10350 Solving Equations Quiz

1. Solve the equations.

$$
\begin{aligned}
& \text { la. } \frac{4}{x}=\frac{x}{25} \Rightarrow 25 x \cdot \frac{4}{x}=\frac{x}{25} \cdot 25 x \\
& \Rightarrow 25 \cdot 4=x^{2} \Rightarrow x^{2}=100 \\
& \Rightarrow x= \pm \sqrt{100}=10,-10
\end{aligned}
$$

$$
\begin{aligned}
& \text { ib. } y(y-2)=3 \Rightarrow y^{2}-2 y=3 \\
& \Rightarrow y^{2}-2 y-3=0 \Rightarrow(y-3)(y+1)=0 \\
& \Rightarrow y=3,-1
\end{aligned}
$$

1c. $10-3(y-4)=7 y$

$$
\begin{aligned}
10-3 y+12 & =7 y \\
2 z & =7 y+3 y \\
22 & =10 y \\
y=\frac{22}{10} & =\frac{11}{5}
\end{aligned}
$$

2. Solve for x at the intersections of the curves

$$
\begin{aligned}
\frac{6}{x} & =\frac{5}{x+2}+1 \\
& =\frac{5+(x+2)}{x+2}=\frac{x+7}{x+2} \\
\Rightarrow \frac{6}{x} & =\frac{x+7}{x+2} \Rightarrow 6(x+2)=x(x+7) \\
\Rightarrow & 6 x+12=x^{2}+7 x \\
\Rightarrow & x^{2}+7 x-6 x-12=0 \\
\Rightarrow & x^{2}+x-12=0 \\
\Rightarrow & (x+4)(x-3)=0 \\
\Rightarrow & x=-4 ; 3 .
\end{aligned}
$$

3. Solve the following simultaneous equations.

3a.
$3 x-2 y=-5$
$2 x+3 y=1$$\quad$ - (2)

$$
\begin{aligned}
3 \times(1): 9 x-6 y & =-15 \\
2 \times(2):+) 4 x-6 y & =2 \\
\hline 13 x & =-13 \\
x & =-1
\end{aligned}
$$

$x=-1$ into (1): $-3-2 y=-5 \Rightarrow-2 y=-5+3$

$$
\Rightarrow y=-2 /-2=1
$$

$$
(-1,1)
$$

3b.

$$
\begin{align*}
y & =2 x \tag{1}\\
-3 x+y^{2} & =1 \tag{2}
\end{align*}
$$

Substitute (1) rito (2):

$$
\begin{array}{r}
-3 x+(2 x)^{2}=1 \\
4 x^{2}-3 x=1 \\
4 x^{2}-3 x-1=0 \\
(4 x+1)(x-1)=0
\end{array}
$$

$$
x=-\frac{1}{4}, 1
$$

Using (2):

$$
\begin{aligned}
\operatorname{sing}(2): \quad \begin{aligned}
y & =-\frac{1}{4}(2) ; \quad y \\
& =-\frac{1}{2} \\
& =2 \\
\left(-\frac{1}{4},-\frac{1}{2}\right) & \text { and }(1,2)
\end{aligned}
\end{aligned}
$$

4. Find x in the following equations:

$$
\begin{aligned}
& \text { aa. } 3 \cdot 2^{x}=24 \Rightarrow 2^{x}=24 / 3=8 \\
& \Rightarrow 2^{x}=2^{3} \Rightarrow x=3
\end{aligned}
$$

Ab. 3

$$
\begin{aligned}
3 \cdot(x+1)^{11}=24 & \Rightarrow(x+1)^{\prime \prime}=24 / 3=8 \\
x+1=8^{1 / 11 \Rightarrow x} \Rightarrow x=-1 & +8^{1 / 11} \\
\text { ar }-1 & +11 / \sqrt{8} .
\end{aligned}
$$

Ac. $3 \cdot 2^{x}=12 \cdot 4^{z} \Rightarrow 3 \cdot 2^{x}=12 \cdot 2^{2 x}$

$$
\begin{aligned}
& \Rightarrow \frac{3}{12}=\frac{2^{2 x}}{2^{x}} \Rightarrow \frac{1}{4}=2^{x} \\
& \Rightarrow 2^{x}=\frac{1}{2^{2}}=2^{-2} \Rightarrow x=-2
\end{aligned}
$$

5. Find x in terms of all other variables:

$$
\begin{aligned}
& \text { Sac= } c=\frac{x^{3}-p}{h+1} \Rightarrow c(h+1)=x^{3}-p \\
& \Rightarrow \dot{x}^{3}=p+c(h+1) \\
& \Rightarrow x=\sqrt[3]{p+c(h+1)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sb. } y=\frac{x-a}{x+b} \Rightarrow y(x+b)=x-a \\
& \Rightarrow x y+b y=x-a \\
& \Rightarrow x y-x=-a-b y \\
& \Rightarrow x(y-1)=-a-b y \\
& \Rightarrow x=\frac{-a-b y}{y-1} \text { or } \frac{a+b y}{1-y}
\end{aligned}
$$

