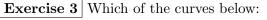
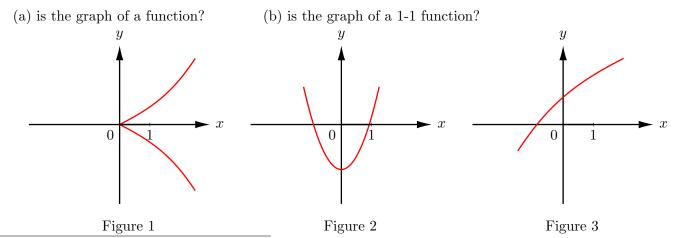
Math 10250 Activity 1: Functions and Their Geometric Properties¹ (Sections 0.2–0.3)

GOAL: Understand the fundamental concept of function as a relation between variables expressed by a formula, a graph, or a table and use it to model change.

Q1: What is a variable? What is a function? **A1:**

Example Assume that you have just deposited \$500 in your bank account at the ND Credit Union that pays annual interest 2% compounded daily, and you want to know what will be your amount at any future day. Use variables and functions to model it.


Exercise 1 Consider the function $f(x) = x^2 + 1$.


(a) Compute the following table of its values:

x	-3	-2	-1	0	1	2	3
f(x)							

- (b) Compute f(1+h) =
- (c) Find the (natural) domain of f.
- (d) Find the range of f.
- (e) Sketch the graph of f.

Exercise 2 What is the natural domain of $f(x) = \frac{5}{x^2 - 9}$?

¹Alex Himonas & Alan Howard: Calculus, Ideas and Applications, Wiley 2003 – eBook 2018

Exercise 4 Find the inverse of the function y = f(x) = 2x + 1 and sketch its graph.

Exercise 5 For the function shown in Figure 2 determine where it is increasing and where it is decreasing.

Exercise 6 Is the function $f(x) = x^4 - 3x^2$ even or odd? What about $f(x) = x^3 + x$ and $f(x) = x^3 - x^2$?

Exercise 7 For the function f(x), whose graph is shown in Figure 4, sketch the following vertical and horizontal translations

(a)
$$y = f(x) + 3$$
 (b) $y = f(x) - 1$ (c) $y = f(x - 1)$ (d) $y = f(x + 2)$ (e) $y = f(x + 2) + 3$

on the same system of Cartesian plane.

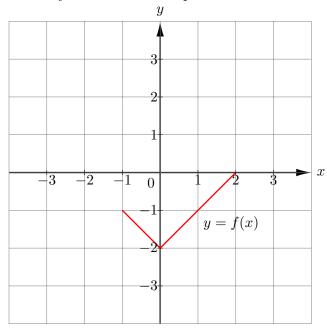


Figure 4

Exercise 8 Sketch the graph of the functions $y = x^2$ and $y = (x - 3)^2 + 1$.