite familf = (AU )vev of sets in{ we have

M<UAU> = 37 (A,

veV ceN(A)
In particular, for the universal valuationl — 7, we have
Ioa,= Y (—1)%m7r, . O
og€eN(A)

Corollary 6.10. Suppose® = {C;}scs is a finite family of compact convex subset®Rof
Denote byN (C) its nerve and set
C:= U Cs.

ses

Then

In particular, if

(. #0.

ses
then

po(C) =1,
wherey, : Polycon(n) — Z denotes the Euler characteristic.
Proof. Let

C, = ﬂcs, Vo C 8.
se€o

Note that ifc € N(C) thenC, is nonempty, compact and convex and thy&C,) = 1.

Hence .
1o(C) = Z(—l)dlmoﬂo(co) = x(C).
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If C, # (Vo C S we deduce that (C) is the elementary simpleXg. In particular

1o(C) = x(Ag) = 1.
O

§6.3. Geometric Realizations of Combinatorial Simplicial Compkxes. Recall that a
convex polytope irR™ is the convex hull of a finite collection of points, or equally, a
compact set which is the intersection of finitely many halces.

Definition 6.11. (a) A subsel”

{’Uo,’Ul, e ,Uk}
of £ + 1 points of a real vector spadg is calledaffinely independerif the collection of
vectors
is linearly independent.
(b) Let0 < k£ < n be nonnegative integers. Aaffine k-simplexin R™ is the convex hull
of a collection of(k + 1), affinely independent pointgy, - - - , v} called theverticesof the
simplex. We will denote it byvg, vy, - - -, vg].
(c) If S is an affine simplex ilR™, then we denote by (S) the set of its vertices and we
write dim o := #V (o) — 1. An affine simplexl" is said to be daceof S, and we write this
ast < oif V(S) C V(T). O

Example 6.12. A set of three points is affinely independent if they are ndlireear. A set
of four points is affinely independent if they are not coplafiv, # v, then|vy, v] is the
line segment connecting to v;. If vy, v1, v are not collinear thepy,, vy, v5] is the triangle
spanned by, v1, v, (See Figure). O

I~
]

0

v 2

FIGURE 9. A 1-simplex and &-simplex.

Proposition 6.13. Supposéuy, . .., v is an affinek-simplex inR". Then for every point
p € [vg,v1,...,v;] there exist real numberg, ¢y, - - - ,t; uniquely determinedby the re-
quirements

k
t; €0,1], Yi=0,1,---,n, > t;i=1, p=> tuw.
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Proof. The existence follows from the fact that, . . . , vx] is the convex hull of the finite set
{vo, ..., v }. TO prove uniqueness, suppose

k k
E S;U; = E ti'Ui .
=0 1=0

Note thatvy = (so + - -+ + sg)vo = (to + - - -, tx)vp SO that
k

k
> si(vi—vo) =Y ti(v —vg), v; — vo = Vgv-
=1

i=1
From the linear independence of the vectgys we deduces; = t;,Vi = 1,--- , k. Finally
O
The numberst;) postulated by Propositiof13are called thédarycentric coordinatesf

the pointp. We will denote them byt;(p)) In particular, thebarycenterof a k£ simplexo is
the unique poinb, whose barycentric coordinates are equal, i.e.

1
to(by) =+ =t(b,) = ——.
o(bs) (br) = 75
Therelative interiorof Afvg, vy, ..., v is the convex set

A(vg, vy, ,vg) == {pEA[vO,~-~ ok | ti(p) >0, Yi=0,1,--- k}.

Definition 6.14. An affine simplicial complein R™ (ASC for brevity) is a paifC, T) satis-
fying the following conditions.

(@) C is a compact subset.
(b) T is atriangulation ofC, i.e. a finite collection of affine simplices satisfying thendi-
tions

(b1) If T € T andS is a face ofl" thenS € 7.

(b2) If Ty, T7 € T thenTy N 17 is a face of botl, andT.

(b3) C'is the union of all the affine simplices ih O

FIGURE 10. An ASC in the plane.

Remark6.15 One can prove that any polytopelit® admits a triangulation. O
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In Figure10we depicted an ASC in the plane consisting of six simplicediimiension),
nine simplices of dimensiohand two simplices of dimensiah

To an ASC(C,T) we can associate in a natural way a CRQC, 7) as follows. The set
of verticesV is the collection of)-dimensional simplices ifi. Then

K={V(S)|5eT}, (6.1)
where we recall thal’(S) denotes the set of vertices of the affine simpfex 7.

Definition 6.16. Supposek’ is a CSC with vertex sétf'. Then anaffine realizatiorof K is
an ASC(C, 7) such that
K~ K(C,7). O

Proposition 6.17.Let V' be a finite set. Then any CSC € (V') admits an affine realiza-
tion.

