Elementary Cosmology ... Fall 2013 Midterm Exam ... October 15, 2013

Name:_____ NetID:_____

As a member of the Notre Dame community, I will not participate in, or tolerate, academic dishonesty.

Please read all answers. Please choose the correct answer.

- 1. Why wasn't Schwarzchild involved in discussions of the Schwarzchild singularity?
 - A) He died shortly after his solution was published.
 - **B)** He was embarrassed by the singularity.
 - C) He didn't understand the singularity.
 - D) Einstein did not want him to be involved.
 - E) Eddington did not respect Schwarzchild.
- 2. Sommerfeld apologized to the young student Chandrasekhar because
 - A) he was late to the appointment.
 - B) quantum mechanics was developing so rapidly that Sommerfeld's book was already obsolete.
 - C) Chandrasekhar had proved Sommerfeld was wrong.
 - **D**) he had forgotten the appointment.
 - E) there were many mistakes in the manuscript Sommerfeld had given Chandrasekhar.
- 3. Eddington rejected Chandrasekhar's upper mass limit to white dwarf stars because
 - A) he did not trust quantum mechanics.
 - **B**) he did not understand stellar interiors.
 - C) he did not understand general relativity.
 - **D**) he did not think it physical for a star to close off from the universe.
 - E) he did not like Chandrasekhar.
- 4. Thermodynamic equilibrium is
 - A) the balance between gravity and pressure that stabilizes a star
 - **B**) the balance between kinetic and potential energy
 - C) the balance between gravity and cosmic inflation
 - **D**) the balance between heat and light
 - E) the balance between energy generation and energy transport
- 5. Hydrostatic equilibrium is
 - A) the balance between energy generation and energy transport
 - B) the balance between gravity and pressure that stabilizes a star
 - C) the balance between dark energy and light energy
 - D) the balance between positive and negative charges
 - E) the balance between air and water pressure at the horizon

6. A white dwarf star is

- A) a quasar
- B) a neutron star
- C) stabilized by degenerate Fermi gas pressure
- D) a pulsar
- E) a red giant
- 7. The Chandrasekhar limit is
 - A) the speed of light
 - **B**) the minimum size of a neutron core
 - C) the event horizon
 - D) a singularity
 - E) an upper limit on the mass of a stable white dwarf star

8. A neutron star

- A) can become a quasar
- B) can become a white dwarf star
- C) is just an uncharged normal main sequence star
- **D**) has the density of an atomic nucleus
- E) is a red giant

9. Pulsars are

- A) nearby radio galaxies
- B) rapidly rotating white dwarf stars
- C) black holes
- D) the source of astronomical periodic radio pulses
- E) very distant radio galaxies
- 10. Landau proposed neutron cores
 - A) as a method of energy generation in normal stars
 - **B**) as a source of cosmic rays
 - C) as a source of all elements
 - **D**) the endpoint of stellar evolution
 - E) to start the universe

11. In astronomy a nova is

- A) a star that brightens so as to appear new in the sky
- **B**) the birth of a star
- C) the death of a star
- D) a binary star
- E) an automobile brand

12. A supernova is

- A) the birth of a star
- **B**) the event horizon
- C) the fate of a star that exceeds the Chandrasekhar limit
- D) a big binary star
- E) a white dwarf
- 13. Serber and Oppenheimer were able to prove that Landau's idea of neutron cores as a source of energy generation in stars did not work because
 - A) nuclear reactions did it better
 - B) one could not have a stable neutron core with mass below 0.1 solar masses
 - C) neutron stars with mass greater than 3 solar masses are unstable
 - D) stars get their energy from gravitational attraction
 - E) stars do not generate energy
- 14. Oppenheimer and Snyder were able to study stellar collapse using the static Schwarzschild solution because
 - A) they considered the collapse time scale to be very slow
 - B) there is no collapse since all neutron stars are too light
 - C) they made a mistake
 - D) they were in a hurry to get a result and overlooked this constraint.
 - E) in 1923 George Birkhoff proved the solution was correct for any spherically symmetric mass distribution even if it were imploding.
- 15. Approximations in the Oppenheimer Snyder calculation of stellar collapse include
 - A) ignore rotation
 - **B**) ignore radiation of energy
 - C) ignore shock waves
 - D) ignore mass loss through ejection of matter
 - E) all of the above

