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Introduction

This paper is the result of a National Science Foundation-funded Research Experience for
Undergraduates (REU) at the University of Notre Dame duringthe summer of 2006. The
REU was directed by Professor Frank Connolly, and the research project was supervised by
Professor Liviu Nicolaescu.

The topic of our independent research project for this REU was Geometric Probability.
Consequently, the first half of this paper is a study of the book Introduction to Geometric
Probability by Daniel Klain and Gian-Carlo Rota. While closely following the text, we
have attempted to clarify and streamline the presentation and ideas contained therein. In
particular, we highlight and emphasize the key role played by the Radon transform in the
classification of valuations. In the second part we take a closer look at the special case of
valuations on polyhedra.

Our primary focus in this project is a type of function calleda “valuation”. A valuation as-
sociates a number to each ”reasonable” subset ofRn so that the inclusion-exclusion principle
is satisfied.

Examples of such functions include the Euclidean volume andthe Euler characteristic.
Since the objects we are most interested lie in an Euclidean space and moreover we are
interested in properties which are independent of the location of the objects in space, we are
motivated to study “invariant” valuations on certain subsets ofRn. The goal of the first half
of this paper, therefore, is to characterize all such valuations for certain natural collections
of subsets inRn.

This undertaking turned out to be quite complex. We must firstspend time introducing
the abstract machinery of valuations (chapter 1), and then applying this machinery to the
simpler simpler case of pixelations (chapter 2). Chapter 3 then sets up the language of poly-
convex sets, and explains how to use the Radon transform to generate many new examples of
valuations. These new valuations have probabilistic interpretations. In chapter 4 we finally
nail the characterization of invariant valuations on polyconvex sets. Namely, we show that
all valuations are obtainable by the Radon transform technique from a unique valuation, the
Euler characteristic. We celebrate this achievement in chapter 5 by exploring applications of
the theory.

With the valuations having been completely characterized,we turn our attention toward
special polyconvex sets: polyhedra, that is finite unions ofconvexpolyhedra. These poly-
hedra can be triangulated, and in chapter 5 we investigate the combinatorial features of a
triangulation, or simplicial complex.

In Chapter 7 we prove a global version of the inclusion-exclusion principle for simplicial
complexes known as the Möbius inversion formula. Armed we this result, we then explain
how to compute the valuations of a polyhedron using data coming form a triangulation.

In Chapter 8 we use the technique of integration with respectto the Euler characteristic
to produce combinatorial versions of Morse theory and Gauss-Bonnet formula. In the end,
we arrive at an explicit formula relating the Euler characteristic of a polyhedron in terms of
measurements taken at vertices. These measurements can be interpreted either as curvatures,
or as certain averages of Morse indices.
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The preceding list says little about why one would be interested in these topics in the first
place. Consider a coffee cup and a donut. Now, a topologist would you tell you that these
two items are “more or less the same.” But that’s ridiculous!How many times have you eaten
a coffee cup? Seriously, even aside from the fact that they are made of different materials,
you have to admit that there is a geometric difference between a coffee cup and a donut. But
what? More generally, consider the shapes around you. What is it that distinguishes them
from each other, geometrically?

We know certain functions, such as the Euler characteristicand the volume, tell part of the
story. These functions share a number of extremely useful properties such as the inclusion-
exclusion principle, invariance, and “continuity”. This motivates us to consider all such
functions. But what are all such functions? In order to applythese tools to study polyconvex
sets, we must first understand the tools at our disposal. Our attempts described in the previous
paragraphs result in a full characterization of valuationson polyconvex sets, and even lead
us to a number of useful and interesting formulae for computing these numbers.

We hope that our efforts to these ends adequately communicate this subject’s richness,
which has been revealed to us by our research advisor Liviu Nicolaescu. We would like to
thank him for his enthusiasm in working with us. We would alsolike to thank Professor
Connolly for his dedication in directing the Notre Dame REU and the National Science
Foundation for supporting undergraduate research.
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§7.2. The Möbius Function of a Simplicial Complex 60
§7.3. The Local Euler Characteristic 65
8. Morse theory on polytopes inR3 69
§8.1. Linear Morse Functions on Polytopes 69
§8.2. The Morse Index 71
§8.3. Combinatorial Curvature 73
References 80



GEOMETRIC VALUATIONS 5

References 80



6 CORDELIA E. CSAR, RYAN K. JOHNSON, AND RONALD Z. LAMBERTY

1. Valuations on lattices of sets

§1.1. Valuations.

Definition 1.1. (a) For every setS we denote byP (S) the collection of subsets ofS and by
Map(S,Z) the set of functionsf : S → Z. The indicator or characteristicfunction of a
subsetA ⊂ S is the functionIA ∈ Map(S,Z) defined by

IA(s) =

{
1 s ∈ A

0 s 6∈ A

(b) If S is a set then anS-lattice (or a lattice of sets) is a collectionL ⊂ P (S) such that

∅ ∈ L, A, B ∈ L =⇒ A ∩ B, A ∪ B ∈ L.

(c) IsL is anS-lattice then a subsetG ∈ L is calledgeneratingif

∅ ∈ G and A, B ∈ G =⇒ A ∩ B ∈ G,

and everyA ∈ L is a finite union of sets inG. ⊓⊔

Definition 1.2. Let G be an Abelian group andS a set.

(a) A G-valuationon anS-lattice of sets is a functionµ : L → G satisfying the following
conditions:

(a1)µ(∅) = 0
(a2)µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B). (Inclusion-Exclusion)

(b) If G is a generating set of theS-latticeL, then aG-valuation onG is a functionµ : G → G
satisfying the following conditions:

(b1)µ(∅) = 0
(b2)µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B), for everyA, B ∈ G such thatA ∪ B ∈ G. ⊓⊔

The inclusion-exclusion identity in Definition1.2implies thegeneralized inclusion-exclusion
identity

µ(A1 ∪A2 ∪ · · · ∪An) =
∑

i

µ(Ai)−
∑

i<j

µ(Ai ∩Aj) +
∑

i<j<k

µ(Ai ∩Aj ∩Ak) + · · · (1.1)

Example 1.3. (a) (The universal valuation) SupposeS is a set. Observe thatMap(S,Z) is a
commutative ring with1. The map

I• : P (S) → Map(S,Z)

given by
P (S) ∋ A 7→ IA ∈ Map(S,Z)

is a valuation. This follows from the fact that the indicatorfunctions satisfy the following
identities.

IA∩B = IAIB (1.2a)

IA∪B = IA + IB − IA∩B = IA + IB − IAIB = 1 − (1 − IA)(1 − IB). (1.2b)
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(b) SupposeS is a finite set. Then thecardinalitymap

# : P (S) → Z, A 7→ #A := the cardinality ofA

is a valuation.
(c) SupposeS = R2, R = R andL consists of measurable bounded subsets of the Euclidean
space. The map which associates to eachA ∈ L its Euclidean area,area(A), is a real valued
valuation. Note that the lattice point count map

λ : L → Z, A 7→ #(A ∩ Z2)

is aZ-valuation.
(d) LetS andL be as above. Then the Euler characteristic defines a valuation

χ : L → Z, A 7→ χ(A). ⊓⊔

If (G, +) is an Abelian group andR is a commutative ring with1 then we denote by
HomZ(G, R) the set of group morphismsG → R, i.e. the set of maps

ϕ : G → R

such that

ϕ(g1 + g2) = ϕ(g1) + ϕ(g2), ∀g1, g2 ∈ G.

We will refer to the maps inHomZ(G, R) asZ-linear maps fromG to R.
SupposeL is an S-lattice. We denote byS(L) the (additive) subgroup ofMap(S,Z)

generated by the functionsIA, A ∈ L. We will refer to the functions inS(L) asL-simple
functions, or simple functions if the latticeL is clear from the context.

Definition 1.4. SupposeL is anS-lattice, andG is an Abelian group. AnG-valued integral
onL is aZ-linear map

∫
: S(L) → G, S(L) ∋ f 7−→

∫
f ∈ G. ⊓⊔

Observe that anyG-valued integral on anS-latticeL defines a valuationµ : L → G by
setting

µ(A) :=

∫
IA.

The inclusion-exclusion formula forµ follows from (1.2a) and (1.2b). We say thatµ is the
valuation induced by the integral. When a valuation is induced by an integral we will say
that thevaluation induces an integral.

In general, a generating set of a lattice has a much simpler structure and it is possible to
construct many valuations on it. A natural question arises:Is it possible to extend to the
entire lattice a valuation defined on a generating set? The next result describes necessary and
sufficient conditions for which this happens.
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§1.2. Extending Valuations.

Theorem 1.5(Groemer’s Integral Theorem). Let G be a generating set for a latticeL and
let µ : G → H be a valuation onG, whereH is an Abelian group. The following statements
are equivalent.

(1) µ extends uniquely to a valuation onL.
(2) µ satisfies the inclusion-exclusion identities

µ(B1 ∪ B2 ∪ · · · ∪ Bn) =
∑

i

µ(Bi) −
∑

i<j

µ(Bi ∩ Bj) + · · ·

for everyn ≥ 2 and anyBi ∈ G such thatB1 ∪ B2 ∪ · · · ∪ Bn ∈ G.
(3) µ induces an integral on the space of simple functionsS(L).

Proof. We follow closely the presentation in [KR , Chap.2].

• (1) =⇒ (2). Note that the second statement is not trivial becauseB1 ∪ · · · ∪ Bn−1 is
not necessarily inG. Suppose the valuationµ extends uniquely to a valuation onL. Then
µ satisfies the inclusion exclusion identityµ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B) for all
A, B ∈ L. SinceB1 ∪ · · · ∪ Bn−1 ∈ L even if it is not inG, we can apply the inclusion-
exclusion identity repeatedly to obtain the result.

• (2) =⇒ (3). We wish to construct a linear map
∫

: S(L) → H. To do this, we first note
that by (1.2b) any function,f in S(L) can be written as

f =

m∑

i=1

αiIKi
,

whereKi ∈ G andαi ∈ Z. We thus define an integral as follows:
∫ m∑

i=1

αiIKi
dµ :=

m∑

i=1

αiµ(Ki).

This map might not be well-defined sincef could be represented in different ways as a linear
combination of indicator functions of generating sets. We thus need to show that the above
map is independent of such a representation. We argue by contradiction and we assume that
f has two distinct representations

f =
∑

γiIAi
=
∑

βiIBi
,

yet ∑
γiµ(Ai) 6=

∑
βiµ(Bi).

Thus, subtracting these equations and renaming the terms appropriately, we are left with the
situation

m∑

i=1

αiIKi
= 0 and

m∑

i=1

αiµ(Ki) 6= 0. (1.3)

Now we label the intersections

L1 = K1, . . . , Lm = Km, Lm+1 = K1 ∩ K2, Lm+2 = K1 ∩ K3, . . .
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such thatLi ⊂ Lj ⇒ j < i. This can be done because we have a finite number of sets. We
note that all theLi’s are inG, since theKi’s and their intersections are inG. We then rewrite
(1.3) in terms of theLi’s as

p∑

i=1

aiILi
= 0 and

p∑

i=1

aiµ(Li) 6= 0. (1.4)

Now takeq maximal such that
p∑

i=q

aiILi
= 0 and

p∑

i=q

aiµ(Li) 6= 0. (1.5)

Note that1 ≤ q < p. Note thataq 6= 0 since thenq would not be maximal.
Let us now observe that

Lq ⊂

p⋃

i=q+1

Li.

Indeed, ifx ∈ Lq r
⋃p

j=q+1 Lj then

ILi
(x) = 0 ∀i 6= q and aq =

p∑

i=q

aiILi
(x) = 0.

This is impossible sinceaq 6= 0. Hence

Lq = Lq ∩

(
p⋃

i=q+1

Li

)
=

p⋃

i=q+1

(Lq ∩ Li).

Let us writeLq ∩ Li = Lji
. Then, sincei > q and by constructionLi ⊂ Lj =⇒ j < i, we

have thatji > q. Thus:

Lq =

p⋃

i=q+1

(Lq ∩ Li) =

p⋃

i=q+1

Lji
.

Then we have

0 6=
n∑

i=q

aiµ(Li) = aqµ(Lq) +

n∑

i=q+1

aiµ(Li)

= aqµ

(
p⋃

i=q+1

Lji

)
+

n∑

i=q+1

aiµ(Li) =

p∑

i=q+1

biµLi,

where the last equality is attained by applying the assumed inclusion/exclusion principle to
the union and regrouping the terms.

We now repeat exactly the same process with the expression involving the indicator func-
tion. Then,

p∑

i=q

aiILi
= aqISp

i=q+1
(Lq∩Li) +

p∑

i=q+1

aiILi
=

p∑

i=q+1

biILi
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Thus,
p∑

i=q+1

biILi
= 0

However, this contradicts the maximality ofq. Hence, the integral map is well defined, and
we are done.

• (3) =⇒ (1). Supposeµ defines an integral on the space ofL-simple functions. Then for
A ∈ G,

∫
IAdµ = µ(A). This motivates us to define an extensionµ̃ of µ to L by

µ̃(A) :=

∫
IAdµ = µ(A), A ∈ L.

This definition is certainly unambiguous and its restriction to G is justµ, so we need only
check that it is a valuation. LetA, B ∈ L. Then,

µ̃(A ∪ B) =

∫
IA∪Bdµ =

∫
IA + IB − IA∩Bdµ

=

∫
IAdµ +

∫
IBdµ −

∫
IA∩Bdµ = µ̃(A) + µ̃(B) − µ̃(A ∩ B).

Thus,µ̃ is an extension ofµ to L. Moreover, it is unique.
Supposeν is another extension ofµ. Then, given anyA ∈ L we can writeA = K1 ∪ . . .∪

Kr for Ki ∈ G. Sinceµ̃ andν are both valuations, both satisfy the generalized inclusion
exclusion principle. Furthermore, since both are extensions ofµ, both agree onG

µ̃(A) = µ̃(K1 ∪ . . . ∪ Kr)

=
r∑

i=1

µ(Ki) −
∑

i<j

µ(Ki ∩ Kj) +
∑

i<j<k

µ(Ki ∩ Kj ∩ Kk) + · · ·

= ν(K1 ∪ . . . ∪ Kr) = ν(A).

Hence, the extension is unique. ⊓⊔
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2. Valuations on pixelations

§2.1. Pixelations. We now study valuations on a small class of easy to understandsubsets
of Rn. We will then use this knowledge to study valuations on much more general subsets of
Rn. One of our main aims is to classify all the “nice” valuationson such subsets. It will turn
out that the ideas and results of this section are analogous to results discussed later.

Definition 2.1. (a) Anaffinek-planeinRn is the translate of ak-dimensional vector subspace
of Rn. A hyperplanein Rn is an affine(n − 1)-plane.
(b) An affine transformationof Rn is abijectionT : Rn → Rn such that

T (λ~u + (1 − λ)~v) = λT~u + (1 − λ)T~v, ∀λ ∈ R, ~u, ~v ∈ Rn.

The setAff(Rn) of affine transformations ofRn is a group with respect to the composition
of maps. ⊓⊔

Definition 2.2. An (orthogonal)parallelotopein Rn a compact setP of the form

P = [a1, b1] × · · · [an, bn], ai ≤ bi, i = 1, · · ·n. ⊓⊔

We will often refer to an orthogonal parallelotope as a parallelotope or even just abox.

Remark2.3. It is entirely possible for any number of the intervals defining an orthogonal
parallelotope to have length zero. Finally, note that the intersections of two parallelotopes is
again a parallelotope. ⊓⊔

We denote byPar(n) the collection of parallelotopes inRn and we define apixelationto
be a finite union of parallelotopes. Observe that the collection Pix(n) of pixelations inRn is
a lattice, i.e. it is stable under finite intersections and unions.

Definition 2.4. (a) A pixelationP ∈ Pix(n) is said to havedimensionn (or full dimension)
if P is not contained in a finite union of hyperplanes.
(b) A pixelationP ∈ Pix(n) is said to havedimensionk (k ≤ n) if P is contained in a finite
union ofk-planes but not in a finite union of (k − 1)-planes. ⊓⊔

The top part of Figure1 depicts possible boxes inR2, while the bottom part depicts a
possible pixelation inR2.

§2.2. Extending Valuations from Par to Pix. By definition,Par(n) is a generating set of
Pix(n). Consequently, we would like to know if we can extend valuations fromPar(n) to
Pix(n). The following theorem shows that we can do so whenever the valuations map into a
commutative ring with1.

Theorem 2.5. Let R be a commutative ring with1. Then any valuationµ : Par(n) → R
extends uniquely to a valuation onPix(n).

Proof. Due to Groemer’s Integral Theorem, all we need to show is thatµ gives rise to an
integral on the vector space of functions generated by the indicator functions of boxes. Thus



12 Csar-Johnson-Lamberty

FIGURE 1. Planar pixelations.

it suffices to show that
m∑

i=1

αiIPi
= 0 =⇒

m∑

i=1

αiµ(Pi) = 0,

where thePi’s are boxes.
We proceed by induction on the dimensionn. If the dimension is zero, the space only has

one point, and the above claim is true.
Now suppose that the theorem holds in dimensionn − 1. For the sake of contradiction,

we suppose the theorem does not hold for dimensionn. That is, suppose there exist distinct
boxesP1, . . . , Pm such that

m∑

i=1

αiIPi
= 0 and

m∑

i=1

αiµ(Pi) = r 6= 0. (2.1)

Let k be the number of the boxesPi of full dimension. Takek to beminimalover all such
contradictions. We distinguish three cases.

Case 1.k = 0. Since none of the boxes is of full dimension, each is contained in a hyper-
plane. Of all the relations of type (2.1) we choose the one so that the boxes involved are
contained in the smallest possible numberℓ of hyperplanes.

Assume first thatℓ = 1. Then all thePi are contained in a single hyperplane. By the
induction hypothesis, then the integral is well defined, so we have a contradiction.

Thus, we can assume thatℓ > 1. So, there existℓ hyperplanes orthogonal to the coordinate
axes,H1, . . . , Hℓ, such that eachPi is contained in one of them. Without loss of generality,
we may renumber the indices so thatP1 ⊂ H1.

The the restriction toH1 of the first sum in (2.1) is zero so that
m∑

i=1

αiIPi∩H1
= 0.

But, Pi ∩ H1 is a subset of the a hyperplaneH1 and we can apply the induction hypothesis
to conclude that

m∑

i=1

αiµ(Pi ∩ H1) = 0.
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Subtracting the above two equations from (2.1) we see that
m∑

i=1

αi(IPi
− IPi∩H1

) = 0 and
m∑

i=2

αi(µ(Pi) − µ(Pi ∩ H1)) = r 6= 0.

The above sums take the same form (2.1), but we see that the boxesPj ⊂ H1 disappear since
Pj = Pj ∩ H1. Thus we obtain new equalities of the type (2.1) but the boxes involved are
contained in fewer hyperplanes,H2, · · · , Hℓ contradicting the minimality ofℓ.

Case 2. k = 1. We may assume the top dimensional box isP1. ThenP2 ∪ · · · ∪ Pm is
contained in a finite union of hyperplanesH1, · · · , Hν perpendicular to the coordinate axes.
Observe that

(H1 ∪ · · · ∪ Hν) ∩ P1 ( P1.

Indeed,

vol
(
(H1 ∪ · · · ∪ Hν) ∩ P1

)
≤

ν∑

j=1

vol (Hj ∩ P1) = 0 < vol (P1),

so that
∃x0 ∈ P1 r (H1 ∪ · · · ∪ Hν).

Using the identity
∑

αiIPi
= 0 at x0 found above we deduceα1 = 0 which contradicts the

minimality of k.

Case 3.k > 1. We can assume that the top dimensional boxes areP1, · · · , Pk.
Choose a hyperplaneH such thatP1 ∩ H is a facet ofP1, i.e. a face ofP1 of highest

dimension such that it is not all ofP1. H has two associated closed half-spacesH+ andH−.
H+ is singled out by the requirementP1 ⊂ H+. Recall that

m∑

i=1

αiIPi
= 0.

Restricting toH+ we deduce
m∑

i=1

αiIPi∩H+ = 0.

Likewise,
m∑

i=1

αiIPi∩H = 0 and
m∑

i=1

αiIPi∩H− = 0 (2.2)

Note thatPi = (Pi ∩ H+) ∪ (Pi ∩ H−) and(Pi ∩ H+) ∩ (Pi ∩ H−) = Pi ∩ H. Then, since
µ is a valuation, it obeys the inclusion-exclusion rule so

m∑

i=1

αiµ(Pi) =
m∑

i=1

αiµ(Pi ∩ H+) +
m∑

i=1

αiµ(Pi ∩ H−) −
m∑

i=1

αiµ(Pi ∩ H) (2.3)

Since the setsPi ∩ H are in a space of dimensionn − 1, and
m∑

i=1

αiIPi∩H = 0
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we deduce from the induction assumption that
m∑

i=1

αiµ(Pi ∩ H) = 0.

On the other hand,P1 ∩ H− = P1 ∩ H soP1 ∩ H− has dimensionn − 1. We now have a
new collection of boxesPi ∩H− , i = 1, · · · , m of which at mostk − 1 are top dimensional
and satisfy ∑

i

αiIPi∩H− = 0.

