Instructions: Write your NAME and your SECTION (01 = 8:30/Eskildsen, 03 = 3:00/Goussiou) on the front of the blue exam booklet. The exam is closed book, and you may only use your pens/pencils and calculator (no stored equations or programs, no graphing).

For problems II-V you must write the complete solution in your blue book. No credit (full or partial) will be given for an answer with no supporting work. Draw a diagram when possible, circle or box your final answers, and cross out parts which you do not want us to consider.

I. Multiple choice questions

MC1. Two pucks with masses \(m_1 \) and \(m_2 \) lie unconnected on a frictionless table. A horizontal force \(F_1 \) is exerted on \(m_1 \) only. What is the magnitude of the acceleration of the center of mass of the two-puck system?

A) \(F_1 / m_1 \)
B) \(F_1 / (m_1 + m_2) \)
C) \(F_1 / m_2 \)
D) \((m_1 + m_2) F_1 / m_1 m_2 \)
E) \(F_1 / (m_1 - m_2) \)

MC2. Two identical masses are hung on strings of the same length as shown in the figure. One mass is released from a height \(h \) above its free-hanging position and strikes the second mass; the two stick together and move off. They rise to a height \(H \) given by:

A) \(3h/4 \)
B) \(h/4 \)
C) \(h/2 \)
D) \(h \)
E) None of these is correct.

[Diagram of two masses on strings, one released from height \(h \), and the other after collision at height \(H \).]
MC3. A homogeneous solid cylinder rolls without slipping on a horizontal surface. The total kinetic energy is K. The kinetic energy due to rotation about its center of mass is:

A) $\frac{1}{3} K$
B) $\frac{1}{2} K$
C) $\frac{2}{3} K$
D) K
E) $2 K$

MC4. A disk is free to rotate about an axis. A force applied at a distance d from the axis causes an angular acceleration α. What angular acceleration is produced if the same force is applied a distance $2d$ from the axis?

A) α
B) 2α
C) $\frac{\alpha}{2}$
D) 4α
E) $\frac{\alpha}{4}$

MC5. Two discs of identical mass but different radii (r and $2r$) are spinning on frictionless bearings at the same angular speed ω_0 but in opposite directions as shown in the figure. Consider the angular velocity of the $2r$-disc positive and of the r-discs negative. The two discs are brought slowly together. The resulting frictional force between the surfaces eventually brings them to a common angular velocity. What is the magnitude and direction of the final angular velocity ω_f?

A) $|\omega_f| = \omega_0$, ω_f positive
B) $|\omega_f| = \omega_0$, ω_f negative
C) $0 < |\omega_f| < \omega_0$, ω_f positive
D) $0 < |\omega_f| < \omega_0$, ω_f negative
E) $\omega_f = 0$
Problems

II. A block and a gun are firmly fixed to opposing ends of a long glider mounted on a frictionless air track. The block and the gun are a distance $L = 1.5$ m apart. The system is initially at rest. The gun is fired and the bullet leaves the muzzle with a velocity $v_b = 400$ m/s and impacts the block, becoming embedded in it. The mass of the bullet is $m_b = 20$ g and the mass of the gun-glider-block system is $m_e = 12$ kg.

 a) What is the velocity (magnitude and direction) of the gun-glider-block system immediately after the bullet leaves the muzzle?
 b) What is the velocity of the gun-glider-block system immediately after the bullet comes to rest in the block?
 c) How far does the gun-glider-block system move while the bullet is in transit between the gun and its final position within the block?

III. An Atwood’s machine has two masses of $m_1 = 500$ g and $m_2 = 510$ g connected by a string of negligible mass that passes over a pulley with frictionless bearings. The pulley is a uniform disc with a mass of 50 g and a radius of 4 cm. The string does not slip on the pulley. Find:

 a) The acceleration of the masses.
 b) The tension in each string.
IV. A basketball with mass m rolls without slipping down an incline raised by an angle θ above horizontal. The coefficient of static friction is μ_s. The basketball can be consider a thin spherical shell. Using m, θ and μ_s, derive expressions for:

a) The acceleration of the center of mass of the ball.
b) The frictional force acting on the ball.
c) The maximum value of θ for which the ball will roll without slipping.

