Math 10360 – Example Set 01A Derivative and Integration Review

Basic Properties of Derivatives:

$$[f(x) + g(x)]' \stackrel{?}{=}$$

$$[f(x) - g(x)]' \stackrel{?}{=}$$

$$[c \cdot f(x)]' \stackrel{?}{=}$$

Product/Quotient/Chain Rule. Let f(x) and g(x) be differentiable functions. Derive formulas for the derivatives of $p(x) = f(x) \cdot g(x)$ and $q(x) = \frac{f(x)}{g(x)}$.

Product Rule:

Chain Rule:

$$\frac{d}{dx}(f(x)g(x)) = (f(x)g(x))' =$$

$$\frac{d}{dx}\left(f(g(x))\right) = [f(g(x))]' =$$

Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \left(\frac{f(x)}{g(x)}\right)' =$

Some Common Derivatives. For any numbers k and n:

$$\frac{d}{dx}(k) \stackrel{?}{=}$$

$$\frac{d}{dx}(x^n) \stackrel{?}{=}$$

$$\frac{d}{dx}(\sin(x)) \stackrel{?}{=}$$

$$\frac{d}{dx}(\cos(x)) \stackrel{?}{=}$$

$$\frac{d}{dx}(\tan(x)) \stackrel{?}{=}$$

$$\frac{d}{dx}(\csc(x)) \stackrel{?}{=}$$

$$\frac{d}{dx}(\sec(x)) \stackrel{?}{=}$$

1

$$\frac{d}{dx}(\cot(x)) \stackrel{?}{=}$$

1. Find the following derivatives

a.
$$\frac{d}{dx}(x^3\tan(x)) \stackrel{?}{=}$$

b.
$$\frac{d}{dx} \left(\sqrt[3]{2x^2 - 5x + 3} \right) \stackrel{?}{=}$$

2. Find the equation of the tangent line to the curve $x\cos(1+2y)=2y^2-8$ at the point (0,2).

$$\left(\text{Check } \frac{dy}{dx} = \frac{\cos(1+2y)}{4y+2x\sin(1+2y)}\right)$$

Basic Integrals. For any numbers k and n:

$$\int x^n \, dx \stackrel{?}{=}$$

(Power Rule)

$$\int \sin(x) \, dx \stackrel{?}{=}$$

$$\int \cos(x) \, dx \stackrel{?}{=}$$

$$\int \sec^2(x) \, dx \stackrel{?}{=}$$

$$\int \csc^2(x) \, dx \stackrel{?}{=}$$

$$\int \csc(x)\cot(x)\,dx \stackrel{?}{=}$$

$$\int \sec(x)\tan(x)\,dx \stackrel{?}{=}$$

Method of Substitution

3. Find a formula for the function f(x) if its slope is given by the $x \sin(x^2 + 1)$ and the graph of f(x) passes through the point (1,2).

4. Evaluate $\int_0^1 \frac{x^2 + 2}{\sqrt{x^3 + 6x + 5}} \, dx.$

${\bf Math~10360-Example~Set~01B}$ Derivative of Exponential & Logarithmic Functions: Section 3.9

- **1.** Consider the area function $f(x) = \int_1^x \frac{1}{t} dt$ for x > 0. We call f(x) the logarithm function and denote it by $f(x) = \ln x$.
- **a.** $f'(x) = \frac{d}{dx}[\ln x] = \frac{d}{dx} \left[\int_{1}^{x} \frac{1}{t} dt \right] \stackrel{?}{=} \underline{\qquad} (x > 0)$
- c. What can you say about ln(1)? Define the value of e using the definition of the natural logarithm.
- **d.** Using the Fundamental Theorem of Calculus, show that $\ln(ax) = \ln(a) + \ln(x)$. Prove further that (i) $\ln(e^n) = n$ where n is an integer and (ii) $\ln(e^r) = r$ where r us any rational number.

Example A. Find the area under the graph of $y = \frac{-2}{4x-3}$ for $0 \le x \le 1/2$.

- **e.** Give a sketch of the graph of $y = \ln x$. State clearly the domain and range of $\ln x$. What are the values of $\lim_{x\to 0^+} \ln x$ and $\lim_{x\to \infty} \ln x$?
- **f.** The inverse g(x) of $f(x) = \ln x$ exists. Why? Sketch the graph of $g(x) = \exp(x)$. Infer from (d) that we may write $\exp(x) = e^x$ for all real value x.
- **g.** Explain why we may write: (i) $\ln(e^x) = x$ for all x, and $e^{\ln y} = y$ for y > 0.
- **h.** Using the fact that $\frac{d}{dx}(e^x) = e^x$, the chain rule and the fact that $e^{\ln b} = b$ (b > 0), show that $\frac{d}{dx}(b^x) = b^x \ln b$.
- **i.** Using the change of base formula $\log_b x = \frac{\ln x}{\ln b}$, show that $\frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}$.

Example B. Find the equation of the tangent line to the curve $y = 4 - 2e^x + \ln\left(\frac{1-x^2}{1+x^2}\right)$ at x = 0.

4

Review Exercise. Complete the following formulas:

Logarithmic Properties

$$\ln(ab) \stackrel{?}{=}$$

$$\ln(a^n) \stackrel{?}{=}$$

$$\ln\left(\frac{a}{b}\right) \stackrel{?}{=}$$

$$\ln(e) \stackrel{?}{=}$$

$$\ln 1 \stackrel{?}{=}$$

$$\ln(e^x) \stackrel{?}{=}$$

$$e^{\ln x} \stackrel{?}{=}$$

Exponential Rules

$$a^n \cdot a^m \stackrel{?}{=}$$

$$\frac{a^n}{a^m} \stackrel{?}{=}$$

$$a^n \cdot b^n \stackrel{?}{=}$$

$$\frac{a^n}{b^n} \stackrel{?}{=}$$

Derivative and Anti-derivative Rules

$$\frac{d}{dx}\left(\ln x\right) \stackrel{?}{=}$$

$$\frac{d}{dx}\left(e^{x}\right) \stackrel{?}{=}$$

$$\frac{d}{dx} (\log_b x) \stackrel{?}{=}$$

$$\frac{d}{dx}\left(b^{x}\right) \stackrel{?}{=}$$

$$\int \frac{1}{x} \, dx \stackrel{?}{=}$$

$$\int e^x dx \stackrel{?}{=}$$

$$\int b^x dx \stackrel{?}{=}$$