The minimality ofk now implies
m∑

i=1

αiµ(Pi ∩ H−) = 0.

Therefore, the equality (2.3) implies
m∑

i=1

αiµ(Pi) =
m∑

i=1

αiµ(Pi ∩ H+) = r. (2.4)

P1 has dimensionn. Then there exist2n hyperplanesH1, . . . , H2n such that

P1 =
2n⋂

i=1

H+
i .

ReplacingPi with Pi ∩ H+ and iterating the above argument we get
m∑

i=1

αiµ(Pi ∩ H+
1 ∩ H+

2 ∩ · · · ∩ H+
2n) =

m∑

i=1

αiµ(Pi ∩ P1) = r. (2.5)

and
m∑

i=1

αiIPi∩P1
= 0. (2.6)

We repeat this argument with the remaining top dimensional boxesP2, . . . , Pk and if we set

P0 := P1 ∩ · · · ∩ Pk, A := α1 + · · ·+ αk

we conclude
m∑

i=1

αiIPi∩P0
= AIP0

+
∑

i>k

αiIPi∩P0
= 0, (2.7a)

m∑

i=1

αiµ(Pi ∩ P0) = Aµ(P0) +
∑

i>k

αiµ(Pi ∩ P0) = r. (2.7b)

In the above sums, at most one of the boxes is top dimensional,which contradicts the mini-
mality of k > 1.

⊓⊔



Valuations on pixelations 15

§2.3. Continuous Invariant Valuations on Pix.

Notation 2.6. We shall denotẽTn the subgroup ofAff(Rn) generated by the translations and
the permutations of coordinates inRn. ⊓⊔

Definition 2.7. A valuationµ onPix(n) is calledinvariant if

µ(gP ) = µ(P ), ∀P ∈ Pix(n), g ∈ T̃n.

and is calledtranslation invariantif the same condition holds for all translationsg. ⊓⊔

We aim to find all the invariant valuations onPix(n). To avoid unnecessary complications,
we will impose a further condition on the valuations.

The final condition we would like on our valuations onPix(n) is that of continuity. Our
valuations are functions onPix(n), which is a collection of compact subsets ofRn. So, in
order for continuity to make any sense, we would like some concept of open sets for this
collection of compact sets. A good way of achieving this goalis to make them into a metric
space by defining a reasonable notion of distance.

Definition 2.8. (a) Let A ⊂ Rn andx ∈ Rn. The distance fromx to A, d(x, A), is the
nonnegative real numberd(x, A) defined by

d(x, A) = inf
a∈A

d(x, a)

whered(x, a) is the Euclidian distance fromx to a
(b) LetK andE be subsets ofRn. Then theHausdorff distanceδ(K, E) is defined by:

δ(K, E) = max

(
sup
a∈K

d(a, E), sup
b∈E

d(K, b)

)
.

(c) A sequence of compact setsKn in Rn convergesto a setK if δ(Kn, K) −→ 0 asn −→
∞. If this is the case, then we writeKn −→ K. ⊓⊔

Remark2.9. If K andE are compact, thenδ(K, E) = 0 if and only if K = E. That is, the
Hausdorff distance is positive definite on the set of compactsets inRn. ⊓⊔

Let Bn be the unit ball inRn. ForK ⊂ Rn andǫ > 0, set

K + ǫBn := {x + ǫu | x ∈ K andu ∈ Bn}.

The following lemma (whose proof is clear) gives a hands-on understanding of how the
Hausdorff distance behaves.

Lemma 2.10.LetK andE be compact subsets ofRn. Then

δ(K, E) ≤ ǫ ⇐⇒ K ⊂ E + ǫBn andE ⊂ K + ǫBn. ⊓⊔

The above result implies that the Hausdorff distance is actually a metric. The next result
summarizes this.

Proposition 2.11.The collection of compact subsets ofRn together with the Hausdorff dis-
tance forms a metric space. ⊓⊔
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Definition 2.12. Let µ : Pix(n) → R be a valuation onPix(n). Thenµ is called (box)
continuousif µ is continuous on boxes that is for any sequence of boxesPi converging in the
Hausdorff metric to a boxP we have

µ(Pi) −→ µ(P ) ⊓⊔

We want to classify the continuous invariant valuations onPix(n). We start by considering
the problem inR1. An element ofPix(1) is a finite union of closed intervals. ForA ∈ Pix(1),
set

µ1
0(A) = the number of connected components ofA

µ1
1(A) = the length ofA

Both are continuous invariant valuations onPix(1). It is clear that they are invariant under
T̃n, which is, in this case, the group of translations. It is clear that both are continuous.

Proposition 2.13. Every continuous invariant valuationµ : Pix(1) → R is a linear combi-
nation ofµ1

0 andµ1
1.

Proof. Let c = µ(A), whereA is a singleton set{x}, x ∈ R. Now let µ′ = µ − cµ1
0. µ′

vanishes on points by construction. Now, define a continuousfunctionf : [0,∞)−→R by
f(x) = µ′([0, x]). µ′ is invariant becauseµ andµ1

0 are invariant. Then, ifA is a closed
interval of lengthx, µ′(A) = f(x) since we can simply translateA to the origin.

Now observe that

f(x + y) = µ′([0, x + y]) = µ′([0, x]∪ µ′([x, x + y]) = µ′(0, x]) + µ′([x, x + y])− µ′({x})

= µ′([0, x]) + µ′([x, x + y]) = f(x) + f(y).

Sincef is continuous and linear, we deduce that there exists a constantr such thatf(x) = rx,
for all x ≥ 0. Therefore,µ′ = rµ1

1 and our assertion follows from the equality

µ = µ′ + cµ0 = rµ1 + cµ0.

⊓⊔

We now move ontoRn. Let µn(P ) be the volume of a pixelationP of dimensionn.

Definition 2.14. Thek-th elementary symmetric polynomialin the variablesx1, . . . , xn the
polynomialek(x1, . . . , xn) such thate0 = 1 and

ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1 · · ·xik 1 ≤ k ≤ n. ⊓⊔

Observe that we have the identity
n∏

j=1

(1 + txj) =

n∑

k=0

ek(x1, · · · , xn)tk. (2.8)

Theorem 2.15.For 0 ≤ k ≤ n, there exists a unique continuous valuationµk on Pix(n)

invariant underT̃n, such thatµk(P ) = ek(x1, . . . , xn) wheneverP ∈ Par(n) with sides of
lengthx1, . . . , xn.
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Proof. Let µ1
0, µ

1
1 : Pix(1) → R be the valuations described above. We setµ1

t = µ1
0 + tµ1

1,
wheret is a variable. Then,

µn
t = µ1

t × µ1
t × · · · × µ1

t : Par(n) → R[t]

is an invariant valuation on parallelotopes with values in the ring of polynomials with real
coefficients. By Groemer’s Extension Theorem (2.5), µn

t extends to a valuation onPix(n)
which must also be invariant. Using (2.8) we deduce

µn
t ([0, x1] × · · · × [0, xn]) =

n∏

j=1

(1 + txj) =
n∑

k=0

ek(x1, · · · , xn)tk.

For any parallelotopeP we can write

µt(P ) =
n∑

k=0

µn
k(P )tk.

The coefficientsµn
k(P ) define continuous invariant valuations onPar(n) which extend to

continuous invariant valuations onPix(n) such that

µn
t (S) =

n∑

k=0

µn
k(S)tk, ∀S ∈ Pix(n) µn

k([0, x1] × · · · × [0, xn]) = ek(x1, · · · , xn).

⊓⊔

Theorem 2.16.The valuationsµi onPix(n) are normalized independently of the dimension
n, i.e. µm

i (P ) = µn
i (P ) for all P ∈ Pix(n).

Proof. This follows from the preceding theorem and the definition ofan elementary sym-
metric function. IfP ∈ Par(n) and we consider the sameP ∈ Par(k), wherek > n, P
remains a cartesian product of the same intervals, except there are some additional intervals
of length0, which do not effectµi. ⊓⊔

Since the valuationµk(P ) is independent of the ambient space,µk is called thek-th in-
trinsic volume. µ0 is theEuler characteristic. µ0(Q)=1 for all non-emptyboxes.

Theorem 2.17.Let H1 andH2 be complementary orthogonal subspaces ofRn spanned by
subsets of the given coordinate system with dimensionsh andn − h, respectively. LetPi be
a parallelotope inHi and letP = P1 × P2.

µi(P1 × P2) =
∑

r+s=i

µr(P1)µs(P2) (2.9)

The identity is therefore valid whenP1 andP2 are pixelations since both sides of the above
equalities define valuations onPar(n) which extend uniquely to valuations onPar(n).

Proof. SupposeP1 has sides of lengthx1, . . . , xh andP2 has sides of lengthy1, . . . , yn−h.
Then,

∑

r+s=i

µr(P1)µs(P2) =
∑

r+s=i

(
∑

1≤j1<···<jr≤h

xj1 · · ·xjh

∑

1≤k1<···<ks≤n−h

yk1
· · · jks

)



18 Csar-Johnson-Lamberty

Let jr+1 = k1 + h, . . . , ji = jr+s = ks + h and letxh=1 = y1, . . . , xn = yn−h, simply
relabelling. Then,

∑

r+s=i

µr(P1)µs(P2) =
∑

r+s=i




∑

1≤j1<···<jr≤h

xj1 · · ·xjr

∑

h+1≤jr+1<···<ji≤n

xjr+1
· · ·xji




=
∑

1≤j1<···<jr<jr+1<···<ji≤n

xj1 · · ·xji
= µi(P1 × P2)

sinceP1 × P2 is simply a parallelotope of which we know how to computeµi. ⊓⊔

§2.4. Classifying the Continuous Invariant Valuations on Pix. At this point we are very
close to a full description of the continuous invariant valuations onPix(n).

Definition 2.18. A valuationµ on Pix(n) is said to besimple if µ(P ) = 0 for all P of
dimension less thann. ⊓⊔

Theorem 2.19(Volume Theorem forPix(n)). Letµ be a translation invariant, simple valu-
ation defined onPar(n) and suppose thatµ is either continuous or monotone. There exists
c ∈ R such thatµ(P ) = cµn(P ) for all P ∈ Pix(n), that isµ is equal to the volume, up to a
constant factor.

Proof. Let [0, 1]n denote the unit cube inRn and letc = µ([0, 1])n. Then,µ
([

0, 1
k

]n)
= c

kn

for all k > 0 ∈ Z. Therefore,µ(C) = cµn(C) for every boxC of rational dimensions
with sides parallel to the coordinate axes sinceC can be built from[0, 1

k
]n cubes for somek.

Sinceµ is either continuous or monotone andQ is dense inR, thenµ(C) = cµn(C) for C
with real dimensions since we can find a sequence of rationalCn converging toC. Then, by
inclusion-exclusion,µ(P ) = cµn(P ) for all P ∈ Pix(n) (since it works for parallelotopes,
we can extend it to a valuation on pixelations). ⊓⊔

Theorem 2.20.The valuationsµ0, µ1, . . . , µn form a basis for the vector space of all con-
tinuous invariant valuations defined onPix(n).

Proof. Let µ be a continuous invariant valuation onPix(n). Denote byx1, . . . , xn be the
standard Euclidean coordinates onRn and letHj denote the hyperplane defined by the equa-
tion xj = 0. The restriction onµ to Hj is an invariant valuation on pixelations inHj.
Proceeding by induction (takingn = 1 as a base case, which was proven in Proposition2.13,
assume

µ(A) =

n−1∑

i=0

ciµi(A) ∀A ∈ Pix(n) such thatA ⊆ Hj (2.10)

Theci are the same for allHj sinceµ0, . . . , µn−1 are invariant under permutation. Then,µ−∑n−1
i=0 ciµi vanishes on all lower dimensional pixelations inPix(n) since any such pixelation

is in a hyperplane parallel to one of theHj ’s (since theµi’s are translationally invariant).
Then, by Theorem2.19we deduce

µ −
n−1∑

i=0

ciµi = cnµn
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which proves our claim. ⊓⊔

If we can find a continuous invariant valuation onPix(n), then we know that it is a linear
combination of theµi’s. However, we would like a better description, if at all possible. The
following corollary yields one.

Definition 2.21. A valuationµ is said to behomogenousof degreek > 0 if µ(αP ) =
αkµ(P ) for all P ∈ Pix(n) and allα ≥ 0.

Corollary 2.22. Letµ be a continuous invariant valuation defined onPix(n) that is homoge-
nous of degreek for some0 ≤ k ≤ n. Then there existsc ∈ R such thatµ(P ) = cµk(P ) for
all P ∈ Pix(n).

Proof. There existc1, . . . , cn ∈ R such thatµ =
n∑

i=0

ciµi. If P = [0, 1]n, then for allα > 0,

µ(αP ) =

n∑

i=0

ciµi(αP ) =

n∑

i=0

ciα
iµi(P ) =

n∑

i=0

(
n

i

)
ciαi

Meanwhile,

µ(αP ) = αkµ(P ) = αk
n∑

i=0

ciµi(P ) = αk
n∑

i=0

ci

(
n

i

)

so (
n∑

i=0

ci

(
n

i

))
αk =

n∑

i=0

ci

(
n

i

)
αi

meaning thatci = 0 for i 6= k. ⊓⊔
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3. Valuations on polyconvex sets

Now that we understand continuous invariant valuations on avery specific collection of sub-
sets ofRn, we recognize the limitations of this viewpoint. Notably wehave said nothing of
valuations on exciting shapes such as triangles and disks. To include these, we dramatically
expand our collection of subsets and again try to classify the continuous invariant valuations.
This effort will turn out to be a far greater undertaking.

§3.1. Convex and Polyconvex Sets.

Definition 3.1. (a) K ⊂ Rn is convexif for any two pointsx andy in K, the line segment
betweenx andy lies inK. We denote byKn the set of all compact convex subsets ofRn.
(b) A polyconvexset is a finite union of compact convex sets. We denote byPolycon(n) the
set of all polyconvex sets inRn. ⊓⊔

Example 3.2.A single point is a compact convex set. If

T := {(x, y ) ∈ R2 | x, y ≥ 0, x + y ≤ 1}.

thenT is a filled in triangle inR2, so thatT ∈ K2. Also, ∂T is a polyconvex set, but not a
convex set. ⊓⊔

One of the most important properties of convex sets is theseparation property.

Proposition 3.3. SupposeC ⊂ Rn is a closed convex set andx ∈ RnrC. Then there exists
a hyperplane which separatesx fromC, i.e. x andC lie in different half-spaces determined
by the hyperplane.

Proof. We outline only the main geometric ideas of the constructionof such a hyperplane.
Let

d := dist(x, C).

Then we can find auniquepointy ∈ C such thatd = |y − x|. The hyperplane perpendicular
to the segment[x, y] and intersecting it in the middle will do the trick. ⊓⊔

Definition 3.4. If A is a polyconvex set inRn, then we say thatA is of dimension nor has
full dimensionif A is not contained in a finite union of hyperplanes. Otherwise,we say that
A haslower dimension. ⊓⊔

Remark3.5. Polycon(n) is a distributive lattice under union and intersection. Furthermore,
Kn is a generating set ofPolycon(n). ⊓⊔

We must now explore some tools we can use to understand these compact, convex sets.
The most critical of these is thesupport function. Let 〈−,−〉 denote the standard inner
product onRn and by| − | the associated norm. We set

S
n−1 := {u ∈ Rn; |u| = 1}.
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Definition 3.6. Let K ∈ Kn and nonempty. Then itssupport function, hK : S
n−1 → R,

given by
hK(u) := max

x∈K
〈u, x〉. ⊓⊔

Example 3.7. If K = {x} is just a single point, thenhK(u) = 〈u, x〉 for all u ∈ S
n−1.

Remark3.8. (a) We can characterize the support function in terms of a function onRn as
follows. Let h̃ : Rn−→R be such that̃h(tu) = th̃(u) for all u ∈ S

n−1 andt ≥ 0. Let h be
the restriction of̃h to S

n−1. Thenh is a support function of a compact convex set inRn if
and only if

h̃(x + y) ≤ h̃(x) + h̃(y)

for all x, y ∈ Rn.
(b) Consider the hyperplaneH(K, u) = {x ∈ Rn | 〈x, u〉 = hK(u)} and the closed half-
spaceH(K, u)− = {x ∈ Rn | 〈x, u〉 ≤ hK(u)}. Then it is easy to see thatH(K, u)
is “tangent” to∂K and thatK lies wholly in H(K, u)− for all u ∈ S

n−1. The separation
property described in Proposition3.3implies

K =
⋂

u∈Sn−1

H(K, u)−.

In other words,K is uniquelydetermined by its support function. ⊓⊔

Definition 3.9. Let K, L be inKn. Then we define

K + L := {x + y | x ∈ K, y ∈ L}

and callK + L theMinkowski sumof K andL.

Remark3.10. We want to point out that for everyK, L ∈ Kn we have

K ⊂ L ⇐⇒ hk(u) ≤ hk(u), ∀u ∈ S
n−1

and
hK+L(u) = max

x∈K,y∈L
(〈x + y, u〉) = max

x∈K,y∈L
(〈x, u〉 + 〈y, u〉)

= max
x∈K

(〈x, u〉) + max
y∈L

(〈y, u〉) = hK(u) + hL(u). ⊓⊔

Remark3.11. Recall that for compact setsK andL in Rn, the Hausdorff metric satisfies
δ(K, L) ≤ ǫ if and only if K ⊂ L + ǫB andL ⊂ K + ǫB. In light of this fact and the
preceding comments, one can show that

δ(K, L) = sup
u∈Sn−1

|hK(u) − hL(u)|.

That is, the Hausdorff metric on compact convect subsets ofRn is given by the uniform
metric on the set of support functions of compact convex sets. ⊓⊔

Now that we have some tools to understand these compact convex sets, we will soon
wish to consider valuations on them. But we don’t want just any valuations. We would like
our valuations to be somehow tied to the shape of the convex set alone, rather than where
the convex set is in the space. So, we would like some sort of invariance under types of
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transformations. Furthermore, to make things nicer we would like to restrict our attention to
those valuations which are somehow continuous. We formalize these notions.

It is easiest to begin with continuity. Recall that the Hausdorff distance turns the set of
compact subsets ofRn into a metric space. SinceKn is a subset of these, continuity is a well
defined concept for elements ofKn. (We restrict our attention to these elements and not all
of Polycon(n) since dimensionality problems arise when considering limits of polyconvex
sets.)

Definition 3.12. A valuationµ : Polycon(n) → R is said to beconvex continuous(or simply
continuous where no confusion is possible) if

µ(An)−→µ(A)

wheneverAn, A are compact, convex sets andAn−→A. ⊓⊔

Notation 3.13. Let En be the Euclidean group ofRn, which is the subgroup of affine trans-
formations ofRn generated by translations and rotations. For anyg ∈ En there exist
T ∈ SO(n) andv ∈ Rn such that

g(x) = T (x) + v, ; ∀x ∈ Rn.

The elements ofEn are also known asrigid motions.

Definition 3.14. Let µ : Polycon(n) → R be a valuation. Thenµ is said to berigid motion
invariant (or invariant when no confusion is possible) if

µ(A) = µ(gA)

for all A ∈ Polycon(n) andg ∈ En. If the same holds only for translationsg thenµ is said
to betranslation invariant. ⊓⊔

Our aim is to understand the set of convex-continuous invariant valuations onPolycon(n),
which we will denote byVal(n). Note that for everym ≤ n we have an inclusion

Polycon(m) ⊂ Polycon(n)

given by the natural inclusionRm →֒ Rn. In particular, any continuous invariant valuation
µ : Polycon(n) → R induces by restriction a valuation onPolycon(m). In this way we
obtain for everym ≤ n a restriction map

Sm,n : Val(n) → Val(m)

such thatSn,n is the identity map and for everyk ≤ m ≤ n we haveSk,n = Sk,m ◦ Sm,n, i.e.
the diagram below commutes.

Val(n) Val(m)

Val(k)

wSm,n''''')Sk,n u Sk,m
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Definition 3.15. An intrinsic valuationis asequence of convex-continuous, invariantvalua-
tionsµn ∈ Val(n) such that for everym ≤ n we have

µm = Sm,nµ
n.

⊓⊔

Remark3.16. (a) To put the above definition in some perspective we need to recall a classical
notion. A projective sequenceof Abelian groups is a sequence of Abelian groups(Gn)n≥1

together with a family of group morphisms

Sm,n : Gn → Gm, m ≤ n

satisfying
Snn = 1Gn

, Skn = Skm ◦ Smn, ∀k ≤ m ≤ n..

Theprojective limitof a projective sequence{Gn; Smn } is the subgroup

limprojn Gn ⊂
∏

n

Gn

consisting of sequences(gn)n≥1 satisfying

gn ∈ Gn, gm = Sm,ngn, ∀m ≤ n.

The sequence(Val(n)) together with the mapsSmn define a projective sequence and we set

Val(∞) := limprojn Val(n) ⊂
∏

n≥0

Val(n).

An intrinsic measure is then an element ofVal(∞).
Similarly if we denote byValPix(n) the space of continuous, invariant valuations on

Pix(n) the we obtain again a projective sequence of vector spaces and an element in the
corresponding projective limit will be an intrinsic valuation in the sense defined in the previ-
ous section.

