Math 10350 – Example Set 04A
Section 3.1

1. Consider the function

\[f(x) = \begin{cases}
5 - x & x < 2 \\
c & x = 2 \\
\frac{4}{x^2} & x > 2
\end{cases} \]

Using limits describe the kind of discontinuity at \(x = 2 \). Without drawing the graph of \(f(x) \), find the value of \(c \) for which the function \(f(x) \) is (a) left continuous at \(x = 2 \), and (b) right continuous at \(x = 2 \).

Definition 1 A function \(f(x) \) is said to be **differentiable** at \(x = c \) provided the following limit exist:

This means that the slope at \(x = c \) of the graph is a ________ number. We denote this number by \(f'(c) \).

Graphically, differentiable means that each small segment of the graph of \(f(x) \) is almost identical to a straight line. This is illustrated in Figure 1 through 3 below. As you zoom into the point \((c, f(c))\), the segment of the graph of \(f(x) \) near point \(c \) becomes more and more like its tangent line at \(x = c \).

Remark: We say that a function \(f(x) \) is differentiable on \((a, b)\) if \(f(x) \) is differentiable for all \(x = c \) in \((a, b)\).

Theorem 1 If \(f(x) \) be differentiable at \(x = c \), then \(f(x) \) is ________ at \(x = c \).

2. Consider the function \(f(x) = \frac{1}{x} \).

a. Find the average rate of change of \(f(x) \) over the interval \(2 \leq x \leq 5 \).

b. Find the average rate of change of \(f(x) \) over the interval \(2 \leq x \leq (2 + h) \).

This is also called the (i) ___________________________ and (ii) ___________________________ at \(x = 2 \).

Simplify the expression as far as you can assuming that \(h \neq 0 \).

c. Using (b), find the derivative of \(f(x) \) at \(x = 2 \) using the limit definition.

d. What is the instantaneous rate of change of \(f(x) \) at \(x = 2 \)? ___________________________

e. What is the slope of the graph of \(f(x) \) at \(x = 2 \)? ___________________________
f. Find the equation of the tangent line to the graph of $f(x)$ at $x = 2$. Draw a graph that describe the limiting process in (c) and its connection to the tangent line.

g. Do the computation in Q2(b) and (c) replacing 2 by variable x to obtain the derivative (slope function) of $f(x)$. Draw a picture to illustrate what the derivative represent.

Derivative of a function. The derivative of the function $f(x)$ is given by the following limit:

$$f'(x) = \frac{\Delta y}{\Delta x}$$

Setting $\Delta x = h$ and $\Delta y = f(x + h) - f(x)$ gives the notation:

$$f'(x) = \frac{f(x + h) - f(x)}{h}$$

Notation: If $y = f(x)$ is a differentiable function. Write down all standard notations of the derivative of $y = f(x)$.

Some Common Derivatives. For any numbers k and n:

$$\frac{d}{dx}(k) = k$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

(Power Rule)

Basic Properties of Derivatives:

$$[f(x) + g(x)]' = f'(x) + g'(x)$$

$$[f(x) - g(x)]' = f'(x) - g'(x)$$

$$[c \cdot f(x)]' = c \cdot f'(x)$$

3. Find the derivative of each of the following functions:

a. $f(x) = \sqrt{x} + \frac{\pi}{\sqrt{x}}$

b. $y = \frac{x^3 + 5x + 6}{x}$

c. $h(t) = (2 + \sqrt{t}) t^2$
1. Recall the limit: \(\lim_{h \to 0} \frac{e^h - 1}{h} = \) _. Use this to obtain formulas for \(\frac{d}{dx} (e^x) \) and \(\frac{d}{dx} (a^x) \).

2. The position (in feet) of a particle moving on a straight line is given by the function

\[
s(t) = \frac{5}{t} + t^e + 2e^t + 3t.
\]

Find an expression for the (instantaneous) velocity \(v(t) \). What is the velocity of the particle when \(t = \ln 2 \) seconds?

Product and Quotient Rule. Let \(f(x) \) and \(g(x) \) be differentiable functions. Derive formulas for the derivatives of \(p(x) = f(x) \cdot g(x) \) and \(q(x) = \frac{f(x)}{g(x)} \).

Product Rule:

\[
\frac{d}{dx} (f(x)g(x)) =
\]

Quotient Rule:

\[
\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) =
\]

3. Find the slope of the function \(f(x) = (x^2 + 2)e^x \) at \(x = 0 \). What is the equation of the tangent line there?

4. Water flows into a leaky container in such a way that the height of the water level from its base is given by \(h(t) = \frac{4e^t + 3}{e^t + 3} \) inches. (a) Find the time \(t \) such the height of the water level is 3 inches. (b) Find the instantaneous rate of change (ROC) of the height of the water when the water level reaches 3 inches.

5a. The stationary points in the domain of a function \(f(x) \) are the values of \(x \) such that \(f'(x) = 0 \). What can you say about the tangent line at stationary points?

5b. Find the stationary points of \(y = \frac{2x - 1}{x^2 + 1} \).
1. If \(f'(a) = \lim_{h \to 0} \frac{(3 + h)^{10} - 3^{10}}{h} \), what is a possible \(f(x) \) and the value of \(a \)?

\[f(x) = \quad \text{and} \quad a = \]

2. The figure above describes the graph of \(y = f(x) \) and its tangent line at \(x = 3 \). Answer the problems below:

a. Estimate the average rate of change of \(f(x) \) over the interval \([0, 5]\).

b. \(f(3) = \) \quad \text{and} \quad f'(3) = \)

c. Find the equation of the tangent line at \(x = 3 \). Give your answer in slope-intercept form.

3. The slope of the curve \(y = ax^2 + bx \) at the point \((2, 4)\) is \(-8\). Calculate the values of \(a \) and \(b \).

b. Find \(\frac{dy}{dx} \bigg|_{x=-2} \) and use it to find the equation of the tangent line to the same curve at \(x = -2 \).

4. Find the values of \(x \) for which the graphs of the functions \(f(x) = x^3 - 3x^2 + 7x + 8 \) and \(g(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 5x - 3 \) have parallel tangent lines there. Pick one such location on the graph of \(f(x) \) and find the equation of the tangent line there.

5. Let \(p(x) = (x^3 - 5x + 1)g(x) \) and \(q(x) = \frac{f(x)}{g(x) + 1} \). Given that \(f(2) = 2 \), \(g(2) = 3 \), \(f'(2) = -1 \) and \(g'(2) = -4 \), find the following values:

a. The instantaneous rate of change of \(p(x) \) at \(x = 2 \).

b. The slope of the tangent line to the graph of \(y = q(x) \) when \(x = 2 \).
6. A military craft made with a new technology that could change its velocity on demand in a moment was test driven on a long straight road. The graph of its position $s(t)$ for eight seconds of travel is given below. Sketch in the given axes below the velocity function $v(t)$ indicating clearly places where velocity is undefined.