Math 10350 Written Assignment 06 Curve Sketching Packet 01

1. Sketch the graph of a **continuous** functions having the properties below. Mark in the graph the **coordinates** critical points and inflection points.

•
$$f'(x) < 0$$
 on $(-\infty, 0)$ or $(2, \infty)$.

• f'(0) = 0 but f'(2) does not exist.

•
$$f'(x) > 0$$
 on $(0,2)$.

• $\lim_{x \to +\infty} f(x) = 2 = \lim_{x \to -\infty} f(x)$.

•
$$f''(x) < 0$$
 on $(-\infty, -2)$ or $(2, 4)$.

• f(0) = 0 and f(2) = 4.

•
$$f''(x) > 0$$
 on $(-2, 2)$ or $(4, \infty)$.

Math 10350 Written Assignment 06 Curve Sketching Packet 01

2.	Sketch the graph of $g(x) = xe^{-x}$ by completing the steps below.
2a.	Find all x-intercepts and y-intercept of the graph of $f(x)$ whenever possible.
2b.	Find coordinates of all critical points, vertical asymptotes, and places where $f(x)$ are undefined.
2c.	Determine where $f(x)$ is increasing and where it is decreasing. Give your answer using interval notation.

2d.	Determine	the concavit	v and	coordinates	of inflection	points of	f(x)	c).

2e. Find all asymptotes and limit at infinity whenever applicable. Check for any symmetry.

2f. Sketch the graph below labeling all important features. Your picture should be large and clear.

	у				
	1				
	0.5				
-1	0	1	2	3	X
-1	0	1	2	3	x
-1	-0.5	1	2	3	x
-1		1	2	3	X