10360 Algebra Quiz - 45 mins - No Calculators Allowed.

1. Consider the formula

$$
A=\left(1+\frac{r}{n}\right)^{n t} .
$$

Here all variables r, n, and t are positive.
1a. Find r in the formula in terms of all other variables A, n, and t.
$\mathbf{1 b}$. Find t in the formula in terms of all other variables A, n, and r.
2. Factor completely the expression:
$x^{4}-16 \stackrel{?}{=}$
3. Let $g(n)=\frac{2^{2 n} \sqrt{x^{n+1}}}{3^{n+2}}$. Find the expression $\frac{g(n+2)}{g(n+1)}$.

You should collect all like terms. The final answer should have no radicals and no negative exponents.
$\frac{g(n+2)}{g(n+1)} \stackrel{?}{=}$
4. Find the x in terms of t if $\ln (2 x+1)=\ln (x-1)+t$
5. Write $f(x)=2 x^{2}-3 x+1$ in the form $A(x+B)^{2}+C$ where A, B, and C are constants.
6. Find the coordinates of the points of intersection between the curves

$$
y=2 x-1 \quad \text { and } \quad y^{2}=x
$$

7. Solve the equation $e^{2 x}=4 e^{1-x}$.
8. Find x if $\frac{2 e^{x}-3}{e^{x}-1}=4$.
9. Find x if $e^{2 x}=e^{x}+2$.
