Math 10360 – Example Set 01A Derivative and Integration Review

Basic Properties of Derivatives:

$$[f(x) + g(x)]' \stackrel{?}{=} [f(x) - g(x)]' \stackrel{?}{=}$$

 $[c \cdot f(x)]' \stackrel{?}{=}$

Product/Quotient/Chain Rule. Let f(x) and g(x) be differentiable functions. Derive formulas for the derivatives of $p(x) = f(x) \cdot g(x)$ and $q(x) = \frac{f(x)}{g(x)}$.

Product Rule:

Chain Rule:

$$\frac{d}{dx}(f(x)g(x)) = (f(x)g(x))' = \frac{d}{dx}(f(g(x))) = [f(g(x))]' = \frac{d}{dx}(f(g(x))) = [f(g(x))]' = \frac{d}{dx}(f(g(x))) = \frac{d}{dx}(g(x)) = \frac{d}{dx}(g(x)) = \frac{d}{dx}(g(x)) = \frac{d}{dx}(g(x$$

Quotient Rule:
$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \left(\frac{f(x)}{g(x)}\right)' =$$

Some Common Derivatives. For any numbers k and n:

$$\frac{d}{dx}(k) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(x^n) \stackrel{?}{=} \qquad (\text{Power Rule})$$

$$\frac{d}{dx}(\sin(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\cos(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\tan(x)) \stackrel{?}{=}$$

$$\frac{d}{dx}(\csc(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\sec(x)) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\cot(x)) \stackrel{?}{=}$$

1. Find the following derivatives

a.
$$\frac{d}{dx}(x^3\tan(x)) \stackrel{?}{=}$$

b.
$$\frac{d}{dx} \left(\sqrt[3]{2x^2 - 5x + 3} \right) \stackrel{?}{=}$$

2. Find the equation of the tangent line to the curve $x \cos(1 + 2y) = 2y^2 - 8$ at the point (0, 2).

 $\left(\text{Check } \frac{dy}{dx} = \frac{\cos(1+2y)}{4y+2x\sin(1+2y)}\right)$

Basic Integrals. For any numbers k and n:

$$\int x^n \, dx \stackrel{?}{=} \tag{Power Rule}$$

$$\int \sin(x) \, dx \stackrel{?}{=} \qquad \qquad \int \cos(x) \, dx \stackrel{?}{=}$$

$$\int \sec^2(x) \, dx \stackrel{?}{=} \qquad \qquad \int \csc^2(x) \, dx \stackrel{?}{=}$$

$$\int \csc(x) \cot(x) \, dx \stackrel{?}{=} \qquad \qquad \int \sec(x) \tan(x) \, dx \stackrel{?}{=}$$

Method of Substitution

3. Find a formula for the function f(x) if its slope is given by the $x \sin(x^2 + 1)$ and the graph of f(x) passes through the point (1, 2).

4. Evaluate
$$\int_0^1 \frac{x^2 + 2}{\sqrt{x^3 + 6x + 5}} \, dx.$$

Math 10360 – Example Set 01B Derivative of Exponential & Logarithmic Functions: Section 3.9

1. Consider the area function $f(x) = \int_{1}^{x} \frac{1}{t} dt$ for x > 0. We call f(x) the logarithm function and denote it by $f(x) = \ln x$.

a.
$$f'(x) = \frac{d}{dx} [\ln x] = \frac{d}{dx} \left[\int_1^x \frac{1}{t} dt \right] \stackrel{?}{=} \underline{\qquad} (x > 0)$$

b. $\frac{d}{dx} [\ln |x|] \stackrel{?}{=} _ (x \neq 0)$

c. What can you say about $\ln(1)$? Define the value of e using the definition of the natural logarithm.

d. Using the Fundamental Theorem of Calculus, show that $\ln(ax) = \ln(a) + \ln(x)$. Prove further that (i) $\ln(e^n) = n$ where n is an integer and (ii) $\ln(e^r) = r$ where r us any rational number.