(b) Observe that sinceValPix(n) ⊂ Val(n) we have a natural map

Φn : Val(n) → ValPix(n).

A priori this linear map need be neither injective nor surjective. However, in a later section
we will show that this map is a linear isomorphism. ⊓⊔

§3.2. Groemer’s Extension Theorem. We now show that any convex-continuous valua-
tion onKn can be extended toPolycon(n). Thus, we can confine our studies to continuous
valuations on compact, convex sets.

Theorem 3.17. A convex, continuous valuationµ, on Kn can be extended (uniquely) to
Polycon(n). Moreover, ifµ is also invariant, then so is its extension.

Proof. Suppose thatµ is a convex-continuous valuation onKn. In light of Groemer’s integral
theorem, we need only show that the integral defined byµ on the space of indicator functions
is well defined.

We proceed by induction on dimension. In dimension zero, this proposition is trivial, and
in dimension one,Kn is the same asPar(n) andPolycon(n) is the same asPix(n). Hence,
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we have already done this dimension as well. So, suppose the theorem holds for dimension
n − 1.

Suppose for the sake of contradiction that the integral defined byµ is not well defined. Us-
ing the same technique as in Theorem2.5, Groemer’s Extension Theorem for parallelotopes,
suppose that there existK1, . . . , Km ∈ Kn such that

m∑

i=1

αiIKi
= 0 (3.1)

while
m∑

i=1

αiµ(Ki) = r 6= 0 (3.2)

Takem to be the least positive integer such that (3.1) and (3.2) exist.
Choose a hyperplaneH with associated closed half-spacesH+ andH− such thatK1 ⊂

Int(H+). Recall thatIA∩B = IAIB. Thus, in light of equation (3.1), we can multiply and get
m∑

i=1

αiIKi∩H+ = 0

as well as
m∑

i=1

αiIKi∩H− = 0 and
m∑

i=1

αiIKi∩H = 0.

Now note thatKi = (Ki ∩H+) ∪ (Ki ∩H−) and thatH+ ∩H− = H. Thus, sinceµ is a
valuation, we may apply this decomposition and see that

m∑

i=1

αiµ(Ki) =
m∑

i=1

αiµ(Ki ∩ H+) +
m∑

i=1

αiµ(Ki ∩ H−) −
m∑

i=1

αiµ(Ki ∩ H).

Since eachKi ∩H lies insideH, a space of dimensionn− 1, we deduce from the induction
assumption that

m∑

i=1

αiµ(Ki ∩ H) = 0.

Moreover, since we tookK1 ⊂ Int (H+), we have

IK1∩H− = 0,

and the sum
m∑

i=1

αiµ(Ki ∩ H−) =

m∑

i=2

αiµ(Ki ∩ H−)

must be zero due to the minimality ofm. Thus, from (3.2), we have

0 6= r =
m∑

i=1

αiµ(Ki) =
m∑

i=1

αiµ(Ki ∩ H+).
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Thus we have replacedKi by Ki ∩ H+ in (3.1) and (3.2). We now repeat this process. By
taking a countable dense subset, choose a sequence of hyperplanes,H1, H2, . . . such that
K1 ⊂ Int(H+

i ), and

K1 =
⋂

H+
i .

Thus, iterating the proceeding argument, we have that
m∑

i=1

αiµ(Ki ∩ H+
1 ∩ · · · ∩ H+

q ) = r 6= 0

for all q ≥ 1. Sinceµ is continuous, we can take the limit asq → ∞, giving
m∑

i=1

αiµ(Ki ∩ K1) = r 6= 0,

while applying the same type of argument to (3.1) yields
m∑

i=1

αiIKi∩K1
= 0.

Thus, we find ourselves in exactly the same position we were with equations (3.1) and (3.2);
therefore, we may repeat the entire argument forK2, . . . , Km, giving

m∑

i=1

αiµ(Ki ∩ K1 ∩ · · · ∩ Km) =
m∑

i=1

αiµ(K1 ∩ · · · ∩ Km)

=

(
m∑

i=1

αi

)
· µ(K1 ∩ · · · ∩ Km) = r 6= 0 (3.3a)

and
m∑

i=1

αiIK1∩···∩Km
=

(
m∑

i=1

αi

)
(IK1∩···∩Km

) = 0. (3.4)

The equalities (3.3a) and (3.4) contradict each other. The first implies thatα1 + · · ·+αm 6= 0
andK1∩· · ·∩Km 6= ∅, while from the second implies thatα1+· · ·+αm = 0 or IK1···∩Km

= 0.
Thus, the integral must be well defined, so there exists a unique extension ofµ to Poly-

con(n). ⊓⊔

§3.3. The Euler Characteristic.

Theorem 3.18.(a) There exists anintrinsic valuationµ0 = (µn
0 )n≥0 uniquely determined by

µn
0 (C) = 1, ∀C ∈ Kn.

(b) SupposeC ∈ Polycon(n), andu ∈ S
n−1. Defineℓu : Rn → R by ℓu(x) = 〈u, x〉 and set

Ht := ℓ−1
u (t), Ct := C ∩ Ht, Fu,C(t) := µ0(Ct).
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ThenFu,C(t) is a simple function, i.e. it is a linear combination of integral coefficients of
characteristic functionsIS, S ∈ K1. Moreover

µ0(C) =

∫
ICdµ0 =

∫
Fu,C(t)dµ0(t) =

∑

t

(
Fu,C(t) − Fu,C(t + 0)

)
. (Fubini )

Proof. Part (a) follows immediately from Theorem3.17. To establish the second part we use
again Theorem3.17. For everyC ∈ Polycon(n) define

λu(C) :=

∫
Fu,C(t)dµ0(t)

Observe that for everyt ∈ R and everyC1, C2 ∈ Polycon(n) we have

Fu,C1∪C2
(t) = µ0

(
Ht ∩ (C1 ∪ C2)

)
= µ0

(
(Ht ∩ C1) ∪ (Ht ∩ C2)

)

= µ0(Ht ∩ C1) + µ0(Ht ∩ C2) − µ0

(
(Ht ∩ C1) ∩ (Ht ∩ C2)

)

= Fu,C1
(t) + Fu,C2

(t) − Fu,C1∩C2
(t).

Observe that ifC ∈ Kn thenFu,C is the characteristic function of a compact interval⊂ R1.
This shows thatχu,C is a simple function for everyC ∈ Polycon(n). Moreover

∫
Fu,C1∪C2

dµ0 =

∫
Fu,C1

dµ0 +

∫
Fu,C2

dµ0 −

∫
Fu,C1∩C2

dµ0

so that the correspondence
Polycon(n) ∋ C 7→ λu(C)

is a valuation such thatλu(C) = 1, ∀C ∈ Kn. From part (a) we deduce
∫

Fu,Cdµ0 = λu(C) = µ0(C).

We only have to prove that for every simple functionh(t) onR1 we have
∫

h(t)dµ0(t) = L1(h) :=
∑

t

(
h(t) − h(t + 0)

)
.

To achieve this observe thatL1(h) is linear and convex continuous inh and thus defines an
integral on the space of simple functions. Moreover ifh is the characteristic function of a
compact interval thenL1(h). Thus by Theorem3.17we deduce

L1 =

∫
dµ0.

⊓⊔

Remark3.19. Denote byS(Rn) the the Abelian subgroup ofMap(Rn,Z) generated by indi-
cator functions of compact convex subsets ofRn. We will refer to the elements ofS(Rn) as
simple functions. Thus anyf ∈ S(Rn) can be written non-uniquely as a sum

f =
∑

i

αiICi
, αi ∈ Z, Ci ∈ Kn.
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The Euler characteristic then defines an integral∫
dµ0 : S(Rn) → Z,

∫ (∑

i

αiICi

)
dµ0 =

∑

i

αi.

Theconvolutionof two simple functionsf, g is the functionf ∗ g defined by

f ∗ g(x) :=

∫
f̄x(y) · g(y)dµ0(y),

where
f̄x(y) := f(x − y).

Observe that ifA, B ∈ Kn andA + B is their Minkowski sum then

IA ∗ IB = IA+B

so thatf ∗ g is a simple function for anyf, g ∈ S(Rn). Moreover,

f ∗ g = g ∗ f, ∀f, g ∈ S(Rn).

Finally,f ∗ I{0} = f , for all f ∈ S(Rn) so that
(
S(Rn), +, ∗

)
is a commutative ring with1.⊓⊔

Definition 3.20. A convex polyhedronis an intersection of a finite collection of closed half-
spaces. Aconvex polytopeis acompact convexpolyhedron. Apolytopeis a finite union of
convex polytopes. The polytopes form a distributive sublattice ofPolycon(n).

The dimension of a convex polyhedronP is the dimension of the affine subspaceAff(P )
generated byP . We denote byrelint(P ) the relative interior ofP that is, the interior ofP
relative to the topology ofAff(P ).

Remark3.21. Give a convex polytopeP , the boundary∂P is also a polytope. Therefore,
µ0(∂P ) is defined.

Theorem 3.22. If P ⊂ Rn is a convex polytope of dimensionn > 0, thenµ0(∂P ) =
1 − (−1)n.

Proof. Let u ∈ S
n−1 be a unit vector and defineℓu : Rn → R as before. Using the previous

notation, note thatHt∩∂P = ∂(Ht∩P ) if t is not a boundary point of the intervalℓu(P ) ⊂ R.
Let F : R→ R be defined by

F (t) = µ0(Ht ∩ ∂P ).

We proceed by induction. Forn = 1, we haveµ0(∂P ) = 2 = 1− (−1) since∂P consists of
two distinct points (sinceP is an interval).

Forn > 1, it follows from the induction by hypothesis that

µ0(Ht ∩ ∂P ) = µ0(∂(Ht ∩ P )) = 1 − (−1)n−1 (*)

if t ∈ ℓu(P ) is not a boundary point of the intervalℓu(P ). If t ∈ ∂ℓu(P ), we have

µ0(Ht ∩ ∂P ) = 1 (**)

sinceHt ∩ P is a face ofP and is thus inKn. Finally,

µ0(Ht ∩ ∂P ) = 0 (***)

whenHt ∩ ∂P = ∅.
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We can now compute
∫

F (t)dµ0(t) =
∑

t

(F (t) − F (t + 0))

which vanishes except at the two pointa andb (a < b) where[a, b] = ℓu(P ). Then,
∑

t

(F (t) − F (t + 0)) = F (a) − F (a + 0) + F (b) − F (b + 0).

Now observe thatF (b + 0) = 0 by (*** ), F (b) = F (a) = 1 by (** ) andF (a + 0) =
1 − (−1)n+1 by (* ). Then,

∫
F (t)dµ0(t) = 1 − 1 + (−1)n−1 + 1 = (1) + (−1)n−1 = 1 − (−1)n

⊓⊔

Theorem 3.23.LetP be a compact convex polytope of dimensionk in Rn. Then

µ0(relint(P )) = (−1)k (3.5)

Proof. Sinceµ0 is normalized independently ofn, we can considerP in thek-dimensional
plane inRn in which it is contained. Then,relint(P ) = P r ∂P so

µ0(relint(P )) = µ0(P ) − µ0(∂P ) = (−1)k.

⊓⊔

Definition 3.24. A system of facesof a polytopeP , is a familyF of convex polytopes such
that the following hold.

(a)
⋃

Q∈F

relint(Q) = P .

(b) If Q, Q′ ∈ F andQ 6= Q′, thenrelint(Q) ∩ relint(Q′) = ∅. ⊓⊔

Theorem 3.25(Euler-Schläfli-Poincaré). Let F be a system of faces of the polytopeP , and
let fi be the number of elements inF of dimensioni. Then,µ0 = f0 − f1 + f2 − · · · .

Proof. We have

IP =
∑

Q∈F

Irelint(Q)

so that

µ0(P ) =
∑

Q∈F

µ0(relint(Q)) =
∑

Q∈F

(−1)dimQ =
∑

k≥0

(−1)kfk.

⊓⊔
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§3.4. Linear Grassmannians. We denote byGr(n, k) the set of allk-dimensional sub-
spaces inRn. Observe that the orthogonal groupO(n) acts transitively onGr(n, k) and
the stabilizer of ak-dimensional coordinate plane can be identified with the Cartesian prod-
uct O(k) × O(n − k). ThusGr(n, k) can also be identified with the space of left cosets
O(n)/

(
O(k) × O(n − k)

)
.

Example 3.26.Gr(n, 1) is the set of lines inRn, a.k.a the projective spaceRPn−1. Denote
by S

n−1 the unit sphere inRn. We have a natural map

ℓ : S
n−1 → Gr(n, 1), S

n−1 ∋ x 7→ ℓ(x) = the line through0 andx.

The mapℓ is 2-to-1 since
ℓ(x) = ℓ(−x).

⊓⊔

Gr(n, k) can also be viewed as a subset of the vector space of symmetriclinear operators
Rn → Rn via the map

Gr(n, k) ∋ V 7→ PV = the orthogonal projection ontoV .

As such it is closed and bounded and thus compact. To proceed further we need some
notations and a classical fact.

Denote byωn the volume of the unit ball inRn and byσn−1 the (n − 1)-dimensional
“surface area” ofSn−1. Then

σn−1 = nωn−1

and

ωn =
πn/2

Γ(n/2 + 1)
=





πk

k!
n = 2k

22k+1πkk!

(2k + 1)!
n = 2k + 1

,

whereΓ(x) is the gamma function. We list below the values ofωn for smalln.

n 0 1 2 3 4

ωn 1 2 π 4π
3

π2

2

.

Theorem 3.27. For every positive constantc there exists auniquemeasureµ = µc on
Gr(n, k) which is invariant, i.e.

µ(g · S) = µ(S), ∀g ∈ O(n), S ⊂ Gr(n, k) open subset

and has finite volume, i.e.µ(Gr(n, k)) = c. ⊓⊔

For a proof we refer to [San].

Example 3.28.Here is how we construct such a measure onGr(n, 1). Given an open set
U ⊂ Gr(n, 1) we obtain a subset

Ũ = ℓ−1(U) ⊂ S
n−1
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Ũ consists of two diametrically opposed subsets of the unit sphere. Define

µ(U) =
1

2
area(Ũ)

Observe that for this measure

µ(Gr(n, 1)) =
1

2
area(Sn−1) =

σn−1

2
=

nωn

2
.

⊓⊔

Observe that a constant multiple of an invariant measure is an invariant measure. In par-
ticular

µc = c · µ1.

Define

[n] :=
nωn

2ωn−1

, [n]! := [1] · [2] · · · [n] =
n!

2n
ωn,

[
n

k

]
:=

[n]

[k]![n − k]!

and denote byνn
k the invariant measure onGr(n, k) such that

νn
k (Gr(n, k)) =

[
n

k

]
.

§3.5. Affine Grassmannians. We denote byGraff(n, k) the space ofk-dimensional affine
subspaces (planes) ofRn. For every affinek-plane we denote byΠ(V ) the linear subspace
parallel toV , and byV ⊥ the orthogonal complement ofΠ(V ). We obtain in this fashion a
surjection

Π : Graff(n, k) → Gr(n, k), V 7→ Π(V )

Observe that an affinek-planeV is uniquely determined byV ⊥ and the pointp = V ⊥ ∩ V .
The fiber of the mapΠ : Graff(n, k) → Gr(n, k) over a pointL ∈ Gr(n, k) is the setΠ−1(L)
consisting of all affinek-planes parallel toL. This set can be canonically identified withL⊥

via the map

Π−1(L) ∋ V 7→ V ∩ L⊥ ∈ L⊥.

The mapΠ : Graff(n, k) → Gr(n, k) is an example of vector bundle.
We now describe how to integrate functionsf : Graff(n, k) → R. Define

∫

Graff(n,k)

f(V )dλn
k :=

∫

Gr(n,k)

(∫

L⊥

f(L + p)dL⊥p
)
dνn

k ,

wheredL⊥p denotes the Euclidean volume element onL⊥.

Example 3.29.Let

f : Gr(3, 1) → R, f(L) :=

{
1 dist (L, 0) ≤ 1

0 dist (L, 0) > 1
.
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V(V)

V

Π

⊥
p

FIGURE 2. The orthogonal projection of an element inGraff(3, 2).

Observe thatf is none other than the indicator function of the setGraff(3, 1;B3) of affine
lines inR3 which intersectB3, the closed unit ball centered at the origin. Then

∫

Graff(3,1)

f(V )dλ3
1 =

∫

Gr(3,1)

(∫

L⊥

f(L + p)dp
)

︸ ︷︷ ︸
=ω2

dν3
1 = ω2

[
3

1

]
= [3] · ω2

=
3ω3

2ω2

ω2 =
3ω3

2
= 2π.

In particular

λ3
1

(
Graff(3, 1;B3) ) = 2π =

σ2

2
=

1

2
× surface area ofB3.

⊓⊔

§3.6. The Radon Transform. At this point, we further our goal of understandingVal(n)
by constructing some of its elements.

Recall thatKn is the collection of compact convex subsets ofRn andPolycon(n) is the
collection of polyconvex subsets ofRn. We denote byVal(n) the vector space of convex
continuous, rigid motion invariant valuations

µ : Polycon(n) → R.

Via the embeddingRk →֒ Rn, k ≤ n, we can regardPolycon(k) as a subcollection of
Polycon(n) and thus we obtain a natural map

Sk,n : Val(n) → Val(k)



32 Csar-Johnson-Lamberty

We denote byVal
w(n) the vector subspace ofVal(n) consisting of valuationsµ homoge-

neous of degree (or weight)w, i.e.

µ(tP ) = twµ(P ), ∀t > 0, P ∈ Polycon(n).

For everyk ≤ n and everyµ ∈ Val(k) we define theRadon transformof µ to be

Rn,kµ : Polycon(n) → R, Polycon(n) ∋ P 7→ (Rn,kµ)(P ) :=

∫

Graff(n,k)

µ(P ∩ V )dλn
k .

Proposition 3.30. If µ ∈ Val(k) thenRn,kµ is a convex continuous, invariant valuation on
Polycon(n).

Proof. For everyµ ∈ Val(k), V ∈ Graff(n, k) and anyS1, S2 ∈ Polycon(n) we have

V ∩ (S1 ∪ S2) = (V ∩ S1) ∪ (V ∩ S2), (V ∩ S1) ∩ (V ∩ S2) = V ∩ (S1 ∩ S2)

so that
µ( V ∩ (S1 ∪ S2) ) = µ(V ∩ S1) + µ(V ∩ S2) − µ(V ∩ (S1 ∩ S2)).

Integrating the above equality with respect toV ∈ Graff(n, k) we deduce that

Rn,k(S1 ∪ S2) = Rn,k(S1) + Rn,k(S2) − Rn,k(S1 ∩ S2)

so thatRn,kµ is a valuation onPolycon(n). The invariance ofRn,k follows from the invari-
ance ofµ and of the measureλn

k onGraff(n, k). Observe that ifCν is a sequence of compact
convex sets inRn such that

Cν → C ∈ Kn

then
lim
ν→∞

µ(Cν ∩ V ) = µ(C ∩ V ), ∀V ∈ Graff(n, k).

We want to show that

lim
ν→∞

∫

Graff(n,k)

µ(Cν ∩ V )dλn
k(V ) =

∫

Graff(n,k)

µ(C ∩ V )dλn
k(V )

by invoking the Dominated Convergence Theorem. We will produce an integrable function
f : Graff(n, k) → R such that

∣∣µ(Cn ∩ V )
∣∣ ≤ f(V ), ∀n > 0, ∀V ∈ Graff(n, k). (3.6)

To this aim observe first that sinceCn → C there existsR > 0 such that all the setsCn and
the setC are contained in the ballBn(R) of radiusR centered at the origin. Define

Graff(n, k; R) :=
{

V ∈ Graff(n, k) | V ∩ Bn(R) 6= ∅
}
.

Graff(n, k; R) is a compact subset ofGraff(n, k) and thus it has finite volume. Now define

N = {0} ∪ {1/n | n ∈ Z>0 } ⊂ [0, 1],

and
F : N × Graff(n, k; R) → R, F (r, V ) :=

∣∣µ(C1/r ∩ V )
∣∣

where for uniformity we setC := C1/0. Observe thatN ×Graff(n, k; R) is a compact space
andF is continuous. Set

M := sup
{

F (r, V ) | (r, V ) ∈ N × Graff(n, k; R)
}
.



Valuations on polyconvex sets 33

ThenM < ∞. The function

f : Graff(n, k) → R, f(V ) :=

{
M V ∈ Graff(n, k; R)

0 V 6∈ Graff(n, k; R)

satisfies the requirements of (3.6). ⊓⊔

The resulting mapRn,k : Val(k) → Val(n) is linear and it is called theRadon transform.

Proposition 3.31. If µ ∈ Val(k) is homogeneous of weightw, thenRk+j,kµ is homogeneous
of weightw + j, that is

Rk+j,k

(
Val

w(k) ) ⊂ Val
w+j(k + j).

