Name

Date

Math 10250 Activity 34: The Fundamental Theorem of Calculus (Section 5.5)

GOAL: Understand the Fundamental Theorem of Calculus (FTC) and use it to compute integrals.

Q1: What is the connection between $\int_{a}^{b} f(x) dx$ and $\int f(x) dx$? \uparrow \uparrow \uparrow definite integral indefinite integral

A2:

Fundamental Theorem of Calculus IF (1) f(x) is continuous on [a, b] and (2) F(x) is an antiderivative of f(x); i.e., F'(x) = f(x), THEN $\int_{a}^{b} f(x) dx =$ ______; i.e., $\int_{a}^{b} F'(x) dx =$ ______

Example 1 Compute the following definite integrals: (a) $\int_{1}^{2} (x^{2} + 3) dx$ (b) $\int_{-2}^{-1} (e^{2x} + \frac{2}{x}) dx$

Example 2 Sketch the graph of $f(x) = 2e^x$ from a = -1 to b = 2 and use the fundamental theorem of calculus to find the area under the graph.

$$\int_{-1}^{2} 2e^x dx =$$

▶ Physical interpretations of the Fundamental Theorem of Calculus

** Total change of a certain quantity is expressed as the definite integral of its rate of change.**

• From velocity v to displacement s:

Displacement between times
$$a$$
 and $b = s(b) - s(a) = \int_{a}^{b} \underline{dt}$.

Example 3 An object is falling vertically downward, and its velocity (in feet per second) is given by v = -32t - 20. Write a definite integral that gives the change in height in the first 3 seconds.

Similary, the following are true.

• From acceleration *a* to velocity *v*:

Change in velocity between times a and $b = v(b) - v(a) = \int_{a}^{b} \underline{\qquad} dt$.

• From rate of growth r(t) to total growth g(t):

Total growth between times a and
$$b = g(b) - g(a) = \int_a^b \underline{\qquad} dt$$
.

▶ From marginal function to total function

• The additional profit resulting in increasing production from a units to b units is given by

Total change in profit
$$\stackrel{?}{=}$$
 $\stackrel{?}{=}$ $=\int_{a}^{b} MP(x) dx.$

• The extra revenue resulting from increasing production from a units to b units is given by

Total change in revenue $\stackrel{?}{=}$ $\stackrel{?}{=}$ $\stackrel{?}{=}$.

Example 4 Suppose the marginal cost involved in producing x units of a certain product is given by the function

$$MC(x) = 2x + 1000$$
 when $x \ge 50$.

Determine the increase in cost if production is increased from 50 to 80.

▶ The area as an antiderivative

Let $A(t) = \int_{a}^{t} f(x) dx$ for $a \leq t \leq b$. If F(t) is an antiderivative of f(t), what is the relation between A(t) and F(t)? (Hint: Fundamental Theorem of Calculus)

<u>Conclusion</u>: A(t) is also an antiderivative of f(t), i.e.,

Theorem 5.5.2 IF f(x) is continuous on [a, b] THEN $\frac{d}{dt} \int_{a}^{t} f(x) dx \stackrel{?}{=}$

Example 5
$$\frac{d}{dt} \int_{1}^{t} (1+\ln x)^2 dx \stackrel{?}{=}.$$

▶ Substitution in definite integrals

$$\int_{a}^{b} f(g(x))g'(x) \ dx \stackrel{u=g(x)}{=}$$

Example 6
(a)
$$\int_{4}^{5} x \sqrt{x^{2} - 16} \, dx \stackrel{?}{=}$$
 (b) $\int_{0}^{1} x e^{x^{2}} \, dx \stackrel{?}{=}$