Answers to Even-Numbered Exercises

Exercises 0.2
4. $f(0) = 0, f(2) = \frac{2}{3}$
10. $[-1, 1]
16. $(-\infty, \infty)$
20. $[0, \infty)$
28. It is the graph of a function since it passes the vertical line test.
34. It passes the horizontal line tests and so it is the graph of a one-to-one function.
44. $g(x) = \frac{1}{x} + 2, x \neq 0$. Its domain consists of all $x \neq 0$, and its range consists of all $y \neq 2$.

Exercises 0.3
6. It is decreasing on $(-2, -1)$ and $(0, 1)$, and increasing on $(-1, 0)$ and $(1, 2)$.
14. It is increasing on $(-\infty, 0)$, and it is decreasing on $(0, \infty)$.
18. f is neither even nor odd.
22. f is even and its graph is symmetric about the y-axis.
28. y-intercept is 3. There is no x-intercept.
36. (i) it matches (b).
 (ii) it matches (c).
 (iii) matches (a).
40. Translate the graph of $y = x^2$ to the left by 2 units and downward by 1 unit.

Exercises 0.4
6. slope -3, y-intercept 7
20. $x = -2$ (vertical)
22. $y = -\frac{1}{2}x + 4$
26. (a) \(C(x) = 450x + 2100 \)
\[R(x) = 1050x \]
\[P(x) = 600x - 2100 \]
(b) \(x = 3.5 \)
(c) \(P(9) = 3300 \)
(d) 5

34. supply curve is \(q = 160p - 120, \ p \geq 0.75 \)
demand curve is \(q = -150p + 600 \)
equilibrium point is \(q_e = \frac{7800}{31} \approx 251.61 \)

Exercises 0.5

2. Graph opens upward, vertex is (1,4), axis of symmetry is \(x = 1 \).

8. Graph opens upward, vertex is \((-\frac{1}{3}, \frac{2}{3}) \), axis of symmetry is \(x = -\frac{1}{3} \).

10. \(f(x) = 2x^2 - x - 1 = (2x + 1)(x - 1) \).
\(f(x) \) will be positive on \((-\infty, -1/2)\) and \((1, \infty)\), and negative on \((-1/2, 1)\).

16. \(f(x) = x^2 - \frac{3}{4} = (x + \frac{\sqrt{3}}{2})(x - \frac{\sqrt{3}}{2}) \).
\(f(x) > 0 \) on \((-\infty, -\frac{\sqrt{3}}{2})\) and \((\frac{\sqrt{3}}{2}, \infty)\); \(f(x) < 0 \) on \((-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2})\).

22. (a) \(p = 60 - q/20, \ R(q) = 60q - \frac{q^2}{20}, \ P(x) = -\frac{q^2}{20} + 44q - 3000 \).
(b) break-even points: \(q = 440 \pm 20\sqrt{334} \approx 74.5 \) or 805.5.
(c) \(C(p) = 22000 - 320p \)
\(R(p) = 1200p - 20p^2 \)
\(P(p) = 22000 + 1520p - 20p^2 \)
break-even points are \(p = 38 \pm \sqrt{334} \approx 19.72 \) and 56.28
(d) A profit will be made if the price is between $19.72 and $56.28.

26. (a) \(t = \frac{3 + \sqrt{23}}{2} \approx 3.9 \)
(b) \(t = 3/2 \)
(c) 92

Exercises 0.6

2. \(f(x) \) falls to the left and right

8. \(a_n < 0, \) \(n \) is even

10. \(f(x) \) has vertical asymptote \(x = 1 \)
As \(x \) approaches 1, \(f(x) \) climbs from the right, and falls from the left.
20. \(f(x) \) has vertical asymptotes \(x = 0 \) and \(x = 4 \)
As \(x \) approaches 0, \(f(x) \) climbs from the left, and falls from the right.
As \(x \) approaches 4, \(f(x) \) climbs from the right, and falls from the left.

26. 0.2

30. 2

36. \(f(9) = 27 \)

42. Natural domain is \((0, \infty)\).
Decreasing on \((0, \infty)\) (i.e. everywhere).
Positive on \((0, \infty)\).
Vertical asymptote \(x = 0 \), climbs from the right.