Vertical Asymptote.

Let c be a real number. If $\lim _{x \rightarrow c^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow c^{+}} f(x)= \pm \infty$.
Then $y=f(x)$ has a \qquad asymptote at $x=c$.

Horizontal Asymptote.

If $\lim _{x \rightarrow \infty} f(x)=A$ (finite number) or $\lim _{x \rightarrow-\infty} f(x)=A$.
Then $y=f(x)$ has a \qquad asymptote at $y=A$.

1. Draw a graph with horizontal asymptotes $y=1$ and $y=-4$.
2. Find the equations of all horizontal asymptotes of $y=\frac{3 e^{3 x}+4 e^{x}+5}{2 e^{3 x}+e^{x}+3}$.

L'Hopital's Rule: If both $f(x)$ and $g(x)$ are differentiable functions such that:
(a) $\lim _{x \rightarrow c} f(x)=0=\lim _{x \rightarrow c} g(x)$ such that $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
(b) $\lim _{x \rightarrow c} f(x)= \pm \infty=\lim _{x \rightarrow c} g(x)$ such that $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

Here $x \rightarrow c$ could mean limit to a number like $x \rightarrow 4$, or left-right limit notations like $x \rightarrow 0^{-}$and $x \rightarrow 0^{+}$, or limit to infinity $(x \rightarrow \infty$ and $x \rightarrow-\infty)$.
3. Evaluate the following limits using L'Hopital's Rule where necessary.
(A) $0 / 0-$ type, $\infty / \infty-$ type and $0 \cdot \infty-$ type
(i) $\lim _{x \rightarrow \infty} \frac{\ln (1+x)}{x}$.
(ii) $\lim _{x \rightarrow \infty} \frac{\sin (x)+\sin (2 x)}{x^{2}+1}$.
(iii) $\lim _{x \rightarrow 0^{+}} x \ln (x)$.
(B) 1^{∞} - type, ∞^{0} - type and 0^{0} - type
(iv) $\lim _{x \rightarrow \infty}(1+x)^{1 / x}$.
(v) $\lim _{x \rightarrow \infty}\left(1-\frac{2}{x}\right)^{x}$.
(vi) $\lim _{x \rightarrow 0^{+}} x^{x}$.
(C) $\infty-\infty$ - type
(vii) $\lim _{x \rightarrow 0^{+}}(\csc x-\cot x)$.

1. Sketch the graph of $g(x)=x e^{-x^{2}}$ by completing the steps below.
a. Find all x-intercepts and y-intercept of the graph of $g(x)$ whenever possible.
b. Find coordinates of all critical points, vertical asymptotes, and places where $g(x)$ are undefined. $\left(g^{\prime}(x)=\left(1-2 x^{2}\right) e^{-x^{2}}\right)$
c. Determine where $g(x)$ is increasing and where it is decreasing.
d. Determine the concavity and coordinates of inflection points of $g(x)$.
e. Find all asymptotes and limit at infinity whenever applicable.
f. Sketch the graph below labeling all important features. Your picture should be large and clear.
2. Find the equations of all vertical and horizontal asymptotes of $y=\frac{3 x^{2}+2 x-5}{2 x^{2}+x-3}$.
3. Sketch the graph of $f(x)=\frac{e^{x}+1}{e^{x}-1}$ by completing the steps below.
a. Find all x-intercepts and y-intercept of the graph of $f(x)$ whenever possible.
b. Find coordinates of all critical points, vertical asymptotes, and places where $f(x)$ are undefined. $\left(f^{\prime}(x)=-\frac{2 e^{x}}{\left(e^{x}-1\right)^{2}}\right)$
c. Determine where $f(x)$ is increasing and where it is decreasing.
d. Determine the concavity and coordinates of inflection points of $f(x) . \quad\left(f^{\prime \prime}(x)=\frac{2 e^{x}\left(1+e^{x}\right)}{\left(e^{x}-1\right)^{3}}=\frac{2 e^{x}\left(1+e^{x}\right)}{\left(e^{x}-1\right)^{2}} \cdot \frac{1}{e^{x}-1}\right)$
e. Find all asymptotes and limit at infinity whenever applicable.
f. Sketch the graph below labeling all important features. Your picture should be large and clear.
