Math 10350 - Example Set 16A
Sections 5.5, 5.6 \& 5.7
Second Fundamental Theorem of Calculus (5.5) If f is continuous on an open interval I containing a then, for all x in the interval,

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

1. Show that $\frac{d}{d x}\left[\int_{a}^{g(x)} f(t) d t\right]=f(g(x)) g^{\prime}(x)$

Hint: Let $H(x)=\int_{a}^{x} f(t) d t$. Then $H(g(x))=\int_{a}^{g(x)} f(t) d t$. Compute $\frac{d}{d x}[H(g(x))]$.
2. Find the derivative of each of the following functions
a. $g(x)=\int_{2}^{x} t^{2} \sin t d t$
c. $F(x)=\int_{x}^{\sqrt{x}} \cos \left(t^{2}\right) d t$
b. $y=\int_{1}^{\cos x}(u+\sin u) d u$
3. Water flows into a large tank at rate $r(t)$ liters/min given in the table below. If the initial volume of water is 100 liters, estimate the volume of water in the tank at $t=4$ minutes using left-endpoint approximation.

t	0	1	2	3	4	5	6
$r(t)$	10	15	18	20	23	21	25

4. The graph of the velocity V of a particle moving on a horizontal straight line is given below. Let $S(t)$ meters be the displacement (position) of the particle after time t minutes. Assume that $S(0)=2$. Find the exact value of the following quantities.
a. The change in the displacement of the particle over the duration $[3,6]$.
b. The displacement of the particle after 2 minutes.

