Math 10360 — Example Set 14A

Testing Convergence of General Series.
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Recall that a geometric series ) ¢, with common ratio = r. Then we have:

Cn

(a) > ¢, converges if

(b) > ¢, diverges if

For general series which are NOT geometric we can apply the Ratio Test.

Ratio Test Let ) a, be a series with no zero terms. Consider the value p given by
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Then we have the following:

(a) > a, converges (in fact, absolutely) if

(b) > a, diverges if or

(c) The Ratio Test is inconclusive if

1. Determine if the following series are convergent or divergent.
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Introduction to Power Series

A Power Series can be thought about as a polynomial with infinitely many terms or arbitrarily high
degree. Here are some examples:
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A general power series has the form:
ap+ay(r —c) +ag(x — ) +az(x — ) + -+ ay(x —c)" + -

where the coefficients ag, a1, as, as, ... is a sequence of real numbers.

We call this a power series centered at x = c. Fill in the blanks below.
o0
(1) Zl‘k =l4+ao+22 423+ 2"+

(1) is called a power series centered at z =
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(2) is called a power series centered at z =

2. Find the values of x for which each of the following power series is convergent. You may ignore the

discussion if the power series is convergent at the end-points of the interval found. What is the radius
of convergent?
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