Math 10350 – Example Set 06A Section 3.7 The Chain Rule

Definition 1. (The Composite Function) A function h(x) is said to be a composite function of g(x) followed by f(x) if h(x) = f(g(x)). We may write: $h: x \stackrel{g}{\longmapsto} \underbrace{\qquad} \stackrel{f}{\longrightarrow} \underbrace{\qquad}$

1. Find functions f(x) and g(x), not equal x, such that h(x) = f(g(x)):

World Guinness Record Approved Text: "The razor-toothed piranhas of the genera Serrasalmus and Pygocentrus are the most ferocious freshwater fish in the world. In reality they seldom attack a human."

Think about it: In a competition for the title of "Fastest Text Messager", it is observed that Competitor A inputs text three times faster than B, and Competitor B inputs text two times faster than C. How much faster is Competitor A than Competitor C? Why?

The Chain Rule. Suppose y = f(g(x)). To find a formula for $\frac{dy}{dx} = \frac{d}{dx}[f(g(x))]$, we set u = g(x) then y = f(u).

Our guess is in fact correct, and the formula for $\frac{dy}{dx}$ is called the **Chain Rule** (in Leibniz notation).

But
$$\frac{dy}{dx} = \frac{d}{dx}[f(g(x))] = [f(g(x))]', \frac{dy}{du} = f'(u) = f'(g(x))$$
 and $\frac{du}{dx} = g'(x)$. Thus we also have:
$$\boxed{\frac{d}{dx}[f(g(x))] = [f(g(x))]' =}$$

1. Find the coordinates of the points on the curve $y = 2xe^{-x^2}$ where the tangent lines are horizontal.

2. Find the derivative of the following functions:

a.
$$f(x) = \sqrt[3]{1+x^3}$$

b. $g(x) = \cot 5x$
c. $h(x) = \frac{1}{2}x^2\sqrt{16-x^2}$
d. $R = \csc^3(\pi x)$
e. $w = \left(\frac{t+1}{t^2+2}\right)^4$
f. $y = \tan^3(2x^2+1)$

Math 10350 – Example Set 06B Section 3.7 The Chain Rule Section 3.9 Derivative of the Natural Log

1. Consider the functions $f(x) = e^x$ and $g(x) = \ln x$.

a. Sketch the graph of $f(x) = e^x$ and $g(x) = \ln x$ on the same set of axes. What could you say about their relationship? How are f(x) and g(x) related?

b. Using the fact that $\frac{d}{dx}(e^x) = e^x$ and the chain rule, find a formula for $\frac{d}{dx}(\ln x)$.

c. Using the change of base formula $\log_b x = \frac{\ln x}{\ln b}$, show that $\frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}$.

2. Find the equation of the tangent line to the graph of $y = \frac{\ln x - 1}{\ln x + 1}$ when x = 1.

3. Find the derivatives of the following functions:

a.
$$f(\theta) = \ln(\sin \theta + 2)$$

b. $y = \ln\left(\frac{e^x - 1}{e^x + 1}\right)$
c. $g(z) = \ln(\ln z)$ for $z > 1$.

d.
$$y = e^{(\ln x)^3}$$
 e. $x^e + e^x$ **e**. x^x

Math 10350 – Example Set 06C Section 3.8 Implicit Differentiation including Logarithmic Differentiation

1. Find the derivative of the given functions:

(a) $(2x+1)^{\cos(e)}$ (b) $(2e+1)^{\cos x}$ (a) $(2x+1)^{\cos x}$

2. Find the equation of the tangent line at the point P(1,2) on the circle $x^2 + y^2 = 5$ by solving for y as an appropriate expression of x.

Remark: For a general relation between x and y, it is difficult to write y as a function of x. For example, $x^3 + y^3 = 2xy$. To find the slope at R(1,1) on the curve using the above method, we need to find **explicitly** g(x). This is very hard!!

We say that y is an implicit function of x. To find $\frac{dy}{dx}$ in such situation we employ a powerful method called **Implicit Differentiation**.

3. Verify that the point (1,1) is on the curve $x^3 + y^3 = 2xy$. Find (a) $\frac{dy}{dx}$, (b) the slope of the curve at (1,1), and (c) the point(s) on the curve where the tangent line is horizontal.

4. Find $\frac{dy}{dx}$ if $\cos(xy) = x + y^2$.

Math 10350 – Example Set 06C Power Functions, Exponential Functions, and Mixing them.

1. Determine whether the following functions are of the form $[f(x)]^n$, $a^{g(x)}$, and $[f(x)]^{g(x)}$ where a and n are constants, and f(x) and g(x) are functions of x. Find their derivatives.

a.
$$y = (2x^2 + 5)^{e^2 + 3}$$

b. $y = (2x^2 + 5)^{e^2 + 3}$
c. $y = (2\pi^2 + 5)^{x^2 + 3}$
d. $y = (\sin(e) + \cos^2(e))^{x^2}$
e. $y = (\sin(e) + \cos^2(e))^{\pi^2}$
f. $y = (\sin(x) + \cos^2(e))^{e^2}$