Math 10250 Activity 11: Natural Logarithm and Applications (Section 2.4)

GOAL: Define the **natural** logarithmic function $\ln x$ as the inverse of the **natural** exponential function, $f(x) = e^x$ and use it to solve equations when the unknown is an exponent as is the case when we need to determine doubling time or half-life time.

Last time: We met the logarithmic function with base b. Recall, $\log_b x = y \Leftrightarrow$, x > 0

Q1: What do we get when we let b = e?

A1: The natural logarithm, $\ln x = \log_e x, x > 0$. Therefore $\ln x = y \quad \Leftrightarrow \quad , \quad x > 0$.

• Since $\ln x$ is the **inverse** of e^x , we have the following two useful formulas:

 $\ln(e^x) =$, any x and $e^{\ln x} =$, x > 0.

Sketch the graph of $\ln x$:

Q2: What are the **basic properties of** $\ln x$?

- **A2:** domain $\stackrel{?}{=}$ and range $\stackrel{?}{=}$
 - It's continuous and increasing.
 - $\lim_{x \to \infty} \ln x \stackrel{?}{=}$ and $\lim_{x \to 0^+} \ln x \stackrel{?}{=}$. • $\ln 1 \stackrel{?}{=}$, $\ln e \stackrel{?}{=}$, and $\ln(1/e) \stackrel{?}{=}$

Example 1 Sketch the graph of $y = \ln(3 + x)$.

Example 2 Solve $e^{3-2x} = 8$ for x.

\blacktriangleright Converting exponentials from base b to base e

Q3: How do we convert b^x to $e^{(\text{something})}$?

A3: Using $b = e^{\ln b}$ we have the conversion formula: $b^x = ($

Example 3 Rewrite $\sqrt[3]{7}$ as an exponential with base *e*.

Example 4 Evaluate the given expression as a number in decimal form without using a calculator.

(a)
$$\ln\left(\frac{1}{\sqrt[4]{e}}\right)$$
 (b) $e^{2\ln 3}$

Example 5 Simplify $e^{\ln(5x) + \ln(2/x)}$.

▶ Exponential growth and decay

Recall: In Section 2.1 we saw that the equation for exponential growth and decay is:

$$y = y_0 b^t = y_0 e^{(\ln b)t},$$

$$b = \text{growth constant.} \leftarrow \text{exponential growth}$$

since $b^x = e^{(\ln b)x}$.

- If b > 1 then $\ln b$
- If 0 < b < 1 then $\ln b < 0$. $|\ln b| = \text{decay constant.} \leftarrow \text{exponential decay}$

Example 6 If \$10,000 is deposited in an account paying 5% interest per year, compounded continuously, how long will it take for the balance to reach \$20,000?

Example 7 Polonium-210 has a decay constant of 0.004951, with time measured in days. How long does it take a given quantity of polonium-210 to decay to half the initial amount? In other words, what is the half-life of polonium-210?

Fact: For any radioactive substance:

Half-life =

Example 8 A bacteria culture starts with 500 bacteria and is growing exponentially. After 3 hours there are 8000 bacteria.

- (a) Find a formula of the form $y = Ae^{kt}$ for the number of bacteria after t hours.
- (b) Find the number of bacteria after 4 hours.
- (c) When will the population reach 30,000?

Application (Log-Normal Model) In Finance and Economics a theoretical model for the value of the stock market S(t) is given by the formula

$$S(t) = S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)t} e^{\sigma\sqrt{t}Z},$$

where Z is a standard normal random variable, r is the risk free interest rate, σ is the volatility, and S₀ is the value of the stock market at time t = 0. Take the natural logarithm of this formula and see if you can understand it better.