Newton's Method

Steps to applying Newton's method to approximate the solution of f(x) = 0:

- (1) Make an initial guess x_0 near to the zero you wish to find.
- (2) Determine the new approximations x_1, x_2, \dots :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

(3) Check $|x_n - x_{n+1}| \to 0$ as $n \to \infty$ for convergence to required zero.

1a. Find f'(x) if $f(x) = x^3 + x + 1$. Explain why we could see that f(x) has a unique zero in the interval [-1, 0].

1b. Apply Newton's Method with $x_0 = -0.5$ to estimate the zero of f(x) up to three decimal places.

2. Estimate all solutions of $x^2 = \cos x$ up to four decimal places. (Hint: Sketch some graphs to see where the roots are located. Make your first guess for the root. You only need to find one.)

Math 10350 Example Set 13B

► Antiderivatives (Reversing differentiation – Section 4.9)

Definition: We say that F(x) is an **antiderivative** of f(x) provided _____

Example 1 Verify that $x^2 + 5$ is an antiderivative of 2x. Can you write down a few more antiderivative of 2x? What did you notice? Explain graphically.

Remark: We denote the family of antiderivatives of 2x by _____

From Example 1, we see that

Theorem: If F(x) and G(x) are antiderivatives of the same function throughout an interval, then they differ by a constant c over that interval; that is, for a < x < b

 $F'(x) = G'(x) \quad \iff \quad \text{for some number } C.$

Notation: If F(x) is an antiderivative of f(x), that is, F'(x) = f(x). Then we may write

$$\int f(x)dx = _$$

We call $\int f(x)dx$ the indefinite integral. **Basic indefinite integral formulas**

• For any constant k: $\int k \, dx \stackrel{?}{=}$. For Example: $\int 100 \, dx \stackrel{?}{=}$ • Power Rule when $k \neq -1$: $\int x^k dx \stackrel{?}{=}$. For Example: $\int x^9 dx \stackrel{?}{=}$ • Power Rule when k = -1: $\int \frac{1}{x} \, dx =$. • Constant Multiple Rule: $\int kf(x)dx = k \int f(x)dx$, any k For Example: $\int \frac{8}{x^2} \, dx \stackrel{?}{=}$ • Sum Rule: $\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$. • General Exponential function : $\int a^x dx \stackrel{?}{=}$. For Example: $\int 10^x dx \stackrel{?}{=}$ • Exponential base e: $\int e^x dx \stackrel{?}{=}$. • Exponential function: $\int e^{ax} dx \stackrel{?}{=}$. For Example: $\int e^{3x} dx \stackrel{?}{=}$ **1.** Evaluate the following indefinite integrals:

a. $\int (1 + e^{2x} + e^2 + 3x - x^2) dx$

b.
$$\int \frac{2u^2 - 5u + \sqrt[3]{u}}{u^2} du$$

2. Find the antiderivative F of function f satisfying the given condition:

$$f(x) = (e^x + 1)^2;$$
 $F(0) = 3$

In other words, solve the initial value problem:

$$\frac{dF}{dx} = (e^x + 1)^2; \qquad F(0) = 3$$

3. A ball is projected upward from the ground with an initial velocity of 3 m/sec. Using calculus, write the velocity and position for the ball at time t. You may assume that the acceleration due to gravity is 10 m/s².