- 16. At the north pole of the Earth the space is smooth but
 - A) the direction of north ceases to exist
 - **B**) the direction south ceases to exist
 - C) the direction up ceases to exist
 - **D**) space ceases to exist
 - E) space becomes two dimensional
- 17. According to Finkelstein's coordinate transformation space-time at the Schwarzschild "singularity"
 - A) has a gap in time
 - B) has a gap in the radial direction
 - C) ceases to exist
 - **D**) has no time component
 - E) is perfectly smooth
- 18. Oppenheimer and Snyder were very troubled by their solution to stellar collapse and black hole formation since
 - A) black holes would not form
 - B) black holes would always form
 - C) the outcome seemed to depend on where the observer was located
 - D) it didn't match the Schwarzschild solution in the static limit
 - E) the upper mass limit for stability was very low being smaller than the mass of the sun.
- 19. Karl Jansky discovered radio astronomy while
 - A) studying noise in trans Atlantic radio telephone communications
 - B) studying noise in communications satellites
 - C) looking for the planet Neptune
 - **D**) looking for Sco X-1
 - E) looking for the quasar 3C48
- 20. Alan Sandage used the 5 meter Palomar telescope to photograph the very strong but very small radio source known as 3C48. What he found was
 - A) a neutron star
 - **B**) a white dwarf star
 - C) an x-ray source
 - **D**) a single blue dot that looked like a star.
 - E) a large dim galaxy

- 21. It was realized that the quasars 3C48 and 3C273 were more than 2 billion light years away when the optical spectrum was
 - A) diminished by intergalactic dust
 - **B)** red shifted by 37% and 16% respectively
 - C) the spectrum of iron and nickel
 - **D**) the spectrum of a black body
 - E) periodically time varying
- 22. Joe Weber used resonant detection to attempt to detect gravitational waves. Resonant detection is a method that allows
 - A) one to create gravitational waves
 - **B)** one to create water waves
 - C) one to create sound waves
 - D) a small signal to gradually accumulate in the detector
 - E) very low temperatures to be produced
- 23. The Braginsky quantum limit was
 - A) a region of space from which no signal would emerge
 - B) a fundamental limit to the sensitivity of bar detectors dictated by quantum mechanics.
 - C) an upper speed limit on gravitational waves
 - **D)** a limit on the size (amplitude) of gravitational waves
 - E) an upper limit on the temperature of a black hole
- 24. One can defeat the Braginsky quantum limit with
 - A) lower noise
 - **B**) better quantum mechanics
 - C) better classical mechanics
 - **D**) quantum defeatism
 - E) quantum nondemolition measurements.
- 25. Different descriptions of the same physical phenomenon are called by philosophers
 - A) different views
 - **B**) different perspectives
 - C) different paradigms
 - **D**) disillusion
 - E) hysteria

- 26. The difference between an absolute horizon and an apparent horizon is
 - A) information can be transferred from behind an absolute horizon
 - B) information can be transferred from behind an apparent horizon
 - C) an apparent horizon can be time dependent
 - **D**) an absolute horizon can be time dependent
 - E) they are the same thing

27. Penrose theorem on the formation of singularities states

- A) singularities can not occur in the physical world
- **B**) once a horizon forms the formation of a singularity is inevitable
- C) the singularity must be chaotic
- **D**) the singularity must not be chaotic
- E) the Schwarzschild singularity is inevitable
- 28. One can imagine traveling far into the future by
 - A) traveling to a quasar
 - B) hovering for a modest time near but outside the horizon of a black hole
 - C) falling through a horizon
 - **D**) living a very long time
 - E) looking out to large distances with a telescope
- 29. In the time travel billiard ball paradox
 - A) one's grandmother dies before one's parent is born
 - **B**) a spinning billiard ball is used as a time machine
 - C) a billiard ball emerges from the time machine in time to prevent itself from entering.
 - **D**) the color on a blue billiard ball is red shifted to red.
 - E) a billiard ball quickly falls through the horizon of a black hole
- 30. Khalatnikov and Lifshitz believed that realistic conditions, of turbulence for example, would prevent the appearance of the singularity inside the horizon predicted by Penrose theorem. Who was right?
 - A) Penrose
 - **B**) Khalatnikov and Lifshitz
 - C) Hawking
 - **D)** Both were right. A chaotic (BKL) singularity occurs.
 - E) Thorne

