Date _____

Math 10250 Activity 22: First Derivative Tests (Section 4.1 continued)

GOAL: To use information given by f'(x) to find where f(x) is increasing and decreasing, and to locate maxima and minima.

First, let's review what we learned last time.

▶ The derivative test for increasing and decreasing functions

Method for finding where a function f is increasing/decreasing							
1. Find all critical points of f. (That is, find all points in the domain where $f'(x) = 0$ or							
f'(x) does not exist.)							
2. Find points where f has a vertical asymptote or is undefined.							
3. Plot points in 1 and 2 on the x-axis (making intervals).							
4. Take one point a in each interval and compute $f'(a)$. The sign of $f'(a)$ is the sign of							
f' throughout that interval.							
5. f is increasing on intervals where f' is							
f is decreasing on intervals where f' is							

Example 1 Find all values of x for which $f(x) = \frac{1}{x^2 - x}$ is increasing or decreasing with the steps outlined below.

Step 1: Find all **critical points** of f. (That is, all points c in the domain where f'(c) = 0 or f'(c) does not exist.)

Step 2: Find points where *f* has a **vertical asymptote** or is undefined. Answer: _____

Step 3: Draw a number line, mark all the points found in Steps 1 and 2, and find the sign of f'(x) in each interval between marked points.

Step 4: Write down the values of x for which f is increasing (f'(x) > 0) and those for which f is decreasing (f'(x) < 0).

The first derivative test for maxima and minima		
If $f(x)$ has a critical point at c , then		
• there is a local maximum at $x = c$ if $f'(x)$ changes its sign from	to	, and
• there is a local minimum at $x = c$ if $f'(x)$ changes its sign from	to	

Example 2 In Example 1, where does f(x) have a local maximum or local minimum, if any?

Example 3 Sketch the graphs of **two different** functions sharing the same properties below. The graphs should have at least one feature that is markedly different.

- f'(x) < 0 on $(-\infty, 0)$ or $(2, \infty)$. • f'(0) = 0 but f'(2) does not exist.
- f'(x) > 0 on (0,2). • $\lim_{x \to +\infty} f(x) = 2 = \lim_{x \to -\infty} f(x)$.
- f(0) = 0 and f(2) = 4.

				11				
				, ⁹				
			-					
			1-					
			0		1			

▶ Global Maximum and Global Minimum

Q1: How can we determine the global maximum or global minimum of a given function?

A1: One way is to study how the function increases and decreases.

Example 4 Find the local and global extrema, if any, of $f(x) = x^2 e^{-x}$ for $-\infty < x < \infty$.

Step 1: Find all critical points of f.

Step 2: Find points where *f* has a **vertical asymptote** or is undefined. Answer: _____

Step 3: Find the values of f(x) at all critical points and the behavior of f(x) at $\pm \infty$.

Step 4: Give a rough sketch of the graph of f(x) indicating clearly where f is increasing and decreasing.

Step 5: Read off the global maximum and the global minimum from the sketch above. If there are none state so.