
Math 10250 Activity 19: The Chain Rule (Section 3.7)

GOAL: To learn how to compute the derivative of a composition of two functions.

Q1: Which rule would you use to compute the following derivatives?

▶ The Composite Function. A function h(x) is said to be a composite function of g(x) followed by f(x) if h(x) = f(g(x)). We may write: $h: x \xrightarrow{g} \underbrace{\qquad} f \xrightarrow{f} \underbrace{\qquad}$

 Example 1
 Find the functions f(x) and g(x), for unequal x, such that h(x) = f(g(x)):

 (a) $h(x) = (x^4 + 2x^2 + 7)^{21}$ $h: x \xrightarrow{g}$

 Ans: $f(x) \stackrel{?}{=}$ and $g(x) \stackrel{?}{=}$

 (b) $h(x) = e^{x^2 + 1}$ $h: x \mapsto$

 Ans: $f(x) \stackrel{?}{=}$ and $g(x) \stackrel{?}{=}$

 Ans: $f(x) \stackrel{?}{=}$ and $g(x) \stackrel{?}{=}$

▶ The Chain Rule

Q2: In a SMS (short message service) competition for the title of "Fastest SMS Thumbs", it is observed that Competitor A inputs text three times faster than B and Competitor B inputs text two times faster than C. How much faster is Competitor A than Competitor C? Why?

Our guess is in fact correct, and the formula for $\frac{dy}{dx}$ is called the **Chain Rule** (in Leibniz notation).

But
$$\frac{dy}{dx} = \frac{d}{dx}[f(g(x))] = [f(g(x))]', \frac{dy}{du} = f'(u) = f'(g(x)) \text{ and } \frac{du}{dx} = g'(x).$$
 Thus we also have:
$$\frac{d}{dx}[f(g(x))] = [f(g(x))]' =$$

Example 2 Find the derivatives:
(a)
$$[\ln(x^2+1)]' \stackrel{?}{=}$$
(b) $[(x^4+2x^2+7)^{21}]' \stackrel{?}{=}$
(c) $[x\ln(2+e^x)]' \stackrel{?}{=}$
(d) $[e^{x^2+1}]' \stackrel{?}{=}$

Example 3 For what x does the graph of $y = e^{\frac{1}{3}x^3 - 4x}$ have slope zero?

Example 4 Let
$$f(x) = \frac{g(x^2)}{\sqrt{x+1}}$$
. Find the slope of the graph of $f(x)$ at $x = 3$.

x	g(x)	g'(x)
3	5	2
4	0	7
9	-2	3

Ans: One of them does not exist. Why?

g(x)

Example 5 Let A(x) = g(f(x)) and B(x) = g(g(x)). Use the graph of f(x) and g(x) to compute each of the following derivatives if it exists. If it does not exist, explain why.

 $\overline{5}$

3

f(x)

2 3 4 5 6

(a) $A'(1) \stackrel{?}{=}$

(b) $B'(1) \stackrel{?}{=}$

Example 6 Diatoms are microscopic algae surrounded by a silica shell that are found both in salt and fresh water, and they are a major source of atmospheric oxygen. The size of a diatom colony depends on many factors, including temperature. Suppose that samples taken in a Midwestern lake showed that the concentration of diatoms was modeled as a function of the temperature by the equation

$$C = 1.4 - e^{-0.001h^2} \quad \text{for } 0 < h < 40,$$

where C is the concentration of diatoms (in million per cubic centimeter) and h is the temperature of the water (in degrees Celsius).

- (a) $\frac{dC}{dh} \stackrel{?}{=}$
- (b) Suppose the temperature of the lake is 10° C and falling at the rate of 2 degrees per hour. At what rate is the concentration of diatoms changing with respect to time?