Math 10360 – Example Set 12A

Section 14.3 (Partial Derivatives): Estimating Partial Derivatives

1. The temperature (F) adjusted for wind-chill is a temperature which tells you how cold it feels, as a result of the combination of wind-chill (W) and temperature (T). So we have F(T, W). (Source: Wikipedia)

**	25	-31	-24	-17	-11	-4	3	9	16	23
Wind	20	-29	-22	-15	-9	-2	4	11	17	24
Speed	15	-26	-19	-13	-7	0	6	13	19	25
(W mph)	10	-22	-16	-10	-4	3	9	15	21	27
	5	-16	-11	-5	1	7	13	19	25	31
**	**	-5	0	5	10	15	20	25	30	35

Temperature $(T^{\circ}F)$

1a. Estimate the rate of change of F with respect to T at T = 20 and W = 15? In another words, estimate the rate of change of F in the T-direction at (20, 15). You should compute as many estimates as the data allows.

1b. Estimate the rate of change of F with respect to W at T = -5 and W = 25? In another words, estimate the rate of change of F in the W-direction at (-5, 25). You should compute as many estimates as the data allows.

1c. If temperature is fixed at T = 20, and windspeed increases from 15 mph to 15.8 mph, what is the estimated change in the temperature F adjusted for wind-chill.

Math 10360 – Example Set 12B Section 14.6: Chain Rule

Section 14.6 Chain Rule

2. Find formulas for the following derivatives by first drawing a tree diagram to connect all related quantities:

2a.
$$\frac{du}{dt}$$
 where $u = \ln(x^2 + y^2)$; $x = \cos 2t$ and $y = \sin t$.

2b. $\frac{\partial u}{\partial t}$ where $u = e^{x_1 + 4x_2 - x_3}$; $x_1 = 2t - s$, $x_2 = t^2$ and $x_3 = t + 3s$.

2c.
$$\left. \frac{\partial u}{\partial s} \right|_{\substack{s=1\\t=-1}}$$
 where $u = e^{x_1 + 4x_2 - x_3}$; $x_1 = 2t - s$, $x_2 = t^2$ and $x_3 = t + 3s$.

Section 14.6 (Chain Rule): Implicit Differentiation

2. Given that
$$ze^{x+2y} + z^2 - x - y = 0$$
. Find $z_x = \frac{\partial z}{\partial x}$ and $z_y(1, -1, 0)$.

Math 10360 – Example Set 12C Section 14.6: Chain Rule

Topic: Applications of Chain Rule

Linear Approximation of Change in a Function. Section 14.4 (Pg 808).

a. Consider a particle moving from point (a, b) to point (a+k, b+h). If the particle travel at a constant speed and the total duration of the motion is 1 second, find in terms of time t (in seconds), a formula for the position (x, y).

b. Consider a function f(x, y) such that its first partial derivatives exist for all points near (a, b). If (x, y) is a point on the line segment in Q2(a), find a formula for the rate of change of f with respect to t.

c. For a small change in time Δt , let the corresponding change in x from a be Δx , the corresponding change in y from b be Δy , and Δf be the corresponding change in f from f(a, b). Then we have

$$\frac{\Delta f}{\Delta t} \approx \left. \frac{df}{dt} \right|_{t=0}$$

Prove that

$$\Delta f \approx \frac{\partial f}{\partial x}(a,b) \cdot \Delta x + \frac{\partial f}{\partial y}(a,b) \cdot \Delta y$$

where $\Delta f = f(a + \Delta x, b + \Delta y) - f(a, b)$. This boxed formula is called the Linear Approximation of change in f when (x, y) changes from (a, b) to $(a + \Delta x, b + \Delta y)$.

Alternately, for all (x, y) near (a, b) then $x = a + \Delta x$ and $y = b + \Delta y$ for some small Δx and Δy . Then we can estimate f(x, y) by the formula:

$$f(x,y) \approx f(a,b) + \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b)$$

We call the right hand side the linearization of f(x, y) at (a, b).

1. Let $g(x,y) = \sqrt{4 - x^2 + y^2}$. Using linear approximation g(x,y) at (1,1), estimate the following values:

- (a) the change in g(x, y) when (x, y) changes from (1, 1) to (1.1, 0.8).
- (b) the value of g(1.1, 0.8).
- (c) the percentage change in g(x, y) when (x, y) changes from (1, 1) to (1.1, 0.8).

Find also the linearization of g(x, y) at (1, 1).

⁽a) $\Delta g \approx -0.15$; (b) $g(1.1, 0.8) \approx 1.85$. Compare with calculator $g(1.1, 0.8) \approx 1.852025918$; (c) $\frac{\Delta g}{q(1,1)} \times 100\% \approx -3.75\%$; $g(x, y) \approx 2 - \frac{1}{2}(x-1) + \frac{1}{2}(y-1)$.