Differentiable Functions Summary

Definition 1 A function f(x) is said to be <u>differentiable</u> at x = c provided the following limit exist:

Theorem 1 If f(x) be <u>differentiable</u> at x = c, then f(x) is _____ at x = c.

Derivative of a function. The derivative of the function f(x) is given by the following limit:

$$f'(x) =$$

Setting $\Delta x = h$ and $\Delta y = f(x+h) - f(x)$ gives the notation:

$$f'(x) = =$$

Notation: If y = f(x) is a differentiable function. Write down all standard notations of the derivative of y = f(x).

Basic Properties of Derivatives:

$$[f(x) + g(x)]' \stackrel{?}{=} [f(x) - g(x)]' \stackrel{?}{=}$$

 $[c \cdot f(x)]' \stackrel{?}{=}$

Product/Quotient/Chain Rule. Let f(x) and g(x) be differentiable functions. Derive formulas for the derivatives of $p(x) = f(x) \cdot g(x)$ and $q(x) = \frac{f(x)}{g(x)}$.

Product Rule:
$$\frac{d}{dx}(f(x)g(x)) = (f(x)g(x))' =$$

Quotient Rule:
$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \left(\frac{f(x)}{g(x)}\right)' =$$

Chain Rule:
$$\frac{d}{dx}(f(g(x))) = [f(g(x))]' =$$

Some Common Derivatives. For any numbers k and n:

$$\frac{d}{dx}(k) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(x^n) \stackrel{?}{=} \qquad (\text{Power Rule})$$

$$\frac{d}{dx}(e^x) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(a^x) \stackrel{?}{=} \qquad (a > 0)$$

$$\frac{d}{dx}(\ln(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\log_a(x)) \stackrel{?}{=} \qquad (a > 0)$$

Some Common Derivatives. For any numbers k and n:

$$\frac{d}{dx}(\sin(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\cos(x)) \stackrel{?}{=}$$

$$\frac{d}{dx}(\tan(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\cot(x)) \stackrel{?}{=}$$

$$\frac{d}{dx}(\sec(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\csc(x)) \stackrel{?}{=}$$

Implicit Differentiation. Can you find $\frac{dy}{dx}$ if $e^{xy} = x^3 - y^2 + 5$?

Logarithmic Differentiation. For each of the derivatives below which one do you apply logarithmic differentiation? Find the derivative

 $\frac{d}{dx}\left(x^{e^2+5}\right) \stackrel{?}{=}$

1. Find the equation of the tangent line to the graph of $y = \frac{2x+3}{4x+5}$ at x = -1.

2. Find the stationary points of the function $e^{\frac{x^3}{3} - \frac{x^2}{2} - 6x + 5}$.

3. Find their derivatives of the following functions.

a.
$$y = (2x^2 + 5)^4$$

b.
$$y = 4^{x^2+3}$$

c.
$$y = \ln\left(\frac{2e^{2x}+3}{3e^{2x}+4}\right)$$

d.
$$y = (\sin(x) + \cos^2(2x))^3$$

e. $y = \tan^3(e^{3x^2+4})$

f. $y = \sqrt[3]{e^{\sec(x)} + \sec(e^x)}$

4. Let f(x) be a differentiable function such that f(2) = 1 and f'(2) = -1.

4a. Find the slope of the graph of $y = f(x)e^{f(x)}$ at x = 2.

4b. Find instantaneous rate of change of $y = \frac{f(x)}{f(x)+3}$ at x = 2.

5. Find the equation of the tangent line to the curve $x\cos(1+2xy) = 2y^3 - 2$ at the point (0,1).

6. Find the derivative of y with respect to x if $y = \frac{5-x}{(2x-3)^3}$. Completely simplify your answer giving it in the form $\frac{Ax+B}{(2x-3)^n}$

Parametric Equations. The slope formula $\frac{dy}{dx}$ for the parametric equations x = f(t) and y = g(t).

$$\frac{dy}{dx} =$$

Linearization of a function. The linearization of a function f(x) at x = c is the same as the linear function

gives the equation of the _____ to the curve y = f(x) at x = c

The linearization of a function f(x) at x = c or linear approximation of f(x) at x = c is given by

 $f(x) \approx$

The linear approximation of the change in f(x) when x changes from x = c to $x = c + \Delta x$ is given by

$$\Delta y = f(c + \Delta x) - f(c) \approx$$

Estimating Derivatives from Data Points. Suppose a differentiable function f(x) has known values at x = a, b and c.

x	a	b	c
f(x)	f(a)	f(b)	f(c)

Give the three difference formula for estimating the derivative of f(x) at x = b.

Forward Difference formula: $f'(b) \approx$ ______

Central Difference formula: $f'(b) \approx$ _____

Backward Difference formula: $f'(b) \approx$

We only have difference to estimate f'(a).

We only have difference to estimate f'(c).