Proof. If C ∈ Polycon(k + j) andt is a positive real number then

(Rk+j,kµ)(tC) =

∫

Gr(k+j,k)

(∫

L⊥

µ(tC ∩ (V + p))dL⊥p

)
dνk+j

k

We use the equalitytC ∩ (V + p) = t (C ∩ (V + t−1p)) to get

(Rk+j,kµ)(tC) = tw
∫

Gr(k+j,k)

(∫

L⊥

µ(C ∩ (V + t−1p))dL⊥p
)
dνk+j

k

We make a change in variablesq = t−1p in the interior integral so thatdL⊥p = tjdL⊥q and

(Rk+j,kµ)(tC) = tw+j

∫

Gr(k+j,k)

(∫

L⊥

µ(C ∩ (V + q))dL⊥q
)
dνn

k = tw+jRk+j,kµ(C).

⊓⊔

So far we only know two valuations inVal(n), the Euler characteristic, and the Euclidean
volumevoln. We can now apply the Radon transform to these valuations andhopefully
obtain new ones.

Example 3.32.Let volk ∈ Val(k) denote the Euclideank-dimensional volume inRk. Then
for everyn > k and every compact convex subsetC ⊂ Rn we have

(Rn,k volk)(C) =

∫

Graff(n,k)

volk(V ∩ C)dλn
k(V )

=

∫

Gr(n,k)

(∫

L⊥

volk
(
(C ∩ (L + p)

)
dL⊥p

)
dνn

k (L),

wheredL⊥p denotes the Euclidean volume element on the(n − k)-dimensional spaceL⊥.
The usual Fubini theorem applied to the decompositionRn = L⊥ × L implies that

voln(C) = µn(C) =

∫

Rn

dRnq =

∫

L⊥

volk
(
(C ∩ (L + p)

)
dL⊥p.

Hence

(Rn,k volk)(C) =

∫

Gr(n,k)

voln(C)dνn
k (L) =

[
n

k

]
voln(C).
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In other words

Rn,k volk =

[
n

k

]
voln .

Thus the Radon transform of the Euclidean volume produces the Euclidean volume in a
higher dimensional space, rescaled by a universal multiplicative scalar. ⊓⊔

The above example is a bit disappointing since we have not produced an essentially new
type of valuation by applying the Radon transform to the Euclidean volume. The situation is
dramatically different when we play the same game with the Euler characteristic.

We are now ready to create elements ofVal(n). For any positive integersk, n define

µn
k := Rn,n−kµ0 ∈ Val(n),

whereµ0 ∈ Val(k) denotes the Euler characteristic.
Observe that ifC is a compact convex subset inRk+j, then for anyV ∈ Graff(k + j, k)

we have

µ0(V ∩ C) =

{
1 if C ∩ V 6= ∅

0 if C ∩ V = ∅
.

Thus the function
Graff(k + j, k) ∋ V 7→ µ0(V ∩ C)

is the indicator function of the set

Graff(C, k) :=
{
V ∈ Graff(k + j, k); V ∩ C 6= ∅

}
.

We conclude that

µk+j
j (C) = (Rk+j,kµ0) (C) =

∫

Graff(k+j,k)

IGraff(C,k)dλk+j
k

= λk+j
k

(
Graff(k, C)

)
.

Thus the quantityµk+j
j (C) “counts” how manyk-planes intersectC. From this interpretation

we obtain immediately the following result.

Theorem 3.33(Sylvester). SupposeK ⊆ L ⊂ Rk+j are two compact convex subsets.
Then the conditional probability that ak-plane which meetsL also intersectsK is equal

to
µk+j

j (K)

µk+j
j (L)

. ⊓⊔

We can give another interpretation ofµn
j . Observe that ifC ∈ Kn then

µn
j (C) =

∫

Graff(n,n−j)

µ0(C∩V )dλn
n−j(V ) =

∫

Gr(n,n−j)

(∫

L⊥

µ0

(
C∩L+p)

)
dL⊥p

)
dνn

n−j(L).

Now observe that if(C|L⊥) denotes the orthogonal projection ofC ontoL⊥ then

µ0

(
C ∩ (L + p)

)
6= 0 ⇐⇒ µ0

(
C ∩ (L + p)

)
⇐⇒ p ∈ (C|L⊥).

An example of this fact inR2 can be seen in Figure3. Hence∫

L⊥

µ0

(
C ∩ L + p)

)
dL⊥p = volj(C|L⊥)



Valuations on polyconvex sets 35

and thus

µn
j (C) =

∫

Gr(n,n−j)

volj(C|L⊥)dνn
n−j(L). (3.7)

Thusµn
j is the “average value” of the volumes of the projections ofC onto thej-dimensional

subspaces ofRn.

V

L

L

C L⊥

⊥

C

p

FIGURE 3. C|L⊥ for V in Graff(2, 1).

A priori, some or maybe all of the valuationsµn
j ∈ Val

j(n) ⊂ Val(n), 0 ≤ j ≤ n could
be trivial. Note, however, thatµn

n is voln. Furthermore, volume is intrinsic, soµn
n is in fact

µn. We show that in fact all of theµn
j are nontrivial.

Proposition 3.34.The valuations

µ0 = µn
0 , µ

n
1 , · · · , µn

j , · · ·µn ∈ Val(n)

are linearly independent.

Proof. Let Bn(r) denote the closed ball of radiusr centered at the origin ofRn. We set
Bn = Bn(1). Sinceµn

j is homogeneous of degreej we have

µn
j

(
Bn(r)

)
= rjµn

j (Bn)
(3.7)
= rj

∫

Gr(n,n−j)

volj(Bn|L
⊥)dνn

n−j(L) = rj

∫

Gr(n,n−j)

volj(Bj)dνn
n−j(L).

Hence

µn
j

(
Bn(r)

)
= ωjr

j

∫

Gr(n,n−j)

dνn
n−j = ωjr

j

[
n

n − j

]
= ωjr

j

[
n

j

]
. (3.8)

Observe that the above equality is also valid forj = 0.
Suppose that for some real constantsc0, c1, · · · , cn we have

n∑

j=0

cjµ
n
j = 0.
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Then
n∑

j=0

cjµ
n
j

(
Bn(r)

)
= 0, ∀r > 0,

so that
n∑

j=0

cjωj

[
n

j

]
rj = 0, ∀r > 0.

This impliescj = 0, ∀j.
⊓⊔

The valuationµn
j is homogeneous of degreej and it induces a continuous, invariant, homo-

geneous valuation of degreew on the latticePix(n) ⊂ Polycon(n). Observe that ifC1 ⊂ C2

are twocompact convexsubsets then

µn
j (C1) ≤ µn

j (C2).

Since everyn-dimensional parallelotope contains a ball of positive radius we deduce from
(3.8) thatµn

j (P ) 6= 0, for anyn-dimensional parallelotope. Corollary2.22implies that there
exists a constantC = Cn

j such that

Cn
j µn

j (P ) = µj(P ), ∀P ∈ Pix(k + j). (3.9)

We denote bŷµn
j the valuation

µ̂n
j := Cn

j µn
j ∈ Val

j(n). (3.10)

Sinceµn
n is voln, as isµ̂ n

n, we know thatCn
n = 1. Thus,µ̂ n

n = µ̂ n = µn = voln. We will
prove in later sections that the sequence(µ̂n

j ) defines anintrinsic valuation and that in fact
all the constantsCn

j are equal to1.

Remark3.35. Observe that

µn
n−1(Bn) = ωn−1

[
n

1

]
= [n]ωn−1 =

nωn

2

=
σn−1

2
=

1

2
× surface area ofBn.

This is a special case of a more general fact we discuss in the next subsection which will
imply that the constantsCn

n−1 in (3.9) are equal to1. ⊓⊔

§3.7. The Cauchy Projection Formula. We want to investigate in some detail the valua-
tionsµj+1

j ∈ Val(j + 1). SupposeC ∈ Kj+1 andℓ ∈ Gr(j + 1, 1). If we denote by(C|ℓ⊥)

the orthogonal projection ofC onto the hyperplaneℓ⊥ then we obtain from (3.7)

µj+1
j (C) =

∫

Gr(j+1,1)

µj(C|ℓ⊥)dνj+1
1 (ℓ), ∀C ∈ Kj+1. (3.11)

Loosely, speakingµj+1
j (C) is the average value of the “areas” of the shadows ofC on the hy-

perplanes ofRj+1. To clarify the meaning of this average we need the followingelementary
fact.
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Lemma 3.36.For anyv ∈ Sj ⊂ Rj+1,
∫

Sj

|u · v|du = 2ωj (3.12)

Proof. We recall from elementary calculus that an integral can be treated as a Riemann sum,
i.e., ∫

Sj

|ui · v|du ≈
∑

i

|ui · v|S(Ai),

where the sphereSj has been partitioned into many small portions (here denotedAi), each
containing the pointui and possessing areaS(Ai).

Let Ãi denote the orthogonal projection ofAi onto the hyperplane tangent toSj at the
point ui. Denote byÃi|v

⊥ the orthogonal projection ofAi onto the hyperplanev⊥. Since
Ai ⊂ S

j , this projection is entirely into the diskBn−1 lying insidev⊥. SinceÃi lies in a
hyperplane with unit normalv⊥, its projected area is the product of its area in the hyperplane
times the angle between the two planes, i.e.S(Ãi|v

⊥) = |ui · v|S(Ãi).
For a fine enough partition ofSj we have thatS(Ai) ≈ S(Ãi). Clearly then|ui ·v|S(Ai) ≈

|ui · v|S(Ãi), and thusS(Ai|v
⊥) ≈ S(Ãi|v

⊥). Therefore,
∫

Sj

|u · v|du ≈
∑

i

S(Ai|v
⊥).

Because the collection of sets{Ai|v
⊥} contains equivalent portions above and below the

hyperplanev⊥, it covers the unit,j-dimensional ballBj once from above and once from
below, we see that ∫

Sj

|u · v|du ≈ 2ωj.

The similarities in this proof all converge to equalities inthe limit as the mesh of the partition
Ai goes to zero. ⊓⊔

Theorem 3.37(Cauchy’s surface area formula). For every convex polytopeK ⊂ Rj+1 we
denote byS(K) its surface area. Then

S(K) =
1

ωj

∫

Sj

µj(K|u⊥)du.

Proof. Let P have facetsPi with corresponding unit normal vectorsvi and surface areasαi.
For every unit vectoru the projection(Pi|u

⊥) onto thej-dimensional subspace orthogonal
to u hasj-dimensional volume

µj(Pi|u
⊥) = αi|u · vi|.

Foru ∈ S
j , the region(P |u⊥) is covered completely by the projections of facetsPi,

(P |u⊥) =
⋃

i

(Pi|u
⊥).

For almost every pointp in the projection(P |u⊥) the line containingp and parallel tou
intersects the boundary ofP in two different points. (The set of pointsp ∈ (P |u⊥) for
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which this does happen is negligible, i.e. it hasj-dimensional volume0.) Thus, in the above
decomposition of(P |u⊥) as a union of projection of facets, almost every point of(P |u⊥) is
contained in exactly two such projections. Therefore

µj(P |u⊥) =
1

2

∑

i

µj(Pi|u
⊥)

so that ∫

Sj

µj(P |u⊥)du =

∫

Sj

1

2

m∑

i=1

αi|u · vi|du

=

m∑

i=1

αi

2

∫

Sj

|u · vi|du
(3.12)

=

m∑

i=1

αiωj = ωjS(P ).

⊓⊔

Recall that forparallelotopesP ∈ Par(j + 1),

µj(P ) =
1

2
S(P ).

In this light, Cauchy’s surface area formula becomes

µj(P ) =
1

2ωj

∫

Sj

µj(P |u⊥)du, ∀P ∈ Par(j + 1).

We want to rewrite this as an integral over the GrassmannianGr(j + 1, 1). Recall that we
have a2-to-1 map

ℓ : Sj → Gr(j + 1, 1).

An invariant measureµc onGr(j+1, 1) of total volumec corresponds to an invariant measure
µ̃c on S

j of total volume2c. If σ denotes the invariant measure onS
j defined by the area

element on the sphere of radius1 then

σ(Sj) = σj , µ̃c =
2c

σj

σ

Any functionf : Gr(j + 1, 1) → R defines a functionℓ∗f := f ◦ ℓ : S
j → R called the

pullbackof f via ℓ. Conversely, any even functiong on the sphere is the pullback of some
function ḡ onGr(j + 1, 1). Moreover

∫

Gr(j+1,1)

fdµc =
1

2

∫

Sj

ℓ∗fdµ̃c =
c

σj

∫

Sj

ℓ∗fdσ.

This shows that ∫

Sj

ℓ∗fdσ =
σj

c

∫

Gr(j+1,1)

fdµc.

The measureνj+1
1 has total volumec = [j + 1] so that

µj(P ) =
1

2ωj

∫

Sj

µj(P |u⊥)du =
σj

2[j + 1]ωj

∫

Gr(j+1,1)

µj(P |L⊥)dνj+1
1 (L)
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Using (3.11) we deduce

µj(P ) =
σj

2[j + 1]ωj

µj+1
j (P )

for every parallelotopeP ⊂ Rj+1. Recalling that

σj = (j + 1)ωj+1, [j + 1] =
(j + 1)ωj+1

2ωj

we conclude
σj

2[j + 1]ωj

= 1

so that finally
µj(P ) = µj+1

j (P ), ∀P ∈ Par(j + 1).
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4. The Characterization Theorem

We are now ready to completely characterizeVal(n).

§4.1. The Characterization of Simple Valuations. Before we can state and prove the
characterization theorem for simple valuations, we need torecall a few things.En denotes
the group of rigid motions ofRn, i.e. the subgroup of affine transformations ofRn generated
by translations and rotations. Two subsetsS0, S1 ⊂ Rn are calledcongruentif there exists
φ ∈ En such that

φ(S0) = S1.

A valuationµ : Polycon(n) → R is calledsimpleif

µ(S) = 0, for everyS ∈ Polycon(n) such thatdim S < n.

TheMinkowski Sumof two compact convex sets,K, andL is given by

K + L =
{
x + y | x ∈ K, y ∈ L

}
.

We call azonotopea finite Minkowski sum of straight line segments, and we call azonoida
convex setY that can be approximated in the Hausdorff metric by a convergent sequence of
zonotopes.

If a compact convex set is symmetric about the origin, the we call it a centeredset. We
denote the set of centered sets inKn by Kn

c .
The proof of the characterization theorem relies in a crucial way on the following technical

result.

Lemma 4.1. Let K ∈ Kn
c . Suppose that the support function ofK is smooth. Then there

exist zonoidsY1, Y2 such that

K + Y2 = Y1.

⊓⊔

Idea of proof. We begin by observing that the support function of a centeredline segment
in Rn with endpointsu,−u is given by

hu : S
n−1 → R, h(x) := |〈u, x〉|.

Thus, any functiong : S
n−1 → R which is a linear combinations ofhu’s with positive

coefficients is the support function of a centered zonotope.In particular any uniform limit of
such linear combinations will be the support function of a zonoid. For example, a function

g : S
n−1 → R

of the form

g(x) =

∫

Sn−1

|〈u, x〉|f(u)dSu,

with f : S
n−1 → [0,∞) a continuous, symmetric function, is the support function of a

zonoid.
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Let us denote byCeven(Sn−1) the space of continuous, symmetric (even) functionsS
n−1 →

R. We obtain a linear map

C : Ceven(Sn−1) → Ceven(Sn−1), (Cf)(x) :=

∫

Sn−1

|〈u, x〉|f(u)dSu

called thecosine transform. Thus we can rephrase the last remark by saying that the cosine
transform of anonnegativecontinuous, even function onSn−1 is the support function of a
zonoid.

Note thatf is continuous, even, then we can write is as the difference oftwo continuous,
even,nonnegativefunctions

f = f+ − f−, f+ =
1

2
(f + |f |), f− =

1

2
(|f | − f).

Thus ifh is the support function of someC ∈ Kn
c such that

h = Cf =⇒ h + Cf− = Cf+

Note thatCf− is the support function of a zonoidY1 andCf+ is the support function of a
zonoidY1 and thus

h + Cf− = Cf+ ⇐⇒ C + Y1 = Y2.

We deduce that any continuous function which is in the image of the cosine transform is the
support function of a setC ∈ Kn satisfying the conclusions of the lemma.

The punch line is now thatanysmooth, even functionf : S
n−1 → R is the cosine trans-

form of s smooth, even function on the sphere.
This existence statement is a nontrivial result, and its proof is based on a very detailed

knowledge of the action of the cosine transform on the harmonic polynomials onSn−1. For
a proof along these lines we refer to [Gr , Chap. 3]. For an alternate approach which reduces
the problem to a similar statement about Fourier transformswe refer to [Gon, Prop. 6.3].⊓⊔

Remark4.2. The connection between the classification of valuations andthe spectral proper-
ties of the cosine transform is philosophically the key reason why the classification turns out
to be simple. The essence of the classification is invariant theoretic, and is roughly says that
the invariance under the group of motions dramatically cutsdown the number of possible
choices. ⊓⊔

Theorem 4.3.Suppose thatµ ∈ Val(n) is a simple valuation. Ifµ is even, that is

µ(K) = µ(−K), ∀K ∈ Kn,

then
µ([0, 1]n) = 0 ⇐⇒ µ is identically zero onKn.

Proof. Clearly only the implication =⇒ is nontrivial. To prove it we employ a simple
strategy. By cleverly cutting and pasting and taking limitswe produce more and more sets
S ∈ Polycon(n) such thatµ(S) = 0 until we get what we want. We will argue by induction
on the dimensionn of the ambient space.

The result is true forn = 1 because in this caseK1 = Par(1) and we can invoke the
volume theorem forPix(1), Theorem2.19.
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So, now suppose thatn > 1 and the theorem holds for valuations onKn−1. Note that
for every positive integerk the cube[0, 1] decomposes inkn cubes congruent to

[
0, 1

k

]
and

overlapping on sets of dimension< n. We deduce that

µ([0, 1/k]n) = 0.

Since any box whose edges have rational length decomposes into cubes congruent to
[
0, 1

k

]n
for some positive integerk we deduce thatµ vanishes on such boxes. By continuity we
deduce that it vanishes on all boxesP ∈ Par(n). Using the rotation invariance we conclude
that rotation invariance,µ(C) = 0 for all boxesC with positive sides parallel to some other
orthonormal axes.

We now considerorthogonal cylinderswith convex bases, i.e. sets congruent to convex
sets of the formC× [0, r] ∈ Kn, C ∈ Kn−1. For every real numbersa < b define a valuation
τ = τa,b onKn−1 by

τ(K) = µ(K × [a, b]),

for all K ∈ Kn−1. Note that[0, 1]n−1 × [a, b] ∈ Par(n) so that

τ([0, 1]n−1) = µ([0, 1]n−1 × [a, b]) = 0.

Thenτ satisfies the inductive hypotheses, soτ = 0. Henceµ vanishes on all orthogonal
cylinders with convex basis.

Now suppose thatM is a prism, with congruent top and bottom faces parallel to the
hyperplanexn = 0, but whose cylindrical boundary is not orthogonal toxn = 0 but rather
meets it at some constant angle. See the top of Figure4

M

M

M

M
1

1

2

2

FIGURE 4. Cutting and pasting a prism.
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We now cutM into two piecesM1, M2 by a hyperplane orthogonal to the cylindrical
boundary ofM . Using translation invariance, slideM1 andM2 around and glue them to-
gether along the original top and bottom faces. (See Figure4). We then have a right cylinder
C. Thus,

µ(M) = µ(M1) + µ(M2) = µ(C) = 0.

Note that we must actually be careful with this cutting and repasting. It is possible thatM
is too “fat”, preventing us from slicingM with a hyperplane orthogonal to the cylindrical
axes and fully contained in each of them. If this problem occurs, we can easily remedy it
by subdividing the top and bottom ofM into sufficiently small convex pieces. Using the
simplicity of µ, we can then consider each separately.

Now letP be a convex polytope having facetsP1, . . . , Pm, and corresponding outward unit
normal vectorsu1, . . . , um. Let v ∈ Rn and letv̄ denote the straight line segment connecting
the pointv to the origin. Without loss of generality, suppose thatP1, . . . , Pj are exactly those
facets ofP such that〈ui, v〉 > 0 for all 1 ≤ i ≤ j. We can thus express the Minkowski sum
P + v̄ as

P + v̄ = P ∪

(
j⋃

i=1

(Pi + v̄)

)
,

where each term in the above union is either disjoint from theothers or intersects in dimen-
sion less thann (see Figure5).

P

P

v

v

v

P

P

P

1

1

2

2

_

_

_

+

+

FIGURE 5. Smearing a convex polytope.

This simply results from the fact thatP + v̄ is the ’smearing’ ofP in the direction ofv.
Hence, sinceµ is simple,

µ(P + v̄) = µ(P ) +

j∑

i=1

µ(Pi + v̄).

But now each termPi + v̄ is the smearing of the facetPi in the direction ofv, makingPi + v̄
a prism, so that

µ(P + v̄) = µ(P ),
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for all convex polytopesP and line segments̄v. By translation invariancēv could beany
segment in the space.

We deduce iteratively that for all convex polytopesP and all zonotopesZ we have

µ(Z) = 0 and µ(P + Z) = µ(P ).

