Math 10250 Activity 4: Limits (Sect. 1.1)

GOAL: To obtain an intuitive understanding of the fundamental concept of limit and learn rules for computing it.

Q1: Using your intuition, how would you interpret the statement: The function \(f(x) = \frac{x^2 - 2x - 3}{x - 3} \) has limit 4 as \(x \) goes to 3?

\(\frac{x^2 - 2x - 3}{x - 3} \approx 4 \) when \(x \) is close to 3, but \(x \neq 3 \).

A1: -Natural domain of \(f \): \(x \neq 3 \).
 -Since \(f \) is not defined at \(x = 3 \), let's look at how \(f \) behaves near \(x = 3 \). To do this, we make a table of values like this:

<table>
<thead>
<tr>
<th>(x)</th>
<th>2.97</th>
<th>2.98</th>
<th>2.99</th>
<th>3</th>
<th>3.01</th>
<th>3.02</th>
<th>3.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = \frac{x^2 - 2x - 3}{x - 3})</td>
<td>3.97</td>
<td>3.98</td>
<td>3.99</td>
<td>?</td>
<td>4.01</td>
<td>4.02</td>
<td>4.03</td>
</tr>
</tbody>
</table>

Pattern: \(f(x) \) gets close to 4 as \(x \) gets close to 3.

- To make this more precise we need the help of algebra. So, let us factor the numerator of \(f \):

\(f(x) = \frac{x^2 - 2x - 3}{x - 3} = \frac{(x-3)(x+1)}{x - 3} \)

\(x \neq 3 \)
\(= x + 1 \)

- Letting \(x \to 3 \) gives \(f(x) = x + 1 \to 3 + 1 = 4 \)

i.e.
- \(f(x) \approx 4 \) for all \(x \) near 3 (but \(x \neq 3 \)), and
- Can make \(f(x) \) as close to \(L \) as we wish by taking \(x \) close enough to 3.

-Now, we are confident to claim that the limit of \(f(x) \) as \(x \) goes to 3 is 4.

- We write this as: \(\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = 4 \).

Q2: Give an Informal Definition of Limit

A2: \(\lim_{x \to a} f(x) = L \) if:

- \(f(x) \approx L \) if \(x \) is close to \(a \) (but not equal to \(a \))

- Can make \(f(x) \) as close to \(L \) as we wish by taking \(x \) close enough to \(a \).
Exercise 1 The graph of a function \(f \) is shown in Figure 2. By inspecting the graph, find each of the following limits if it exists. If the limit does not exist, explain why.

(i) \(\lim_{x \to 4} f(x) = 0 \)

(ii) \(\lim_{x \to 1} f(x) = 1 \)

(iii) \(\lim_{x \to 2} f(x) = 4 \)

(iv) \(\lim_{x \to 0} f(x) \) does not exist

(v) \(\lim_{x \to 3} f(x) \) does not exist

![Figure 2](image)

Exercise 2 Find \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2} \). Complete the following table of values to guess the limit and then use algebra to justify it (as in A).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.9</th>
<th>1.99</th>
<th>1.999</th>
<th>2</th>
<th>2.001</th>
<th>2.01</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{x^2 - 4}{x - 2})</td>
<td>?</td>
<td>3.999</td>
<td>?</td>
<td>4.001</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

\[
\frac{x^2 - 4}{x - 2} = \frac{(x-2)(x+2)}{x-2} = x + 2
\]

\[
\cdot x + 2 \xrightarrow{x \to 2} 2 + 2 = 4
\]

Q3: What are the basic Limit Laws?

A3:

1. \(\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x) \)

2. \(\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \)

3. \(\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \)

4. \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \) \(\text{if} \lim_{x \to a} g(x) \neq 0 \)

5. \(\lim_{x \to a} [f(x)]^r = [\lim_{x \to a} f(x)]^r \)

Exercise 3 Determine the following limits using the properties of limits (i.e. limit laws) and simplifying the expression, if necessary.

(i) \(\lim_{x \to 5} x^4 = 5^4 \)

(ii) \(\lim_{x \to 2} (5x^3 + 4x^2) = 5 \lim_{x \to 2} x^3 + 4 \lim_{x \to 2} x^2 = 5 \cdot 2^3 + 4 \cdot 2^2 \)

(iii) \(\lim_{x \to 2} (5x^3 + 4x^2) \cdot (x^2 - 9) = \left[\lim_{x \to 2} (5x^3 + 4x^2) \right] \cdot \left[\lim_{x \to 2} (x^2 - 9) \right] = \ldots \)

(iv) \(\lim_{x \to 2} \frac{x^2 - 9}{x - 3} = \lim_{x \to 2} \frac{x^2 - 9}{x - 3} = \frac{2^2 - 9}{2 - 3} = \frac{-5}{-1} = 5 \)

(v) \(\lim_{h \to 0} \frac{(h - 2)^2 - 4}{h} = \lim_{h \to 0} \frac{h^2 - 4h + 4 - 4}{h} = \lim_{h \to 0} \frac{h^2 - 4h}{h} = \lim_{h \to 0} \frac{h(h - 4)}{h} = \lim_{h \to 0} (h - 4) = -4 \)

Exercise 4 If \(f(x) \) is the function of exercise 1 and \(g(x) = 3x + 2 \) then find the following limits:

(i) \(\lim_{x \to 2} [f(x) \cdot g(x)] = [\lim_{x \to 2} f(x)] \cdot [\lim_{x \to 2} g(x)] = 4 \cdot [3 \cdot 2 + 2] = 32 \)

(ii) \(\lim_{x \to 2} \sqrt{f(x)} = \sqrt{\lim_{x \to 2} f(x)} = \sqrt{4} = 2 \).

An. 32

An. 2

2