Proof. Denote byR" the space of functiong : V' — R. This is a vector space of the same
dimension a¥’. It has a natural basis determined by Bieac functions),, : V' — R,u € V,

where
1 v=u
Oy = .
() {O v#E U

The set{§, | u € V} c RV is affinely independent.
For everyo € K we denote byo] the affine simplex irR" spanned by the s¢b,, | u €
o}. Now define
C= U , ol |oe K},
ceK
Then(C,T) is an ASC and by constructiald = K (C, 7).
O

SupposéC, T) is an ASC and denote by the associated CSC. Denote hy= f.(C, 7).
According to the Euler-Schlafli-Poincaré formula we have

1o(C) =Y (=1)* f(C, 7).
k
The sum in the right hand side is precisalyk’), the Euler characteristic oK. For this

reason, we will use the symbojsand, interchangeably to denote the Euler characteristic
of a polytope.
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7. The Mobius inversion formula

§7.1. A Linear Algebra Interlude. As in the previous section, for any finite sétwe
denote byR* the space of functiond — R. This is a vector space and has a canonical basis
given by the Dirac functions

0s : A— R, a€ A
Note that to any linear transformatidh: R4 — R” we can associate a function

§=8r:BxA—R
uniquely determined by the equalities

T6, =Y 8(b,a)d, a€ A (7.1)
beB

We say tha® is ascattering matribof 7. If f: A — R is a function then

fF=>_fa)s

acA
and we deduce that the functi@ry : B — R is given by the equalities

Tf= > 8(.a)f(a)dy < (Tf)(b) =Y 8(b,a)f(a), YbeB.  (7.2)

acAbeB acA

Conversely, to any map: B x A — R we can associate a linear transformationR4 —
RZ whose action of, is determined by7.2).

Lemma 7.1. Supposed,, A, A, are finite sets and
T, : R4 — R4 7). RAY — RA2
are linear transformations with scattering matrices
Sog: A1 x Ay — R, 81: 43 x A — R

Then the scattering matrix @f o Ty : R42 x R4 — R is the mapS; * Sy : Ay x Ay — R
defined by

81 * So(a2,a0) = Z 51(a27a1)50(a1,a0)-

a1€A1

Proof. Denote bysS the scattering matrix df} o T so that

(Ty 0 Ty)d Z5a28 as, ag).

On the other hand

(Ty 0 Tp)d (Z day80(a1, ag )
= Z 5,12 (Z 81(@2, &1)80(@1, CLQ) ) = Z 5a2 (81 * 80)(&2, CLQ).

az
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Comparing the above equalities we obtain the sought fottityen

8(&2, CLQ) = (81 * 80) (CI,Q, ao).
O

Lemma 7.2. Suppose that! is a finite set equipped with a partial order (we use the
convention that £ a, Va € A). Suppose

S:AxA—-R
is strictly upper triangulari.e. it satisfies the condition
8(@0,@1) 7é 0= ag < a;.

Then the linear transformatiofi : R4 — R4 determined b8 is nilpotent, i.e. there exists
a positive integer. such that

" = 0.

Proof. Leta, b be in A and denote bg,, the scattering matrix df”. By repeated application
of the previous lemma,

8n<a7 b) = Z S(CL, 01)8(01702> "'S(Cn—lab)-
ClysCn—1€A

Then since is strictly upper triangular, we deduce that the above swontains only ‘mono-
mials‘ of the form

8(a,c1)8(cr,c2) -+ 8(cn-1,b), ¢ < cipr, Vi
Thus, we really have that:
Sn(au b) = Z S(CL, 01)8(01702> "'S(Cn—lab)-
a<ci<ca<-<cp—1<beEA
So, since we are using that< a, if we taken > #A we cannot find such a sequence, so
S, = 0, meaning that™ = 0. O

Lemma 7.3. Suppos€’ is a finite dimensional vector space aihd £ — E is a nilpotent
linear transformation. Then the linear mdp; + 7' is invertible and

(Lp+T)7' =) (-1

k>0

Proof. SinceT is nilpotent, there is some positive integersuch thatl™ = 0. We may
even assume that is odd Thus

lg=1g+T"=(1g+T)1lg —T+T*—---+T" ) =(lg+T) (Z(—l)W) .

k>0
O
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§7.2. The Mobius Function of a Simplicial Complex. Supposé’/ is a finite set and{ €

Y (V) is a CSC. Theeta functiorof K is the map
<
(=(: K xK—Z, ((o,7)= {1 o
0 oAT

Define¢ = ¢k : K x K — Z by

flo.7) = {1 o2T

0 otherwise

¢ defines a linear mag : RX — RX and¢ defines a linear mag : RX — RX. Note that
for every functionf : K — R we have

(Zf)(0) = Clom)f(r) =D f(r). (7.3)

TeK T-0

Proposition7.4.(a) Z =1 + =.

(b) The linear majx is nilpotent. In particular,Z is invertible.

(c) Lety : K x K — R the scattering matrix ofZ—!. Theny satisfies the following
conditions.

wlo,7) #0 =0 <, (7.4a)
wlo,o0) =1, Vo € K, (7.4b)
plo ) == > plo,p). (7.4c)

Proof. First, we denote by(o, 7) the delta function, that is,

ion={y 75

(a) From above we have

(Zf) (o)=Y Clom)f(r) =D f(r) = flo)+ Y f(7)

= 3600 + 3 €0, () = Elo) + (1)(0) = ((E+ 1)1 ) (o)

(b) We have from before tha is defined by a scattering matr§xwhich is strictly upper
triangular, i.e.

