Date _____

Math 10250 Activity 25: Sketching Graphs (Section 4.3)

GOAL: To apply techniques from algebra and calculus to obtain a detailed sketch of the graph of a given function.

Example 1 Sketch the graph of $f(x) = xe^{-x^2/2}$ by completing the steps below.

a. Find all x-intercepts and y-intercepts of the graph of f(x) whenever possible.

b. Find coordinates of all critical points, vertical asymptotes, and places where f(x) is undefined.

c. Determine where f(x) is increasing and where it is decreasing.

d. Determine the concavity and coordinates of inflection points of f(x). $(f''(x) = (x^3 - 3x)e^{-x^2/2})$

e. Find all asymptotes and limit at infinity whenever applicable. Check for any symmetry.

f. Sketch the graph below labeling all important features. Your picture should be large and clear.

Example 2 Sketch the graph of $g(x) = \frac{x}{x^2 - 4}$ by completing the steps below.

a. Find all x-intercepts and y-intercepts of the graph of g(x) whenever possible.

b. Find coordinates of all critical points, vertical asymptotes, and places where g(x) is undefined.

c. Determine where g(x) is increasing and where it is decreasing.

d. Determine the concavity and coordinates of inflection points of g(x). $\left(g''(x) = \frac{(24+2x^2)x}{(x^2-4)^3} = \frac{24+2x^2}{(x^2-4)^2} \cdot \frac{x}{x^2-4}\right)$

e. Find all asymptotes and limits at infinity whenever applicable. Check for any symmetry.

f. Sketch the graph below labeling all important features. Your picture should be large and clear.