Math 10250 Activity 14: The Derivative as a Rate (Section 3.3)

GOAL: To focus our attention on the interpretation of the derivatives as a rate of change and learn what it represents in different physical context. For example, velocity is derivative of the position function, and acceleration is the derivative of the velocity function.

► Estimating the derivative

• Forward difference formula: Slope of

$$f'(a) \approx \text{ chord PQ} =$$

- Backward difference formula: Slope of chord NP $f'(a) \approx$ =
- Central difference formula: Slope of $f'(a) \approx$ chord NQ

Example 1	x	2.98	2.99	3	3.01	3.02
	f(x)	7.87	7.95	8	8.06	8.09

Give as many estimates as possible for each of the following derivatives of f(x) with the table above: (a) f'(3)(b) f'(2.98)

(c) f'(3.02)

► Average and instantaneous velocity

- •s(t) = Position of object at time t from some fixed point O.
- •Average velocity over the time interval $a \le t \le b = \frac{\text{change in position}}{\text{change in time}} =$

Example 2 A puppy on Douglas Road is 60 meters west of the 7-Eleven at 12:00PM. If the position (in meters) of the puppy measured from 7-Eleven (origin O) t minutes after 12:00PM is given in Figure 1, answer the following questions about the puppy:

- (a) What is its position and distant traveled when t = 10?
- (b) What is its position and the distance traveled when t = 80?
- (c) Did the puppy stop for a break? If yes, when and how long?
- (d) What is its average velocity for $0 \le t \le 20$?
- (e) What is its average velocity between 12:20PM and 1:10PM?

Figure 1

(f) What is its average velocity for $0 \le t \le 80$? What about average speed? **Remarks**: • If average velocity is **positive** then object has moved in the ______. • If average velocity is **negative** then object has moved in the • Average speed between $a \le t \le b =$ ▶ Instantaneous Velocity, Speed, and Acceleration If s(t) is the position of an object from a fixed point O. Then we define its (instantaneous) velocity, speed and acceleration as follows: • Instantaneous velocity $v(t) = \text{Rate of change of position} \stackrel{!}{=}$ If v(t) > 0 then the object is moving to _____. If v(t) < 0 then the object is moving to _ . • Instantaneous speed = Magnitude of velocity $\stackrel{?}{=}$ • Instantaneous acceleration $a(t) = \text{Rate of change of velocity} \stackrel{?}{=}$ If a(t) > 0 then velocity of object is . If a(t) < 0 then velocity of object is _____ **Example 3** A ball is thrown into the air and its height in feet after t seconds is given by $\overline{s = -16t^2 + 32t} + 48$ until it hits the ground.

- (a) Write a formula for the ball's velocity until it hits the ground.
- (b) What is its velocity at the end of 1 second? In what direction (up or down) is it moving at the end of 1 second? What about its speed?
- (c) What is its velocity at the end of 1.5 seconds? In what direction (up or down) is it moving at the end of 1.5 seconds? What about its speed?
- (d) What is the ball's acceleration at the end of 0.5 seconds? What is the ball's acceleration after 1 second?