V. A disc of mass $m = 100$ g sliding on a horizontal frictionless table is attached to a string that passes through a hole in the table. Initially, the disc is sliding with speed $v_0 = 14$ m/s in a circle of radius $r_0 = 0.8$ m. Find:

a) The angular momentum of the disc.
b) The kinetic energy of the disc.
c) The tension in the string.

A student under the table now slowly pulls the string downward.

d) How much work is required to reduce the radius of the circle from r_0 to $r_0/2$?

![Diagram of a disc sliding on a table with a string attached]
EQUATIONS OF MOTION

Position, velocity and acceleration:
\[\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \]
\[\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k} = v_x\hat{i} + v_y\hat{j} + v_z\hat{k} \]
\[\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} + \frac{dv_z}{dt}\hat{k} + \cdots \]
\[= \frac{d^2\vec{r}}{dt^2} = \frac{d^2x}{dt^2}\hat{i} + \cdots = a_x\hat{i} + a_y\hat{j} + a_z\hat{k} \]

Motion with constant acceleration in one dimension:
\[x - x_0 = v_0t + \frac{1}{2}at^2 \]
\[v = v_0 + at \]
\[v^2 - v_0^2 = 2a(x - x_0) \]

Projectile motion:
\[y = \left(\tan\theta_0\right)x - \frac{gt^2}{2(\cos\theta_0)^2}x^2 \]
\[R = \frac{v_0^2}{g}\sin2\theta_0 \]

Uniform circular motion:
\[a_c = \frac{v^2}{r} = r\omega^2 \]
\[v = \frac{2\pi r}{T} \]

Relative motion:
\[\vec{u}_{PB} = \vec{u}_{PA} + \vec{v}_{AB} \]
\[\vec{a}_{PB} = \vec{a}_{PA} \]

Rotational motion:
\[1 \text{ rev.} = 360^\circ = 2\pi \text{ rad} \]
\[\omega = \frac{d\theta}{dt} \quad \nu_t = r\omega \]
\[\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} \quad \alpha_t = r\alpha \]
\[\theta - \theta_0 = \omega_0t + \frac{1}{2}\alpha t^2 \]
\[\omega = \omega_0 + \alpha t \]
\[\omega^2 - \omega_0^2 = 2\alpha(\theta - \theta_0) \]

FORCE AND MOTION

\[\sum \vec{F} = m\vec{a} \]
\[\vec{w} = m\vec{g} \]
\[\vec{p} = mv \]
\[F_x = -k\Delta x \]
\[f_s \leq \mu_s F_n \]
\[f_k = \mu_k F_n \]

System of particles:
\[\vec{M}\vec{r}_{cm} = \sum_i m_i \vec{r}_i \]
\[\vec{P}_{sys} = M\vec{v}_{cm} = \sum_i m_i \vec{v}_i \]
\[\vec{F}_{net,ext} = \sum_i \vec{F}_{i,ext} = M\vec{a}_{cm} = \sum_i m_i \vec{a}_i \]
\[\vec{F}_{net,ext} = \frac{d\vec{P}_{sys}}{dt} \]

Collisions:
\[\vec{I} = \Delta\vec{p} = \int_{t_1}^{t} \vec{F}_{net} \, dt = \vec{F}_{av} \Delta t \]
\[\dot{e} = \frac{v_{2f} - v_{1f}}{v_{2i} - v_{1i}} \]

Systems with varying mass:
\[\vec{F}_{net,ext} + \frac{dM}{dt} \vec{v}_{rel} = M \frac{d\vec{v}}{dt} \]
\[M\vec{g} - R\vec{a}_{ex} = M \frac{d\vec{v}}{dt} \]
\[\vec{F}_{th} = -R\vec{a}_{ex} = -\frac{dM}{dt} | \vec{u}_{ex} \]

TORQUE AND ROTATION

\[\tau = \vec{F}_r = Fr\sin\phi = F\ell \]
\[\vec{\tau} = \vec{r} \times \vec{F} \]
\[\vec{\tau}_{net,ext} = \sum_i \vec{\tau}_{i,ext} = I\vec{\alpha} \]
\[I = \sum_i m_i r_i^2 \quad I = \int r^2 \, dm \]
\[I = I_{cm} + M\ell^2 \]

