Math 10350 – Example Set 05A Sections 3.1 & 3.2 Product Rule & Quotient Rule

Product and Quotient Rule. Let f(x) and g(x) be differentiable functions. Derive formulas for the derivatives of $p(x) = f(x) \cdot g(x)$ and $q(x) = \frac{f(x)}{g(x)}$.

Product Rule:
$$\frac{d}{dx}(f(x)g(x)) =$$

Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) =$

1. The stationary points in the domain of a function f(x) are the values of x such that f'(x) = 0. What can you say about the tangent line at stationary points? Find the stationary points of the following functions:

1a. $f(x) = (x^2 - 3)e^x$.

1b. $y = \frac{2x-1}{x^2+1}$.

2. Let $p(x) = (x^3 - 5x + 1)g(x)$ and $q(x) = \frac{f(x)}{g(x) + 1}$. Given that f(2) = 2, g(2) = 3, f'(2) = -1 and g'(2) = -4, find the following values:

a. The instantaneous rate of change of p(x) at x = 2.

b. The slope of the tangent line to the graph of y = q(x) when x = 2.

Math 10350 – Example Set 05B Section 3.5 Higher Derivatives Section 3.6 Trigonometric Functions

1. Consider the function $f(t) = t^4 - 2e^t + 2$.

a. Find the following derivatives of f(t): (i) f'(t), (ii) $f''(t) = \frac{d^2 f}{dt^2}$, (iii) f'''(t), and (iv) $\frac{d^4 f}{dt^4}$.

b. If f(t) represents the position of a particle moving on a straight line, what would f'(t) and f''(t) mean physically?

2. Define the trigonometric functions:

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$ and $\csc x = \frac{1}{\sin x}$.

Use the fact that $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x) = -\sin x$ to show that

a.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

b. $\frac{d}{dx}(\cot x) = -\csc^2 x$

c. $\frac{d}{dx}(\sec x) = \sec x \tan x$
d. $\frac{d}{dx}(\csc x) = -\csc x \cot x$

3. Using the equilateral triangle and right isosceles triangle, determine all trigonometric ratios of the special angles $\pi/6$, $\pi/4$ and $\pi/3$.

4. A piece if wood floating on the surface of a pond is bobbing up and down according to the position function

$$s(t) = \cos(t) + \sin(t) \quad \text{cm}$$

where t is in seconds.

- (a) Find formulas for both its velocity and acceleration at time t seconds.
- (b) Find smallest time at which the velocity of the piece of wood is zero.
- **5.** Assuming that $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and $\lim_{x \to 0} \frac{1 \cos x}{x} = 0$, answer the questions below:
- **a.** Find the values of (i) $\lim_{x\to 0} \frac{\sin 7x}{3x}$ and (ii) $\lim_{x\to 0} \frac{\tan x}{2x}$
- **b.** Show that the derivative of $\sin x$ is $\cos x$. You will need the identity $\sin(A + B) = \sin A \cos B + \cos A \sin B$.