(o) #0=0 2 T.
By Lemma7.2, we have thak is nilpotent. Thus, becausé = 1 + =, by Lemma7.3we
have thatZ is invertible.
(c) From Lemma/.3we have that

Z7=1+E)7" =) (- =1

k>0

2

[1]
[1]

+
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Let us examin&®. By an iteration of Lemma&.1, we have that the scattering matrix féf
will be

Glom) = > &o,01)E(prp2) - -E(pina,T)

P1ye 7§0i71€K

This scattering matrix is, likg, strictly upper triangular. Note that this also impliestttre
&i(o, 7) gives a value of) for the diagonal terms = ¢. Furthermore, the identity operator
1 has scattering matri®(o, 7), which gives a value of on the diagonal terms and zero
elsewhere. We therefore have proven equati@nég( and (7.40. To prove the third, we
convert the equality = Z~'Z into a statement about scattering matrices

0=px*(.
By Lemma7.1, we therefore have
(o, 7) =Y plo, )¢, 7)
peK
Thus, fore # 7, we have that
0="> ulo.)lp,7)= Y plo,e)
peEK o=Xp=T

and thus

wlo,m) ==Y o)

Ujgpér
O

Definition 7.5. (a) Supposed, B are two subsets of a sét. A chainof lengthk > 0
betweenA and B is a sequence of subsets

A=CyCC1C--- ¢ Cy=B.
We denote by (A, B) the number of chains of lengthbetweenA and B. We set

(A, B) = {0 b7
1 B=A
and
(A, B) =) (~1)fci(A, B).
k
(b) We set
ce(n) :=ci(0,B), ¢(n) =c(0,B),

whereB is a set of cardinality.. O

Lemma 7.6. If o, 7 are faces of the combinatorial simplicial compl&xthen

w(o, ) =c(o, 7).
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Proof. We have thaj: is the scattering matrix of
7= (-1 =1-2+
k>0

sou should be equal to the scattering matrix of the right hand,sid.

M(U’ 7_) = Z(—l)k&c(o‘, 7-)7

2

(1]

)

k>0
whereé, (o, 7) is, as before,
Sk(O', 7_) = Z 5(07 Spl)g((pla @2) e '6(@0/6—17 T) = Z 1= Ck(gv 7-)'
01, pp1EK o=p0Fp13 For-130k=T

Furthermore, becausg(o, 7) = (o, 7), we have that

plo,7) =Y (=Dfer(o,7) = c(o, 7).

k>0

Lemma 7.7. We have the following equalities.

(@)
cg(n) = Z (?) cx—1(n — 7).
(b) c(n) = (=1)".

(c) If A C B are two finite sets then
(4, B) = (~1#P#4,

Proof of a. We recall that(n) is the number of chains of lengthin C'(B, 0)), where|B| =
n. Then,cy_1(n — j) is the number of chains i6'(A4, (), where|A| = n — j. Consider a
chain of lengtht — 1in C(A,0)whereAC BCV: 0 C C, € ---C Cyq = A. Thereis
only one option for turning it into a chain of lengthin C'(B, ), namely:) C C; € --- C
Cr_1 € C), = B. For eacly, there arq?) ways to choose the sdtof elements to be taken
out of B, i.e. to takeA = B \ J, |A| = n — j. Then there are;,_,(n — j) chains of length
kin C(B,0) to be constructed as above. Thus,

ex(n) =3 C‘) ck-1(n = 5)

Jj>0
O

Proof of b. We note that the statement is trivially true for= 0, and we use this as a base
case for induction. It is also important to note that#of 0, ¢o(n) = 0. By part a,

1) = (-0 5 (") eatn - )
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Then,
c(n):;( ;2( ) “lena(n =)
:_JZ%( ); “epoi(n —7)
:_j;( ); Yeew(n — 5) = —;(?)c(n—j).

By the induction hypothesis,
n _ n n _
B ( ) cn—j)=-3 ( ‘)(—1)" S ( ‘)(—1) )
§>0 >0 J >0 J
The last sum is the Newton binomial expansioribf- 1) so it is equal to zero. Hence
c(n) = (=1)".

O

Proof of c. Supposed = {ay,...,05}. f A C B, B ={ay,...,a;,01,...,0n}. Thena
chain inc, (A, B) can be identified with a chain of lengthof the set
BNA={f1,...,0m}
Therefore,
cx(A,B) =c,(0, BN A) = ci(#B — #A).
In particular,c(A, B) = (—1)#B=#4), O

Theorem 7.8(Mobius inversion formula)Let V' be a finite set and’ € >(1") suppose that
f,u: K — R are two functions satisfying the equality

=> flo), VoK.

Then - . _
flo) = (=1)tmr=dmay(r),

TrO

Proof. Note thatu(c) = (Zf)o so thatZ~'u = (Z7'Z)f = f. Using (7.2), and realizing
that . is the scattering matrix of ~! we deduce
flo) = (Z7 u)(o) = > plo,m)u(r)
TeK
By Lemma7.6,
flo) =Y clo,T)u(r)

TO0

Then, by Lemm& .7,
f(U) _ Z(_1>d1mr—d1m0u(7_).

