\qquad Date \qquad

Math 10250 Activity 12: The Slope of a Graph (Section 3.1)

GOAL: Understand the fundamental concept of the slope to a curve using limits and slope of lines. Also realize that slope to a curve is the same as instantaneous rate of change.

The slope at the point $(a, f(a))$ on the graph of $y=f(x)$ is the slope of the tangent line to the graph at $(a, f(a))$. We need two key concepts to find the slope at each point on the graph of $y=f(x)$:

- Slope of line (Already done!)
- Limits (Already done!)
- Average rate of change (To be done).

- Average Rate of Change

Definition: The average rate of change of $f(x)$ over the interval $[a, b]$ is \qquad .

Graphical Interpretation: Use the graph here to explain the graphical meaning of average rate of change of $f(x)$ over an interval [a,b].

Linear Model:

Example 1 Find the average rate of change of $f(x)=2 x+1$ at $x=1$.

Nonlinear Model of Galileo: It can be shown experimentally that the distance travelled by a stone released at rest from the top of a building is given by $f(t)=16 t^{2}$.
Q1: Compute the following:
(a) Average speed over $1 \leq t \leq 3=\frac{\text { Change in distance }}{\text { Change in time }}=$
(b) Average speed over $1 \leq t \leq 1+h=$ \qquad

(c) Complete the table:

h	-0.01	-0.001	0	0.001	0.01
$\frac{f(1+h)-f(1)}{h}$			$?$		

Q2: What is the value of $L=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$? What physical quantity does L represents?

Remark: We also call the value L the instantaneous rate of change of $f(t)=16 t^{2}$ at $t=1$.

Use the graph here to give a graphical interpretation of the value of $L=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$.

- Instantaneous Rate of Change

Definition: The instantaneous rate of change of $f(x)$ at $x=a$ is the value of the limit

$$
\lim _{h \rightarrow 0}(\square)
$$

Remark: Graphically, the instantaneous rate of change of $f(x)$ at $x=a$ is the slope of the tangent line to the curve $y=f(x)$ at the point $(a, f(a))$.

Example 2 Consider the function $f(x)=x^{2}-5 x+4$.
(i) Find the instantaneous rate of change of $f(x)$ at $x=3$ using limits.
 $\overline{\text { and }(3}+h, f(3+h))$.

Step 2: Let $h \rightarrow 0$ in the slope of the secant line.
(ii) What is the equation of tangent line to the graph of $y=f(x)$ at $x=3$?
(iii) Using the steps in (i), find an expression for the slope of the graph $y=f(x)$ at any given x.

Example 3 Using limits, find a formula for the instantaneous rate of change and slope of the following important functions:

- $f(x)=x^{2}$, for any x.
- $f(x)=\sqrt{x}$, for any $x>0$.