Example A. Find the area under the graph of $y = \frac{-2}{4x-3}$ for $0 \le x \le 1/2$.

e. Give a sketch of the graph of $y = \ln x$. State clearly the domain and range of $\ln x$. What are the values of $\lim_{x\to 0^+} \ln x$ and $\lim_{x\to\infty} \ln x$?

f. The inverse g(x) of $f(x) = \ln x$ exists. Why? Sketch the graph of $g(x) = \exp(x)$. Infer from (d) that we may write $\exp(x) = e^x$ for all real value x.

g. Explain why we may write: (i) $\ln(e^x) = x$ for all x, and $e^{\ln y} = y$ for y > 0.

h. Using the fact that $\frac{d}{dx}(e^x) = e^x$, the chain rule and the fact that $e^{\ln b} = b$ (b > 0), show that $\frac{d}{dx}(b^x) = b^x \ln b$.

i. Using the change of base formula $\log_b x = \frac{\ln x}{\ln b}$, show that $\frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}$.

Example B. Find the equation of the tangent line to the curve $y = 4 - 2e^x + \ln\left(\frac{1-x^2}{1+x^2}\right)$ at x = 0.

Logarithmic Properties

$\ln(ab) \stackrel{?}{=}$	$\ln(a^n) \stackrel{?}{=}$
$\ln\left(\frac{a}{b}\right) \stackrel{?}{=}$	
$\ln(e) \stackrel{?}{=}$	$\ln 1 \stackrel{?}{=}$
$\ln(e^x) \stackrel{?}{=}$	$e^{\ln x} \stackrel{?}{=}$

Exponential Rules

Derivative and Anti-derivative Rules

$$\frac{d}{dx} (\ln x) \stackrel{?}{=} \qquad \qquad \frac{d}{dx} (e^x) \stackrel{?}{=} \\ \frac{d}{dx} (\log_b x) \stackrel{?}{=} \qquad \qquad \frac{d}{dx} (b^x) \stackrel{?}{=}$$

$$\int \frac{1}{x} dx \stackrel{?}{=} \qquad \qquad \int e^x dx \stackrel{?}{=} \qquad \qquad \int b^x dx \stackrel{?}{=}$$

Math 10360 – Example Set 01C Derivative of Exponential & Logarithmic Functions: Section 3.9 Derivative of Inverse Trig Function: Section 5.8

1. By restricting the domain of $\sin x$, $\cos x$, and $\tan x$ define their inverse functions ($\arcsin x$, $\arccos x$, and $\arctan x$). Sketch the graph of each of the inverse functions stating their range and domain.

2. Using chain rule, obtain the derivative of $\arcsin(x)$, $\arccos(x)$, and $\arctan(x)$.

Key Formulas:

$$\frac{d}{dx}(\arcsin x) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\arccos x) \stackrel{?}{=} \qquad \qquad \frac{d}{dx}(\arctan x) \stackrel{?}{=}$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx \stackrel{?}{=} \qquad \qquad \int \frac{1}{1+x^2} \, dx \stackrel{?}{=}$$

3. Using the log function, find the derivative of $y = (1 + 2x)^{\arctan x}$.

4a. Find the derivative of $\arcsin(2x + y^2)$ with respect to x treating y as a constant.

4b. Find the derivative of $\arcsin(2x + y^2)$ with respect to y treating x as a constant.

5. A population y(t) (in units of millions) of bacteria grows according to the rate $\frac{dy}{dt} = \frac{1}{1+4t^2}$. Find the total change in the size of the population over the time duration $0 \le t \le 1/2$.

6. (Review) Without using a calculator, find the value of each of the following expressions:

a. $\arcsin(\sqrt{3}/2)$ **b.** $\arcsin(-\sqrt{3}/2)$ **c.** $\arccos(0.5)$ **d.** $\arctan(-1)$

