
Physics 10411 Fall 2008 Final Exam Solutions

I. Multiple Choice

1. (b) One way to do this is with Conservation of Energy. The work done by the force is
equal the change in kinetic energy: 0− 1

2
mv2

0 = −F ·d. Solving for m, we find m = 2FD
v2

0

.

Plugging in numbers, m = 3.0 kg.

2. (e) There are a couple of steps to this one. First, we need to relate the velocity at the
bottom of the swing to the height: Ui = KEf ⇒ mgh = 1

2
mv2 ⇒ v2 = 2gh. Then,

we have an inelastic collision. Since it is inelastic, energy is not conserved. Conserving
momentum, mv = 3mV ⇒ V = 1

3
v. Then, the combined mass swings up again solely

under the influence of gravity, so we conserve energy again: 1
2
(3m)V 2 = 3mgH ⇒ H =

V 2/2g. We know from the first parts that V = 1
3
v and what v is in terms of h, so we

just have to plug in: H = (1
3
v)2/2g = 1

9
h.

3. (a) The hint basically tells you what to do. If you draw closed rectangles or parallelo-

grams in the x − y plane, the work done by the force ~F should be zero if you go all the
way around. Any of the forces that are either constant, or only depend on the distance
from one of the coordinate axes are conservative, since you can draw a box like the one
shown in the figures for choices (b) or (e), below. Here, the length of the arrows at a
given point indicate the magnitude of the force at that point in the plane. You can see
that the work done moving perpendicular to the force is zero, and since the value of the
force is the same at any point on the other two sides, you get equal and opposite work
when traversing the two sides in opposite directions. This is also true for the rectangle
in choice (e) that isn’t perpendicular to the forces: you still get equal and opposite work
for the opposite sides of the rectangle. For choice (a), though, you have the situation
shown on the far right. The force is zero on the x and y axes, so three sides of the box
give zero work. The top side, however, is non-zero, so this is not a conservative force.

4. (b) Projectile motion. We just need to relate the range to the initial velocity of the
projectile. To do this, it’s easiest to find the time of flight, then compute the range. We
have the usual relationship

vf = vi + at ⇒ −v0y = v0y − gt where we have defined up to be + .
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This allows us to find the time when the projectile has returned to the ground, since
its y velocity will be equal and opposite to its original y velocity at this point. Solving,
we find t = 2v0y/g, which, when using sin(45◦) =

√
2

2
, gives t =

√
2v0/g. Next, we want

to use this time to calculate the range: x = v0xt = v0 cos(45◦)t = v2
0/g. So, we just

have to put in numbers, converting 60 km to 60,000 m, and solving for v0. This gives
v0 = 767m/s.

5. (d) Assume the mass of the disk is M . The mass density per area σ is given by σ = M
πR2 .

Using this, we can figure out how much mass is removed when we slice out the hole:

m = M π(R/2)2

πR2 = 1
4
M . So, the total mass of the remainder is 3

4
M . We can use this now

to write an equation for the position of the center of mass, defining our origin at the
bottom of the original disk:

yCM =
MR − m(R/2)

3
4
M

.

We’ve included a minus sign for the missing mass since it’s not there anymore. Solving,
we find 7

8
R × 4

3
= 7

6
R, so the center of mass moves upward by 1

6
R.

Problems

II. (a) We can use the equation

P = Fv = mav = m
dv

dt
v ⇒ P

m
dt = v dv. Integrating,

P

m

∫ t

0
dt =

∫ vf

0
v dv ⇒ P

m
t =

1

2
v2

f .

We can go one step further and write v =
√

2P
m

t. Note that acceleration is not constant, so
none of the standard kinematic equations work properly. You could, however, have just noted
that the work done was 1

2
mv2 during the time interval, so P = 1

2
mv2/t. This gives the same

answer.

(b) A sketch of v vs. t would look something like this:

What does it tell us about the acceleration? Clearly, it’s not constant, and it decreases with
time. You can explain this in a number of different ways. Since P = dW/dt, then power tells
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us about the rate of change of the kinetic energy of the dragster. This implies, as our equation
says, that a graph of v2 vs time would be a straight line, since the rate of increase of kinetic
energy is constant. Our graph of v vs. t rolls over because it takes a smaller increment in v
to keep v2 linear in time when v is larger.

(c) We can use our result from (a) to solve for P :

P =
1
2
mv2

f

t
= 2.76 MW!

Lots of power! Real measured outputs for dragsters are in the 4.5-6 MW range, so we’re
within a factor of two. Not bad, really. Clearly, in real life a lot of power is spent overcoming
drag and other friction sources, so our estimate that it all goes into kinetic energy is clearly
optimistic.

(d) BONUS: Since we have an expression for v(t), we can easily do one more integral to relate
this to x(t):

v =
dx

dt
=

√

2P

m
t

1

2 ⇒ dx =

√

2P

m
t

1

2 dt ⇒
∫ xf

0
dx =

√

2P

m

∫ t

0
t

1

2 dt.

Solving this yields

xf =

√

2P

m

2

3
t

3

2 . Squaring and solving for P : P =
9

8

mx2

t3
.

Plugging in some numbers here gives P = 2.1 MW. Still a lot of power! How do we reconcile the
differences in these calculations? Clearly, the real dragster has gears, so there is not constant
torque applied to the engine. We’re looking at average quantities with a strange assumption
that the overall power is constant. So it’s not surprising that by looking at velocity with time
and distance with time that we get slightly different answers.