By continuity,
µ(Y ) = 0 and µ(K + Y ) = µ(K),

for all K ∈ Kn and all zonoids Y.
Now suppose thatK ∈ Kn

c and has a smooth support function. Then by our lemma, there
are zonoidsY1, Y2 such thatK + Y1 = Y2. Thus, we now have that

µ(K) = µ(K + Y2) = µ(Y1) = 0.

Since any centered convex body can be approximated by a sequence of centered convex sets
with smooth support functions, by continuity ofµ, µ is zero on all centered convex, compact
sets.

Now let ∆ be ann-dimensional simplex, with one vertex at the origin. Letu1, . . . , un

denote the other vertices of∆, and letP be the parallelepiped spanned by the vectors
u1, . . . , un. Let v = u1 + · · · + un. Let ξ1 be the hyperplane passing through the points
u1, . . . , un and letξ2 be the hyperplane passing through the pointsv − u1, . . . , v − un. Fi-
nally, denote byQ the set of all points ofP lying between the hyperplanesξ1 andξ2.

We now write
P = ∆ ∪ Q ∪ (−∆ + v),

where each term in the union intersects any other in dimension less thann. P andQ are
centered, so

0 = µ(P ) = µ(∆) + µ(Q) + µ(−∆ + v) = µ(∆) + µ(−∆).

Thus,µ(∆) = −µ(−∆). Yet by assumptionµ(∆) = µ(−∆). Thus,µ(∆) = 0.
Now since any convex polytope can be expressed as the finite union of simplices each of

which intersects with any other in dimension less thann, we have thatµ(P ) = 0 for all
convex polytopesP . Since convex polytopes are dense inKn, we have thatµ is zero onKn,
which is what we wanted. ⊓⊔

We now immediately get the following result.

Theorem 4.4.Suppose thatµ is a continuous simple valuation onKn that is translation and
rotation invariant. Then there exists somec ∈ R such thatµ(K)+µ(−K) = cµn(K) for all
K ∈ Kn.

Proof. ForK ∈ Kn, define

η(K) = µ(K) + µ(−K) − 2µ([0, 1]n)µn(K).

Thenη satisfies the conditions of the previous theorem, so thatη is zero onKn. Thus,

µ(K) + µ(−K) = cµn(K),

wherec = 2µ([0, 1]n). ⊓⊔
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§4.2. The Volume Theorem.

Theorem 4.5(Sah). Let∆ be an-dimensional simplex. There exist convex polytopesP1, . . . , Pm

such that∆ = P1 ∪ · · · ∪ Pm where each term of the union intersects another in dimension
at mostn − 1 and where each of the polytopesPi is symmetric under a reflection across a
hyperplane, i.e. for eachPi, the exists a hyperplane such thatPi is symmetric when reflected
across it.

Proof. Let x0, . . . , xn be the vertices of∆ and let∆i be the facet of∆ opposite toxi. Let
z be the center of the inscribed sphere of∆ and letzi be the foot of the perpendicular line
from z to the facet∆i. For all i < j, let Ai,j denote the convex hull ofz, zi, zj and the face
∆i ∩ ∆j (see Figure6).

x

x
x

z

z

z

z

0

0

1

1

2

2

z

z

z

0

1

A
0,1

FIGURE 6. Cutting a simplex into symmetric polytopes.

Then
∆ =

⋃

0≤i<j≤n

Ai,j,

where the distinct termsAi,j of this union, by construction, intersect in at most dimension
n − 1. EachAi,j is symmetric under reflection across then − 1 hyperplane determined byz
and the face∆i ∩∆j. We can then relabel theAi,j asP1, . . . , Pm and∆ = P1 ∪ · · · ∪ Pm as
desired. ⊓⊔

Theorem 4.6(Volume Theorem forPolycon(n)). Suppose thatµ is a continuous rigid mo-
tion invariant simple valuation onKn. Then there existsc ∈ R such thatµ(K) = cµn(K),
for all K ∈ Kn. Note that we can extend continuous valuations onKn to continuous valua-
tions onPolycon(n), so the theorem also holds replacingKn with Polycon(n).

Proof. Sinceµ is translation invariant and simple, by Theorem4.4, there existsa ∈ R such
that µ(K) + µ(−K) = aµn(K) for all K ∈ Kn. Let ∆ be an-simplex inRn. Then
µ(∆) + µ(−∆) = aµn(∆).

Supposen is even, meaning the dimension ofRn is even. Then∆ and−∆ differ by a
rotation. This is clearly true inR2. We can then rotate∆ to −∆ in each “orthogonal” plane
of Rn, meaning∆ and−∆ differ by the composition of these rotations, i.e. a rotation. Then
µ(∆) = µ(−∆) = a

2
µn(∆).

Now suppose thatn is odd. By Theorem4.5, there exist polytopesP1, . . . , Pm such that
∆ = P1 ∪ · · · ∪ Pm anddim Pi ∩ Pj ≤ n − 1 and eachPi is symmetric under a reflection
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across a hyperplane. Thus, we can transformPi into −Pi by a series of rotations and then
reflection across the hyperplane. Then,µ(Pi) = µ(−Pi) and

µ(−∆) =

m∑

i=1

µ(−Pi) =

m∑

i=1

µ(Pi) = µ(∆)

Then for alln-simplices∆, µ(∆) = a
2
µn(∆).

Let c = a
2

and supposeP is a convex polytope inRn. ThenP is a finite union of simplices,
i.e. P = ∆1 ∪ · · · ∪ ∆m such thatdim ∆i ∩ ∆j < n. Then

µ(P ) = µ(∆1) + · · ·+ µ(∆m)

= cµn(∆1) + · · ·+ cµn(∆m)

= cµn(P )

The set of convex polytopes is dense inKn, so sinceµ is continuous,µ(K) = cµn(K) for
all K ∈ Kn. ⊓⊔

§4.3. Intrinsic Valuations. We would like to show that for eachk ≥ 0 the valuations
µ̂ n

k determine anintrinsic valuation, meaning that for allN ≥ n andP ∈ Polycon(n),
µ̂ n

k(P ) = µ̂ N
k (P ). For uniformity, we set

µ̂ n
k = 0, ∀k > n.

Theorem 4.7.For everyk ≥ 0 the sequence

(µ̂ n
k) ∈

∏

n≥0

Val(n)

defines an intrinsic valuation, i.e., an element of

µ̂ k ∈ Val(∞) = limprojn Val(n).

Proof. First of all let us fixk. Since there is no danger of confusion we will writeµ̂ n instead
of µ̂ n

k . Consider the statement

µ̂ n(P ) = µ̂ ℓ(P ), ∀P ∈ Polycon(ℓ). (Pn,ℓ)

Note thatl ≤ n. We want to prove by induction overn that the statement

Pn,ℓ for anyℓ ≤ n (Sn)

is true for anyn. The statementS0 is trivially true. We will prove that

S0, · · · ,Sn−1 =⇒ Sn.

Thus, we know thatPm,ℓ is true for everyℓ ≤ m < n, and we want to prove that

Pn,ℓ is true for anyℓ. (Tℓ)

To proveTℓ we argue by induction onℓ. (n is fixed.)
The result is obviously true forℓ = 0, 1 since in these casePix = Polycon. Thus, we

assume thatPn,ℓ is true and we will show thatPn,ℓ+1 is true. In other words, we know that

µ̂ n(P ) = µ̂ ℓ(P ), P ∈ Polycon(ℓ) (4.1)
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and we want to prove that

µ̂ n(P ) = µ̂ ℓ+1(P ), ∀P ∈ Polycon(ℓ + 1).

Clearly the last statement is trivially true ifℓ + 1 = n so we may assumeℓ + 1 < n.
We denote byν the restriction ofµ̂ n to Polycon(ℓ + 1). Then ν restricts toµ̂ ℓ on

Polycon(ℓ) andµ̂ n restricts tôµ ℓ by (4.1).
Sinceℓ + 1 < n we deduce fromSℓ+1 that µ̂ ℓ+1 restricts toµ̂ ℓ on Polycon(ℓ). Then

ν − µℓ+1 vanishes onPolycon(ℓ), meaning it is a continuous invariant simple valuation on
Polycon(ℓ + 1). Theorem4.6implies that there existsc ∈ R such thatν − µ̂ ℓ+1 = cµ̂ ℓ+1

ℓ+1 on
Polycon(ℓ + 1).

On the other hand,ν = µ̂ l+1 onPix(l + 1), meaningc = 0 and thusν = µ̂ ℓ+1. ⊓⊔

Based on this result, the superscript ofµ̂ n
k does not matter. Therefore, we define

µ̂ k := µ̂ n
k .

At this point, we are able to characterize the continuous, invariant valuations onPolycon(n),
as we did forPix(n) in Theorem2.20.

Theorem 4.8(Hadwiger’s Characterization Theorem). The valuationŝµ 0, µ̂ 1, . . . , µ̂ n form
a basis for the vector spaceVal(n).

Proof. Let µ ∈ Val(n) and letH be a hyperplane inRn. The restriction ofµ to H is then
a continuous invariant valuation onH. Note that the choice ofH does not matter sinceµ is
rigid motion invariant and all hyperplanes can be arrived atthrough rigid motions of a single
hyperplane. Recall thatPolycon(1) = Pix(1), and by Theorem2.20, the statement is true
for n = 1. We take this as our base case and proceed by induction.

For every polyconvex setA in H, we assume that

µ(A) =
n−1∑

i=0

ciµ̂ i(A)

Thus,

µ −
n−1∑

i=0

ciµ̂ i

is a simple valuation inVal(n). Then, by Theorem4.6,

µ −
n−1∑

i=0

ciµ̂ i = cnµ̂ n

We move the sum to the other side and

µ =
n∑

i=0

ciµ̂ i

⊓⊔

In a definition analogous to that onPix(n), a valuationµ on Polycon(n) is homogenous
of degreek if for α ≥ 0 and allK ∈ Polycon(n), µ(αK) = αkµ(K).
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Corollary 4.9. Let µ ∈ Val(n) be homogenous of degreek. Then there existsc ∈ R such
thatµ(K) = cµ̂ k(K) for all K ∈ Polycon(n).

Proof. By Theorem4.8, we know that there existc0, · · · , cn ∈ R such that

µ =

n∑

i=0

ciµ̂ i

SupposeP = [0, 1]n, the unit cube inRn. Fix α ≥ 0. Then,

µ(αP ) =

n∑

i=0

ciµ̂ i(αP ) =

n∑

i=0

αiciµ̂ i(P ) =

n∑

i=0

(
n

i

)
ciα

i.

µ̂ i(P ) = µi(P ) =
(

n
i

)
since forP ∈ Par(n), µi is thei-th elementary symmetric function.

At the same time,

µ(αP ) = αkµ(P ) =

n∑

i=0

ciµ̂ i(P )αk =

n∑

i=0

(
n

i

)
ciα

k.

We compare the coefficientsci in the two sums and conclude thatcj = 0 for i 6= k. Thus,
µ = ckµ̂ k. ⊓⊔
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5. Applications

It is payoff time! Having thus proven Hadwiger’s Characterization Theorem, we now seek
to use it in extracting as much interesting geometric information as possible. Let us recall
that

µn
k = Rn,n−kµ0 and µ̂ n

k = Cn
k µn

k ,

where the normalization constantsCn
k are chosen so that

µ̂ n
k([0, 1]n) = µk([0, 1]n) =

(
n

k

)
.

Above,µk is the intrinsic valuation on the lattice of pixelations defined in Section 2. We have
seen in the last section that the sequence{µ̂ n

k}n≥k defines an intrinsic valuation and thus we
will write µ̂ k instead of̂µ n

k

§5.1. The Tube Formula. Let K, L ∈ Kn, and letα ≥ 0. We have the Minkowski sum

K + αL = {x + αy | x ∈ K andy ∈ L}

Proposition 5.1 (Smearing Formula). Let u denote the straight line segment connectingu
and the origino. For K ∈ Kn and any unit vectoru ∈ Rn,

µn(K + ǫu) = µn(K) + ǫµn−1(K|u⊥)

Proof. Let L = K + ǫu. We will compute the volume ofL by integrating the lengths of
one-dimensional slices of L with linesℓx parallel throughu passing through pointsx ∈ u⊥,
that is

µn(L) =

∫

u⊥

µ1(L ∩ ℓx)dx.

Sinceµ1(l ∩ ℓx) = µ1(K ∩ ℓx) + ǫ for all x ∈ K|u⊥ and zero forx /∈ K|u⊥, we have that

µn(L) =

∫

u⊥

µ1(L ∩ ℓx)dx =

∫

K|u⊥

(µ1(K ∩ ℓx) + ǫ)dx = µn(K) + ǫµn−1(K|u⊥)

⊓⊔

Let Cn denote then-dimensional unit cube. Recall that for0 ≤ i ≤ n,

µi(Cn) =

(
n

i

)
.

Proposition 5.2. For ǫ ≥ 0,

µn(Cn + ǫBn) =
n∑

i=0

µi(Cn)ωn−iǫ
n−i =

n∑

i=0

(
n

i

)
ωn−iǫ

n−i =
n∑

i=0

ωn−iµ̂
n
i (Cn)ǫn−i.
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Proof. Let u1, . . . , un denote the standard orthonormal basis forRn, andui the line segment
connectingui to the origin. By Proposition5.1we have

µn(Bn + ru1) = ωn + rωn−1 =

n∑

i=0

(
1

i

)
ωn−ir

i

for all n ≥ 1.
Having proven the base case, we proceed by induction. Suppose that

µn(Bn + ru1 + · · ·+ ruk) =
k∑

i=0

(
k

i

)
ωn−ir

i,

for some1 ≤ k < n. Then

µn(Bn+ru1+· · ·+ruk+1) = µn(Bn+ru1+· · ·+ruk)+rµn−1((Bn−1+ru1+· · ·+ruk)|u
⊥
k+1)

=

k∑

i=0

(
k

i

)
ωn−ir

i +rµn−1(Bn−1+ru1 + · · ·+uk) =

k∑

i=0

(
k

i

)
ωn−ir

i +

k∑

i=0

(
k

i

)
ωn−i−1r

i+1

=

k+1∑

i=0

((
k

i

)
+

(
k

i − 1

))
ωn−ir

i =

k+1∑

i=0

(
k + 1

i

)
ωn−ir

i.

Thus, by induction we have that

µn(Bn + ru1 + · · · + run) =

n∑

i=0

(
n

i

)
ωn−ir

i

Noting thatµn is homogeneous of degreen, we have that

µn(Bn+ru1+· · ·+run) = µn(Bn+rCn) = µn

(
r

(
1

r
Bn + Cn

))
= rnµn

(
1

r
Bn + Cn

)
.

Letting ǫ = 1
r
, the previous two inequalities give us

µn(Cn + ǫBn) = ǫn
n∑

i=0

(
n

i

)
ωn−i

1

ǫ

i

=
n∑

i=0

(
n

i

)
ωn−iǫ

n−i

⊓⊔

We can now prove the following remarkable result, first proved by Jakob Steiner in di-
mensions≤ 3 in the 19th century.

Theorem 5.3(Tube Formula). For K ∈ Kn andǫ ≥ 0,

µn(K + ǫBn) =
n∑

i=0

µ̂ i(K)ωn−iǫ
n−i. (5.1)
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Proof. Let η(K) = µn(K + Bn), for K ∈ Kn. BecauseBn ∈ Kn, for K, L ∈ Kn we have
that

(K ∪ L) + Bn = (K + Bn) ∪ (L + Bn),

and clearly
(K + Bn) ∩ (L + Bn) = (K ∩ L) + Bn,

so we have

η(K ∪ L) = µn

(
(K ∪ L) + Bn

)
= µn

(
(K + Bn) ∪ (L + Bn)

)

= µn(K + Bn) + µn(L + Bn) − µn

(
(K + Bn) ∩ (L + Bn)

)

= η(K) + η(L) − η(K ∩ L).

Thusη is a valuation onKn. The continuity and invariance ofµn, and the symmetry ofBn

under Euclidean transformations show thatη is a convex-continuous invariant valuation on
Kn, which according to the Extension Theorem3.17extends to a valuation inVal(n). By
Hadwiger’s Characterization Theorem we have that

η(K) =
n∑

i=0

ciµ̂ i(K),

for all K ∈ Kn. Therefore, forǫ > 0 we have that

µn(K + ǫBn) = ǫnµn

(
1

ǫ
K + Bn

)
= ǫn

n∑

i=0

ciµ̂ i(K)
1

ǫi
=

n∑

i=0

ciµ̂ i(K)ǫn−i.

In particular, if we letK = Cn in the previous equation and comparing with the results of
the previous Proposition, we find that

n∑

i=0

ciµi(Cn)ǫn−i =

n∑

i=0

µ̂ i(Cn)ωn−iǫ
n−i,

i.e. ci = ωn−i. ⊓⊔

Theorem 5.4(The intrinsic volumes of the unit ball). For 0 ≤ i ≤ n,

µ̂ i(Bn) =

(
n

i

)
ωn

ωn−i
=

[
n

i

]
ωi.

Proof. Applying the tube formula to toK = Bn we obtain
n∑

i=0

µ̂ i(Bn)ωn−iǫ
n−i = µn(Bn + ǫBn) = µn ((1 + ǫ)Bn)

= (1 + ǫ)nµn(Bn) =

n∑

i=0

(
n

i

)
ωnǫ

n−i,

for all ǫ > 0. Comparing coefficients of powers ofǫ, we uncover the desired result. ⊓⊔
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§5.2. Universal Normalization and Crofton’s Formulæ. It turns out that the intrinsic
volumes of the unit ball are the final piece of the puzzle in understanding the constantsCn

k

in the formulaµ̂ n
k = Cn

k µn
k , where

µn
k = Rn,n−kµ0 and µ̂ n

k = µk on Pix(n).

We have the following very pleasant surprise.

Theorem 5.5.For 0 ≤ k ≤ n andK ∈ Kn,

µ̂ k = µ̂ n
k = µn

k

In other words, no more hats!

Proof. From Theorem5.4we deduce

Cn
k µn

k(Bn) = µ̂ n
k = ωn

(
n

n − k

)
= ωn

(
n

k

)
.

On the other hand (3.8) shows that

µn
k = ωk

(
n

k

)
.

Equating the two, we readily see thatCn
k = 1 for all n, k ≥ 0. In fact, since botĥµ k andµk

are intrinsic, we have shown thatµ̂ k = µk. ⊓⊔

We have thus proved that the intrinsic volumesµ̂ k on Polycon(n) are exactly the Radon
TransformsRn,n−kµ0, a result to which we feel obliged to “tip our hats”.

The following theorem is a generalization of the previous one.

Theorem 5.6(Crofton’s formula). For 0 ≤ i, j ≤ n andK ∈ Polycon(n),

(Rn,n−iµj)(K) =

[
i + j

j

]
µi+j(K)

Proof. From the section before regarding Radon Transforms, we already know thatRn,n−iµj ∈
Val

i+j(n). By Corollary4.9we have that there exists ac ∈ R such thatRn
n−iµj = cµi+j. To

obtain thisc we simply evaluate(Rn,n−iµj)(Bn).

(Rn,n−iµj)(Bn) =
(
Rn,n−i((Rn,n−i)µ0)

)
(Bn)

=

∫

Graff(n,n−i)

(∫

Graff(V,n−i−j)

µ0(Bn ∩ W )dλn−i
n−i−j(W )

)
dλn

n−i(V )

=

∫

Gr(n,n−i)

(∫

Gr(V,n−i−j)

∫

L⊥

µ0(Bn ∩ (L + x))dp dνn−i
n−i−j(L)

)
dνn

n−i(V )

=

∫

Gr(n,n−i)

(∫

Gr(V,n−i−j)

∫

Bi+j

dp dνn−i
n−i−j(L)

)
dνn

n−i(V )

=

∫

Gr(n,n−i)

([
n − i − j

n − i

]
ωi+j

)
dνn

n−i(V )
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=

[
n

n − i

][
n − i − j

n − i

]
ωi+j.

But we also have by Theorem5.4that

cµi+j(Bn) = c

[
n

i + j

]
ωi+j

and thus

c =

[
n

i + j

]−1[
n

n − i

][
n − i

n − i − j

]
=

[
i + j

j

]
.

⊓⊔

Remark5.7. If we define a weighted Radon transform

R∗
w : Val(k) → Val(k + w), R∗

w := [w]!Rk+w,k

and we setµ∗
i := [i]!µi then we can rewrite Crofton’s formulæ in the more symmetric form

µ∗
i+j = R∗

jµ
∗
i .

Note thatµ∗
i are also intrinsic valuations, i.e. are independent of the dimension of the ambient

space. ⊓⊔

§5.3. The Mean Projection Formula Revisited. The conclusion of Theorem5.5allows
us to restate Cauchy’s surface area formula as follows:

Theorem 5.8(The mean projection formula). For 0 ≤ k ≤ n andC ∈ Kn,

(Rn,n−kµ0)(C) = µk(C) =

∫

Gr(n,k)

µk(C|V0) dνn
k (V0).

⊓⊔

It turns out that Cauchy’s mean value formula is a special case of a more general formula.

Theorem 5.9(Kubota). For 0 ≤ k ≤ l ≤ n andC ∈ Kn,
∫

Gr(n,l)

µk(C|V ) dνk
l (V ) =

[
n − k

l − k

]
µk(C).