TO0
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Corollary 7.9. SupposéC, T) is an ASC. Then

IC = Zm(S)IS

where

m(S) — Z(_l)dimT—dimS _ (_l)dimS Z(_l)dimT‘

T=S T=S

In particular, we deduce that the coefficient$S) depend only on the combinatorial simpli-
cial complex associated (@', 7).

Proof. Definef,u : T — Z by
F(T) == (=)™ and u(S) := (=1)"™m(S) = Y f(T).
T=S
We apply the Mobius inversion formula and see that
F(S) = (=1 TSy (T) = (—1)8mS %7 (7).
T>S TS
Then,
L= (=1)"™5f(8) => m(T). (7.5)

TS

Now consider the functiod, : R® — Z,
L(z) = Z m(S)Ig(x).
SeT

Clearly,L(x) = 0if x ¢ C. Suppose: € C. Denote byT, the collection of simplice§’ € T
such thatc € T'. Then
S, = ﬂ T

TeT:

is a simplex inT and in fact it isthe minimalaffine simplex irJ” containingz. We have

L) =Y m(S)Is@) = 3 m@)ls@) = 3 m(s) 1.
SeT S»Sg S>S,
Therefore,
Zm(S)[S = IC
SeT
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§7.3. The Local Euler Characteristic. We begin by defining an important concept in the
theory of affine simplicial complexes, namely the concegiarfycentric subdivisionAs its
definition is a bit involved we discuss first a simple example.

Example 7.10.(a) Supposéuv,, v;] is an affinel-simplex in some Euclidean spaBé&. Its

barycenter is precisely the midpoint of the segment and wetedt bywv,,. The barycentric
subdivision of the line segmefityv] is the triangulation depicted at the top of Figure

consisting of the affine simplices.

Vo, Vo1, V1, [an 001]7 [U(n, Ul]-

i)

FIGURE 11. Barycentric subdivisions

(b) Supposeuvy, vy, v2] is an affine2-simplex in some Euclidean spal@&. We denote the
barycenter of the fack;, v;] by v;; = v;; and we denote by, the barycenter of the two
simplex.

Observe that there exists a natural bijection between tesfaf{v,, vy, v2] and the nonempty
subsets of 0, 1,2}. For every such subsetC {0, 1,2} we denote by, the barycenter of
the face corresponding ta For example,

V{0,1} = Vo1 etc.

To any chain subsets ¢f), 1,2}, i.e. a strictly increasing family of subsets, we can asgeci
a simplex. For example, to the increasing family

{2} € {0,2} C {0, 1,2}

we associate in Figurkl the triangl€vs, vg2, v012]. We obtain in this fashion a triangulation
of the 2-simplex|vy, vy, v2] whose simplices correspond bijectively to the chain of stds

The next two results follow directly from the definitions.

Lemma 7.11. Supposéuvy, - - - , vx] iS an affine simplex ifR”. For every nonempty subset
o C {0,---,k} we denote by, the barycenter of the affine simplex spanned by the points
{vs | s € o}. Then for every chain

0CogCor & Cop
of subsets 00,1 - - - , k} the barycenters,,, - - - ,v,, are affinely independenmt.
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Proposition 7.12. SupposéC, 7) is an affine simplicial complex. For every chain
So &S S TS

of simplices il we denote bA[Sy, - - - , Si] the affine simplex spanned by the barycenters
of Sy, - - - , Sk and we denot8” the collection of all the simplice&[Sy, - - - , Si| obtained in
this fashion. Thefi” is a triangulation ofJ.0

Definition 7.13. The triangulatior” constructed in Proposition.12is called thebarycen-
tric subdivisionof the triangulatior?. O

Definition 7.14. SupposéC, T) is an affine simplicial complex andis a vertex ofJ.

(a) Thestar of v in T is the collection of all simplices df which containv as a vertex. We
denote the star b§ts(v). For every simplexS € Sty(v) we denote byS/v the face ofS
opposite tav.

(b) Thelink of v in T is the polytope

ky(v) == | S/,
Sest(v)

with the triangulation induced fror'.
(c) For every faces of T we denote byy its barycenter. We definenk of S in T to be the
link of bg in the barycentric subdivision

kg (S) := lky (bg).
(d) For every faces of T we define théocal Euler characteristiof (C, 7) alongsS to be the

integer
xs(C,T) =1 — x(Iks(9)). O

FIGURE 12. An open book with three pages

Example 7.15.Consider the polyconvex sét consisting of three triangles in space which
have a common edge. Denote these trianglelaly a;], i = 1,2, 3 (see Figurel2).

