Newton's Method

Steps to applying Newton's method to approximate the solution of $f(x)=0$:
(1) Make an initial guess x_{0} near to the zero you wish to find.
(2) Determine the new approximations x_{1}, x_{2}, \ldots :

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

(3) Check $\left|x_{n}-x_{n+1}\right| \rightarrow 0$ as $n \rightarrow \infty$ for convergence to required zero.

1a. Find $f^{\prime}(x)$ if $f(x)=x^{3}+x+1$. Explain why we could see that $f(x)$ has a unique zero in the interval $[-1,0]$.
1b. Apply Newton's Method with $x_{0}=-0.5$ to estimate the zero of $f(x)$ up to three decimal places.
2. Estimate all solutions of $x^{2}=\cos x$ up to four decimal places. (Hint: Sketch some graphs to see where the roots are located. Make your first guess for the root. You only need to find one.)

- Antiderivatives (Reversing differentiation - Section 4.9)

Definition: We say that $F(x)$ is an antiderivative of $f(x)$ provided \qquad .

Example 1 Verify that $x^{2}+5$ is an antiderivative of $2 x$. Can you write down a few more antiderivative of $2 x$? What did you notice? Explain graphically.

Remark: We denote the family of antiderivatives of $2 x$ by \qquad .

From Example 1, we see that
Theorem: If $F(x)$ and $G(x)$ are antiderivatives of the same function throughout an interval, then they differ by a constant c over that interval; that is, for $a<x<b$

$$
F^{\prime}(x)=G^{\prime}(x) \quad \Longleftrightarrow \quad \text { for some number } C
$$

Notation: If $F(x)$ is an antiderivative of $f(x)$, that is, $F^{\prime}(x)=f(x)$. Then we may write

$$
\int f(x) d x=
$$

We call $\int f(x) d x$ the indefinite integral.

Basic indefinite integral formulas

- For any constant $k: \int k d x \stackrel{?}{=}$ For Example: $\int 100 d x \stackrel{?}{=}$
- Power Rule when $k \neq-1: \int x^{k} d x \stackrel{?}{=} \quad$ For Example: $\int x^{9} d x \stackrel{?}{=}$
- Power Rule when $k=-1: \int \frac{1}{x} d x=$
- Constant Multiple Rule: $\int k f(x) d x=k \int f(x) d x$, any $k \quad$ For Example: $\int \frac{8}{x^{2}} d x \stackrel{?}{=}$
- Sum Rule: $\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$.
- General Exponential function : $\int a^{x} d x \stackrel{?}{=}$

For Example: $\int 10^{x} d x \stackrel{?}{=}$

- Exponential base $e: \int e^{x} d x \stackrel{?}{=} \cdot$
- Exponential function: $\int e^{a x} d x \stackrel{?}{=}$

For Example: $\int e^{3 x} d x \stackrel{?}{=}$

1. Evaluate the following indefinite integrals:
a. $\int\left(1+e^{2 x}+e^{2}+3 x-x^{2}\right) d x$
b. $\int \frac{2 u^{2}-5 u+\sqrt[3]{u}}{u^{2}} d u$
2. Find the antiderivative F of function f satisfying the given condition:

$$
f(x)=\left(e^{x}+1\right)^{2} ; \quad F(0)=3
$$

In other words, solve the initial value problem:

$$
\frac{d F}{d x}=\left(e^{x}+1\right)^{2} ; \quad F(0)=3
$$

3. A ball is projected upward from the ground with an initial velocity of $3 \mathrm{~m} / \mathrm{sec}$. Using calculus, write the velocity and position for the ball at time t. You may assume that the acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$.
