Math 10350 - Example Set 04A
 Sections 3.1\& 3.2
 Differentiability \& Derivative of a Function

Definition 1 A function $f(x)$ is said to be differentiable at $x=c$ provided the following limit exist:

This means that the slope at $x=c$ of the graph is a \qquad number. We denote this number by $f^{\prime}(c)$.

Graphically, differentiable means that each small segment of the graph of $f(x)$ is almost identical to a straight line. This is illustrated in Figure 1 through 3 below. As you zoom into the point $(c, f(c))$, the segment of the graph of $f(x)$ near point c becomes more and more like its tangent line at $x=c$.

Remark: We say that a function $f(x)$ is differentiable on (a, b) if $f(x)$ is differentiable for all $x=c$ in (a, b).
Theorem 1 If $f(x)$ be differentiable at $x=c$, then $f(x)$ is \qquad at $x=c$.

1. Let $f(x)=\frac{1}{x^{2}}$. Compute the derivative or the slope function of $f(x)$ using limits by following steps below.
a. Find the average rate of change of $f(x)$ over the interval between x and $x+h$ assuming that $h \neq 0$.

This is also called the
b. Using (a), find the derivative of $f(x)$ (w.r.t. x) using the limit definition.
c. What is the instantaneous rate of change of $f(x)$? \qquad
d. Find the equation of the tangent line to the graph of $f(x)$ at $x=2$. Draw a graph that describe the limiting process in (c) and its connection to the tangent line.

Derivative of a function. The derivative of the function $f(x)$ is given by the following limit:

$$
f^{\prime}(x)=
$$

\qquad

Setting $\Delta x=h$ and $\Delta y=f(x+h)-f(x)$ gives the notation:

$$
f^{\prime}(x)=\quad=
$$

\qquad

Notation: If $y=f(x)$ is a differentiable function. Write down all standard notations of the derivative of $y=f(x)$.

Some Common Derivatives. For any numbers k and n :
$\frac{d}{d x}(k) \stackrel{?}{=} \quad \frac{d}{d x}\left(x^{n}\right) \stackrel{?}{=} \quad$ (Power Rule)

Basic Properties of Derivatives:

$[f(x)+g(x)]^{\prime} \stackrel{?}{=}$
$[f(x)-g(x)] \stackrel{?}{=}$
$[c \cdot f(x)]^{\prime} \stackrel{?}{=}$
2. Find the derivative of each of the following functions with respect to the:
a. $f(x)=\sqrt{x}+\frac{\pi}{\sqrt{x}}$
b. $y=\frac{x^{3}+5 x+6}{x}$
c. $h(t)=(2+\sqrt{t}) t^{2}$

Math 10350 - Example Set 04B

1. Find the equation(s) of the tangent line(s) to the graph of $y=x^{3}+2$ is parallel to the line $24 x-2 y=3$.
2. Use the fact $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=\quad$ to obtain formulas for $\frac{d}{d x}\left(e^{x}\right)$ and $\frac{d}{d x}\left(a^{x}\right)$.
3. The position (in feet) of a particle moving on a straight line is given by the function

$$
s(t)=\frac{5}{t}+t^{e}+2 e^{t}+3^{t} .
$$

Find an expression for the (instantaneous) velocity $v(t)$. What is the velocity of the particle when $t=\ln 2$ seconds?

Math 10350 - Example Set 04C

1. If $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{(3+h)^{10}-3^{10}}{h}$, what is a possible $f(x)$ and the value of a ?
$f(x) \stackrel{?}{=}$ \qquad and $a \stackrel{?}{=}$ \qquad
2.

The figure above describes the graph of $y=f(x)$ and its tangent line at $x=3$. Answer the problems below:
a. Estimate the average rate of change of $f(x)$ over the interval $[0,5]$.
b. $f(3) \stackrel{?}{=}$ \qquad and $f^{\prime}(3) \stackrel{?}{=}$ \qquad
c. Find the equation of the tangent line at $x=3$. Give your answer in slope-intercept form.
3. The slope of the curve $y=a x^{2}+b x$ at the point $(2,4)$ is -8 . Calculate the values of a and b.
4. Find the values of x for which both the graphs of the functions $f(x)=x^{3}-3 x^{2}+7 x+8$ and $g(x)=$ $\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+5 x-3$ have parallel tangent lines at x. Pick one such location on the graph of $f(x)$ and find the equation of the tangent line there.
5. A military craft made with a new technology that could change its velocity on demand in a moment was test driven on a long straight road. The graph of its position $s(t)$ for eight seconds of travel is given below. Sketch in the given axes below the velocity function $v(t)$ indicating clearly places where velocity is undefined.

