Math 10350 Example Set 14A

1. Write down all integration (anti-differentiation) formula for the trigonometric functions.
2. A small piece of wood is bobbing up and down on the surface of a pond with its acceleration given by

$$
a(t)=(\sin t-\cos t) \mathrm{m} / \mathrm{s}^{2} .
$$

Given that the cork has velocity $1 \mathrm{~m} / \mathrm{s}$ and position -2 m when $t=\pi$ seconds, answer the following questions:
a. If $s(t)$ is the position of the cork, write in terms of s and its derivatives, a differential equation, and initial value conditions modeling the position of the cork.
b. Solve the equation in (a) for $s(t)$ by first finding for $s^{\prime}(t)$.
3. Evaluate the following indefinite integrals:
a. $\int \frac{\tan \theta}{\cos \theta} d \theta$
b. $\int \frac{1+\cos ^{2} \theta}{\cos ^{2} \theta} d \theta$

Summation Notation (Section 5.1)

1. Assuming that the pattern in the sums below, write down (a) the formula for the general term, and (b) the sum using summation notation.
a. $\frac{5}{1+1^{2}}+\frac{5}{1+2^{2}}+\frac{5}{1+3^{2}}+\ldots+\frac{5}{1+15^{2}}$
b. $\frac{5}{1+5^{2}}+\frac{5}{1+6^{2}}+\frac{5}{1+7^{2}}+\ldots+\frac{5}{1+13^{2}}$
c. $\left(\frac{1}{n}\right) \sqrt{1-\left(\frac{0}{n}\right)^{2}}+\left(\frac{1}{n}\right) \sqrt{1-\left(\frac{1}{n}\right)^{2}}+\left(\frac{1}{n}\right) \sqrt{1-\left(\frac{2}{n}\right)^{2}}+\ldots+\left(\frac{1}{n}\right) \sqrt{1-\left(\frac{n-1}{n}\right)^{2}}$

Properties of summation notation:
(A) $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
(B) $\sum_{k=1}^{n}\left(c \cdot a_{k}\right)=c \cdot\left(\sum_{k=1}^{n} a_{k}\right)$
(C) $\sum_{k=1}^{n}(c)=c \cdot n$

Why are these properties true?
2. If $a_{0}=2, a_{1}=0, a_{2}=-1, a_{3}=-2$, and $a_{4}=0$. Find the value of the sums:
(a) $\sum_{j=2}^{4}\left(2 a_{j}+3\right)$
(b) $\sum_{n=0}^{2} \cos \left(a_{n} \pi\right)$.

