Math 10350 - Monotonicity and Concavity Summary

The extreme value theorem

If $f(x)$ is \qquad on a closed and bounded interval $a \leq x \leq b$ then $f(x)$ takes on
a \qquad and takes on a \qquad on $a \leq x \leq b$.

On a closed and bound interval $[a, b]$, a continuous function $f(x)$ attains its absolute maximum and absolute minimum occur at the following possible locations
(1)
or (2)

Definition: Let $f(x)$ be defined at c. Then we say that c is a critical point of f if (A) \qquad , or (B) \qquad -

Method for finding absolute maxima and minima of f on $[a, b]$

1. Find all critical points in (a, b).
2. Evaluate f at all critical points and at endpoints. Then compare the values of f :

$$
\text { highest }=\text { absolute maximum } \quad \text { and } \quad \text { lowest }=\text { absolute minimum } .
$$

(1) If $f^{\prime}(x)>0$ for $a<x<b$, then $f(x)$ is \qquad for $a<x<b$.
(2) If $f^{\prime}(x)<0$ for $a<x<b$, then $f(x)$ is \qquad for $a<x<b$.

Remark: The possible values of x where $f^{\prime}(x)$ changes signs are at (i) \qquad or at (ii)

The First Derivative Test

Suppose $f(x)$ has a critical point at $x=c$. We classify the critical point as follows:

- if $f^{\prime}(x)$ changes its sign from positive to negative at $x=c$, then there is a local (relative) at $x=c$.
- if $f^{\prime}(x)$ changes its sign from negative to positive at $x=c$, then there is a local (relative) at $x=c$.
- if $f^{\prime}(x)$ does not change its sign on both sides of $x=c$, then there is neither a local minimum nor a local maximum at $x=c$.

Characterization of Concavity

Case 1: For $a<x<b$, slope of the graph $f(x)$ is increasing as x increases i.e. $f^{\prime}(x)$ is increasing. So $f^{\prime \prime}(x)$ is for $a<x<b$. (Portions of u-shape)

We say that the graph of $f(x)$ is for $a<x<b$.

Case 2: For $a<x<b$, slope of the graph $f(x)$ is decreasing as x increases i.e. $f^{\prime}(x)$ is decreasing. So $f^{\prime \prime}(x)$
is for $a<x<b$. (Portions of n-shape)

We say that the graph of $f(x)$ is for $a<x<b$.

Definition (Inflection Points or Points of Inflection) We say that $x=c$ is a point of inflection of $f(x)$ if $f(c)$ is and the graph of $f(x)$ changes at $x=c$.

Remark: The possible values of x where $f^{\prime \prime}(x)$ changes signs are at (i) \qquad or at (ii) \qquad

Second Derivative Test

Let $f(x)$ be a function such that $f^{\prime}(c)=0$ and the function has a second derivative in an interval containing c.

- If $\boldsymbol{f}^{\prime \prime}(\boldsymbol{c})>\mathbf{0}$ then f has \qquad at the point $(c, f(c))$.
- If $\boldsymbol{f}^{\prime \prime}(\boldsymbol{c})<\mathbf{0}$ then f has \qquad at the point $(c, f(c))$.
- If $f^{\prime \prime}(c)=0$ then \qquad . Use first derivative test.

