Date _____

Math 10250 Activity 4: Limits (Section 1.1)

GOAL: To obtain an intuitive understanding of the fundamental concept of limit and learn rules for computing it.

Q1: Using your intuition, how would you interpret the statement: The function $f(x) = \frac{x^2 - 2x - 3}{x - 3}$ has limit 4 as x goes to 3?

A1: Natural domain of f: _____.

Since f is not defined at x = 3, let's look at how f behaves <u>near</u> x = 3. To do this, we make a table of values like this:

x	2.97	2.98	2.99	3	3.01	3.02	3.03
$f(x) = \frac{x^2 - 2x - 3}{x - 3}$?			

Pattern: f(x) gets close to _____ as x gets close to 3.

To make this more precise we need the help of algebra. So, let us factor the numerator of f: $f(x) = \frac{x^2 - 2x - 3}{x - 3} =$ Sketch of y = f(x):

Figure 1

Now, we are confident to claim that the limit of f(x) as x goes to 3 is 4.

We write this as: $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = 4.$

Q2: Give an Informal Definition of Limit.

A2:

Exercise 1 The graph of a function f is shown in Figure 2. By visually inspecting the graph, find each of the following limits if it exists. If the limit does not exist, explain why.

(i) $\lim_{x \to 4} f(x) \stackrel{?}{=}$ (ii) $\lim_{x \to -1} f(x) \stackrel{?}{=}$ (iii) $\lim_{x \to 2} f(x) \stackrel{?}{=}$ (iv) $\lim_{x \to 0} f(x) \stackrel{?}{=}$ (v) $\lim_{x \to 3} f(x) \stackrel{?}{=}$

Figure 2

Exercise 2 Find $\lim_{x\to 2} \frac{x^2-4}{x-2}$. Complete the following table of values to guess the limit and then use algebra to justify it (as in A1).

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$\frac{x^2-4}{x-2}$?			

Q3: What are the basic <u>Limit Laws</u>?

A3:

Exercise 3 Determine the following limits using the properties of limits (i.e., limit laws) and by simplifying the expression, if necessary.

- (i) $\lim_{x \to 5} x^4 \stackrel{?}{=}$
- (ii) $\lim_{x \to 2} (5x^3 + 4x^2) \stackrel{?}{=}$
- (iii) $\lim_{x \to 2} (5x^3 + 4x^2) \cdot (x^2 9) \stackrel{?}{=}$
- (iv) $\lim_{x \to 2} \frac{x^2 9}{x 3} \stackrel{?}{=}$
- (v) $\lim_{h \to 0} \frac{(h-2)^2 4}{h} \stackrel{?}{=}$

Exercise 4 If f(x) is the function of Exercise 1 and g(x) = 3x + 2, then find the following limits:

(i) $\lim_{x \to 2} \left[f(x) \cdot g(x) \right] \stackrel{?}{=}$	Ans. 32
(ii) $\lim_{x \to 2} \sqrt{f(x)} \stackrel{?}{=}$	Ans. 2