We denote by the barycenter dfz, b}, by ¢; the barycenter df:, a;] and byd; the barycen-
ter of [a, b, a;]. Then the link of the vertex is the star with tree arms joined @atlepicted at
the top right hand side. It has Euler characteristig he link of[a, 0] is the set consisting of
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three points{d;, ds, d3}. It has Euler characteristiz The local Euler characteristic alomag
is 0, while the local Euler characteristic alofig b] is —2. O

Remark7.16 SupposgC,7T) is an ASC. Denote bys C T the set of vertices, i.e. the
collection of0-dimensional simplices. Recall that the associated coatbiial complexi’
consists of the collection

V(S), SeT
whereV (S) denotes the vertex set 6f Them-dimensional simplices the barycentric sub-

division correspond bijectively to chains of lengthin K.
Let S in T and denote by its vertex set. The number ofi-dimensional simplices in

Sty (bs) is equal to
Z cm(0, 7). 0
TO0

Proposition 7.17. SupposéC, T) is an ASC. Then for evely € T we have
xs(C,T) = Y (~1ydmimams,
TS

so that/c = > o 5 xs(C, T)Is. In particular,

D ()i = () = /chuo => xs(C.7).

SeT SeT

Proof. To begin, for a simplicial complexy’, let £, (K) = {faces of dimensiom in K}
and recall that
X(E) =Y (=1 #F(K).
m>0
The(m—1)-dimensional faces dk+(S) (m > 1) correspond bijectively to the-dimensional
simplicesT” € 7’ containingbs. According to Remark’.16there ared . ¢ ¢, (S, 7T") of
them. Hence -

Froi(lky(S) = > en(S.T)
T>S
Hence
Xk () = =Y (=)™ Y (S, T)
m>0 T=S
so that
Xs(C,T) =1 = x(ke(S)) =1+ D (-1 > (S, T)
m>0 T=S
=3 D (DTS T) =D > (—1)"en(S.T) =Y (S, T) =Y (~1)timT=dims
m>0T»S TS m>0 TS TS

O

The above proof implies the following result.
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Corollary 7.18. For any vertexo € V- we have

V(lkg(v)) = — 37 (- 1), 0

Sv

Corollary 7.19. Suppose€C, T) is an ASC inR"”, R is an commutative ring with 1, and
= Polycon(n) — R avaluation. Then

w(C) = xs(C,Tu(S).

SeT
In particular, if we letu be the Euler characteristic we deduce

D (NI =x(0) =) xs(C,T).

Proof. Denote by/[ du the integral defined by. Then

SeT SeT SeT
d
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8. Morse theory on polytopes inR3

§8.1. Linear Morse Functions on Polytopes. Suppos€C, T) is an ASC inR3. For sim-
plicity we assume that all the facesDhave dimensior: 3. Denote by(—, —) the canonical
inner product inR? andS? the unit sphere centered at the originkof.

Any vectoru € S? defines a linear map,, : R* — R given by

Ly(z) := {u,z), Vo€ R

We denote by, its restriction taC'. We say the: is T-nondegenerat# the restriction ofL,,
to the set of vertices df is injective. Otherwise: is calledT-degenerateWe denote by
the set of degenerate vectors.

Definition 8.1. A linear Morse functioron (C, 7) is a function of the fornt,,, where: is a
T-nondegenerate unit vector. O

Lemma 8.2(Bertini-Sard) A+ is a subset 08?2 of zero (surface) area.

Proof. Let vy, - - - , v, be the vertices of. Foru € S? to be aT-degenerate vector, it must
be perpendicular to an edge connecting two ofitheThe set of all such lines is a plane in
R3, and the intersection of such a plane &#ds a great circle. Thereforé\s is composed
of at most(’g) great circles, meanindy is a finite set and thus has zero surface area.O]

Suppose: is T-nondegenerate. For everg R we set
Ci={zelC|l,(x)=t}.
In other words,C; is the intersection o’ with the affine planed, ,, = {z | (u,z) =
(u, xg) = t}. We denote by the set of vertices df. For every nondegenerate vectothe
function/,, defines an injection
Eu . Vg’ — R.
Its image is a subsdt,, C R called thecritical setof 7,. The elements of{, are called the
critical valuesof /,,.
Lemma 8.3. For everyt € R the sliceC, is a polytope of dimensiof 1.

Proof. C; is the intersection of’ with the planeH; = {(u,z)}. H; contains at most one
vertex, so it must intersect each face transversally. Tteesaction with each face will have
codimensiori inside that face. Hence, no intersection can have dimemngeater thari. O

The above proof also shows that the slicehas a natural simplicial structure induced
from the simplicial structure of’. The faces of’; are the non-empty intersections of the
faces ofC with the hyperplané,.

Remark8.4. Define a binary relation
R=Ritic CV(Cite) x V(Cy)
such that fom € V(Cyye) andb € V(C})
a R+ b= aandb lie on the same edge ¢f
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Observe that fixed and fore < 1, the binary relatiork; ... is thegraph of a map
V(Cipe) = VI(CY)
which preserves the incidence relation. This means thevitig:
e Ya € Cyy., Jaunique € V(Cy) such thauRb, and
o If [ag,ay,--- ,a;]isaface ofCy . anda, Rb; for b; € V(C;), then[by, by, ..., by, is a face ofC;.
We will denote the mapy’ (Cy,..) — V(C,) by the same symbag.
O

Denote byy,(t) the Euler characteristic @f;. We know that
X(C) =" jult),
t

wherej, (t) denotes thgumpof y,, att,
Ju(t) == Xu(t) = xu(t +0).
Every nondegenerate vectodefines a map
ju|=): Vo = Z, j(u|z):= the jump ofy, atthe critical valu€, (x).

