Name \qquad Date \qquad

Math 10250 Activity 34: The Fundamental Theorem of Calculus (Section 5.5)

GOAL: Understand the Fundamental Theorem of Calculus (FTC) and use it to compute integrals.
Q1: What is the connection between $\int_{a}^{b} f(x) d x$ and $\int f(x) d x$?
definite integral indefinite integral
A2:

Fundamental Theorem of Calculus

IF (1) $f(x)$ is continuous on $[a, b]$ and (2) $F(x)$ is an antiderivative of $f(x)$; i.e., $F^{\prime}(x)=f(x)$,
THEN $\int_{a}^{b} f(x) d x=\quad$;i.e., $\int_{a}^{b} F^{\prime}(x) d x=$

Example 1 Compute the following definite integrals:
(a) $\int_{1}^{2}\left(x^{2}+3\right) d x$
(b) $\int_{-2}^{-1}\left(e^{2 x}+\frac{2}{x}\right) d x$

Example 2 Sketch the graph of $f(x)=2 e^{x}$ from $a=-1$ to $b=2$ and use the fundamental theorem of calculus to find the area under the graph.
$\int_{-1}^{2} 2 e^{x} d x=$

- Physical interpretations of the Fundamental Theorem of Calculus

** Total change of a certain quantity is expressed as the definite integral of its rate of change.**

- From velocity v to displacement s :

$$
\text { Displacement between times } a \text { and } b=s(b)-s(a)=\int_{a}^{b} d t
$$

Example 3 An object is falling vertically downward, and its velocity (in feet per second) is given by $v=$ $-32 t-20$. Write a definite integral that gives the change in height in the first 3 seconds.

Similary, the following are true.

- From acceleration a to velocity v :

$$
\text { Change in velocity between times } a \text { and } b=v(b)-v(a)=\int_{a}^{b}
$$

- From rate of growth $r(t)$ to total growth $g(t)$:

Total growth between times a and $b=g(b)-g(a)=\int_{a}^{b} _\quad d t$.

- From marginal function to total function

- The additional profit resulting in increasing production from a units to b units is given by Total change in profit $\stackrel{?}{=} \quad \stackrel{?}{=}=\int_{a}^{b} M P(x) d x$.
- The extra revenue resulting from increasing production from a units to b units is given by
Total change in revenue $\stackrel{?}{=} \quad \stackrel{?}{=} \quad \stackrel{?}{=}$

Example 4 Suppose the marginal cost involved in producing x units of a certain product is given by the function

$$
M C(x)=2 x+1000 \text { when } x \geq 50
$$

Determine the increase in cost if production is increased from 50 to 80 .

- The area as an antiderivative

Let $\mathrm{A}(t)=\int_{a}^{t} f(x) d x$ for $\quad a \leq t \leq b$.
If $F(t)$ is an antiderivative of $f(t)$, what is the relation between $A(t)$ and $F(t)$?
(Hint: Fundamental Theorem of
Calculus)
Conclusion: $A(t)$ is also an antiderivative of $f(t)$, i.e.,

Theorem 5.5.2

IF $f(x)$ is continuous on $[a, b] \quad$ THEN $\quad \frac{d}{d t} \int_{a}^{t} f(x) d x \stackrel{?}{=}$

Example 5 $\frac{d}{d t} \int_{1}^{t}(1+\ln x)^{2} d x \stackrel{?}{=}$.

- Substitution in definite integrals

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x \stackrel{u=g(x)}{=}
$$

Example 6

(a) $\int_{4}^{5} x \sqrt{x^{2}-16} d x \stackrel{?}{=}$
(b) $\int_{0}^{1} x e^{x^{2}} d x \stackrel{?}{=}$