Angular momentum:
\[\vec{L} = \vec{r} \times \vec{p} \]
\[\vec{L} = I\omega \]
\[\vec{L} = \vec{L}_{orbit} + \vec{L}_{spin} \]
\[\vec{L}_{orbit} = \vec{r}_{cm} \times M\vec{v}_{cm} \quad \vec{L}_{spin} = I_{cm} \vec{\omega} \]
\[\vec{\tau}_{net,ext} = \frac{d\vec{L}}{dt} \]

Rolling without slipping:
\[v_{cm} = R\omega \]
WORK AND ENERGY

Work and kinetic energy:
\[W = \int_1^2 \vec{F} \cdot d\vec{s} \quad W = \vec{F} \cdot \vec{s} \]
\[P = \frac{dW}{dt} = \vec{F} \cdot \vec{v} \]
\[P = \tau \omega \]
\[\Delta K = W \]
\[K = \frac{1}{2} mv^2 = \frac{p^2}{2m} \]
\[K = \frac{1}{2} I \omega^2 = \frac{L^2}{2I} \]

Potential energy:
\[\Delta U = -W \]
\[U_g = mgy_m \]
\[U_s = \frac{1}{2} kx^2 \]
\[F_x = -\frac{dU}{dx} \]

Energy & energy conservation:
\[E_{\text{mech}} = K + U \]
\[K_f + U_f = K_i + U_i \]
\[E_{\text{sys}} = E_{\text{mech}} + E_{\text{th}} + E_{\text{chem}} + E_{\text{other}} \]
\[W_{\text{ext}} = \Delta E_{\text{sys}} \]
\[\Delta E_{\text{th}} = f_k \Delta s \]
\[E_0 = mc^2 \]
\[E_{\text{ph}} = hf \]

UNITS

SI units:
- Length m fundamental unit
- Mass kg fundamental unit
- Time s fundamental unit
- Frequency Hz 1 Hz = 1 s⁻¹
- Force N 1 N = 1 kg m/s²
- Pressure Pa 1 Pa = 1 N/m²
- Work/energy J 1 J = 1 Nm
- Power W 1 W = 1 J/s

Other units:
- Energy eV 1 eV = 1.602 × 10⁻¹⁹ J

CONSTANTS

- Speed of light c 2.998 × 10⁸ m/s
- Free fall acc. g 9.81 m/s²
- Planck’s const. h 6.626 × 10⁻³⁴ Js
<table>
<thead>
<tr>
<th>Thin cylindrical shell about axis</th>
<th>Thin cylindrical shell about diameter through center</th>
<th>Thin rod about perpendicular line through center</th>
<th>Thin spherical shell about diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I = MR^2$</td>
<td>$I = \frac{1}{2} MR^2 + \frac{1}{12} ML^2$</td>
<td>$I = \frac{1}{12} ML^2$</td>
<td>$I = \frac{2}{3} MR^2$</td>
</tr>
<tr>
<td>Solid cylinder about axis</td>
<td>Solid cylinder about diameter through center</td>
<td>Thin rod about perpendicular line through one end</td>
<td>Solid sphere about diameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I = \frac{1}{2} MR^2$</td>
<td>$I = \frac{1}{4} MR^2 + \frac{1}{12} ML^2$</td>
<td>$I = \frac{1}{3} ML^2$</td>
<td>$I = \frac{2}{5} MR^2$</td>
</tr>
<tr>
<td>Hollow cylinder about axis</td>
<td>Hollow cylinder about diameter through center</td>
<td>Thin rod about perpendicular line through center perpendicular to face</td>
<td>Solid rectangular parallelepiped about axis through center perpendicular to face</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I = \frac{1}{2} M(R_1^2 + R_2^2)$</td>
<td>$I = \frac{1}{4} M(R_1^2 + R_2^2) + \frac{1}{12} ML^2$</td>
<td>$I = \frac{1}{12} M(a^2 + b^2)$</td>
<td></td>
</tr>
</tbody>
</table>

A disk is a cylinder whose length L is negligible. By setting $L = 0$, the above formulas for cylinders hold for disks.