Math 10250 Activity 33: Area and the Definite Integral (Section 5.4)

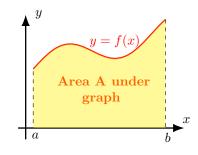
Goal: To compute the area of curved regions in the plane and define the definite integral of "good" functions.

• Consider the region under the graph of a non-negative function f(x) over its domain [a,b]:

Q1: How do you compute the area of the region A?

A1: In five steps:

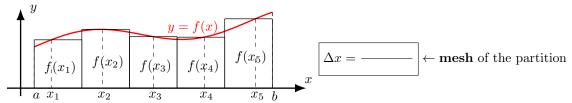
- (1) Divide the interval [a, b] into n equal subintervals.
- (2) Choose a point in each subinterval.
- (3) Compute the area of the rectangle corresponding to each piece.
- (4) Estimate the area of A by adding the areas of all rectangles.
- (5) Get the exact area by taking larger and larger n (smaller and smaller subintervals).



Let's look at each of the above steps in detail.

(1) Divide [a,b] into n subintervals of equal width Δx and choose a point x_i in each subinterval.

(Usually this point is chosen to be either the left endpoint, the right endpoint, or the midpoint of the subinterval.)



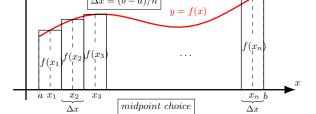
(2) Construct a rectangle over each subinterval with height $f(x_i)$ and compute the area of each rectangle. (Let's use left-hand endpoints of the segments.)

Area of first rectangle = height \cdot base =

Area of second rectangle = height \cdot base = _____

Area of nth rectangle = height \cdot base =

(3) Estimate the area of A by adding the areas in (2).



area of
$$A \approx$$
 = $S_n(f)$ \leftarrow **Riemann Sum**

- (4) The approximation above gets more accurate as the rectangles get smaller.
- (5) So we can get the exact area of A by letting _____. Therefore,

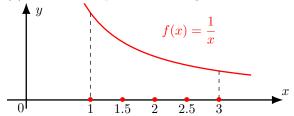
area of
$$A = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x] = \lim_{n \to \infty} S_n(f)$$

Example 1 Estimate the area under the graph of y = 1/x, $1 \le x \le 3$, by partitioning the interval [1,3] into 4 equal segments and computing the Riemann sum

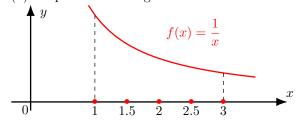
$$S_4(f) = f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + f(x_4)\Delta x,$$

where the points x_1, x_2, x_3 , and x_4 are chosen to be:

(a) left-hand endpoints of the segments.



(b) midpoints of the segments.



▶ The definite integral: nonnegative case

The limit in Step (5) on the previous page is so special that we give it a name and symbol:

$$=\lim_{n\to\infty}[f(x_1)\Delta x+f(x_2)\Delta x+\cdots+f(x_n)\Delta x]\leftarrow \textbf{Definition of the Definite Integral}$$

area under the graph of f(x) for $a \le x \le b$ if f(x) is nonnegative

If this limit exists, we call it the **Definite Integral of** f(x) **over the interval** $a \le x \le b$.

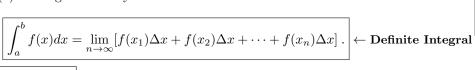
Example 2 Find $\int_{1}^{1} 4x \ dx$ using geometry.

▶ The Definite integral of a function taking positive and negative values. We do it In four steps:

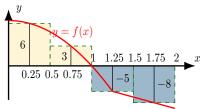
- (1) Divide the interval [a, b] into n subintervals.
- (2) Choose a point in each subinterval.
- (3) Compute the corresponding Riemann sum.

 $S_n(f) =$ $\leftarrow \mathbf{Riemann} \ \mathbf{Sum}$

(4) Let n go to infinity and obtain:



Example 3 For the function f(x) whose graph is displayed in the figure on the right, estimate $\int_0^2 f(x)dx$ by using the Riemann sum corresponding to $\Delta x = 0.5$ and the midpoints.

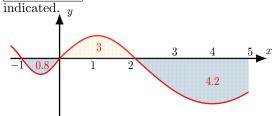


Example 4 Estimate the integral $\int_{-1}^{1} x^3 e^{-x^2} dx$ using 4 subintervals and left-hand endpoints.

• The relation between integral and area is:

relation between integral and area is: $\int_a^b f(x) \ dx = (\text{area of region lying } \underline{\qquad} \text{ the } x\text{-axis}) - (\text{area of region lying } \underline{\qquad} \text{ the } x\text{-axis}).$

Example 5 The graph of f(x) for $-1 \le x \le 5$ is shown in the figure below. The size of each enclosed area is as



 $\int_{-1}^{0} f(x) \ dx \stackrel{?}{=} \qquad \int_{0}^{2} f(x) \ dx \stackrel{?}{=} \qquad \text{and } \int_{2}^{5} f(x) \ dx \stackrel{?}{=}$

(a) Find the area of the region **enclosed** by the graph of f(x), $-1 \le x \le 5$, and the x-axis.

(b) $\int_{-1}^{5} f(x)dx \stackrel{?}{=}$ Q2: What are the basic properties of definite integral?

A2: