## Trigonometric Functions Review

Circular Representation. Recall that angles of any size can be represented in a unit circle (circle of radius 1). More specifically, we wind the horizontal radius $O A$ (fixed at $O$ ) starting from the horizontal axis through the size of the angle we want to depict. For example, to represent the angle $\theta=3 \pi / 4$ we rotate the radius $O A$ counter-clockwise till we capture the size of the angle $\theta$. See Figure 1 below. To represent a negative angle rotate the radius $O A$ clockwise. See Figure 2.


Figure 1.


Figure 2.

The point $B$ on the unit circle is associated to the angle $\theta=3 \pi / 4$ and the point $C$ on the unit circle is associated to the negative angle $\rho=-3 \pi / 4$. The radius $O B$ is called the terminal edge of the angle $\theta=3 \pi / 4$. The terminal edge of the angle $\rho=-3 \pi / 4$ is $O C$.

Reference Angle. The reference angle $\alpha$ of a given angle $\theta$ is the acute angle ( $0 \leq \alpha \leq \pi / 2$ ) between the terminal edge and the horizontal axis in the circular representation of angle $\theta$. The figures below show the reference angle of an angle whose terminal edge ends in one of the four quadrants.


First Quadrant


Second Quadrant


Third Quadrant


Fourth Quadrant

Example 1: The reference angle of $\theta=3 \pi / 4$ and $\rho=-3 \pi / 4$ are both $\pi / 4$. Can you see why?

Trigonometric Functions. The trigonometric functions of an angle are given by the coordinates of its associated point on the unit circle as follows:

Let the intersection of the terminal edge of angle $\theta$ with the unit circle be $(x, y)$. The figure below illustrate the position of $(x, y)$ for angle $\theta$.


First Quadrant


Second Quadrant


Third Quadrant


Fourth Quadrant

Then the valuation of the sine, cosine and tangent functions at angle $\theta$ associated to point $(x, y)$ on the unit circle are given by:

$$
\sin \theta=y ; \quad \cos \theta=x ; \quad \tan \theta=\frac{y}{x}
$$

Considering the signum ( + or - ) of the coordinates $(x, y)$ in the figures above,
(1) If $\theta$ has its terminal edge in the first quadrant, then $\mathbf{A L L}$ trigonometric functions are positive. That is $\sin (\theta)>0, \cos (\theta)>0$, and $\tan (\theta)>0$.
(2) If $\theta$ has its terminal edge in the second quadrant, then only the sine function is positive. That is $\sin (\theta)>0, \cos (\theta)<0$, and $\tan (\theta)<0$.
(3) If $\theta$ has its terminal edge in the third quadrant, then only the tangent function is positive. That is $\sin (\theta)<0, \cos (\theta)<0$, and $\tan (\theta)>0$.
(4) If $\theta$ has its terminal edge in the fourth quadrant, then only the cosine function is positive. That is $\sin (\theta)<0, \cos (\theta)>0$, and $\tan (\theta)<0$.

You may remember this pattern with the mnemonic illustration below:


Since the coordinates $x$ and $y$ are between -1 and 1 , we see that

$$
-1 \leq \sin \theta \leq 1 \quad \text { and } \quad-1 \leq \cos \theta \leq 1
$$

Since the $x$-coordinate gets close to 0 and the $y$-coordinate gets close to 1 or -1 , near the vertical axis, we see that

$$
-\infty<\tan \theta=\frac{y}{x}<\infty
$$

Reference Angle and Trigonometric Functions. The value of a trigonometric function at angle $\theta$ can be expressed in terms of the reference angle $\alpha$ of $\theta$. For example, let's look at the case when the terminal edge of $\theta$ is in the third quadrant.


The length of the sides of right-angle triangle $O B C$ is given by
$\overline{O C}=\cos (\alpha) ; \quad \overline{B C}=\sin (\alpha) ; \quad \overline{O B}=1$
Since the terminal edge of $\theta$ is in the third quadrant, both $x$-coordinate and $y$-coordinate are negative. This gives:

$$
\begin{aligned}
& \cos (\theta)=x=-\cos (\alpha) ; \quad \sin (\theta)=y=-\sin (\alpha) \\
& \tan (\theta)=\frac{y}{x}=\tan (\alpha)
\end{aligned}
$$



We can carry out the same computation for angles with terminal edges in other quadrants. We summarize our findings below.


Referring to the figures above, if $\alpha$ is the reference angle of $\theta$ then the values of $\sin \theta, \cos \theta$, and $\tan \theta$ can be expressed in terms of $\alpha$ as follows:
(1) $\theta$ is in the first quadrant:

$$
\sin \theta=\sin \alpha ; \quad \cos \theta=\cos \alpha ; \quad \tan \theta=\tan \alpha
$$

(2) $\theta$ is in the second quadrant:

$$
\sin \theta=\sin \alpha ; \quad \cos \theta=-\cos \alpha ; \quad \tan \theta=-\tan \alpha
$$

(3) $\theta$ is in the third quadrant:

$$
\sin \theta=-\sin \alpha ; \quad \cos \theta=-\cos \alpha ; \quad \tan \theta=\tan \alpha
$$

(4) $\theta$ is in the fourth quadrant:

$$
\sin \theta=-\sin \alpha ; \quad \cos \theta=\cos \alpha ; \quad-\tan \theta=\tan \alpha
$$

Notice that the signs are according to the CAST diagram above.
Example 2: Find the exact values of (1) $\sin \left(\frac{5 \pi}{3}\right),(2) \cos \left(\frac{5 \pi}{3}\right)$ and (3) $\tan \left(-\frac{5 \pi}{6}\right)$
(1) \& (2). $\frac{5 \pi}{3}$ is in the fourth quadrant with reference angle $\frac{\pi}{3}$. Sine is negative and cosine is positive in the fourth quadrant. Therefore we have:

$$
\sin \left(\frac{5 \pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2} \quad \text { and } \quad \cos \left(\frac{5 \pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

(3). $-\frac{5 \pi}{6}$ is in the third quadrant with reference angle $\frac{\pi}{6}$. Tangent is positive in the third quadrant. Therefore we have:

$$
\tan \left(-\frac{5 \pi}{6}\right)=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}
$$



Example 3: Find the values of (a) $\arctan (-\sqrt{3}),(b) \arccos \left(-\frac{1}{2}\right)$ and (c) $\arcsin \left(\frac{\sqrt{3}}{2}\right)$
(a) Let $A=\arctan (-\sqrt{3})$. Then $\tan (A)=-\sqrt{3}$ and $-\frac{\pi}{2}<A<\frac{\pi}{2}$.

Since $\tan (A)$ is negative, $A$ must be in the fourth quadrant. The value $\sqrt{3}$ says that the reference angle $\alpha$ of $A$ must be $\frac{\pi}{3}$ because $\tan (\alpha)=$ $\sqrt{3}$.

Therefore $A=-\frac{\pi}{3}$.

(b) Let $B=\arccos \left(-\frac{1}{2}\right)$. Then $\cos (B)=-\frac{1}{2}$ and $0 \leq B \leq \pi$.

Since $\cos (B)$ is negative, $B$ must be in the second quadrant. The value $\frac{1}{2}$ says that the reference angle $\beta$ of $B$ must be $\frac{\pi}{3}$ because $\cos (\beta)=\frac{1}{2}$. Therefore $B=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$

(c) Let $C=\arcsin \left(\frac{\sqrt{3}}{2}\right)$. Then $\sin (C)=\frac{\sqrt{3}}{2}$ and $-\frac{\pi}{2} \leq C \leq \frac{\pi}{2}$.

Since $\sin (C)$ is positive, $C$ must be in the first quadrant. The only acute angle $C$ such that $\sin (C)=\frac{\sqrt{3}}{2}$ is $C=\frac{\pi}{3}$.


