Definition 1. (The Composite Function) A function $h(x)$ is said to be a composite function of $g(x)$ followed by $f(x)$ if $h(x)=f(g(x))$. We may write: $\quad h: x \stackrel{g}{\longrightarrow} \xrightarrow{f}$

1. Find functions $f(x)$ and $g(x)$, not equal x, such that $h(x)=f(g(x))$:
(a) $h(x)=\left(x^{4}+2 x^{2}+7\right)^{21}$
$h: x \stackrel{g}{\longmapsto}$ \qquad $\stackrel{f}{\stackrel{ }{\longmapsto}}$ \qquad
Ans: $f(x) \stackrel{?}{=}$ \qquad and $\quad g(x) \stackrel{?}{=}$ \qquad
(b) $h(x)=\sin \left(x^{2}+1\right)$

$$
h: x \longmapsto \longrightarrow
$$

\qquad
Ans: $f(x) \stackrel{?}{=}$ \qquad and $\quad g(x) \stackrel{?}{=}$ \qquad
World Guinness Record Approved Text: "The razor-toothed piranhas of the genera Serrasalmus and Pygocentrus are the most ferocious freshwater fish in the world. In reality they seldom attack a human."

Think about it: In a competition for the title of "Fastest Text Messager", it is observed that Competitor A inputs text three times faster than B, and Competitor B inputs text two times faster than C. How much faster is Competitor A than Competitor C? Why?

The Chain Rule. Suppose $y=f(g(x))$. To find a formula for $\frac{d y}{d x}=\frac{d}{d x}[f(g(x))]$, we set $u=g(x)$ then $y=f(u)$.

Our guess is in fact correct, and the formula for $\frac{d y}{d x}$ is called the Chain Rule (in Leibniz notation).
But $\frac{d y}{d x}=\frac{d}{d x}[f(g(x))]=[f(g(x))]^{\prime}, \frac{d y}{d u}=f^{\prime}(u)=f^{\prime}(g(x))$ and $\frac{d u}{d x}=g^{\prime}(x)$. Thus we also have:

$$
\frac{d}{d x}[f(g(x))]=[f(g(x))]^{\prime}=
$$

1. Find the coordinates of the points on the curve $y=2 x e^{-x^{2}}$ where the tangent lines are horizontal.
2. Find the derivative of the following functions:
a. $f(x)=\sqrt[3]{1+x^{3}}$
b. $g(x)=\cot 5 x$
c. $h(x)=\frac{1}{2} x^{2} \sqrt{16-x^{2}}$
d. $R=\csc ^{3}(\pi x)$
e. $w=\left(\frac{t+1}{t^{2}+2}\right)^{4}$
f. $y=\tan ^{3}\left(2 x^{2}+1\right)$

Math 10350 - Example Set 06B

 Section 3.7 The Chain Rule

 Section 3.7 The Chain Rule

 Section 3.9 Derivative of the Natural Log

 Section 3.9 Derivative of the Natural Log}

1. Consider the functions $f(x)=e^{x}$ and $g(x)=\ln x$.
a. Sketch the graph of $f(x)=e^{x}$ and $g(x)=\ln x$ on the same set of axes. What could you say about their relationship? How are $f(x)$ and $g(x)$ related?
b. Using the fact that $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ and the chain rule, find a formula for $\frac{d}{d x}(\ln x)$.
c. Using the change of base formula $\log _{b} x=\frac{\ln x}{\ln b}$, show that $\frac{d}{d x}\left(\log _{b} x\right)=\frac{1}{x \ln b}$.
2. Find the equation of the tangent line to the graph of $y=\frac{\ln x-1}{\ln x+1}$ when $x=1$.
3. Find the derivatives of the following functions:
a. $f(\theta)=\ln (\sin \theta+2)$
b. $y=\ln \left(\frac{e^{x}-1}{e^{x}+1}\right)$
c. $g(z)=\ln (\ln z) \quad$ for $z>1$.
d. $y=e^{(\ln x)^{3}}$
e. $x^{e}+e^{x}$
e. x^{x}
4. Find the derivative of the given functions:
(a) $(2 x+1)^{\cos (e)}$
(b) $(2 e+1)^{\cos x}$
(a) $(2 x+1)^{\cos x}$
5. Find the equation of the tangent line at the point $P(1,2)$ on the circle $x^{2}+y^{2}=5$ by solving for y as an appropriate expression of x.

Remark: For a general relation between x and y, it is difficult to write y as a function of x. For example, $x^{3}+y^{3}=2 x y$. To find the slope at $R(1,1)$ on the curve using the above method, we need to find explicitly $g(x)$. This is very hard!!

We say that y is an implicit function of x. To find $\frac{d y}{d x}$ in such situation we employ a powerful method called Implicit Differentiation.

3. Verify that the point $(1,1)$ is on the curve $x^{3}+y^{3}=2 x y$. Find (a) $\frac{d y}{d x}$, (b) the slope of the curve at $(1,1)$, and (c) the point(s) on the curve where the tangent line is horizontal.
(b) $y=-x+2$; (c) $\left(\frac{16^{1 / 3}}{3}, \frac{16^{2 / 3}}{6}\right)$
4. Find $\frac{d y}{d x}$ if $\cos (x y)=x+y^{2}$.

1. Determine whether the following functions are of the form $[f(x)]^{n}, a^{g(x)}$, and $[f(x)]^{g(x)}$ where a and n are constants, and $f(x)$ and $g(x)$ are functions of x. Find their derivatives.
a. $y=\left(2 x^{2}+5\right)^{e^{2}+3}$
c. $y=\left(2 \pi^{2}+5\right)^{x^{2}+3}$
e. $y=\left(\sin (e)+\cos ^{2}(e)\right)^{\pi^{2}}$
b. $y=\left(2 x^{2}+5\right)^{e^{x}+3}$
d. $y=\left(\sin (e)+\cos ^{2}(e)\right)^{x^{2}}$
f. $y=\left(\sin (x)+\cos ^{2}(e)\right)^{e^{2}}$