Lemma 8.5.
Ju(t) #0 =t € K,.

Proof. By definition j,(t) # 0 = x(C) # x(Ct+0). We would like to better understand
the relationship betwean; andC . for anye < 1. By Remark8.4, for e sufficiently small

R; 1. defines a map’(Cy;..) — V(C;) which preserves the incidence relationship. Assume
thatt ¢ K. All pointsinV (C;) andV (C,,.) come from transversal intersections of edges of
C'. Because these edges cannot terminate anywhere inbetngsentivo points and because
the intersection is transversal (and thus unique), for smweg have that’ (Cy..) — V(Cy) is

a bijection. Any edge which connects two verticeg’in. is subsequently mapped by to the
edge connecting the corresponding vertice€’in By the Euler-Schlafli-Poincaré formula,

X(Cire) = x(Cy). But this implies thayj, (t) = 0, a contradiction. Thus e K. 0
Lemmas8.5shows that
X(C) =" j(ulz). (8.1)
xeVa

For everyr € V3 we have a function
j(=lz) : S\ Ay = Z, S?\ Ay > u s j(ulz).
Now, for every vertex: we set

oe) = 1 / ., o) (8.2)

wheredo (u) denotes the area element ®hsuch that
Area (S?) = Area (S? \ Ag) = 47.
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Integrating 8.1) overS? \ Ay we deduce

dm = /S%(Z j(ul) ) do () = > / NECLEEDINC

reVy eV
so that

X(C)= ) pla) (8:3)
rzeVa
We dedicate the remainder of this section to giving a morewa description of(x).

68.2. The Morse Index. We begin by providing a combinatorial description of the psn
Letu € S? be aJ-nondegenerate vectar, a vertex of the triangulatiofi. We set
to := lu(o) = (u, xp).

We denote byt (zo, u) the collection of simplices iff which admitz, as a vertex and are

contained in the half-space
H, ={veR®| (u,v) > (u,z)}.

u,x0

We define théviorse indexof u at x to be the integer
plulag) == D0 (=1)%m,
SEStJ{(xo,u)

Example 8.6. Consider the situation depicted in Figuré

FIGURE 13. Slicing a polytope.

The hyperplaneé, = const are depicted as vertical lines. The sl€g is a segment, and
for everye > 0 sufficiently small the slic&”,, . consists of two segments and two points.
Hence
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Now observe thabt(x, u) consists of the simplices

{zo}, [z0,21], [T0,%2), [T0,x3), [T0,x5], [T0,x6], [T0,x1, 5]

We see thabt (zo, u) consists ofl simplex of dimension zerd, simplices of dimension
and one simplex of dimensianhso that

plulzg) =1 —5+1= -3 = j(ulz).
We will see that the above equality is no accident. O
Proposition 8.7. Let (C, T) be a polytope ifR? such that all its simplices have dimension

< 2. Then for anyr-nondegenerate vectarand any vertex:, of J the jump of/,, at x, is
equal to the Morse index afat z, i.e.

J(ulwo) = p(ulzo).

Proof. By definition,
J(ulzo) = x(Ci,) = X(Cro40)
We will again utilize the binary relatio® defined in Remarlg.4.

We have that, is a critical value, s@’;, contains a unique vertex, of C. Denote by
R™!(z0) the set of all vertices oF (C;,..) which are mapped te, by Ry, ;.. Then the
induced map/(Cy,.c) ~ R~ (xg) — V(Cy) ~ {zo} behaves as it did in Lemnfa5is a
bijection on these sets and preserves the face incideratore(see Figurd4). Using the
Euler-Schlafli-Poincaré formula we then deduce that

X(Cro) = X(Crote)
= #{xo} — # (R '(z0) ) — # {Edges inCy. connecting vertices ink " (z) } .
Note here that
# (R '(z0)) = # {Edges ofC inside H,\,  and containing: } ,

and
# {Edges inCy,. connecting vertices inR " (zo) }

= # { Triangles ofC inside H,", and containigro } .
Thus we see that

j(ulzo) = # {20} — # {Edges ofC inside ;]  and containing }
+# { Triangles ofC inside 7, and containigz:o}

- Z (=)™ = y(ulag).

SESt? (z0,u)
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FIGURE 14. The behavior of the map (Cy,+.) — V(Cy,).

68.3. Combinatorial Curvature.  To formulate the notion of combinatorial curvature we
need to introduce the notion obnormal coneForu, x € R™ define

H;m = {y e R" | (u,y) > (u, ) }

Note that ifu # 0 thenH;:x is a half-space containingon its boundaryu is normal to the
boundary and points towards the interior of this half-space

Definition 8.8. SupposeP is a convex polytope ifR™ andz is a point inP. Theconormal
coneof z € C'is the set

C.(P) =Cu(P,R") :={ueR"|PCH/,} O
We create an equivalent and more useful description of thercoal cone.
Co(P):={ueR"|PCcH ,}={ueR"|(uy) > (uz), Vye P},
The following result follows immediately from the definitio
Proposition 8.9. The conormal cone is @eonvex conei.e. it satisfies the conditions
u € Cu(P), t€|0,00) = tu e C,(P)

Ug, U1 € Gx(P) — Ug +u; € Gx(P) (]

Proposition8.9 shows that the conormal cone is an (infinite) union of raysf{ives)
starting at the origin. Each one of these rays intersectsititesphereS™~!, and as a ray
sweeps the cong, its intersection with the sphere sweeps a re§iof”) on the sphere,

Q,(P) = Q,(P,R") := C,(P) N S" .