Proof. Define a valuationν onKn by

ν(C) =

∫

Gr(n,l)

µk(C|V ) dνk
l (V ).

Arguing as in the proof of Proposition3.30we deduce thatν ∈ Val
k(n). By Corollary4.9

there exists a constantc ∈ R such thatν = cµk. As before, we compute the constantc by
considering what happens whenC = Bn.

cµk(Bn) = ν(Bn) =

∫

Gr(n,l)

µk(C|V ) dνk
l (V ) = µk(Bl)

[
n

l

]
.
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Therefore

c =
µk(Bl)

µk(Bn)

[
n

l

]
=

[
l

k

]
ωk

[
n

k

]−1
1

ωk

[
n

l

]

=
[l]!

[k]![l − k]!

[k]![n − k]!

[n]!

[n]!

[l]![n − l]!
=

[n − k]!

[n − l]![l − k]!
=

[
n − k

l − k

]
.

⊓⊔

§5.4. Product Formulæ. We now examine the intrinsic volumes on products.

Theorem 5.10.Let0 ≤ k ≤ n. LetK ∈ Polycon(k) andL ∈ Polycon(n − k). Then

µi(K × L) =
∑

r+s=i

µr(K)µs(L).

Proof. The set functionµi(K × L) is a continuous valuation in each of the variablesK and
L when the other is fixed. Also, note that every rigid motionφ ∈ Ek is the restriction of
some rigid motionΦ ∈ En that restricts to the identity on the orthogonal complementRn−k.
Thus, by the invariance ofµi,

µi

(
φ(K × L)

)
= µi

(
Φ(K × L)

)
= µi(K × L).

The characterization theorem tells us that for everyL that there exist constantscr(L), de-
pending onL, such that

µi(K × L) =
k∑

r=0

cr(L)µr(K),

for all K ∈ Kk.
Repeating the same argument with fixedK and varyingL, we see that thecr(L) are

continuous invariant valuations onKn−k, so we apply the characterization theorem again,
collect terms appropriately, and ultimately conclude thatthere are constantscrs ∈ R such
that

µi(K × L) =
k∑

r=0

n−k∑

s=0

crsµr(K)µs(L),

for all K ∈ Kk andL ∈ Kn−k.
Now we determine the constants usingCm, the unitm-dimensional cube. Letα, β ≥ 0.

Then

µi(αCk × βCn−k) =

k∑

r=0

n−k∑

s=0

crsµr(Ck)µs(Cn−k)α
rβs

=
k∑

r=0

n−k∑

s=0

crs

(
k

r

)(
n − k

s

)
αrβs.

On the other hand, we already know how to compute this from theproduct formula in The-
orem2.17

µi(αCk × βCn−k) =
∑

r+s=i

(
k

r

)(
n − k

s

)
αrβs.
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Comparing these two, we see that for0 ≤ r ≤ k and0 ≤ s ≤ n − k, we havecrs = 1 if
r + s = i andcrs = 0 otherwise.

Hence,
µi(K × L) =

∑

r+s=i

µr(K)µs(L).

⊓⊔

As a result of this theorem, we get the following corollary.

Corollary 5.11. Suppose thatµ is a convex-continuous invariant valuation onPolycon(n)
such that

µ(K × L) = µ(K)µ(L),

for all K ∈ Polycon(k), L ∈ Polycon(n−k), where0 ≤ k ≤ n. Then eitherµ = 0 or there
existsc ∈ R such that

µ = µ0 + cµ1 + c2µ2 + · · ·+ cnµn.

Conversely, ifµ is a valuation satisfying

µ = µ0 + cµ1 + c2µ2 + · · ·+ cnµn,

thenµ satisfies
µ(K × L) = µ(K)µ(L).

Proof. By the characterization theorem, there are real constantsci such that

µ = c0µ0 + c1µ1 + · · ·+ cnµn.

Let Ck denote the unit cube inRk. Then for allα, β ≥ 0, the multiplication condition implies
that

µ(αCk × βCn−k) = µ(αCk)µ(βCn−k) =
( k∑

r=0

crα
rµr(Ck)

)(n−k∑

s=0

csβ
sµs(Cn−k)

)

=

k∑

r=0

n−k∑

s=0

crcsµr(Ck)µs(Cn−k)α
rβs.

On the other hand, by the previous theorem,

µ(αCk × βCn−k) =

n∑

i=0

ciµi(αCk × βCn−k) =

n∑

i=0

ci

∑

r+s=i

µr(Ck)µs(Cn−k)α
rβs

=
k∑

r=0

n−k∑

s=0

cr+sµr(Ck)µs(Cn−k)α
rβs.

Comparing these polynomials inα, β, we see that the coefficients must be equal. Hence,
crcs = cr+s, for all 0 ≤ r, s ≤ n. Thus,c0 = c0+0 = c2

0. Hence,c0 is either0 or 1. If c0 = 0,
thencr = cr+0 = crc0 = 0, makingµ zero. If c0 = 1, then relabelc1 = c. Then, forr > 0,
cr = c1+···+1 = cr

1 = cr, and we are done. The converse follows by simply applying the
previous theorem. ⊓⊔
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§5.5. Computing Intrinsic Volumes. Now that we have a better understanding of the
intrinsic measuresµi, it would be nice if we could compute the intrinsic volumes ofvarious
types of sets. We already know how to compute them for pixelations. We want to explain how
to determine them for convex polytopes. In a later section wewill explain how to compute
them for arbitrary polytopes using triangulations and the Möbius inversion formula.

SupposeP ∈ Kn is a convex polytope. Using the tube formula (5.1) we deduce that for
all r > 0

µn(P + rB) =
n∑

i=0

µi(K)ωn−ir
n−i,

where the superscript ofBn has been dropped for notational convenience. Supposex ∈
P + rB. BecauseP is compact and convex, there exists a unique pointxP ∈ P such that

|x − xP | ≤ |x − y|, ∀y ∈ P.

If x ∈ P , then clearlyx = xP . If, on the other hand,x /∈ P , thenxP ∈ ∂P . Furthermore,
if x /∈ P andy ∈ ∂P , theny = xP ⇐⇒ x − y ⊥ H, whereH is the support plane ofP
andy ∈ P ∩ H. That is to say, the line connectingx andxp must be perpendicular to the
boundary.

Denote byPi(r) the set of allx ∈ P + rB such thatxP lies in the relative interior of an
i-face ofP . If x is in the relative interior ofP then it is contained in ann-face ofP , and
consequently so isxP = x. If x is on the boundary then it is in one ofP ’s faces (and again,
so isxP = x). Finally, if x is in neither the interior ofP nor the boundary, then as stated
before there is a uniquexP on the boundary and hence in ani-face ofP .

P + rB =
n⋃

i=0

Pi(r).

The uniqueness ofxP implies that this union is disjoint.
Denote byFi(P ) the set of alli-faces ofP . LetQ be a face ofP , and letv be any outward

unit normal to the boundary of P aty. Then we set

M(Q, r) = {y + δv | y ∈ relint(Q), 0 ≤ δ ≤ r}.

P

Q

x

M(Q,r)

M(x,r)

FIGURE 7. A decomposition ofP + rB2.
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Proposition 5.12.

Pi(r) =
⋃

Q∈Fi(P )

M(Q, r).

Proof. First, supposex ∈ Pi(r). From before,xp ∈ relint(Q) for someQ ∈ Fi(P ). If
x = xP , thenx ∈ relint(Q), and thereforex ∈ M(Q, r) for any r. On the other hand, if
x 6= xP , then letv denote the unit vector parallel to the line betweenx andxP . From the
above discussion we know thatv is perpendicular to the boundary ofP atxP , and therefore
x = xP + δv, whereδ = |x − xP |. Thus we have thatPi(r) ⊂

⋃
Q∈Fi(P ) M(Q, r).

On the other hand, supposex ∈ M(Q, r). Thenx = y + δv for somey ∈ relint(Q). If
δ = 0 thenx = y and is inPi(r). If δ 6= 0, x − y = δv, and is therefore⊥ to the boundary
of P aty. Therefore,y = xP andx ∈ Pi(r). ThereforePi(r) ⊃

⋃
Q∈Fi(P ) M(Q, r), and thus

we have equality. ⊓⊔

For A ⊂ Rn, let theaffine hullof A be the intersection of all planes inRn containingA.
We then denote byA⊥ the set of all vectors inRn orthogonal to the affine hull ofA.

Let Q ∈ Fi(P ). ThenQ⊥ has dimensionn− i. Because of this,M(Q, r) is like M(Q, 1),
except that it has been “stretched” by a factor ofr in n−i dimensions. Thus,µn(M(Q, r)) =
rn−iµn(M(Q, 1)). This fact, coupled with the fact that ourM(Q, r) are disjoint, gives us that

µn(Pi(r)) = µn




⋃

Q∈Fi(P )

M(Q, r)



 = rn−iµn




⋃

Q∈Fi(P )

M(Q, 1)



 = rn−iµn(Pi(1)).

Furthermore,

µn(P + rB) = µn

(
n⋃

i=0

Pi(r)

)
=

n∑

i=0

µn(Pi(r)) =

n∑

i=0

µn(Pi(1))rn−i,

for all r > 0. Comparing with the tube formula (5.1), we see that
n∑

i=0

µi(K)ωn−ir
n−i =

n∑

i=0

µn(Pi(1))rn−i.

By comparing coefficients of powers orr, we get that

µi(P ) =
µn(Pi(1))

ωn−i
. (5.2)

θiµ
1
(z  )i

FIGURE 8. M(zi, 1) from Example5.13.
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Example 5.13.Consider a general convex polyhedronP in R3 with edgesz1, . . . , zm. Each
edgezi is formed by two facets ofP , denote these two facesQi1 andQi2 , and denote their
outward unit normals byui1 and ui2, respectively. We then have that the volume of the
sectionM(zi, 1) is given by

µ3(M(zi, 1)) =
arccos(ui1 · ui2)

2π
(π(1)2)(µ1(zi)) =

µ1(zi)θi

2
,

whereθi = arccos(ui1 · ui2). Refer to Figure8 for an example. Therefore

µ1(P ) =
µ3(P1(1))

ω2
=

1

2π

m∑

i=1

µ1(zi)θi.

This remarkable formula has immediate applications in specific polyhedra of interest.
For example, take an orthogonal parallelotopeP = a1 × a2 × a3. Clearly there are four

sides of lengthai for eachi, and the angleθi = π
2

for eachi. It is evident then that

µ1(P ) =
1

2π

m∑

i=1

4ai
π

2
= a1 + a2 + a3.
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6. Simplicial complexes and polytopes

At this point, we feel like we understandVal(n) to our satisfaction. We would now like to fo-
cus much more concretely on computing the these valuations for a special case of polyconvex
sets, called polytopes. These are finite unions of convex polytopes. The inclusion-exclusion
principle suggest dissecting these into smaller, and simpler pieces. Technically, this dissec-
tion operation is called triangulation, and the simpler pieces are called simplices. In this
section, we formalize the notion of triangulation and investigate some of its combinatorial
features.

§6.1. Combinatorial Simplicial Complexes. A combinatorial simplicial complex(CSC
for brevity) with vertex set inV is a collectionK of non-empty subsets of the finite setV
such that

τ ∈ K =⇒ σ ∈ K, ∀σ ⊂ τ, σ 6= ∅.

The elements ofK are called the(open) facesof the simplicial complex. Ifσ is a face then
we define

dim σ := #σ − 1.

A subsetσ of a faceτ is also called a face ofτ . If additionally

#σ = #τ − 1

then we say thatσ is an(open) facetof τ . If dim σ = 0 then we say thatσ is a vertex ofK.
We denote byVK the collection of vertices ofK. In other words, the vertices are exactly the
singletons belonging toK. For simplicity we will writev ∈ VK instead of{v} ∈ VK .

Two CSCsK andK ′ are calledisomorphic, and we write thisK ∼= K ′, if there exists a
bijection from the set of vertices ofK to the set of vertices ofK ′ which induces a bijection
between the set of faces ofK andK ′.

We denote byΣ(V ) ⊂ P (P (V )) the collection of all CSC’s with vertices inV . Observe
that

K1, K2 ∈ Σ(V ) =⇒ K1 ∩ K2, K1 ∪ K2 ∈ Σ(V )

so thatΣ(V ) is a sublattice ofP (P (V )).

Example 6.1. For every subsetS ⊂ V define∆S ∈ Σ(V ) to be the CSC consisting of all
non-empty subsets ofS. ∆S is called theelementarysimplex with vertex setS. Observe that

∆S1
∩ ∆S2

= ∆S1∩S2
,

For every CSCK ∈ Σ(V ) the simplices∆σ, σ ∈ K are called theclosed facesof K.
We deduce that the collection

∆(V ) :=
{

∆S | S ⊂ V
}

is a generating set of the latticeΣ(V ). ⊓⊔

Example 6.2.Let K ∈ Σ(V ). For every nonnegative integerm we define

Km :=
{
σ ∈ K | dim σ ≤ m

}
.
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Km is a CSC called them-skeleton ofK. Observe that

K0 ⊂ K1 ⊂ · · · , K =
⋃

m≥0

Km. ⊓⊔

Definition 6.3. TheEuler characteristicof a CSCK ∈ Σ(V ) is the integer

χ(K) :=
∑

σ∈K

(−1)dimσ. ⊓⊔

Proposition 6.4. The mapχ : Σ(K) → Z, K 7→ χ(K) is a valuation.

Proof. For everyK ∈ Σ(V ) and every nonnegative integerm we denote byFm(K) the
collection of itsm-dimensional faces, i.e.

Fm(K) :=
{

σ ∈ K | dim σ := m
}
.

We then have

χ(K) =
∑

m≥0

(−1)m#Fm(K).

Then

Fm(K1 ∪ K2) = Fm(K1) ∪ Fm(K2), Fm(K1 ∩ K2) = Fm(K1) ∩ Fm(K2)

and the claim of the proposition follows from the inclusion-exclusion property of the cardi-
nality. ⊓⊔

Example 6.5.Suppose∆S is a simplex. Then

χ(∆S) =
∑

m≥0

(
∑

σ⊂S, #σ=m+1

(−1)m

)
=
∑

m≥0

(−1)m

(
n

m + 1

)
= 1. ⊓⊔

§6.2. The Nerve of a Family of Sets.

Definition 6.6. Fix a finite setV . Consider a family

A := {Av; v ∈ V }

of subsets a setX parameterized byV .

(a) For everyσ ⊂ V we set

Aσ :=
⋂

v∈σ

Av.

Thenerveof the familyA is the collection

N(A) :=
{
σ ⊂ V | Aσ 6= ∅

}
. ⊓⊔

Clearly the nerve of a familyA = {Av | v ∈ V } is a combinatorial simplicial complex
with vertices inV .
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Definition 6.7. SupposeV is a finite set andK ∈ Σ(V ). For everyσ ∈ K we define the
star of σ in K to be the subset

StK(σ) :=
{
τ ∈ K | τ ⊃ σ

}
.

Observe that
K =

⋃

v∈VK

StK(v). ⊓⊔

Proposition 6.8. For every CSCK ∈ Σ(V ) we have the equalities

StK(σ) =
⋂

v∈σ

StK(v), ∀σ ∈ K, K =
⋃

σ∈K

∆σ.

In particular, we deduce thatK is the nerve of the family of stars at vertices

StK :=
{

StK(v) | v ∈ VK

}
. ⊓⊔

We can now rephrase of the inclusion-exclusion formula using the language of nerves.

Corollary 6.9. SupposeL is a lattice of subsets of a setX, µ : L → R is a valuation into a
commutative ring with1. Then for every finite familyA =

(
Av

)
v∈V

of sets inL we have

µ

(
⋃

v∈V

Av

)
=

∑

σ∈N(A)

(−1)dim σµ(Aσ).

In particular, for the universal valuationA 7→ IA we have

I∪v Av
=

∑

σ∈N(A)

(−1)dim σIAσ
. ⊓⊔

Corollary 6.10. SupposeC = {Cs}s∈S is a finite family of compact convex subsets ofRn.
Denote byN(C) its nerve and set

C :=
⋃

s∈S

Cs.

Then
µ0(C) = χ

(
N(C)

)
.

In particular, if ⋂

s∈S

Cs 6= ∅.

then
µ0(C) = 1,

whereµ0 : Polycon(n) → Z denotes the Euler characteristic.

Proof. Let
Cσ =

⋂

s∈σ

Cs, ∀σ ⊂ S.

Note that ifσ ∈ N(C) thenCσ is nonempty, compact and convex and thusµ0(Cσ) = 1 .
Hence

µ0(C) =
∑

(−1)dimσµ0(Cσ) = χ(C).
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If Cσ 6= ∅ ∀σ ⊂ S we deduce thatN(C) is the elementary simplex∆S. In particular

µ0(C) = χ(∆S) = 1.

⊓⊔

§6.3. Geometric Realizations of Combinatorial Simplicial Complexes. Recall that a
convex polytope inRn is the convex hull of a finite collection of points, or equivalently, a
compact set which is the intersection of finitely many half-spaces.

Definition 6.11. (a) A subsetV
{v0, v1, . . . , vk}

of k + 1 points of a real vector spaceE is calledaffinely independentif the collection of
vectors

−−→v0v1, . . . ,
−−→v0vk

is linearly independent.
(b) Let 0 ≤ k ≤ n be nonnegative integers. Anaffinek-simplexin Rn is the convex hull
of a collection of(k + 1), affinely independent points{v0, · · · , vk} called theverticesof the
simplex. We will denote it by[v0, v1, · · · , vk].
(c) If S is an affine simplex inRn, then we denote byV (S) the set of its vertices and we
write dim σ := #V (σ) − 1. An affine simplexT is said to be afaceof S, and we write this
asτ ≺ σ if V (S) ⊂ V (T ). ⊓⊔

Example 6.12.A set of three points is affinely independent if they are not collinear. A set
of four points is affinely independent if they are not coplanar. If v0 6= v1 then[v0, v1] is the
line segment connectingv0 to v1. If v0, v1, v2 are not collinear then[v0, v1, v2] is the triangle
spanned byv0, v1, v2 (see Figure9). ⊓⊔

v
v

v

vv

0

0 1

1
2

FIGURE 9. A 1-simplex and a2-simplex.

Proposition 6.13. Suppose[v0, . . . , vk] is an affinek-simplex inRn. Then for every point
p ∈ [v0, v1, . . . , vk] there exist real numberst0, t1, · · · , tk uniquely determinedby the re-
quirements

ti ∈ [0, 1], ∀i = 0, 1, · · · , n,
k∑

i=0

ti = 1, p =
k∑

i=0

tivi.
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Proof. The existence follows from the fact that[v0, . . . , vk] is the convex hull of the finite set
{v0, . . . , vk}. To prove uniqueness, suppose

k∑

i=0

sivi =
k∑

i=0

tivi.

Note thatv0 = (s0 + · · · + sk)v0 = (t0 + · · · , tk)v0 so that
k∑

i=1

si(vi − v0) =

k∑

i=1

ti(vi − v0), vi − v0 = −−→v0vi.

From the linear independence of the vectors−−→v0vi we deducesi = ti, ∀i = 1, · · · , k. Finally

s0 = 1(s1 + · · · + sk) = 1 − (t1 + · · ·+ tk) = t0.

⊓⊔

The numbers(ti) postulated by Proposition6.13are called thebarycentric coordinatesof
the pointp. We will denote them by(ti(p)) In particular, thebarycenterof ak simplexσ is
the unique pointbσ whose barycentric coordinates are equal, i.e.

t0(bσ) = · · · = tk(bσ) =
1

k + 1
.

Therelative interiorof ∆[v0, v1, . . . , vk] is the convex set

∆(v0, v1, · · · , vk) :=
{
p ∈ ∆[v0, · · · , vk] | ti(p) > 0, ∀i = 0, 1, · · · , k }.

Definition 6.14. An affine simplicial complexin Rn (ASC for brevity) is a pair(C, T) satis-
fying the following conditions.
(a)C is a compact subset.
(b) T is a triangulation ofC, i.e. a finite collection of affine simplices satisfying the condi-
tions

(b1) If T ∈ T andS is a face ofT thenS ∈ T.
(b2) If T0, T1 ∈ T thenT0 ∩ T1 is a face of bothT0 andT1.
(b3)C is the union of all the affine simplices inT. ⊓⊔

FIGURE 10. An ASC in the plane.

Remark6.15. One can prove that any polytope inRn admits a triangulation. ⊓⊔
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In Figure10 we depicted an ASC in the plane consisting of six simplices ofdimension0,
nine simplices of dimension1 and two simplices of dimension2.

To an ASC(C, T) we can associate in a natural way a CSCK(C, T) as follows. The set
of verticesV is the collection of0-dimensional simplices inT. Then

K =
{

V (S) | S ∈ T
}
, (6.1)

where we recall thatV (S) denotes the set of vertices of the affine simplexS ∈ T.

Definition 6.16. SupposeK is a CSC with vertex setV . Then anaffine realizationof K is
an ASC(C, T) such that

K ∼= K(C, T). ⊓⊔

Proposition 6.17.Let V be a finite set. Then any CSCK ∈ Σ(V ) admits an affine realiza-
tion.

