Differentiable Functions Summary

Definition 1 A function $f(x)$ is said to be differentiable at $x=c$ provided the following limit exist:

Theorem 1 If $f(x)$ be differentiable at $x=c$, then $f(x)$ is \qquad at $x=c$.

Derivative of a function. The derivative of the function $f(x)$ is given by the following limit:

$$
f^{\prime}(x)=
$$

Setting $\Delta x=h$ and $\Delta y=f(x+h)-f(x)$ gives the notation:

$$
f^{\prime}(x)=
$$

Notation: If $y=f(x)$ is a differentiable function. Write down all standard notations of the derivative of $y=f(x)$.

Basic Properties of Derivatives:

$[f(x)+g(x)]^{\prime} \stackrel{?}{=} \quad[f(x)-g(x)]^{\prime} \stackrel{?}{=}$
$[c \cdot f(x)]^{\prime} \stackrel{?}{=}$

Product/Quotient/Chain Rule. Let $f(x)$ and $g(x)$ be differentiable functions. Derive formulas for the derivatives of $p(x)=f(x) \cdot g(x)$ and $q(x)=\frac{f(x)}{g(x)}$.

Product Rule: $\frac{d}{d x}(f(x) g(x))=(f(x) g(x))^{\prime}=$ Quotient Rule: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\left(\frac{f(x)}{g(x)}\right)^{\prime}=$

Chain Rule: $\frac{d}{d x}(f(g(x)))=[f(g(x))]^{\prime}=$

Some Common Derivatives. For any numbers k and n :
$\frac{d}{d x}(k) \stackrel{?}{=}$

$$
\frac{d}{d x}\left(x^{n}\right) \stackrel{?}{=}
$$

(Power Rule)
$\frac{d}{d x}\left(e^{x}\right) \stackrel{?}{=}$

$$
\frac{d}{d x}\left(a^{x}\right) \stackrel{?}{=}
$$

$$
(a>0)
$$

$\frac{d}{d x}(\ln (x)) \stackrel{?}{=}$

$$
\frac{d}{d x}\left(\log _{a}(x)\right) \stackrel{?}{=}
$$

$$
(a>0)
$$

Some Common Derivatives. For any numbers k and n :
$\frac{d}{d x}(\sin (x)) \stackrel{?}{=}$

$$
\frac{d}{d x}(\cos (x)) \stackrel{?}{=}
$$

$\frac{d}{d x}(\tan (x)) \stackrel{?}{=}$ $\frac{d}{d x}(\cot (x)) \stackrel{?}{=}$
$\frac{d}{d x}(\sec (x)) \stackrel{?}{=}$

$$
\frac{d}{d x}(\csc (x)) \stackrel{?}{=}
$$

Implicit Differentiation. Can you find $\frac{d y}{d x} \quad$ if $\quad e^{x y}=x^{3}-y^{2}+5$?

Logarithmic Differentiation. For each of the derivatives below which one do you apply logarithmic differentiation? Find the derivative

$$
\begin{array}{ll}
\frac{d}{d x}\left(e^{x^{2}+5}\right) \stackrel{?}{=} & \frac{d}{d x}\left(x^{x^{2}+5}\right) \stackrel{?}{=} \\
\frac{d}{d x}\left(x^{e^{2}+5}\right) \stackrel{?}{=}
\end{array}
$$

1. Find the equation of the tangent line to the graph of $y=\frac{2 x+3}{4 x+5}$ at $x=-1$.
2. Find the stationary points of the function $\mathrm{e}^{\frac{x^{3}}{3}-\frac{x^{2}}{2}-6 x+5}$.
3. Find their derivatives of the following functions.
a. $y=\left(2 x^{2}+5\right)^{4}$
c. $y=\ln \left(\frac{2 e^{2 x}+3}{3 e^{2 x}+4}\right)$
d. $y=\left(\sin (x)+\cos ^{2}(2 x)\right)^{3}$
e. $y=\tan ^{3}\left(e^{3 x^{2}+4}\right)$
f. $y=\sqrt[3]{e^{\sec (x)}+\sec \left(e^{x}\right)}$
4. Let $f(x)$ be a differentiable function such that $f(2)=1$ and $f^{\prime}(2)=-1$.

4a. Find the slope of the graph of $y=f(x) e^{f(x)}$ at $x=2$.

4b. Find instantaneous rate of change of $y=\frac{f(x)}{f(x)+3}$ at $x=2$.
5. Find the equation of the tangent line to the curve $x \cos (1+2 x y)=2 y^{3}-2$ at the point $(0,1)$.
6. Find the derivative of y with respect to x if $y=\frac{5-x}{(2 x-3)^{3}}$. Completely simplify your answer giving it in the form $\frac{A x+B}{(2 x-3)^{n}}$

Parametric Equations. The slope formula $\frac{d y}{d x}$ for the parametric equations $x=f(t)$ and $y=g(t)$.

$$
\frac{d y}{d x}=\square=\square
$$

Linearization of a function. The linearization of a function $f(x)$ at $x=c$ is the same as the linear function gives the equation of the \qquad to the curve $y=f(x)$ at $x=c$

The linearization of a function $f(x)$ at $x=c$ or linear approximation of $f(x)$ at $x=c$ is given by

$$
f(x) \approx
$$

\qquad

The linear approximation of the change in $f(x)$ when x changes from $x=c$ to $x=c+\Delta x$ is given by

$$
\Delta y=f(c+\Delta x)-f(c) \approx
$$

\qquad

Estimating Derivatives from Data Points. Suppose a differentiable function $f(x)$ has known values at $x=a, b$ and c.

x	a	b	c
$f(x)$	$f(a)$	$f(b)$	$f(c)$

Give the three difference formula for estimating the derivative of $f(x)$ at $x=b$.

Forward Difference formula: $\quad f^{\prime}(b) \approx$ \qquad

Central Difference formula: \qquad

Backward Difference formula:

$$
f^{\prime}(b) \approx
$$

\qquad

We only have \qquad difference to estimate $f^{\prime}(a)$.

We only have difference to estimate $f^{\prime}(c)$.

