1. Find the first and second derivatives of the following functions. Simplify each of your answers as far as possible.
(a) $f(x)=x-5(x-2)^{1 / 5}$
$f^{\prime}(x) \stackrel{?}{=}$
$f^{\prime \prime}(x) \stackrel{?}{=}$
(b) $g(x)=x e^{-x^{2}}$
$g^{\prime}(x) \stackrel{?}{=}$
$g^{\prime \prime}(x) \stackrel{?}{=}$
(c) $y=\frac{e^{3 x}-1}{e^{3 x}+1}$
$\frac{d y}{d x} \stackrel{?}{=}$
$\frac{d^{2} y}{d x^{2}} \stackrel{?}{=}$
\qquad
Fill in the blanks of each Statement (1) through (4) below.
2. The statement:" $f^{\prime}(x)$ is \qquad on $a<x<b$." then

1a. " $f(x)$ is increasing on $a<x<b$."
2. The statement: " $f^{\prime}(x)$ is negative on $a<x<b$." then

2a. " $f(x)$ is \qquad on $a<x<b$."
$\mathbf{2 b}$. "The slope of the graph of $f(x)$ is \qquad on $a<x<b$."
3. The statement:"The graph of $f(x)$ is concave up on $a<x<b$." is the same as:

3a. " $f^{\prime \prime}(x)$ is \qquad on $a<x<b$." is the same as:

3b. " $f^{\prime}(x)$ is \qquad on $a<x<b$."
4. The statement: " $f^{\prime}(x)$ is decreasing on $a<x<b$." is the same as:

4a. " f " (x) is \qquad on $a<x<b$." is the same as:

4b. "The graph of $f(x)$ is \qquad on $a<x<b$."
5. The figure below is the graph of the derivative $f^{\prime}(x)$ of $f(x)$ for $-4<x<6$. Find all intervals on which the graph of $f(x)$ is concave up?
(i) Find all values of x in $(-4,6)$ for which $f(x)$ is increasing.
(ii) Find the critical points of $f(x)$ in $(-4,6)$. Are these local maximums or minimums?

(iii) Find all intervals on which the graph of $f(x)$ is concave up in $(-4,6)$.
(iv) Find all values of x in $(-4,6)$ for which $f(x)$ has an inflection point.

Definition: Let $f(x)$ be defined at c that is $f(c)$ is a
We say that c is a critical point of $f(x)$ if
(1)) or

We say that c is a inflection point of $f(x)$ if the graph of $f(x)$

The extreme value theorem

If $f(x)$ is continuous on a closed and bounded interval $a \leq x \leq b$ then $f(x)$ attain \qquad
and \qquad on for some values of x in $a \leq x \leq b$.

On a closed and bound interval $a \leq x \leq b$, a continuous function $f(x)$ attains its absolute maximum and absolute minimum occur at
\qquad , or

The First Derivative Test

Suppose $f(x)$ has a critical point at $x=c$. We classify the critical point as follows:

- if $f^{\prime}(x)$ changes its sign from positive to negative at $x=c$, then there is a relative (local) \qquad at $x=c$.
- if $f^{\prime}(x)$ changes its sign from negative to positive at $x=c$, then there is a relative (local) \qquad at $x=c$.
- if $f^{\prime}(x)$ does not change its sign on both sides of $x=c$, then there is neither a relative (local) minimum nor a relative (local) maximum at $x=c$.

Second Derivative Test

Let $f(x)$ be a smooth function such that $f^{\prime}(c)=0$.

- If $\boldsymbol{f}^{\prime \prime}(\boldsymbol{c})>0$ then f has \qquad at the point $(c, f(c))$.
- If $\boldsymbol{f}^{\prime \prime}(\boldsymbol{c})<0$ then f has \qquad at the point $(c, f(c))$.
- If $f^{\prime \prime}(c)=\mathbf{0}$ then \qquad . Use first derivative test.

Math 10350 - Monotonicity Example

The only possible values of x at which the monotonicity of a function $f(x)$ changes are:
(1) \qquad and
(2)
6. Find all values of x for which $f(x)=x-5(x-2)^{1 / 5}$ is increasing or decreasing with the steps outlined below. Classify all critical points using first derivative test.
Step 1: Find all critical points of f. (That is all points c in the domain where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.)

Step 2: Find points where f have a vertical asymptote or undefined. Answer: \qquad
Step 3: Draw a number line, mark all points found in Steps 1 and 2, and find the sign of $f^{\prime}(x)$ in each intervals between marked points.

Step 4: Write down the values of x for which f is increasing $\left(f^{\prime}(x)>0\right)$ and those for which f is decreasing $\left(f^{\prime}(x)<0\right)$.

Step 5: Classify all critical points using first derivative test.

Math 10350 - Concavity Example

The only possible values of x at which the concavity of a function $f(x)$ changes are:
(1)
\qquad (2) \qquad and
(3) \qquad
7. Find all values of x for which $g(x)=x e^{-x^{2}}$ is increasing or decreasing with the steps outlined below. Classify all critical points using first derivative test.
Step 1: Find all points $c \underline{\text { in the domain }}$ where $g^{\prime \prime}(c)=0$ or $g^{\prime \prime}(c)$ does not exist. $\quad\left(g^{\prime \prime}(x)=\left(4 x^{3}-6 x\right) e^{-x^{2}}\right)$

Step 2: Find points where g have a vertical asymptote or undefined. Answer: \qquad
Step 3: Draw a number line, mark all points found in Steps 1 and 2, and find the sign of $g^{\prime \prime}(x)$ in each intervals between marked points.

Step 4: Write down the values of x for which g is concave up $\left(g^{\prime \prime}(x)>0\right)$ and those for which g is concave down $\left(g^{\prime \prime}(x)<0\right)$.

Step 5: Find all inflection points for the function $g(x)$.
8. A Norman window has a semi-circular portion mounted (exactly) on one side of a rectangle as show below. Answer the following questions if the perimeter of the window is 50 ft and r is the radius of the circular portion. Find the dimensions of the window that lets the (i) least light in and (ii) most light in.

