Math 10350 Example Set 14A

1. Write down all integration (anti-differentiation) formula for the trigonometric functions.

2. A small piece of wood is bobbing up and down on the surface of a pond with its acceleration given by

$$a(t) = (\sin t - \cos t) \quad \mathrm{m/s^2}.$$

Given that the cork has velocity 1 m/s and position -2 m when $t = \pi$ seconds, answer the following questions:

a. If s(t) is the position of the cork, write in terms of s and its derivatives, a differential equation, and initial value conditions modeling the position of the cork.

b. Solve the equation in (a) for s(t) by first finding for s'(t).

3. Evaluate the following indefinite integrals:

a.
$$\int \frac{\tan\theta}{\cos\theta} \, d\theta$$

b.
$$\int \frac{1 + \cos^2 \theta}{\cos^2 \theta} \, d\theta$$

Summation Notation (Section 5.1)

1. Assuming that the pattern in the sums below, write down (a) the formula for the general term, and (b) the sum using summation notation.

a.
$$\frac{5}{1+1^2} + \frac{5}{1+2^2} + \frac{5}{1+3^2} + \dots + \frac{5}{1+15^2}$$

b.
$$\frac{5}{1+5^2} + \frac{5}{1+6^2} + \frac{5}{1+7^2} + \dots + \frac{5}{1+13^2}$$

c.
$$\left(\frac{1}{n}\right)\sqrt{1 - \left(\frac{0}{n}\right)^2} + \left(\frac{1}{n}\right)\sqrt{1 - \left(\frac{1}{n}\right)^2} + \left(\frac{1}{n}\right)\sqrt{1 - \left(\frac{2}{n}\right)^2} + \dots + \left(\frac{1}{n}\right)\sqrt{1 - \left(\frac{n-1}{n}\right)^2}$$

Properties of summation notation:

(A)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
 (B) $\sum_{k=1}^{n} (c \cdot a_k) = c \cdot \left(\sum_{k=1}^{n} a_k\right)$ (C) $\sum_{k=1}^{n} (c) = c \cdot n$

Why are these properties true?

2. If
$$a_0 = 2$$
, $a_1 = 0$, $a_2 = -1$, $a_3 = -2$, and $a_4 = 0$. Find the value of the sums:
(a) $\sum_{j=2}^{4} (2a_j + 3)$ (b) $\sum_{n=0}^{2} \cos(a_n \pi)$.