Proof. Denote byRV the space of functionsf : V → R. This is a vector space of the same
dimension asV . It has a natural basis determined by theDirac functionsδu : V → R, u ∈ V ,
where

δu(v) =

{
1 v = u

0 v 6= u
.

The set{δu | u ∈ V } ⊂ RV is affinely independent.
For everyσ ∈ K we denote by[σ] the affine simplex inRV spanned by the set{δu | u ∈

σ}. Now define
C =

⋃

σ∈K

[σ], T =
{
[σ] | σ ∈ K}.

Then(C, T) is an ASC and by constructionK = K(C, T).
⊓⊔

Suppose(C, T) is an ASC and denote byK the associated CSC. Denote byfk = fk(C, T).
According to the Euler-Schläfli-Poincaré formula we have

µ0(C) =
∑

k

(−1)kfk(C, T).

The sum in the right hand side is preciselyχ(K), the Euler characteristic ofK. For this
reason, we will use the symbolsχ andµ0 interchangeably to denote the Euler characteristic
of a polytope.
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7. The Möbius inversion formula

§7.1. A Linear Algebra Interlude. As in the previous section, for any finite setA we
denote byRA the space of functionsA → R. This is a vector space and has a canonical basis
given by the Dirac functions

δa : A → R, a ∈ A.

Note that to any linear transformationT : RA → RB we can associate a function

S = ST : B × A → R

uniquely determined by the equalities

Tδa =
∑

b∈B

S(b, a)δb, a ∈ A. (7.1)

We say thatST is ascattering matrixof T . If f : A → R is a function then

f =
∑

a∈A

f(a)δa

and we deduce that the functionTf : B → R is given by the equalities

Tf =
∑

a∈A,b′∈B

S(b′, a)f(a)δb′ ⇐⇒ (Tf)(b) =
∑

a∈A

S(b, a)f(a), ∀b ∈ B. (7.2)

Conversely, to any mapS : B × A → R we can associate a linear transformationT : RA →
RB whose action ofδa is determined by (7.2).

Lemma 7.1. SupposeA0, A1, A2 are finite sets and

T0 : RA0 → RA1 , T1 : RA1 → RA2

are linear transformations with scattering matrices

S0 : A1 × A0 → R, S1 : A2 × A1 → R

Then the scattering matrix ofT1 ◦ T0 : RA2 × RA0 → R is the mapS1 ∗ S0 : A2 × A0 → R
defined by

S1 ∗ S0(a2, a0) =
∑

a1∈A1

S1(a2, a1)S0(a1, a0).

Proof. Denote byS the scattering matrix ofT1 ◦ T0 so that

(T1 ◦ T0)δa0
=
∑

a2

δa2
S(a2, a0).

On the other hand

(T1 ◦ T0)δa0
= T1

(
∑

a1

δa1
S0(a1, a0)

)

=
∑

a2

δa2

(
∑

a1

S1(a2, a1)S0(a1, a0)

)
=
∑

a2

δa2
(S1 ∗ S0)(a2, a0).
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Comparing the above equalities we obtain the sought for identity

S(a2, a0) =
(
S1 ∗ S0

)
(a2, a0).

⊓⊔

Lemma 7.2. Suppose thatA is a finite set equipped with a partial order< (we use the
convention thata ≮ a, ∀a ∈ A). Suppose

S : A × A → R

is strictly upper triangular, i.e. it satisfies the condition

S(a0, a1) 6= 0 =⇒ a0 < a1.

Then the linear transformationT : RA → RA determined byS is nilpotent, i.e. there exists
a positive integern such that

T n = 0.

Proof. Let a, b be inA and denote bySn the scattering matrix ofT n. By repeated application
of the previous lemma,

Sn(a, b) =
∑

c1,...,cn−1∈A

S(a, c1)S(c1, c2) · · ·S(cn−1, b).

Then sinceS is strictly upper triangular, we deduce that the above sums contains only ‘mono-
mials‘ of the form

S(a, c1)S(c1, c2) · · ·S(cn−1, b), ci < ci+1, ∀i.

Thus, we really have that:

Sn(a, b) =
∑

a<c1<c2<···<cn−1<b∈A

S(a, c1)S(c1, c2) · · ·S(cn−1, b).

So, since we are using thata ≮ a, if we taken > #A we cannot find such a sequence, so
Sn = 0, meaning thatT n = 0. ⊓⊔

Lemma 7.3. SupposeT is a finite dimensional vector space andT : E → E is a nilpotent
linear transformation. Then the linear map1E + T is invertible and

(1E + T )−1 =
∑

k≥0

(−1)kT k.

Proof. SinceT is nilpotent, there is some positive integerm such thatTm = 0. We may
even assume thatm is odd. Thus1E = 1E + Tm = (1E + T )(1E − T + T 2 − · · · + Tm−1) = (1E + T )

(
∑

k≥0

(−1)kT k

)
.

⊓⊔
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§7.2. The Möbius Function of a Simplicial Complex. SupposeV is a finite set andK ∈
Σ(V ) is a CSC. Thezeta functionof K is the map

ζ = ζK : K × K → Z, ζ(σ, τ) =

{
1 σ � τ

0 σ � τ
.

Defineξ = ξK : K × K → Z by

ξ(σ, τ) =

{
1 σ � τ

0 otherwise
.

ζ defines a linear mapZ : RK → RK andξ defines a linear mapΞ : RK → RK . Note that
for every functionf : K → R we have

(Zf)(σ) =
∑

τ∈K

ζ(σ, τ)f(τ) =
∑

τ�σ

f(τ). (7.3)

Proposition 7.4. (a) Z = 1+ Ξ.
(b) The linear mapΞ is nilpotent. In particular,Z is invertible.
(c) Let µ : K × K → R the scattering matrix ofZ−1. Thenµ satisfies the following
conditions.

µ(σ, τ) 6= 0 =⇒ σ � τ, (7.4a)

µ(σ, σ) = 1, ∀σ ∈ K, (7.4b)

µ(σ, τ) = −
∑

σ�ϕ�τ

µ(σ, ϕ). (7.4c)

Proof. First, we denote byδ(σ, τ) the delta function, that is,

δ(σ, τ) =

{
1 σ = τ

0 σ 6= τ

(a) From above we have

(Zf)(σ) =
∑

τ∈K

ζ(σ, τ)f(τ) =
∑

τ�σ

f(τ) = f(σ) +
∑

τ�σ

f(τ)

=
∑

τ∈K

δ(σ, τ)f(τ) +
∑

τ∈K

ξ(σ, τ)f(τ) = (Ξf)(σ) + (1f)(σ) =
(

(Ξ + 1)f
)
(σ).

(b) We have from before thatΞ is defined by a scattering matrixξ which is strictly upper
triangular, i.e.

ξ(σ, τ) 6= 0 ⇒ σ � τ.

By Lemma7.2, we have thatΞ is nilpotent. Thus, becauseZ = 1 + Ξ, by Lemma7.3 we
have thatZ is invertible.
(c) From Lemma7.3we have that

Z−1 = (1+ Ξ)−1 =
∑

k≥0

(−1)kΞk = 1− Ξ + Ξ2 − · · ·
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Let us examineΞi. By an iteration of Lemma7.1, we have that the scattering matrix forΞi

will be
ξi(σ, τ) =

∑

ϕ1,··· ,ϕi−1∈K

ξ(σ, ϕ1)ξ(ϕ1, ϕ2) · · · ξ(ϕi−1, τ)

This scattering matrix is, likeξ, strictly upper triangular. Note that this also implies that the
ξi(σ, τ) gives a value of0 for the diagonal termsσ = σ. Furthermore, the identity operator1 has scattering matrixδ(σ, τ), which gives a value of1 on the diagonal terms and zero
elsewhere. We therefore have proven equations (7.4a) and (7.4b). To prove the third, we
convert the equality1 = Z−1Z into a statement about scattering matrices

δ = µ ∗ ζ.

By Lemma7.1, we therefore have

δ(σ, τ) =
∑

ϕ∈K

µ(σ, ϕ)ζ(ϕ, τ)

Thus, forσ 6= τ , we have that

0 =
∑

ϕ∈K

µ(σ, ϕ)ζ(ϕ, τ) =
∑

σ�ϕ�τ

µ(σ, ϕ)

and thus
µ(σ, τ) = −

∑

σ�ϕ�τ

µ(σ, ϕ).

⊓⊔

Definition 7.5. (a) SupposeA, B are two subsets of a setV . A chain of lengthk ≥ 0
betweenA andB is a sequence of subsets

A = C0  C1 ( · · ·  Ck = B.

We denote byck(A, B) the number of chains of lengthk betweenA andB. We set

c0(A, B) =

{
0 B 6= A

1 B = A
,

and
c(A, B) =

∑

k

(−1)kck(A, B).

(b) We set
ck(n) := ck(∅, B), c(n) = c(∅, B),

whereB is a set of cardinalityn. ⊓⊔

Lemma 7.6. If σ, τ are faces of the combinatorial simplicial complexK then

µ(σ, τ) = c(σ, τ).
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Proof. We have thatµ is the scattering matrix of

Z−1 =
∑

k≥0

(−1)kΞk = 1− Ξ + Ξ2 − · · · ,

soµ should be equal to the scattering matrix of the right hand side, i.e.

µ(σ, τ) =
∑

k≥0

(−1)kξk(σ, τ),

whereξk(σ, τ) is, as before,

ξk(σ, τ) =
∑

ϕ1,··· ,ϕk−1∈K

ξ(σ, ϕ1)ξ(ϕ1, ϕ2) · · · ξ(ϕk−1, τ) =
∑

σ=ϕ0�ϕ1�···�ϕk−1�ϕk=τ

1 = ck(σ, τ).

Furthermore, becausec0(σ, τ) = δ(σ, τ), we have that

µ(σ, τ) =
∑

k≥0

(−1)kck(σ, τ) = c(σ, τ).

⊓⊔

Lemma 7.7. We have the following equalities.
(a)

ck(n) =
∑

j>0

(
n

j

)
ck−1(n − j).

(b) c(n) = (−1)n.
(c) If A ⊂ B are two finite sets then

c(A, B) = (−1)#B−#A.

Proof of a. We recall thatck(n) is the number of chains of lengthk in C(B, ∅), where|B| =
n. Then,ck−1(n − j) is the number of chains inC(A, ∅), where|A| = n − j. Consider a
chain of lengthk − 1 in C(A, ∅) whereA ⊂ B ⊂ V : ∅ ( C1 ( · · · ( Ck−1 = A. There is
only one option for turning it into a chain of lengthk in C(B, ∅), namely:∅ ( C1 ( · · · (
Ck−1 ( Ck = B. For eachj, there are

(
n
j

)
ways to choose the setJ of elements to be taken

out ofB, i.e. to takeA = B r J , |A| = n − j. Then there areck−1(n − j) chains of length
k in C(B, ∅) to be constructed as above. Thus,

ck(n) =
∑

j>0

(
n

j

)
ck−1(n − j)

⊓⊔

Proof of b. We note that the statement is trivially true forn = 0, and we use this as a base
case for induction. It is also important to note that forn 6= 0, c0(n) = 0. By part a,

(−1)kck(n) = (−1)k
∑

j>0

(
n

j

)
ck−1(n − j)
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Then,

c(n) =
∑

k≥0

(−1)kck(n) = −
∑

k≥0

∑

j>0

(
n

j

)
(−1)k−1cn−1(n − j)

= −
∑

j>0

(
n

j

)∑

k≥1

(−1)k−1ck−1(n − j)

= −
∑

j>0

(
n

j

)∑

k≥0

(−1)kck(n − j) = −
∑

j>0

(
n

j

)
c(n − j).

By the induction hypothesis,

−
∑

j>0

(
n

j

)
c(n − j) = −

∑

j>0

(
n

j

)
(−1)n−j = (−1)n −

∑

j≥0

(
n

j

)
(−1)n−j .

The last sum is the Newton binomial expansion of(1 − 1)n so it is equal to zero. Hence

c(n) = (−1)n.

⊓⊔

Proof of c. SupposeA = {α1, . . . , αj}. If A ⊂ B, B = {α1, . . . , αj, β1, . . . , βm}. Then a
chain inck(A, B) can be identified with a chain of lengthk of the set

B r A = {β1, . . . , βm}.

Therefore,
ck(A, B) = ck(∅, B r A) = ck(#B − #A).

In particular,c(A, B) = (−1)(#B−#A). ⊓⊔

Theorem 7.8(Möbius inversion formula). LetV be a finite set andK ∈ Σ(V ) suppose that
f, u : K → R are two functions satisfying the equality

u(σ) =
∑

τ�σ

f(σ), ∀σ ∈ K.

Then
f(σ) =

∑

τ�σ

(−1)dim τ−dimσu(τ).

Proof. Note thatu(σ) = (Zf)σ so thatZ−1u = (Z−1Z)f = f . Using (7.2), and realizing
thatµ is the scattering matrix ofZ−1 we deduce

f(σ) = (Z−1u)(σ) =
∑

τ∈K

µ(σ, τ)u(τ)

By Lemma7.6,
f(σ) =

∑

τ⊇σ

c(σ, τ)u(τ)

Then, by Lemma7.7,
f(σ) =

∑

τ⊇σ

(−1)dim τ−dimσu(τ).
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⊓⊔

Corollary 7.9. Suppose(C, T) is an ASC. Then

IC =
∑

S∈T

m(S)IS

where

m(S) :=
∑

T�S

(−1)dim T−dimS = (−1)dimS
∑

T�S

(−1)dim T .

In particular, we deduce that the coefficientsm(S) depend only on the combinatorial simpli-
cial complex associated to(C, T).

Proof. Definef, u : T → Z by

f(T ) := (−1)dim T and u(S) := (−1)dimSm(S) =
∑

T�S

f(T ).

We apply the Möbius inversion formula and see that

f(S) =
∑

T≥S

(−1)dim T−dimSu(T ) = (−1)dim S
∑

T�S

m(T ).

Then,

1 = (−1)dim Sf(S) =
∑

T�S

m(T ). (7.5)

Now consider the functionL : Rn → Z,

L(x) =
∑

S∈T

m(S)IS(x).

Clearly,L(x) = 0 if x 6∈ C. Supposex ∈ C. Denote byTx the collection of simplicesT ∈ T

such thatx ∈ T . Then

Sx :=
⋂

T∈Tx

T

is a simplex inT and in fact it isthe minimalaffine simplex inT containingx. We have

L(x) =
∑

S∈T

m(S)IS(x) =
∑

S�Sx

m(S)IS(x) =
∑

S�Sx

m(S)
(7.5)
= 1.

Therefore,
∑

S∈T

m(S)IS = IC

⊓⊔
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§7.3. The Local Euler Characteristic. We begin by defining an important concept in the
theory of affine simplicial complexes, namely the concept ofbarycentric subdivision. As its
definition is a bit involved we discuss first a simple example.

Example 7.10.(a) Suppose[v0, v1] is an affine1-simplex in some Euclidean spaceRn. Its
barycenter is precisely the midpoint of the segment and we denote it byv01. The barycentric
subdivision of the line segment[v0v1] is the triangulation depicted at the top of Figure11
consisting of the affine simplices.

v0, v01, v1, [v0, v01], [v01, v1].
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FIGURE 11. Barycentric subdivisions

(b) Suppose[v0, v1, v2] is an affine2-simplex in some Euclidean spaceRn. We denote the
barycenter of the face[vi, vj ] by vij = vji and we denote byv012 the barycenter of the two
simplex.

Observe that there exists a natural bijection between the faces of[v0, v1, v2] and the nonempty
subsets of{0, 1, 2}. For every such subsetσ ⊂ {0, 1, 2} we denote byvσ the barycenter of
the face corresponding toσ. For example,

v{0,1} = v01 etc..

To any chain subsets of{0, 1, 2}, i.e. a strictly increasing family of subsets, we can associate
a simplex. For example, to the increasing family

{2} ⊂ {0, 2} ⊂ {0, 1, 2}

we associate in Figure11 the triangle[v2, v02, v012]. We obtain in this fashion a triangulation
of the2-simplex[v0, v1, v2] whose simplices correspond bijectively to the chain of subsets.

The next two results follow directly from the definitions.

Lemma 7.11. Suppose[v0, · · · , vk] is an affine simplex inRn. For every nonempty subset
σ ⊂ {0, · · · , k} we denote byvσ the barycenter of the affine simplex spanned by the points
{vs | s ∈ σ}. Then for every chain

∅ ( σ0 ( σ1 ( · · · ( σℓ

of subsets of{0, 1 · · · , k} the barycentersvσ0
, · · · , vσℓ

are affinely independent.⊓⊔
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Proposition 7.12.Suppose(C, T) is an affine simplicial complex. For every chain

S0 ( S1 ( · · · ( Sk

of simplices inT we denote by∆[S0, · · · , Sk] the affine simplex spanned by the barycenters
of S0, · · · , Sk and we denoteT′ the collection of all the simplices∆[S0, · · · , Sk] obtained in
this fashion. ThenT′ is a triangulation ofT.⊓⊔

Definition 7.13. The triangulationT′ constructed in Proposition7.12is called thebarycen-
tric subdivisionof the triangulationT. ⊓⊔

Definition 7.14. Suppose(C, T) is an affine simplicial complex andv is a vertex ofT.
(a) Thestar of v in T is the collection of all simplices ofT which containv as a vertex. We
denote the star byStT(v). For every simplexS ∈ StT(v) we denote byS/v the face ofS
opposite tov.
(b) Thelink of v in T is the polytope

lkT(v) :=
⋃

S∈St(v)

S/v,

with the triangulation induced fromT′.
(c) For every faceS of T we denote bybS its barycenter. We definelink of S in T to be the
link of bS in the barycentric subdivision

lkT(S) := lkT′(bS).

(d) For every faceS of T we define thelocal Euler characteristicof (C, T) alongS to be the
integer

χS(C, T) := 1 − χ
(
lkT(S)

)
. ⊓⊔

o

2

2

3

3

3

1

1

1

1

c
c

c

d

dd

d

d

d
a

a
a

a

b

o2

2 3

3

3

1

1 cc
c

2

dd

FIGURE 12. An open book with three pages

Example 7.15.Consider the polyconvex setC consisting of three triangles in space which
have a common edge. Denote these triangles by[a, b, ai], i = 1, 2, 3 (see Figure12).

We denote byo the barycenter of[a, b], byci the barycenter of[a, ai] and bydi the barycen-
ter of [a, b, ai]. Then the link of the vertexa is the star with tree arms joined ato depicted at
the top right hand side. It has Euler characteristic1. The link of [a, b] is the set consisting of
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three points{d1, d2, d3}. It has Euler characteristic3 The local Euler characteristic alonga
is 0, while the local Euler characteristic along[a, b] is−2. ⊓⊔

Remark7.16. Suppose(C, T) is an ASC. Denote byVT ⊂ T the set of vertices, i.e. the
collection of0-dimensional simplices. Recall that the associated combinatorial complexK
consists of the collection

V (S), S ∈ T

whereV (S) denotes the vertex set ofS. Them-dimensional simplices the barycentric sub-
division correspond bijectively to chains of lengthm in K.

Let S in T and denote byσ its vertex set. The number ofm-dimensional simplices in
StT′(bS) is equal to ∑

τ⊇σ

cm(σ, τ). ⊓⊔

Proposition 7.17.Suppose(C, T) is an ASC. Then for everyS ∈ T we have

χS(C, T) =
∑

T�S

(−1)dim T−dimS,

so thatIC =
∑

S∈T
χS(C, T)IS. In particular,

∑

S∈T

(−1)dimS = χ(C) =

∫
ICdµ0 =

∑

S∈T

χS(C, T).

Proof. To begin, for a simplicial complex,K, let Fm(K) = {faces of dimensionm in K}
and recall that

χ(K) =
∑

m≥0

(−1)m#Fm(K).

The(m−1)-dimensional faces oflkT(S) (m ≥ 1) correspond bijectively to them-dimensional
simplicesT ′ ∈ T′ containingbS. According to Remark7.16 there are

∑
T�S cm(S, T ) of

them. Hence
Fm−1(lkT(S)) =

∑

T�S

cm(S, T )

Hence
χ(lkT(S)) = −

∑

m>0

(−1)m
∑

T�S

cm(S, T )

so that
χS(C, T) = 1 − χ(lkT(S)) = 1 +

∑

m>0

(−1)m
∑

T�S

cm(S, T )

=
∑

m≥0

∑

T�S

(−1)mcm(S, T ) =
∑

T�S

∑

m≥0

(−1)mcm(S, T ) =
∑

T�S

c(S, T ) =
∑

T�S

(−1)dimT−dim S.

⊓⊔

The above proof implies the following result.
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Corollary 7.18. For any vertexv ∈ VT we have

χ(lkT(v)) = −
∑

S)v

(−1)dimS. ⊓⊔

Corollary 7.19. Suppose(C, T) is an ASC inRn, R is an commutative ring with 1, and
µ : Polycon(n) → R a valuation. Then

µ(C) =
∑

S∈T

χS(C, T)µ(S).

In particular, if we letµ be the Euler characteristic we deduce
∑

S∈T

(−1)dim S = χ(C) =
∑

S∈T

χS(C, T).

