\qquad Date \qquad

Math 10250 Activity 23: Second Derivative Tests (Section 4.2)

GOAL: To study how the graph of a given $f(x)$ "bends", and how these features of the graph are described by $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

- The second derivative test for concavity

Example 1 Water is filling up each of the following cylindar vessels at a constant rate of $1 \mathrm{~cm}^{3} / \mathrm{sec}$.

Let h be the height of the water level in the vessel at time t.
a. Sketch the graphs of h versus t for Vessels A and B in the axes for Figure 1. Indicate which graph belongs to A and which to B .

Figure 1

Figure 2
b. Sketch the graph of h versus time t for Vessel C in the axes for Figure 2.
c. Comment on how the "bending" (up or down) of the graph changes with $h^{\prime}(t)$. Mark on the graph where the "bending" changes.

We now introduce terminologies that describe the "bending" of a graph.
Case 1: For $a<x<b$, the slope of the graph $f(x)$ is increasing as x increases (i.e., $f^{\prime}(x)$ is increasing). So $f^{\prime \prime}(x)$ is \qquad for $a<x<b$ (portions of u-shape).

We say that the graph of $f(x)$ is for $a<x<b$.

Case 2: For $a<x<b$, the slope of the graph $f(x)$ is decreasing as x increases (i.e., $f^{\prime}(x)$ is decreasing). So $f^{\prime \prime}(x)$ is \qquad for $a<x<b$ (portions of n-shape).

We say that the graph of $f(x)$ is for $a<x<b$.

The above gives us:
The Second derivative test for concavity
Let $f(x)$ be a function that has a second derivative in an interval.

- If $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})<\mathbf{0}$ for all x then its graph is

- If $f^{\prime \prime}(x)>0$ for all x then its graph is \qquad .

Note: The places where the graph of $f(x)$ changes its concavity are called \qquad .

Example 2 Using the graph of the derivative of $f(x)$ below, determine the concavity of $f(x)$.

Concave up:

Concave down:
Inflection points:

Q1: Where can $f^{\prime \prime}(x)$ change signs (i.e., $f(x)$ changes concavity)?
A1: At the points where (i) \qquad , or (ii) \qquad is undefined (e.g., f^{\prime} has a sharp corner).

Example 3 The position of an object moving on a straight line is given by $s(t)=2 t^{3}+3 t^{2}-36 t+7$. Determine (a) where the graph of $s(t)$ is concave up, (b) where it is concave down, and (c) where there are inflection points, if any. Give physical interpretations for each of (a), (b), and (c).

Example 4 Determine where the graph of $f(x)=x^{5 / 3}$ is concave up, where it is concave down, and where there are inflection points, if any. Sketch the graph of $f(x)$.

Application in Economics: Utility functions $u(x)$ are - increasing $\Longleftrightarrow u^{\prime}(x)>0$

- concave down $\Longleftrightarrow u^{\prime \prime}(x)<0$. (Like $u(x)=\sqrt{x}$)

Your turn (Application to Population/Pandemics Model): For the solution $y=y(t)$ of the logistic model below, show that its concavity changes when $y(t)=K / 2$ (as the picture indicates).

$$
\underset{{ }^{2}}{\frac{d y}{d t}=r y\left(1-\frac{y}{K}\right), \quad y(0)=y_{0} .}
$$