The more elaborate notatién,. ( P, R™) is meant to emphasize that the region P) depends
on the ambient spad®”. Thus we also have

Q.(P)={ueS" " |(uy) > (uz), VyeP}
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We denotes, ; the total(n — 1)-dimensional surface area 8f~! and byw,(P) the
(n — 1)-dimensional “surface area” 6i,(P) divided byo,,_,
area,,_1 (QI(P)) _area,_1 (Qx(P))
area,_; (Sn=1) On_1 '

wy(P) :=

Remark8.10 One can show that,(P) is independent of the dimensienof the ambient
spaceR”, i.e. if we regardP as a polytope in an Euclidean spak# > R" then we obtain
the same result fav,.(P). We will not pursue this aspect here. O

Proposition 8.11.(a) If P C R? is a zero simplefr] then
we(z) = 1.
(b) If P = [x9, z1] C R®is al-simplex then

wxo([xOv 1’1]) - %

(€) If P = [z, 71, 75] C R?is a2-simplex and the angle at the vertexis r;m, 7; € (0,1)

then 1
T
TO+T1+T2:]‘7 Wxi([xo,xl,l'g]) 25—5

Proof. (a) For[z] C R? a singleton, clearly
Qy(P) = {u € 8" | (u,y) > (u,z), Vye o]} ={ueS" | (un)> (ur)}=5"

and thus
w[m](P) =1
(b) We can fix coordinates such that, x1] lies horizontal withz, located at the origin. It
is then easy to see that the conormal cone is the half-spdbdwindary perpendicular to
[z0, 21] passing through, with rays pointing “towards’:,. Thereforew,, = 3
(c) Without loss of generality, we can considey,. We fix coordinates such thay lies at
the origin and[z, z;, 25| lies in a plane withz, z1] lying along an axis. The conormal
cones of{zy, x;] and[zo, z5] are each a half-space as described above. The conormal cone
of [zg, x1, x2] is then the intersection of these two cones. This interseds bounded by
planes determined by the perpendiculargtoz,] and[zo, z1], both passing through,. In
other words, the intersection of the conormal cone with fiteege is a lune. Call the angle
of the opening of the lun@. The angles between the perpendicular lines and the sidbs of
triangle are given by, — mr, (possibly negative), and the total angle is
m m
0= <§ —7T7’o> + (5 —7T7“0> +7rg =T — Ty
The area of the lune defined Byis, in spherical coordinates,

/0 " ( /0 ' sin(¢)d¢) 6 = 26,

20
Wgy = — =

47

Thus
(&1

1
2 2
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— TCT.
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FIGURE 15. The angle between the perpendicular§gfz,| and|z, xs).

Suppos€C, T) is an affine simplicial complex it such that all the simplices ifi have
dimension< 2. Recall that for every vertex € V5 we defined its star to be the collection of
all simplices inT which admitv as a vertex. We now define tikembinatorial curvaturef
(C,7) atv € Vyto be the quantity

Kv) = Y (=1)%m5u,(9).
SeSty(v)
Example 8.12.(a) Consider a rectanglé; A; A3 A,. Then any interior poin© determines
a triangulation of the rectangle as in Figur@

Ay A

4,

FIGURE 16. A simple triangulation of a rectangle.

Suppose that (A;0A;,1) = rym, i = 1,2, 3,4 so that
ry+re+ry+ry =2
The star ofO in the above triangulation consists of the simplices
{0}, [0A;], [OAA;i], i=1,2,3,4.
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Then .
wo(0) =1, wo([OA;]) = 37 wo([OAAi4]) =
We deduce that the combinatorial curvatur@®adas
4 4
1 I 1 B
1—254—;(5—5) —1—2+2—§(T1+T2+T3+T4) =0.

1=

i
5

N~

This corresponds to our intuition that a rectangle is “flafbte that the above equality can
be written as

4
2ri(0) = 2m =y L(A0AiL).
=1
(b) SupposéC, 7) is the standard triangulation of the boundary of a tetratve@y, v;, vs, v3]
in R3 (see Figurel 7).

K;
FIGURE 17. The boundary of a tetrahedron.

Set
eijk’ = K(’Uﬂ)jvk), i,j, k= 0, ]_, 2, 3..
Then the star of, consists of the simplices

{Uo}, [UQ’U@], [’U()UZ"U]'], ’L,j € {1,2,3}, Z# j

We deduce
1 1
Wy ('UO) =1, wvo([vovi]) = 57 wvo([UQ'Uin]) = %(ﬂ- - 9in)

and

3 1 1
R =1 =5 +o- Z (m = bij) = 5 <27T— Z 9in>-
1<i<5<3 1<i<j<3
Hence
27k (vg) = 27 — the sum of the angles a§.