III. (a) Since the string is purely a radial force, there is no torque in this problem, so angular
momentum is conserved. Li = ~r × ~p = Rmv since ~r ⊥ ~v. Lf = rmvf , so we can set Li = Lf

to find a relationship between the new and old speeds:

Rmv = rmvf ⇒ vf =
R

r
v.

(b) Since this is a frictionless horizontal table, the only force in the radial direction is the
tension in the string:

∑

Fr =
mv2

f

r
= T = m

(

R

r
v
)2

/r =
mv2R2

r3
.

(c) W = ∆KE = 1
2
mv2

f − 1
2
mv2 = 1

2
mv2 R2

r2 − 1
2
mv2 = 1

2
mv2

(

R2

r2 − 1
)

.

IV. (a) The free body diagram should have the forces Fs, N , and the weight of the sphere,
mg, as shown on the figure. The coordinate axes we will use in the solution are also indicated.
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(b) Newton’s equations for translation and rotation should look like

∑

Fx = max = mg sin θ −Fs
∑

Fx = 0 = N − mg cos θ
∑

τCM = ICMαCM = FsR

(c) To determine the acceleration of the center of mass, we need to relate the linear and
angular accelerations for rolling without slipping, ax = Rα. We can then use this to solve for
the force of friction in the torque equation in terms of the linear acceleration:

FsR = ICM
ax

R
⇒ Fs = ICM

ax

R2
.

[Note that Fs 6= µsN ! We don’t know what the coefficient of friction is, and the answer
shouldn’t depend on it. You have to use the torque equation to eliminate friction from the
problem.] We can then substitute the above result into the x force equation:

max = mg sin θ − ICM
ax

R2
⇒ ax

(

m +
ICM

R2

)

= mg sin θ

Solving for ax and using the fact that ICM = 2
3
mR2 for a thin spherical shell, we find:

ax =
mg sin θ

m + ICM

R2

=
mg sin θ

m + 2
3
m

=
3

5
g sin θ.

In principle, one could do this problem with conservation of energy by figuring out what the
velocity of the rolling shell is at the bottom given some starting height. You could then figure
out what the linear accleration is given the distance it has traveled. This should give the same
answer.

V. (a) This is a Conservation of Energy problem. We can find the compression of the spring
by relating the initial and final energies: Ei = Ef . At the beginning of the problem, the block
is at rest, and at the point of maximum compression, the block is also at rest, so we merely
have to keep track of potential energy. We will choose the zero of gravitational potential to be
the point where the block hits the spring. The block starts a height d sin θ above this point,
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and ends up a height x sin θ below this point, where x is the compression of the spring, and
d = 4 meters. Our energy equation is then

Ei = Ef ⇒ Ui = Uf ⇒ mgd sin θ = −mgx sin θ +
1

2
kx2.

This is a quadratic equation in x, the only unknown in the problem. Putting in numbers and
solving for x yields x = 0.99 meters.

(b) If friction is added, we have the additional complication that friction takes work out of
the system, so our energy equation really reads ∆Emech = WF . We can keep the spring
and gravity as “internal”, in which case we have a similar situation to part (a): ∆Emech =
Uf − Ui = −mgx sin θ + 1

2
kx2 − mgd sin θ. This must be equal to the work done by friction:

WF = −Fk(d + x). We can also include some energy lost to heat. So, finally, we have

−mgx sin θ +
1

2
kx2 − mgd sin θ = −Fk(d + x) + ∆Eint

Re-arranging, it’s clearer to see where the energy goes if we write

−mgx sin θ +
1

2
kx2 = mgd sin θ −Fk(d + x) + ∆Eint.

The right hand side has the initial energy of the system plus that dissipated by friction, leaving
the energy content on the left. To solve, one needs the magnitude of the friction force, which
comes from

∑

Fy = 0 ⇒ N = mg cos θ.

VI. (a) Conservation of momentum: mv = MV + 1
2
mv ⇒ V = m

M
v
2
. Note: there is no

guarantee that energy is conserved. Momentum has to be conserved in a collision in which
there are only internal forces between the objects. If you calculate how much energy is in the
problem after the bullet passes through using the result here, you’ll find that some energy is
actually lost as the bullet passes.

(b) For our warrior to just make it all of the way around the circle, it must be the case that
the string just stays taught at the top. This implies that the tension is instantaneously zero
at the very top, leaving the weight to provide the only centripetal force:

∑

Fr =
Mv2

T

ℓ
= T + Mg = Mg ⇒ 1

2
Mv2

T =
Mgℓ

2
.

where vT is the velocity of the warrior at the top. Now, we can use conservation of energy to
relate the speed at the top to the speed immediately after the collision. Taking the zero of
the gravitational potential energy to be at the bottom of the swing, we can write

KEi = KEf + Uf ⇒ 1

2
MV 2 =

1

2
Mv2

T + Mg(2ℓ) =
1

2
Mgℓ + 2Mgℓ =

5

2
Mgℓ

So, we only have to substitute in our original relationship between v and V and we’re done:

V 2 =
(

m

M

v

2

)2

= 5gℓ ⇒ v =
M

m

√

20gℓ.

(c) If we replace the string with a rod, then angular momentum about the pivot would be
conserved instead of linear momentum. Conservation of energy equations would have to worry
about the change in height of the center of mass of the rod as well as the warrior. The velocity
at the top would go to zero in order for a complete circle to barely be possible.
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