- 31. The LIGO project to detect gravitational waves
 - A) uses bar detectors
 - B) discovered gravitational waves in 2007
 - C) discovered gravitational waves from the binary pulsar in 1974
 - D) discovered gamma ray bursts in 1967
 - E) uses laser interferometry
- 32. The dark lines in the solar spectrum first noticed by von Fraunhoffer are due to
 - A) emission of light by elements in the sun
 - B) interference between light and dark matter
 - C) emission via dark matter
 - **D**) absorption of light from the sun in the solar atmosphere
 - E) absorption of light in the Earth's atmosphere
- 33. Kepler who studied planetary motion as Tycho Brahe's assistant is known for three laws. One of these is
 - A) Time machines are impossible
 - B) Entropy always increases
 - C) Black holes have no hair
 - **D**) One can never go faster than the speed of light
 - **E)** The square of the orbital period (T^2) is proportional to the cube of the semi-major axis (a^3) of the planets orbit around the Sun
- 34. First evidence for the gaseous, chemically inert element helium was found in 1868
 - A) in Holland
 - **B)** in New Jersey
 - C) in the Sun
 - **D)** in the Moon
 - E) in the Earth
- 35. Cepheid variable stars are a valuable tool in cosmology since
 - A) they are powerful radio emitters
 - **B**) they are powerful xray emitters
 - C) their absolute luminosity is related to their period of variability
 - D) their variability depends on their distance
 - E) they are found in the Magellanic clouds

- 36. In astronomy and cosmology the concept of "standard candle" is
 - A) Any luminous object for which its luminosity can be calculated independently of its distance
 - B) Cepheid variable stars
 - C) a solar eclipse
 - **D**) eclipsing binary stars
 - E) the solar luminosity
- 37. Hubble discovered our galaxy by
 - A) measuring the expansion of the universe
 - B) measuring the cosmic microwave background radiation
 - C) measuring the distance to the star Sirius
 - **D**) measuring the distance to the sun
 - E) measuring the distance to the Andromeda galaxy
- 38. The Cosmological Principle <u>d</u>iffers from the *Perfect* Cosmological Principle in that the Cosmological Principle assumes
 - A) no special location in the universe
 - B) no special time in the universe
 - C) we are at the center of the universe
 - D) the universe started in New Jersey
 - E) the universe will end
- 39. The 3 degree cosmic microwave background radiation is interpreted as observational evidence of
 - A) ancient starlight
 - B) distant quasars
 - C) expansion of the universe
 - **D)** a hot early universe
 - E) a cold early universe
- 40. Big bang nucleosynthesis can
 - A) explain all of the observed elements
 - B) explain why the elements in the universe are 24% helium and 75% hydrogen
 - C) explain the formation of organic elements needed for life
 - D) explain the source of elements heavier than iron.
 - E) explain the source of elements with 5 or 8 protons plus neutrons

41. Schrödinger's cat is

- A) dead
- B) alive
- C) sleeping
- **D**) a macroscopic example of the difference in predictions between quantum and classical physics
- ${\bf E})\,$ a radioactive decay
- 42. The class of identical particles for which destructive interference occurs in symmetrical situations is called
 - A) fermions
 - B) pions
 - C) photinos
 - D) gravitons
 - E) bosons
- 43. The wave phenomenon in which a wave can bend around objects is known as
 - A) interference
 - B) oscillation
 - C) diffraction
 - D) radiation
 - E) decoherence
- 44. One sees bright colors reflected from an oil film floating on water due to
 - A) the color of the oil
 - **B)** the color of the water
 - C) interference of light reflected from the top and bottom of the film
 - D) bright illumination
 - \mathbf{E}) the color of the pavement
- 45. In stars both the CNO cycle and the proton-proton process
 - A) make most of the elements beyond helium
 - B) make hydrogen
 - C) include the triple alpha reaction
 - D) make deuterium
 - E) lead to the conversion of hydrogen into helium to power the star

- The Following Three Questions Are Optional -

- 46. Things I like about my Physics 10240 Elementary Cosmology Course
 - A)
 - B)
 - C)
 - D)
 - E)

47. Things I do not like about my Physics 10240 Elementary Cosmology Course

- A)
- B)
- C)
- D)
- E)

48. Suggestions to improve my Physics 10240 Elementary Cosmology Course

- A)
- B)
- C)
- D)
- E)