This resembles the formula we found in (a) and suggests arpietation of the curvature
as a measure of deviation from flatness. Note that in theiligmitase when the vertex
converges to a point in the interior @f,v,v3] the sum of the angles at converges t@,
and the boundary of the tetrahedron is “less and less cuated’ On the other hand, if the
tetrahedron is “very sharp” at,, the sum of the angles a§ is very small and the curvature
approachegr. O
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Motivated by the above example we introduce the notioarafular defect

Definition 8.13. SupposéC, T) is an affine simplicial complex iR? such that all simplices
have dimensior< 2. For every vertex of T. we denote byd(v) the sum of the angles at
of the triangles ir" which havev as a vertex. Thdefectatv is the quantity

def(v) := 27 — O(v). O

Proposition 8.14.If (C, 7) is an affine simplicial complex iR? such that all simplices have
dimensiorn< 2 then for every vertex of T we have

1

K(v) = % def(v) ~ Sx(Tks(v)).

Proof. Using Propositior8.11we deduce that

k(v) =1— %#{edges ab } + %#{triangles av } — %@(v)

= % def (v) — %(#{edges at } — #{triangles at } )

The proposition now follows from Corollary.18which states that

(kg (v)) = <#{edges at } — #{triangles at } )
O

Theorem 8.15(Combinatorial Gauss-Bonnet)f (C, T) is an affine simplicial complex in
R? such that all the simplices ifi have dimensior< 2 then

X(C) = 3 slo) = 5= 3 def(v) — 5 S x(Tks(o)).

veVy veVy veVy

Proof. Let V' represent the number of vertices(h £ the number of edges i@ and7 the
number of triangles i’. Then we denote by, T, the number of edges and triangles in
Sty (v) for v € Vi, respectively. We note that

Xlks(v) = Y (-1 =B, T,
SeSty (v)~\v
We note that each edge is in two stars and each triangle ie.thteen,
1 3
—3 2 x(lkg(v)) = ~E+ 5T
veVy
Recall thatdef (v) = 2 — ©(v). Therefore - def(v) =1- @(” . Thus,

T
Z—def 21 -5

veVy veVy
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Consequently,

Zm(v):V—EjLT:x(C)

veVy
(]

Recall that a combinatorial surface is an ASC with simplickdimension< 2 such that
every edge is the face of exactly two triangles. In this cése link of every vertex is a
simple cycle, that is a-dimensional ASC whose vertex set has a cyclical ordering

/U171)27 t 7U1’L7UTL+1 - Ul

and whose only edges arg, v;.1], 7 = 1,-- - ,n. The Euler characteristic of such a cycle is
zero. We thus obtain the following result of T. Banchofiaf]

Corollary 8.16. If C'is a combinatorial surface with vertex siétthen

- iﬂ > def(v). O

veV

We can now finally close the circle and relate the combinakarirvature to the average
Morse index.

Theorem 8.17(Microlocal Gauss-Bonnet)if (C,T) is an affine simplicial complex ii?
such that all the simplices ifi have dimensior 2 then

k(v) = p(v), Yv € Vg,
wherep is defined by§g.2).

Proof. Fix x € V3. We now recall some previous ideas. Proposiiontells us that for any
u € S? \ A,

Yo (=) = p(ule) = jlulz).

SeSty (x,u)
We then recall from the proof of Lemnta2 that Ay is a finite union of great circles on
S?. Thus,S? \ Aq consists of a finite union of chambers;, . . ., A,,. We now note that for

anyi, 1 < i < m, St(z,u) = StE(x,v) for anyu,v € A;. So, lettingy; be an element in
A;, we have:

ﬁ /S ., j(ulz)do(u) = ﬁ /S o, plulz)do(u)

/S (—1)%™ 5 dor(u) 472 / S (-1 Sdo(u)

2
\Ax SESt+( x,u) SESt+ (z,u)

px) =

1 - dim S
:EZ > (-1 /da(u).

i=1 SGSt;(:v,vi) As
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A
Xy X,

FIGURE 18. The chambers which coincide with the conormal section
C.(S) N S

Considering this sum, we see that every term of it has 4™ in it for someS € St(z).
We also notice that every € St+(x) appears at least once. So, we expand the sum, collect
the coefficients for each-1)4™% and if we set

kg = #{z’; S € Stt(z,v;) }
we obtain

m

ks

_i _1)dim$§ _i __1\dim S /

pe) = =3 3 0 [ == 3 (Y [ dolw)
=1 Sestd (z,v;) ! SeSty () j=1"%;

Now we consider the su@fil 4. do(u). This is the area of the set of vectors,on the
i

unit sphere such that € StZ(x,u). Thatis, this sum is the area of the set of vectars,
on the unit sphere such thatlies in /7,},. But this is precisely the area 6f.(5) N S? (see

Figure18). Now recall thatu, (5) = 2(C(508%) (since the area of the unit sphereifl is
47). Thus, we have:

ks
o)== S (-1 (Z / da(u)) == Y C)arede.(s)n )

SeSty(x) SeSty(x)

= > (=1)Mm5w,(8) = k(x).
SeSt () .

Remark8.18 The above equality can be interpreted as saying that thettue/at a vertex
xg 1S the average Morse indexaf of a linear Morse functior,,. O
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