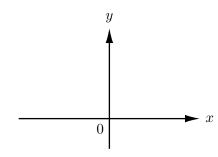
Math 10250 Activity 8: Exponential Functions (Section 2.1)

GOAL: Learn exponential functions with different bases and use them to model real-world situations.

Exponential functions are of the form : $f(x) = b^x$, where b > 0 is called the **base**, like $f(x) = 2^x$.

Q1: Where do they appear?

A1: Everywhere! For example, if we put \$1 in an account paying 5% interest, compounded annually, then t years later it will become $f(t) = (1.05)^t$, which is an **exponential function** with base b = 1.05.


▶ The laws of exponents. For b > 0 and u and v any numbers, we have

(1) $b^{u+v} \stackrel{?}{=}$; e.g., $2^{3+2} \stackrel{?}{=}$ and $2^3 \cdot 2^2 \stackrel{?}{=}$ and $\frac{2^3}{2^2} \stackrel{?}{=}$; e.g., $2^{3-2} \stackrel{?}{=}$ (2) $b^{u-v} \stackrel{?}{=}$ for any real number r; e.g., $2^{3\cdot 2} \stackrel{?}{=}$ (3) $b^{ru} \stackrel{?}{=}$ and $(2^2)^3 \stackrel{?}{=}$ (4) $b^0 \stackrel{?}{=}$: e.g., $2^{-2} \stackrel{?}{=}$ (5) $b^{-v} \stackrel{?}{=}$ **Example 1** If $b^u = 2$ and $b^v = 3$ then $b^{u-v} \stackrel{?}{=}$ • Graph of $y = b^x$ Case 1: b > 1Case 2: 0 < b < 1For example, $y = 2^x$.

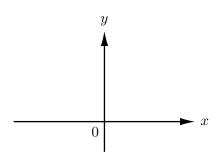
(i) Complete the table below:

x	-1	-0.5	0	0.5	1	
2^x	0.5		1		2	
Truncate answers to 2 decimal places						

(ii) Plot the points and sketch graph:

- (iii) Properties of b^x when b > 1:
- $b^0 \stackrel{?}{=}$
- domain $\stackrel{?}{=}$

range
$$\stackrel{?}{=}$$


- $\lim_{x \to \infty} b^x \stackrel{?}{=}$ $\lim b^x \stackrel{?}{=}$
- Asymptote:

For example, $y = (1/2)^x$.

(i) Complete the table below:

x	-1	-0.5	0	0.5	1
$(1/2)^x$	2		1		0.5

(ii) Plot the points and sketch graph:

- (iii) Properties of b^x when 0 < b < 1:
- $b^0 \stackrel{?}{=}$ • domain $\stackrel{?}{=}$ range $\stackrel{?}{=}$ • $\lim_{x \to -\infty} b^x \stackrel{?}{=}$ $\lim b^x \stackrel{?}{=}$
- Asymptote:

▶ Three applications of the exponential function

1 Compound interest

Example 1 If \$1,000 is invested in an account paying 5% interest, how much will it grow in 10 years if the interest is compounded monthly?

• Annual rate = $r \stackrel{?}{=}$	(in decimals)	• Compounding p	er year = $n \stackrel{?}{=}$
• Compounding rate = $\frac{r}{n} \stackrel{?}{=}$		• Time = $t \stackrel{?}{=}$	(in years)
At the end of 1st period have:			
At the end of 2nd period have			
At the end of 3th period have: \vdots			
At the end of 12th period have	2:		
Interest compounded 12 times a y	ear over t years		
At the end of 1 year (12 period	ds) have:		
At the end of 2 years (24 period :	ods) have:		
At the end of t years have:			
<u>General formula</u> :	$A(t) = P\left(1 + \right.$		
Example 2 If \$8,000 is invested interest is compounded quarterly?		nterest, how much wi	ll it grow in 15 years if the
2 Population Growth (with unlir	nited resources)	$P(t) = P_0 b^t$	

Example 3 A certain bacteria culture grows exponentially. In 1 hour the population grows from 300,000 to 500,000. Write a formula expressing the population P as a function of the time t in hours.

Ans. $P(t) = 300, 000(\frac{5}{3})^t$

3 Decay of radioactive substances:

 $y = y_0 b^t$

Example 4 Radon gas decays according to the formula $y = y_0(0.835)^t$, where t is measured in days. If there are 500 cubic centimeters left after 7 days, how much was there to begin with?

 $y_0 = 500(0.835)^{-7}$