Proof. Denote by
∫

dµ the integral defined byµ. Then

µ(C) =

∫
ICdµ =

∫ (∑

S∈T

χS(C, T)IS

)
dµ =

∑

S∈T

χS(C, T)

∫
ISdµ =

∑

S∈T

χS(C, T)µ(C).

⊓⊔
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8. Morse theory on polytopes inR3

§8.1. Linear Morse Functions on Polytopes. Suppose(C, T) is an ASC inR3. For sim-
plicity we assume that all the faces ofT have dimension< 3. Denote by〈−,−〉 the canonical
inner product inR3 andS

2 the unit sphere centered at the origin ofR3.
Any vectoru ∈ S

2 defines a linear mapLu : R3 → R given by

Lu(x) := 〈u, x〉, ∀x ∈ R3.

We denote byℓu its restriction toC. We say theu is T-nondegenerateif the restriction ofLu

to the set of vertices ofT is injective. Otherwiseu is calledT-degenerate. We denote by∆T

the set of degenerate vectors.

Definition 8.1. A linear Morse functionon (C, T) is a function of the formℓu, whereu is a
T-nondegenerate unit vector. ⊓⊔

Lemma 8.2(Bertini-Sard). ∆T is a subset ofS2 of zero (surface) area.

Proof. Let v1, · · · , vk be the vertices ofT. Foru ∈ S
2 to be aT-degenerate vector, it must

be perpendicular to an edge connecting two of thevi. The set of all such lines is a plane in
R3, and the intersection of such a plane andS

2 is a great circle. Therefore,∆T is composed
of at most

(
k
2

)
great circles, meaning∆T is a finite set and thus has zero surface area.⊓⊔

Supposeu is T-nondegenerate. For everyt ∈ R we set

Ct =
{

x ∈ C | ℓu(x) = t
}
.

In other words,Ct is the intersection ofC with the affine planeHu,x0
:= {x | 〈u, x〉 =

〈u, x0〉 = t}. We denote byVT the set of vertices ofT. For every nondegenerate vectoru the
functionℓu defines an injection

ℓu : VT → R.

Its image is a subsetKu ⊂ R called thecritical setof ℓu. The elements ofKu are called the
critical valuesof ℓu.

Lemma 8.3. For everyt ∈ R the sliceCt is a polytope of dimension≤ 1.

Proof. Ct is the intersection ofC with the planeHt = {〈u, x〉}. Ht contains at most one
vertex, so it must intersect each face transversally. The intersection with each face will have
codimension1 inside that face. Hence, no intersection can have dimensiongreater than1. ⊓⊔

The above proof also shows that the sliceCt has a natural simplicial structure induced
from the simplicial structure ofC. The faces ofCt are the non-empty intersections of the
faces ofC with the hyperplaneHt.

Remark8.4. Define a binary relation

R = Rt,t+ǫ ⊂ V (Ct+ǫ) × V (Ct)

such that fora ∈ V (Ct+ǫ) andb ∈ V (Ct)

a Rt,t+ǫ b ⇒ a andb lie on the same edge ofC
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Observe that fixedt and forǫ ≪ 1, the binary relationRt,t+ǫ is thegraph of a map

V (Ct+ǫ) → V (Ct)

which preserves the incidence relation. This means the following:

• ∀a ∈ Ct+ǫ, ∃ a uniqueb ∈ V (Ct) such thataRb, and
• If [a0, a1, · · · , ak] is a face ofCt+ǫ andaiRbi for bi ∈ V (Ct), then[b0, b1, ..., bk], is a face ofCt.
We will denote the mapV (Ct+ǫ) → V (Ct) by the same symbolR.

⊓⊔

Denote byχu(t) the Euler characteristic ofCt. We know that

χ(C) =
∑

t

ju(t),

whereju(t) denotes thejumpof χu at t,

ju(t) := χu(t) − χu(t + 0).

Every nondegenerate vectoru defines a map

j(u|−) : VT → Z, j(u|x) := the jump ofχu at the critical valueℓu(x).

Lemma 8.5.
ju(t) 6= 0 =⇒ t ∈ Ku.

Proof. By definition ju(t) 6= 0 ⇒ χ(Ct) 6= χ(Ct+0). We would like to better understand
the relationship betweenCt andCt+ǫ for anyǫ ≪ 1. By Remark8.4, for ǫ sufficiently small
Rt,t+ǫ defines a mapV (Ct+ǫ) → V (Ct) which preserves the incidence relationship. Assume
thatt /∈ Ku. All points inV (Ct) andV (Ct+ǫ) come from transversal intersections of edges of
C. Because these edges cannot terminate anywhere inbetween those two points and because
the intersection is transversal (and thus unique), for small ǫ we have thatV (Ct+ǫ) → V (Ct) is
a bijection. Any edge which connects two vertices inCt+ǫ is subsequently mapped by to the
edge connecting the corresponding vertices inCt. By the Euler-Schläfli-Poincaré formula,
χ(Ct+ǫ) = χ(Ct). But this implies thatju(t) = 0, a contradiction. Thust ∈ Ku. ⊓⊔

Lemma8.5shows that
χ(C) =

∑

x∈VT

j(u|x). (8.1)

For everyx ∈ VT we have a function

j(−|x) : S
2 \ ∆T → Z, S

2 \ ∆T ∋ u 7→ j(u|x).

Now, for every vertexx we set

ρ(x) :=
1

4π

∫

S2\∆T

j(u|x)dσ(u), (8.2)

wheredσ(u) denotes the area element onS
2 such that

Area (S2) = Area (S2 \ ∆T) = 4π.
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Integrating (8.1) overS2 \ ∆T we deduce

4π =

∫

S2\∆T

(∑

x∈VT

j(u|x)
)
dσ(u) =

∑

x∈VT

∫

S2\∆T

j(u|x) = 4π
∑

x∈VT

ρ(x)

so that
χ(C) =

∑

x∈VT

ρ(x) (8.3)

We dedicate the remainder of this section to giving a more concrete description ofρ(x).

§8.2. The Morse Index. We begin by providing a combinatorial description of the jumps.
Let u ∈ S

2 be aT-nondegenerate vector,x0 a vertex of the triangulationT. We set

t0 := ℓu(x0) = 〈u, x0〉.

We denote bySt+
T
(x0, u) the collection of simplices inT which admitx0 as a vertex and are

contained in the half-space

H+
u,x0

=
{
v ∈ R3 | 〈u, v〉 ≥ 〈u, x0〉

}
.

We define theMorse indexof u atx0 to be the integer

µ(u|x0) :=
∑

S∈St+
T

(x0,u)

(−1)dim S.

Example 8.6.Consider the situation depicted in Figure13.
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FIGURE 13. Slicing a polytope.

The hyperplanesℓu = const are depicted as vertical lines. The sliceCt0 is a segment, and
for everyǫ > 0 sufficiently small the sliceCt0+ǫ consists of two segments and two points.
Hence

χu(t0) = 1, χu(t0 + ǫ) = 4, j(u|x0) = ju(t0) = 1 − 4 = −3.
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Now observe thatSt+
T
(x0, u) consists of the simplices

{x0}, [x0, x1], [x0, x2], [x0, x3], [x0, x5], [x0, x6], [x0, x1, x5].

We see thatSt+
T
(x0, u) consists of1 simplex of dimension zero,5 simplices of dimension1

and one simplex of dimension2 so that

µ(u|x0) = 1 − 5 + 1 = −3 = j(u|x0).

We will see that the above equality is no accident. ⊓⊔

Proposition 8.7. Let (C, T) be a polytope inR3 such that all its simplices have dimension
≤ 2. Then for anyT-nondegenerate vectoru and any vertexx0 of T the jump ofℓu at x0 is
equal to the Morse index ofu at x0, i.e.

j(u|x0) = µ(u|x0).

Proof. By definition,
j(u|x0) = χ(Ct0) − χ(Ct0+0)

We will again utilize the binary relationR defined in Remark8.4.
We have thatt0 is a critical value, soCt0 contains a unique vertexx0 of C. Denote by

R−1(x0) the set of all vertices ofV (Ct0+ǫ) which are mapped tox0 by Rt0,t0+ǫ. Then the
induced mapV (Ct0+ǫ) r R−1(x0) → V (Ct0) r {x0} behaves as it did in Lemma8.5 is a
bijection on these sets and preserves the face incidence relation (see Figure14). Using the
Euler-Schläfli-Poincaré formula we then deduce that

χ(Ct0) − χ(Ct0+ǫ)

= # {x0} − #
(
R−1(x0)

)
− #

{
Edges inCt+ǫ connecting vertices inR−1(x0)

}
.

Note here that

#
(
R−1(x0)

)
= #

{
Edges ofC insideH+

u,x0
and containingx0

}
,

and
#
{

Edges inCt+ǫ connecting vertices inR−1(x0)
}

= #
{

Triangles ofC insideH+
u,x0

and containigx0

}
.

Thus we see that

j(u|x0) = # {x0} − #
{

Edges ofC insideH+
u,x0

and containingx0

}

+#
{

Triangles ofC insideH+
u,x0

and containigx0

}

=
∑

S∈St+
T

(x0,u)

(−1)dimS = µ(u|x0).

⊓⊔
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FIGURE 14. The behavior of the mapV (Ct0+ǫ) → V (Ct0).

§8.3. Combinatorial Curvature. To formulate the notion of combinatorial curvature we
need to introduce the notion ofconormal cone. Foru, x ∈ Rn define

H+
u,x :=

{
y ∈ Rn | 〈u, y〉 ≥ 〈u, x〉

}
.

Note that ifu 6= 0 thenH+
u,x is a half-space containingx on its boundary.u is normal to the

boundary and points towards the interior of this half-space.

Definition 8.8. SupposeP is a convex polytope inRn andx is a point inP . Theconormal
coneof x ∈ C is the set

Cx(P ) = Cx(P,Rn) :=
{
u ∈ Rn | P ⊂ H+

u,x

}
. ⊓⊔

We create an equivalent and more useful description of the conormal cone.

Cx(P ) :=
{
u ∈ Rn | P ⊂ H+

u,x

}
=
{
u ∈ Rn | 〈u, y〉 ≥ 〈u, x〉, ∀y ∈ P

}
,

The following result follows immediately from the definition.

Proposition 8.9. The conormal cone is aconvex cone, i.e. it satisfies the conditions

u ∈ Cx(P ), t ∈ [0,∞) =⇒ tu ∈ Cx(P )

u0, u1 ∈ Cx(P ) =⇒ u0 + u1 ∈ Cx(P ). ⊓⊔

Proposition8.9 shows that the conormal cone is an (infinite) union of rays (half-lines)
starting at the origin. Each one of these rays intersects theunit sphereSn−1, and as a ray
sweeps the coneP , its intersection with the sphere sweeps a regionΩx(P ) on the sphere,

Ωx(P ) = Ωx(P,Rn) := Cx(P ) ∩ S
n−1.

The more elaborate notationΩx(P,Rn) is meant to emphasize that the regionΩx(P ) depends
on the ambient spaceRn. Thus we also have

Ωx(P ) =
{
u ∈ S

n−1 | 〈u, y〉 ≥ 〈u, x〉, ∀y ∈ P
}



Morse theory 81

We denoteσn−1 the total(n − 1)-dimensional surface area ofSn−1 and byωx(P ) the
(n − 1)-dimensional “surface area” ofΩx(P ) divided byσn−1,

ωx(P ) :=
arean−1

(
Ωx(P )

)

arean−1 (Sn−1)
=

arean−1

(
Ωx(P )

)

σn−1
.

Remark8.10. One can show thatωx(P ) is independent of the dimensionn of the ambient
spaceRn, i.e. if we regardP as a polytope in an Euclidean spaceRN ⊃ Rn then we obtain
the same result forωx(P ). We will not pursue this aspect here. ⊓⊔

Proposition 8.11. (a) If P ⊂ R3 is a zero simplex[x] then

ωx(x) = 1.

(b) If P = [x0, x1] ⊂ R3 is a1-simplex then

ωx0
([x0, x1]) =

1

2
.

(c) If P = [x0, x1, x2] ⊂ R3 is a 2-simplex and the angle at the vertexxi is riπ, ri ∈ (0, 1)
then

r0 + r1 + r2 = 1, ωxi
([x0, x1, x2]) =

1

2
−

ri

2
.

Proof. (a) For[x] ⊂ R3 a singleton, clearly

Ω[x](P ) =
{
u ∈ S

n−1 | 〈u, y〉 ≥ 〈u, x〉, ∀y ∈ [x]
}

=
{
u ∈ Sn−1 | 〈u, x〉 ≥ 〈u, x〉

}
= S

n−1

and thus
ω[x](P ) = 1

(b) We can fix coordinates such that[x0, x1] lies horizontal withx0 located at the origin. It
is then easy to see that the conormal cone is the half-space with boundary perpendicular to
[x0, x1] passing throughx0 with rays pointing “towards”x1. Therefore,ωx0

= 1
2
.

(c) Without loss of generality, we can considerωx0
. We fix coordinates such thatx0 lies at

the origin and[x0, x1, x2] lies in a plane with[x0, x1] lying along an axis. The conormal
cones of[x0, x1] and[x0, x2] are each a half-space as described above. The conormal cone
of [x0, x1, x2] is then the intersection of these two cones. This intersection is bounded by
planes determined by the perpendiculars to[x0, x1] and[x0, x1], both passing throughx0. In
other words, the intersection of the conormal cone with the sphere is a lune. Call the angle
of the opening of the luneθ. The angles between the perpendicular lines and the sides ofthe
triangle are given byπ

2
− πr0 (possibly negative), and the total angle is

θ =
(π

2
− πr0

)
+
(π

2
− πr0

)
+ πr0 = π − πr0

The area of the lune defined byθ0 is, in spherical coordinates,
∫ θ0

0

(∫ π

0

sin(φ)dφ

)
dθ = 2θ0

Thus

ωx0
=

2θ

4π
=

1

2
−

r1

2
.
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⊓⊔
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FIGURE 15. The angle between the perpendiculars of[x0, x1] and[x0, x2].

Suppose(C, T) is an affine simplicial complex inR3 such that all the simplices inT have
dimension≤ 2. Recall that for every vertexv ∈ VT we defined its star to be the collection of
all simplices inT which admitv as a vertex. We now define thecombinatorial curvatureof
(C, T) atv ∈ VT to be the quantity

κ(v) :=
∑

S∈StT (v)

(−1)dimSωv(S).

Example 8.12.(a) Consider a rectangleA1A2A3A4. Then any interior pointO determines
a triangulation of the rectangle as in Figure16.

O

A A

A
A

1

2
3

4

FIGURE 16. A simple triangulation of a rectangle.

Suppose that∡(AiOAi+1) = riπ, i = 1, 2, 3, 4 so that

r1 + r2 + r3 + r4 = 2.

The star ofO in the above triangulation consists of the simplices

{O}, [OAi], [OAiAi+1], i = 1, 2, 3, 4.
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Then

ωO(O) = 1, ωO([OAi]) =
1

2
, ωO([OAiAi+1]) =

1

2
−

ri

2
.

We deduce that the combinatorial curvature atO is

1 −
4∑

i=1

1

2
+

4∑

i=1

(1

2
−

ri

2

)
= 1 − 2 + 2 −

1

2
(r1 + r2 + r3 + r4) = 0.

This corresponds to our intuition that a rectangle is “flat”.Note that the above equality can
be written as

2πκ(O) = 2π −
4∑

i=1

∡(AiOAi+1).

(b) Suppose(C, T) is the standard triangulation of the boundary of a tetrahedron[v0, v1, v2, v3]
in R3 (see Figure17).

v

v

v

v

0

1

2

3

FIGURE 17. The boundary of a tetrahedron.

Set
θijk = ∡(vivjvk), i, j, k = 0, 1, 2, 3..

Then the star ofv0 consists of the simplices

{v0}, [v0vi], [v0vivj ], i, j ∈ {1, 2, 3}, i 6= j.

We deduce

ωv0
(v0) = 1, ωv0

([v0vi]) =
1

2
, ωv0

([v0vivj ]) =
1

2π
(π − θi0j)

and

κ(v0) = 1 −
3

2
+

1

2π

∑

1≤i<j≤3

(π − θi0j) =
1

2π

(
2π −

∑

1≤i<j≤3

θi0j

)
.

Hence
2πκ(v0) = 2π − the sum of the angles atv0.

This resembles the formula we found in (a) and suggests an interpretation of the curvature
as a measure of deviation from flatness. Note that in the limiting case when the vertexv0

converges to a point in the interior of[v1v2v3] the sum of the angles atv0 converges to2π,
and the boundary of the tetrahedron is “less and less curved”at v0. On the other hand, if the
tetrahedron is “very sharp” atv0, the sum of the angles atv0 is very small and the curvature
approaches2π. ⊓⊔
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Motivated by the above example we introduce the notion ofangular defect.

Definition 8.13. Suppose(C, T) is an affine simplicial complex inR3 such that all simplices
have dimension≤ 2. For every vertexv of T. we denote byΘ(v) the sum of the angles atv
of the triangles inT which havev as a vertex. Thedefectat v is the quantity

def(v) := 2π − Θ(v). ⊓⊔

Proposition 8.14. If (C, T) is an affine simplicial complex inR3 such that all simplices have
dimension≤ 2 then for every vertexv of T we have

κ(v) =
1

2π
def(v) −

1

2
χ( lkT(v) ).

Proof. Using Proposition8.11we deduce that

κ(v) = 1 −
1

2
#
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}

+
1

2
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triangles atv
}
−
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The proposition now follows from Corollary7.18which states that

χ( lkT(v) ) =
(

#
{

edges atv
}
− #

{
triangles atv

})
.

⊓⊔

Theorem 8.15(Combinatorial Gauss-Bonnet). If (C, T) is an affine simplicial complex in
R3 such that all the simplices inT have dimension≤ 2 then

χ(C) =
∑

v∈VT

κ(v) =
1

2π

∑

v∈VT

def(v) −
1

2

∑

v∈VT

χ( lkT(v) ).

Proof. Let V represent the number of vertices inC, E the number of edges inC andT the
number of triangles inC. Then we denote byEv, Tv the number of edges and triangles in
StT(v) for v ∈ VT, respectively. We note that

χ(lkT(v)) =
∑

S∈StT (v)rv

(−1)dim S−1 = Ev − Tv

We note that each edge is in two stars and each triangle in three. Then,
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Consequently, ∑

v∈VT

κ(v) = V − E + T = χ(C)

⊓⊔

Recall that a combinatorial surface is an ASC with simplicesof dimension≤ 2 such that
every edge is the face of exactly two triangles. In this case,the link of every vertex is a
simple cycle, that is a1-dimensional ASC whose vertex set has a cyclical ordering

v1, v2, · · · , vn, vn+1 = v1

and whose only edges are[vi, vi+1], i = 1, · · · , n. The Euler characteristic of such a cycle is
zero. We thus obtain the following result of T. Banchoff, [Ban]

Corollary 8.16. If C is a combinatorial surface with vertex setV then

χ(C) =
1

2π

∑

v∈V

def(v). ⊓⊔

We can now finally close the circle and relate the combinatorial curvature to the average
Morse index.

Theorem 8.17(Microlocal Gauss-Bonnet). If (C, T) is an affine simplicial complex inR3

such that all the simplices inT have dimension≤ 2 then

κ(v) = ρ(v), ∀v ∈ VT,

whereρ is defined by (8.2).

Proof. Fix x ∈ VT. We now recall some previous ideas. Proposition8.7 tells us that for any
u ∈ S

2 \ ∆T, ∑

S∈StT (x,u)

(−1)dimS = µ(u|x) = j(u|x).

We then recall from the proof of Lemma8.2 that∆T is a finite union of great circles on
S

2. Thus,S2 \ ∆T consists of a finite union of chambers,A1, . . . , Am. We now note that for
any i, 1 ≤ i ≤ m, St+

T
(x, u) = St+

T
(x, v) for anyu, v ∈ Ai. So, lettingvi be an element in

Ai, we have:
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FIGURE 18. The chambers which coincide with the conormal section
Cx(S) ∩ S

2.

Considering this sum, we see that every term of it has a(−1)dimS in it for someS ∈ StT(x).
We also notice that everyS ∈ StT(x) appears at least once. So, we expand the sum, collect
the coefficients for each(−1)dimS and if we set

kS := #
{
i; S ∈ St+(x, vi)

}

we obtain

ρ(x) =
1

4π

m∑

i=1

∑
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Now we consider the sum
∑kS

j=1

∫
Aij

dσ(u). This is the area of the set of vectors,u, on the

unit sphere such thatS ∈ St+
T
(x, u). That is, this sum is the area of the set of vectors,u,

on the unit sphere such thatS lies inH+
u,x. But this is precisely the area ofCx(S) ∩ S

2 (see

Figure18). Now recall thatωx(S) = area(Cx(S)∩S
2)

4π
(since the area of the unit sphere inR3 is

4π). Thus, we have:

ρ(x) =
1

4π

∑

S∈StT (x)
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(
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1
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2))

=
∑

S∈StT (x)

(−1)dimSωx(S) = κ(x).

⊓⊔

Remark8.18. The above equality can be interpreted as saying that the curvature at a vertex
x0 is the average Morse index atx0 of a linear Morse functionℓu. ⊓⊔
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